Axions via Cartan-Gauss-Bonnet

Shahab Shahidi

Damghan University

The 14th Marcel Grossmann meeting 16 July 2015

TABLE OF CONTENTS

1. Brief review on Weyl and Cartan theory.
2. Review on Gauss-Bonnet gravity.
3. Gauss-Bonnet gravity in Weyl space-time.
4. Gauss-Bonnet gravity in Cartan space-time.
5. Cartan-Gauss-Bonnet coupled to a scalar field.
6. Cosmological implications.
7. Conclusions.

The Weyl theory

- One of the first extensions of GR was introduced in 1918 by Hermann Weyl. (Sitzungsber. Preuss. Akad. Wiss. 465 (1918) 14)
- His purpose was unification of the long range forces i.e. Gravity and Electromagnetism.
- The connection in Weyl theory is no longer metric compatible

$$
\tilde{\nabla}_{\mu} g_{\nu \rho}=2 w_{\mu} g_{\nu \rho},
$$

- This leads to change in the length of a vector field during parallel transportation.
- The above equation with the assumption $\Gamma^{\lambda}{ }_{\mu \nu}=\Gamma^{\lambda}{ }_{\nu \mu}$ leads to

$$
\Gamma_{\mu \nu}^{\lambda}=\left\{\begin{array}{c}
\lambda \\
\mu \nu
\end{array}\right\}+g_{\mu \nu} w^{\lambda}-\delta_{\nu}^{\lambda} w_{\mu}-\delta_{\mu}^{\lambda} w_{\nu} .
$$

The Cartan geometry

- In Cartan geometry, the connection is no longer symmetric.
- The antisymmetric part of the connection is the torsion

$$
T_{\mu \nu}^{\lambda}=\frac{1}{2}\left(\Gamma_{\mu \nu}^{\lambda}-\Gamma_{\nu \mu}^{\lambda}\right) .
$$

- The notion of an asymmetric affine connection was mentioned by Eddington in 1921.
- Torsion was introduced by Elie Cartan in 1922.
(C. R. Acad. Sci. (Paris) 174, (1922) 593)

CARTAN GEOMETRY

- In the Riemann-Cartan space we have

$$
\nabla_{\alpha} g_{\mu \nu}=0
$$

so, one can obtain

$$
\Gamma_{\mu \nu}^{\rho}=\left\{\begin{array}{c}
\rho \\
\mu \nu
\end{array}\right\}+C_{\mu \nu}^{\rho}
$$

where $C^{\rho}{ }_{\mu \nu}$ is the contortion tensor and defined as

$$
C_{\mu \nu}^{\rho}=T_{\mu \nu}^{\rho}-g^{\rho \beta} g_{\sigma \mu} T_{\beta \nu}^{\sigma}-g^{\rho \beta} g_{\sigma \nu} T_{\beta \mu}^{\sigma}
$$

The Gauss-Bonnet (GB) GRavity

- Kretschmann in 1917 introduced the action of the form
(Ann. Phys. (Leipzig), 53 (1917) 575)

$$
S_{K}=\int d^{4} x \sqrt{-g} R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}
$$

- The above action has higher than second time derivatives in the action, and therefore it is unstable!
- The unique combination of curvature tensor which is second order in curvature and has at most second order time derivatives is

$$
S_{G B}=\int d^{4} x \sqrt{-g}\left(R_{\mu \nu \rho \sigma} R^{\mu \nu \rho \sigma}-4 R_{\mu \nu} R^{\mu \nu}+R^{2}\right),
$$

known as Gauss-Bonnet term.

- In 4D, the above combination becomes a total derivative, and does not contribute to the action.

The Weyl-GB gravity

- Consider the action

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} K+\mathcal{L}_{G}\right]
$$

with

$$
\begin{aligned}
\mathcal{L}_{G} & =\alpha_{1} K^{\alpha \beta \gamma \delta} K_{\alpha \beta \gamma \delta}+\alpha_{2} K^{\alpha \beta \gamma \delta} K_{\gamma \delta \alpha \beta}-\alpha_{3} K^{\alpha \beta \gamma \delta} K_{\beta \alpha \gamma \delta} \\
& -4\left(\beta_{1} \mathcal{K}_{\beta \gamma} \mathcal{K}^{\beta \gamma}+\beta_{2} \mathcal{K}_{\beta \gamma} \mathcal{K}^{\gamma \beta}+\beta_{3} K_{\alpha \beta} K^{\alpha \beta}+\beta_{4} K_{\alpha \beta} \mathcal{K}^{\alpha \beta}\right) \\
& +K^{2} .
\end{aligned}
$$

where $K_{\mu \nu} \equiv K^{\alpha}{ }_{\mu \alpha \nu}$ and $\mathcal{K}_{\mu \nu} \equiv K^{\alpha}{ }_{\alpha \mu \nu}$.

