Fatemeh Khorsi Damghani, Seied Ali Pourmousavi,* , Hamzeh Kiyani
Journal of Applied Chemistry Vol. 14, No. 53, 2020.
Publication year: 2020

In this study, a novel biomass and Starch-derived carbonaceous solid acid catalyst (Fe3O4@C-SO3H) that has superparamagnetism with high acid density was successfully prepared for the first time by incomplete hydrothermal carbonization of Starch followed by Fe3O4 grafting and –SO3H groups functionalization. The characterization of physicochemical properties of Fe3O4@C-SO3H NPs was achieved by X-ray diffraction (XRD), Fourier-transform infrared spectra (FT-IR) and Field Emission scanning electron microscope (FESEM). The resulted catalyst contained -SO3H, -COOH, and phenolic -OH groups and exhibited good catalytic activity for the one-pot synthesis of dihydropyrano[c]chromenes, 2‑Amino-3-cyano‑4H‑pyrans and 2-amino-4H-chromenes derivatives (chromenes and pyrans) via multicomponent reactions. High catalytic activity and easy magnetical separation from the reaction mixture are two significant factors for evaluating the performance of Fe3O4@C-SO3H nanoparticles in the organic transformations..

Leave a Reply

Your email address will not be published. Required fields are marked *