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Introduction  

Optics is the study of the way light interacts with other objects. This behavior can be extremely 
complicated. However, if the objects in question are much larger than the wavelength of the light 
being studied, then the light exhibits much simpler behavior. This behavior is described by the laws 
of geometric optics.  

In geometric optics light is assumed to move only in straight lines, except where it meets barriers. 
At different barriers, light rays are reflected or refracted based on the material properties of the 
barrier. The angle at which this reflection or refraction occurs is determined by the law of reflection 
and Snell's law respectively.  

In this lab, you will use the technique of ray tracing to verify both the law of reflection and Snell's 
law.  You will then use this same technique to study the properties of lenses (which make use of 
refraction to focus or defocus light). Finally, you will apply your understanding of lenses to design a 
small telescope. 

THEORY 

We will use Fermat’s principle of least time to calculate the trajectory of a ray of light for reflection 
off a flat, smooth surfaces and refraction through a homogeneous medium.  First we can place 
preliminary restrictions on the paths that we consider. For our purposes, we will restrict our 
attention to two dimensions. Light travels at a constant speed v as it travels through a 
homogeneous medium such as air, glass, or vacuum. We can write v in some medium in terms of its 

proportionality to the speed of light in a vacuum, c, by  
 

 
  . We call n the index of refraction of the 

medium. Consider a ray of light traveling from point A to point B. Consider 

  
 

 
   

 

 
 
 

 
  

where s is the total distance traveled and t is the total time taken. Since n and c are constant, we 
must minimize s to minimize t. The shortest path between points A and B is a straight line, so this is 
also the path of least time. Therefore, light travels in a straight line through a continuous medium. 
This greatly reduces the paths we must consider for more complex situations. 

Reflection  

 Now let’s apply this principle for light reflecting off a flat, smooth, surface, e.g. a mirror. 
Suppose we know light travels from a point A, hits the mirror, and ends up at point C. At what point 
B does the light hit the mirror? More importantly, since we know light travels in straight lines, how 
is the angle    of the light ray hitting the surface related to the reflected angle   ? We already know 
the answer, but we will see how this arises from a deeper law. 



 

FIGURE 1: REFLECTION 

The total time t is given by the sum of times     and    , the times to travel paths AB and BC 
respectively. This gives us 

          
 

 
          

By the distance formula, 
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Then 

  
 

 
     

     
      

     
   

Since we only want to vary the position of B along the mirror, we write      as        : 

  
 

 
     

     
             

     
   

We then set the derivative of t with respect to     to obtain the minimal path: 

  

    
 
 

 

 

 
   

    
     

 
 

       

           
     

 

 

    



Substituting in     ,     and     we obtain 

   
   

 
   
   

 

Trigonometry tells us that 
   
   

                   

and  
   
   

                   

so we have 

            

This implies that, for angles less than 90 degrees as we would assume for a reflection, 

      

Hence we see that the angle of incidence is equal to the angle of reflection, as expected. 

 
Refraction 

Now we consider the path of light as it passes from one medium to another. This means 
there are two indices of refraction,     and   . Suppose light is traveling from a point A in medium 1 
to point C in medium 2. At what point B will the light pass through at the barrier between the two 
mediums and what is the relation between angles    and   ? 

 

FIGURE 2: REFRACTION  

 

 



We proceed as we did before: 

          
 

 
              

Making the same substitution, we obtain 

  
 

 
       

     
               

     
   

Minimizing yields 

  

    
 
 

 

 

   
   

    
     

 
   

       

           
     

 

 

    

Again substituting in     ,     and    , this reduces to 

  
   
   

   
   
   

 

Trigonometry tells us that 
   

   
       and 

   

   
      , so we have 

                

This is Snell’s law of refraction. 

Many Rays 

 Now we will look at the properties of many rays passing through optics systems; assemblies 
of thin concave and convex lenses and mirrors. For simplicity, we will make the thin lens 
approximation and paraxial approximation. Before we delve into the meaning of these 
approximations we will overview the basic concepts of geometric optics.



