Mahdieh Nafar; Gholamhossein Grivani
Iranian Journal of Chemistry and Chemical Engineering
Publication year: 2019

The acidic group (-CO2H) of multiwall carbon nanotube (MVCNT) converted to acyl chloride group (-COCl) producing of MVCNT@COCl. Then reaction of MVCNT@COCl and MoO2(acac)2 resulted in direct immobilization of the MoO2(acac)2 and formation of MVCNT@CO(acac)MoO2(acac) catalyst. In addition, the MVCNT@COCl was esterified by NaOC2H5 and formed the esteric MVCNT@COC2H5 reagent. In a subsequent reaction of MVCNT@COC2H5 by ethylene diamine, the MVCNT@CONHCH2CH2NH2 was produced. It was reacted with MoO2(acac)2 and immobilized the MoO2(acac)2 via imine bond formation and produced the MVCNT@CONHCH2CH2N(acac)MoO2(acac) catalyst. The functionalized MVCNT reagents were characterized by FT-IR spectra and elemental analysis. The molybdenum loading on MVCNT was determined by ICP analysis. The catalytic activity of the two molybdenum immobilized catalysts (MVCNT@COMoO2(acac)2 and MVCNT@CONHCH2CH2N(acac)MoO2(acac)) was investigated in the epoxidation of cyclooctene and different reaction parameters such as solvent, oxidant, amount of catalyst and oxidant were optimized and the epoxidation of different alkenes was investigated in these optimized conditions. The obtained results showed that the supported catalysts of MVCNT@CO(acac)MoO2(acac)2 and MVCNT@CONHCH2CH2N(acac)MoO2(acac) were highly active and selective in the epoxidation of a wide range of alkenes. The reusability of the supported catalysts was also studied. The results showed that they had a good reusability in epoxidation of alkenes.

Leave a Reply

Your email address will not be published. Required fields are marked *