- We should impose the constraints:

$$
\begin{gathered}
\alpha_{1}+\alpha_{2}+\alpha_{3}=1 \\
\beta_{1}+\beta_{2}=1
\end{gathered}
$$

The Weyl-GB gravity

- Using the definition of non-metricity, the action leads to
(Jimenez and Koivisto 2014)

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{2} m^{2} w_{\mu} w^{\mu}-\frac{1}{4} \alpha W_{\mu \nu} W^{\mu \nu}\right]
$$

- With α is a constant and a combination of the coupling in the GB Lagrangian.
- Also $W_{\mu \nu}=\partial_{\mu} w_{\nu}-\partial_{\nu} w_{\mu}$.
- This is the Einstein-Proca system.

The Cartan-GB gravity

- There are two independent combinations of the curvature tensor in this case

$$
K_{\lambda \mu \nu \sigma} K^{\lambda \mu \nu \sigma}, \quad K_{\lambda \mu \nu \sigma} K^{\nu \sigma \lambda \mu} .
$$

- And two independent combinations for the contracted curvature tensor

$$
K_{\mu \nu} K^{\mu \nu}, \quad K_{\mu \nu} K^{\nu \mu}
$$

- So, one can write

$$
\begin{aligned}
\mathcal{L}_{G}= & \alpha K^{\alpha \beta \gamma \delta} K_{\alpha \beta \gamma \delta}+(1-\alpha) K^{\alpha \beta \gamma \delta} K_{\gamma \delta \alpha \beta} \\
& -4 \beta K_{\beta \gamma} K^{\beta \gamma}-4(1-\beta) K_{\beta \gamma} K^{\gamma \beta}+K^{2} .
\end{aligned}
$$

The Cartan-GB gravity

- Let's decompose the torsion tensor as

$$
T_{\mu \nu \rho}=\frac{2}{3}\left(t_{\mu \nu \rho}-t_{\mu \rho \nu}\right)+\frac{1}{3}\left(\hat{Q}_{\nu} g_{\mu \rho}-\hat{Q}_{\rho} g_{\mu \nu}\right)+\epsilon_{\mu \nu \rho \sigma} S^{\sigma},
$$

- with

$$
t_{\mu \nu \rho}+t_{\nu \rho \mu}+t_{\rho \mu \nu}=0, \quad g_{\mu \nu} t^{\mu \nu \rho}=0=g_{\mu \rho} t^{\mu \nu \rho} .
$$

- Obtaining the following decomposition for contortion

$$
C_{\rho \mu \nu}=\frac{4}{3}\left(t_{\mu \nu \rho}-t_{\rho \nu \mu}\right)+\frac{2}{3}\left(\hat{Q}_{\mu} g_{\nu \rho}-\hat{Q}_{\rho} g_{\mu \nu}\right)+\epsilon_{\rho \mu \nu \sigma} S^{\sigma},
$$

- Let's assume that $t_{\mu \nu \rho}=0$.

The Cartan-GB gravity

- The pure Q_{μ} part is equivalent to the Weyl-Gauss-Bonnet theory; becomes Einstein-Proca system.
- The pure S_{μ} part is also equivalent to Weyl-Gauss-Bonnet theory, after removing the unhealthy d.o.f. This gives us $\alpha=0$.
- The mixed term can be written as

$$
\epsilon^{\mu \nu \rho \sigma} Q_{\mu \nu} S_{\rho \sigma} .
$$

- This term is a total derivative

$$
\sqrt{-g} \epsilon^{\mu \nu \rho \sigma} Q_{\mu \nu} S_{\rho \sigma}=\partial_{\mu}\left(\epsilon^{\mu \nu \rho \sigma} Q_{\nu} S_{\rho \sigma}\right) .
$$

The Axion-Cartan-GB gravity

- Let's try to keep the mixed term, by couple the torsion to a scalar field via

$$
S=\int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} K+\rho \overline{\mathcal{L}}_{G}-\frac{1}{2} \partial_{\mu} \beta \partial^{\mu} \beta-V(\beta)\right]
$$

with modified Guass-Bonnet term defined as

$$
\begin{aligned}
\overline{\mathcal{L}}_{G}= & \alpha K^{\alpha \beta \gamma \delta} K_{\alpha \beta \gamma \delta}+(1-\alpha) K^{\alpha \beta \gamma \delta} K_{\gamma \delta \alpha \beta} \\
& -4 \tilde{\beta}(x) K_{\beta \gamma} K^{\beta \gamma}-4(1-\tilde{\beta}(x)) K_{\beta \gamma} K^{\gamma \beta}+K^{2} .
\end{aligned}
$$

- We have defined $\beta \equiv M \tilde{\beta}$ with some constant M with dimension of mass.
- ρ is a coupling constant.

