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PREFACE TO THE FOURTH EDITION

This fourth edition is written primarily to be used as a textbook by college students
majoring in one of the physical sciences. The first, second, and third editions were
written by Francis A. Jenkins and Harvey E. White while teaching optics in the
physics department at the University of California, Berkeley. With the passing of
Professor Jenkins in 1960 this fourth edition has been revised by Harvey E. White.

A considerable number of innovative: ideas and new concepts have been
developed in the field of ()ptics since the third .edition was published in 1957, thereby
requiring a sizable amount of new material. Three new chapters, a number of new
sections on modern optics, a number of new references, and all new problems at the
ends of all chapters have been added to bring the fourth edition up to date.

Fizeau's experiments on the speed of light in air and Foucault's experiments on
the speed of light in stationary matter have beeh moved to Chapter 1. This serves as a
better introduction to the important concept of refractive index and leaves the rest of
Chapter 19 relatively unchanged.

In Part One, Geometrical Optics, the long and tedious calculations of ray trac-
ing, using logarithms, has been replaced by direct calculations using the relatively
new electronic calculators, thereby permitting lens design engineers to program
larger computers.
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In Part Two, Wave Optics, Chapter 11 has been modified to give a better ap-
proach to the subject of wave motion. In Chapter 16 a section has been added on the
correlation interferometer. Some of the major features of recent developments have
been added at the end of Chapter 28: modern wave optics, spatial filtering, the phase-
contrast microscope, and schlieren optics.

In Part Three, Quantum Optics, three new chapters have been added as impor-
tant new developments: Chapter 29, Light Quanta and Their Origin; Chapter 30,
Lasers; and Chapter 31, Holography.

I wish to take this opportunity of thanking Dr. Donald H. White for his
assistance in gathering much of the new material used in this the fourth edition.

HARVEY E. WHITE



PREFACE TO THE THIRD EDITION

The chief objectives in preparing this new edition have been simplification and
modernization. Experience on the part of the authors and of the many other users of
the book over the last two decades has shown that many passages and mathematical
derivations were overly cumbersome, thereby losing the emphasis they should have
had. As an example of the steps taken to rectify this defect, the chapter on reflection
has been entirely rewritten in simpler form and placed ahead of the more difficult
aspects of polarized light. Furthermore, by expressing frequency and wavelength in
circular measure, and by introducing the complex notation in a few places, it has been
possible to abbreviate the derivations in wave theory to make room for new material.

In any branch of physics fashions change as they are influenced by the develop-
ment of the field as a whole. Thus, in optics the notions of wave packet, line width,
and coherence length are given more prominence because of their importance in
quantum mechanics. For the same reason, our students now usually learn to deal
with complex quantities at an earlier stage, and we have felt justified in giving some
examples of how helpful these can be. Because of the increasing use of concentric
optics, as well as graphical methods of ray tracing, these subjects have been introduced
in the chapters on geometrical optics. The elegant relationships between geometrical
optics and particle mechanics, as in the electron microscope and quadrupole lenses,
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could not be developed because of lack of space; the instructor may wish to supple-
ment the text in this direction. The same may be true of the rather too brief treatments
of some subjects where old principles have recently come into prominence, as in
Cerenkov radiation, the echelle grating, and multilayer films.

A difficulty that must present itself to the authors of all textbooks at this level
is that of avoiding the impression that the subject is a definitive, closed body of
knowledge. If the student can be persuaded to read the original literature to any
extent, this impression soon fades. To encourage such reading, we have inserted
many references, to original papers as well as to books, throughout the text. An
entirely new set of problems, representing a rather greater spread of difficulty than
heretofore, is included.

It is not possible to mention all those who have assisted us by suggestions for
improvement. Specific errors or omissions have been pointed out by L. W. Alvarez,
W. A. Bowers, J. E. Mack, W. C. Price, R. S. Shankland, and J. M. Stone, while
H. S. Coleman, J. W. Ellis, F. S. Harris, Jr., R. Kingslake, C. F. J. Overhage, and
R. E. Worley have each contributed several valuable ideas. We wish to express our
gratitude to all of these, as well as to T. L. Jenkins, who suggested the simplification of
certain derivations and checked the answers to many of the problems.