 

FIGURE 3: REAL IMAGES 

In the context of geometric optics, an object(O) is a source of 
light that emits the light manipulated in an optical system. For 
our purposes, objects can be thought of as two dimensional 
patterns that emit light in all directions from each point.  

A real image (I, Figure 3) forms in the plane where the light from 
each point reconvenes. A screen placed in the plane of the real 
image reveals a crisp projection of the object. Real images are 
formed by convex lenses and concave mirrors. 

A virtual image (I, Figure 4) forms in the plane where divergent 
light appears to converge. Virtual images are formed by concave 
lenses and convex mirrors, and may also be formed by concave 
mirrors. 

The focal length of a lens or mirror is signed distance that 
characterizes how strongly it focuses light. With the thin lens 
approximation, the focal point is the distance between the 
center of the lens and the focal point (f). In the case of a convex 
lens or concave mirror, the focal point is the point in which 
collimated (parallel) light is focused or reflected to a single point, 
and the focal length is positive. In the case of a concave lens or 
convex mirror, the focal point is the point from which focused or 
reflected collimated rays appear to diverge, and the focal length 
is negative. 
 
Thin Lens Approximation 
 
The thin rays approximation assumes that the thickness of the 
lens is negligible compared to the focal length. This allows us to 
simplify the lensmaker’s equation, which relates the refractive 
index, curvature and thickness of the lens to the focal length. 
The lensmaker’s equation is given by 

 

 
       

 

  
 

 

  
 
      

    
  

Where f is the focal length, n is the refractive index, d is the 
thickness of the lens, and     and    are the radii of curvature 
for the front and back of the lens respectively. According to 
convention,         for concave lenses and         for 
convex lenses. If     then the equation simplifies to 

 

 
       

 

  
 

 

  
  

Since the lenses we will be using are symmetrical, we can assume 
that       . 

 

FIGURE 4: VIRTUAL IMAGES 



Paraxial Approximation 

 The paraxial approximation assumes that the angles of the rays are small with respect to 
the optical axis (the central path along which light travels). This allows us to make a simple relation 
between the radius of curvature R of the concave and convex mirrors to the focal length f, given by 
 

      
 
Here we assume that the radius of curvature is positive for convex mirrors and negative for concave 
mirrors. 

 Combined with the thin lens approximation, the paraxial approximation yields a simple 
relation between the focal length of a lens and the positions of the object and image, given by 

 

 

 
 

 

  
 
 

  
 

Where f is the focal length,    is the displacement between the object and the lens, and    is the 
displacement between the image and the lens. According to convention, the focal length is positive 
for convex lenses and concave mirrors, while it is negative for concave lenses and convex mirrors.  

The magnification of the image is given by 

  
  
  

 

Where positive M denotes an erect (upright) image and negative M denotes an inverted (upside-
down) image. 
 

 

 

 

 

 

 

 

 

 

 

 



EXPERIMENT 

Ray Tracing  

To trace a ray: 

1) Turn on the Pasco light source and select either one slit or 
multiple slits, depending on the measurement you are making.  

2) Place the object you are measuring on a piece of paper in the 
path of the light beam. Trace both the edges of the object and 
the front of the light box so that you can reset them if you 
accidently move them.  

3) Trace the beam on the paper using a pencil.  This may be 
easiest to do by making dots in the center of the beam where it 
hits the prism and far away, and then later connecting these 
dots with a ruler. 

 

 

 

Experiments  

 

1) Verify the law of reflection for a plane mirror. 
 

2) Verify Snell’s law for a prism.  
 

3) Determine the focal length of one of the concave lenses 
and one of the convex lenses by setting the light source 
to produce multiple rays of light at once. 
 

4) Design a telescope on the optics bench with a 
magnification of 2x. 

 

 

 

 How accurately can you trace the 
rays? How accurately can you 
measure the angles between them? 
 

 How accurately can you determine 
where two rays intersect?  

 
 

Unlike a mathematical ray, the beam 
from the light box is not infinitely 
thin. What errors will this introduce, 
and how can you minimize them? 