The Axion-Cartan-GB gravity

- After substituting the torsion, one obtains the action

$$
\begin{aligned}
S= & \int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{2} m^{2} Q_{\mu} Q^{\mu}-\frac{1}{4}(1+32 \tilde{\phi}) Q_{\mu \nu} Q^{\mu \nu}\right. \\
& -\frac{1}{2} m^{2} S_{\mu} S^{\mu}-\frac{1}{4}(1+32 \tilde{\phi}) S_{\mu \nu} S^{\mu \nu}-8 \tilde{\phi}(x) \epsilon^{\mu \nu \rho \sigma} Q_{\mu \nu} S_{\rho \sigma} \\
& \left.-\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-V(\phi)\right],
\end{aligned}
$$

with $\phi=\beta-\frac{1}{32} M$, and again $\tilde{\phi} \equiv \phi / M$

The Axion-Cartan-GB GRavity

- Assuming $Q_{\mu}=S_{\mu}$ gives

$$
\begin{aligned}
S= & \int d^{4} x \sqrt{-g}\left[\frac{1}{2 \kappa^{2}} R-\frac{1}{2} m^{2} A_{\mu} A^{\mu}-\frac{1}{4}(1+32 \tilde{\phi}) F_{\mu \nu} F^{\mu \nu}\right. \\
& \left.-4 \tilde{\phi}(x) \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} F_{\rho \sigma}-\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)-V(\phi)\right]
\end{aligned}
$$

- where $A_{\mu}=\sqrt{2} Q_{\mu}, m^{2}=6 /\left(\rho \kappa^{2}\right)$ and $F_{\mu \nu}$ is its field strength defined as $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$.

COSMOLOGICAL IMPLICATIONS

- Use $A_{\mu}=[A(t), B(t), B(t), B(t)]$ in the flat FRW ansatz.
- One obtains $A(t)=0$ from its field equation.
- The dynamical equations become

$$
\begin{aligned}
& 3\left((32 \phi+1)(\dot{b}+b h)^{2}+\mu^{2} b^{2}-4 h^{2}\right)+2 V+\dot{\phi}^{2}=0 \\
& 48(\dot{b}+b h)^{2}-3 h \dot{\phi}-V^{\prime}-\ddot{\phi}=0 \\
& (32 \phi+1) \ddot{b}+\dot{b}(h(96 \phi+3)+32 \dot{\phi}) \\
& \quad+b\left((32 \phi+1) \dot{h}+32 h \dot{\phi}+h^{2}(64 \phi+2)+\mu^{2}\right)=0
\end{aligned}
$$

where we have defined

$$
\tau=H_{0} t, \quad h=\frac{H}{H_{0}}, \quad \mu=\frac{m}{H_{0}}, \quad b=\frac{B}{a} .
$$

- We have assumed that $M=1$ for simplicity.

The case $V=0$

- The deceleration parameter is

- Larger the mass of the gauge field results in a less decelerated universe.
- The theory without potential can not explain the accelerated expanding universe.

The case $V=\frac{1}{2} m_{\phi}^{2} \phi^{2}$

- Consider a quadratic potential $V=\frac{1}{2} m_{\phi}^{2} \phi^{2}$.
- Introduce $\sigma=\frac{m_{\phi}}{H_{0}}$.
- The deceleration parameter is

- For Larger values of the axion mass, the universe enters to the accelerated expanding phase sooner.

The $V=V_{0}\left(1-\cos \left(\frac{\phi}{f}\right)\right)$

- The deceleration parameter is of the form

- For smaller f, the universe enters to the accelerated expanding phase sooner.

SUMMARY

- We have considered the Gauss-Bonnet theory in the Cartan spacetime.
- The role of the trace part of the torsion is equivalent to the Weyl vector. Both leads to the Einstein-Proca system.
- The S part in general introduces an unwanted d.o.f. But tunning the parameters, can avoid this d.o.f. The resulting Lagrangian is again similar to the Weyl-Gauss-Bonnet.
- A theory with Weyl vector and the trace of torsion tensor leads to the Einstein-Maxwell-Proca system.
- Coupling between Q_{μ} and S^{μ} produces an interesting term.
- To produce an accelerating universe, the theory needs a potential for the scalar field.
- The cosmological perturbation analysis gives us more information about the effects of extra term in the action.

Thanks for your attention!