FRANCIS A. JENKINS
HARVEY E. WHITE



FUNDAMENTALS
OF OPTICS





PART ONE

Geometrical Optics





1
PROPERTIES OF LIGHT

All the known properties of light are described in terms of the experiments by which
they were discovered and the many and varied demonstrations by which they are
frequently illustrated. Numerous though these properties are, their demonstrations
can be grouped together and classified under one of three heads: geometrical optics,
wave optics, and quantum optics, each of which may be subdivided as follows:

Geometrical optics
Rectilinear propagation
Finite speed
Reflection
Refraction
Dispersion

Wave optics
Interference
Diffraction
Electromagnetic character
Polarization
Double refraction

Quantum optics
Atomic orbits
Probability densities
Energy levels
Quanta
Lasers
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Screen Screen

FIGURE lA
A demonstration experiment illustrating the principle that light rays travel in
straight lines. The rectilinear propagation of light.

The first group of phenomena classified as geometrical optics are treated in the first 10
chapters of this text and are most easily described in terms of straight lines and plane
geometry. The second group, wave optics, deals with the wave nature of light, and is
treated in Chaps. 11 to 28. The third group, quantum optics, deals with light as made
up of tiny bundles of energy called quanta, and is treated from the optical standpoint
in Chaps. 29 to 33.

1.1 THE RECTILINEAR PROPAGATION OF LIGHT

The rectilinear propagation of light is the technical terminology applied to the
principle that "light travels in straight lines." The fact that objects can be made to
cast fairly sharp shadows may be considered a good demonstration of this principle.
Another illustration is found in the pinhole camera. In this simple and inexpensive
device the image of a stationary object is formed on a photographic film or plate by
light passing through a small opening, as diagramed in Fig. lAo In this figure the
object is an ornamental light bulb emitting white light. To see how an image is
formed, consider the rays of light emanating from a single point a near the top of the
bulb. Of the many rays of light radiating in many directions the ray that travels in the
exact direction of the hole passes through to the point a' near the bottom of the image
screen. Similarly, a ray leaving b near the bottom of the bulb and passing through
the hole will arrive at b', near the top of the image screen. Thus it can be seen how an
inverted image of the entire bulb is formed.

If the image screen is moved closer to the pinhole screen, the image will be
proportionately smaller, whereas if it is moved farther away, the image will
be proportionately larger. Excellent sharp photographs of stationary objects can be
made with this arrangement. By making a pinhole in one end of a small box and
placing a photographic film or plate at the other end, taking several time exposures
as trial runs, good pictures are attainable. For good, sharp photographs the hole
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FIGURE IB
Photograph of the University of California Hospital, San Francisco, taken with a pinhole camera. Plate distance 9.5 em; Panchromatic film;
exposure 3.0 min; square hole = 0.33 mm.
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must be very small, because its size determines the amount of blurring in the image.
A small square hole is quite satisfactory. A piece of household aluminum foil is
folded twice and the corner fold cut off with a razor blade, leaving good clean edges.
After several such trials, and examination with a magnifying glass, a good square
hole can be selected. The photograph reproduced in Fig. IB was taken with such a
pinhole camera. Note the undistorted perspective lines as well as the depth of focus
in the picture.

1.2 THE SPEED OF LIGHT

The ancient astronomers believed that light traveled with an infinite speed. Any major
event that occurred among the distant stars was believed to be observable instantly
at all other points in the universe.

It is said that around 1600 Galileo tried to measure the speed of light but was
not successful. He stationed himself on a hilltop with a lamp and his assistant on a
distant hilltop with another lamp. The plan was for Galileo to uncover his lamp at
an agreed signal, thereby sending a flash of light toward his assistant. Upon seeing
the light the assistant was to uncover his lamp, sending a flash oflight back to Galileo,
who observed the total elapsed time. Many repetitions of this experiment, performed
at greater and greater distances between the two observers, convinced Galileo that
light must travel at an infinite speed.

We now know that the speed of light is finite and that it has an approximate
value of

v = 300,000 km/s = 186,400mils

In 1849 the French physicist Fizeau. became the first man to measure the speed
of light here on earth. His apparatus is believed to have looked like Fig. 1C. His
account of this experiment is quite detailed, but no diagram of his apparatus is given
in his notes.

An intense beam of light from a source S is first reflected from a half-silvered
mirror G and then brought to a focus at the point 0 by means of lens L1• The diverg-
ing beam from 0 is made into a parallel beam by lens Lz. After traveling a distance
of 8.67 km to a distant lens L3 and mirror M, the light is reflected back toward the
source. This returning beam retraces its path through Lz, 0, and Lt, half of it
passing through G and entering the observer's eye at E.

The function of the toothed wheel is to cut the light beam into short pulses and
to measure the time required for these pulses to travel to the distant mirror and back.
When the wheel is at rest, light is permitted to pass through one of the openings at O.

• Armand H. L. Fizeau (1819-1896), French physicist, was born of a wealthy French
family that enabled him to be financially independent. Instead of shunning work,
however, he devoted his life to diligent scientific experiment. His most important
achievement was the measurement of the speed of light in 1849, carried on in Paris
between Montmartre and Suresnes. He also gave the correct explanation of the
Doppler principle as applied to light coming from the stars and showed how the
effect could be used to measure stellar velocities. He carried out his experiments
on the velocity oflight in a moving medium in 1851 and showed that light is dragged
along by a moving stream of water.
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FIGURE Ie
Experimental arrangement described by the French physicist Fizeau, with which
he determined the speed of light in air in 1849.

In this position all lenses and the distant mirror are aligned so that an image of the
light source S can be seen by the observer at E.

The wheel is then set rotating with slowly increasing speed. At some point the
light passing through 0 will return just in time'to be stopped by tooth a. At this
same speed light passing through opening 1 will return in time to be stopped by the
next tooth b. Under these circumstances the light S is completely eclipsed from the
observer. At twice this speed the light will reappear and reach a maximum intensity.
This condition occurs when the light pulses getting through openings I, 2, 3, 4, ...
return just in time to get through openings 2, 3, 4, 5, ... , respectively.

Since the wheel contained 720 teeth, Fizeau found the maximum intensity to
occur when its speed was 25 rev/so The time required for each light pulse to travel
over and back could be calculated by (7h)(is) = 1/18,000 s. From the measured
distance over and back of 17.34 km, this gave a speed of

v = ~ = 17.34 km = 312,000 km/s
t 1/18,000 s

In the years that followed Fizeau's first experiments on the speed of light, a
number of experimenters improved on his apparatus and obtained more and more
accurate values for this universal constant. About three-quarters of a century passed,
however, before A. A. Michelson, and others following him, applied new and improved
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methods to visible light, radio waves, and microwaves and obtained the speed of light
accurate to approximately six significant figures.

Electromagnetic waves of all wavelengths, from X rays at one end of the
spectrum to the longest radio waves, are believed to travel with exactly the same speed
in a vacuum. These more recent experiments will be treated in detail in Chap. 19,
but we give here the most generally accepted value of this universal constant,
• c = 299,792.5 km/s = 2.997925 x 108 m/s (la)

For practical purposes where calculations are to be made to four significant
figures, the speed of light in air or in a vacuum may be taken to be

c = 3.0 X 108 m/s (lb)

One is often justified in using this rounded value since it differs from the more
accurate value in Eq. (la) by less than 0.1 percent.

1.3 THE SPEED OF LIGHT IN STATIONARY MATTER

In 1850, the French physicist Foucault* completed and published the results of an
experiment in which he had measured the speed of light in water. Foucault's experi-
ment was of great importance for it settled a long controversy over the nature of light.
Newton and his followers in England and on the Continent believed light to be made
up of small particles emitted by every light source. The Dutch physicist Huygens,
on the other hand, believed light to be composed of waves, similar to water or sound
waves.

According to Newton's corpuscular theory, light should travel faster in an
optically dense medium like water than in a less dense medium like air. Huygens'
wave theory required light to travel slower in the more optically dense medium.
Upon sending a beam of light back and forth through a long tube containing water,
Foucault found the speed of light to be less than in air. This result was considered
by many to be a strong confirmation of the wave theory.

Foucault's apparatus for this experiment is shown in Fig. 10. Light coming
through a slit S is reflected from a plane rotating mirror R to the equidistant concave
mirrors Mt and M2• When R is in the position I, the light travels to Mt, back along
the same path to R, through the lens L, and by reflection to the eye at E. When R
is in position 2, the light travels the lower path through an auxiliary lens E and tube

• Jean Bernard Leon Foucault (1819-1868), French physicist. After studying
medicine he became interested in experimental physics and with A. H. L. Fizeau
carried out experiments on the speed of light. After working together for some time,
they quarreled over the best method to use for "chopping" up a light beam, and
thereafter went their respective ways. Fizeau (using a toothed wheel) and Foucault
(using a rotating mirror) did admirable work, each supplementing the work of the
other. With a rotating mirror Foucault in 1850 was able to measure the speed of
light in a number of different media. In 1851 he demonstrated the earth's rotation
by the rotation of the plane of oscillation of a long, freely suspended, heavy
pendulum. For the development of this device, known today as a Foucault pendulum,
and his invention of the gyroscope, he received the Copley medal of the Royal
Society of London, in 1855. He also discovered the eddy currents induced in a
copper disk moving in a strong magnetic field and invented the optical polarizer
which bears his name.
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FIGURE 10
Foucault's apparatus for determining the speed of light in water.

T to M2, back to R, through L to G, and then to the eye E. If now the tube Tis
filled with water and the mirror is set into rotation, there will be a displacement of the
images from E to E1 and E2• Foucault observed that the light ray through the tube
was more displaced than the other. This means that it takes the light longer to travel
the lower path through water than it does the upper path through the air.

The image observed was due to a fine wire parallel to, and stretched across, the
slit. Since sharp images were desired at E1 and E2, the auxiliary lens L' was necessary
to avoid bending the light rays at the ends of the tube T.

Over 40 years later the American physicist Michelson (first American Nobel
laureate 1907)measured the speed of light in air and water. For water he found the
value of 225,000 kmfs, which is just three-fourths the speed in a vacuum. In ordinary
optical glass, the speed was still lower, about two-thirds the speed in a vacuum.

The speed of light in air at normal temperature and pressure is about 87 kmfs less
than in a vacuum, or v = 299,706 kmfs. For many practical purposes this difference
may be neglected and the speed of light in air taken to be the same as in a vacuum,
v = 3.0 X 108 mfs.

1.4 THE REFRACTIVE INDEX
The index of refraction, or refractive index, of any optical medium is defined as the
ratio between the speed of light in a vacuum and the speed of light in the medium:

R f t. . d speed in vacuume rae lve In ex = ------
speed in medium
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In algebraic symbols

• c
n=-

v
(ld)

The letter n is customarily used to represent this ratio. Using the speeds given in
Sec. 1.3, we obtain the following values for the refractive indices:

For glass: n = 1.520 (Ie)

For water: n = 1.333 (If)

For air: n = 1.000 (lg)

Accurate determination of the refractive index of air at standard temperature (O°C)
and pressure (760 mmHg) give

n = 1.000292 for air (lh)

Different kinds of glass and plastics have different refractive indices. The most
commonly used optical glasses range from 1.52 to 1.72 (see Table IA).

The optical density of any transparent medium is a measure of its refractive
index. A medium with a relatively high refractive index is said to have a high optical
density, while one with a low index is said to have a low optical density.

1.5 OPTICAL PATH

To derive one ofthe most fundamental principles in geometric optics, it is appropriate
to define a quantity called the optical path. The path d of a ray of light in any medium
is given by the product velocity times time:

d = vt

Since by definition n = clv, which gives v = cln, we can write

The product nd is called the optical path A:

or nd = ct

A = nd

The optical path represents the distance light travels in a vacuum in the same
time it travels a distance d in the medium. If a light ray travels through a series of
optical media of thickness d, d', d", ... and refractive indices n, n', n", ... , the total
optical path is just the sum of the separate values:

• A = nd + n'd' + nild" + ... (Ii)

A diagram illustrating the meaning of optical path is shown in Fig. 1E. Three
media of length d, d', and d", with refractive indices n, n', and n", respectively, are
shown touching each other. Line AB shows the length of the actual light path through
these media, while the line CD shows the distance A, the distance light would travel
in a vacuum in the same amount of time t.
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FIGURE IE
The optical path through a series of optical media.

1.6 LAWS OF REFLECTION AND REFRACTION

Whenever a ray of light is incident on the boundary separating two different media,
part of the ray is reflected back into the first medium and the remainder is refracted
(bent in its path) as it enters the second medium (see Fig. IF). The directions taken
by these rays can best be described by two well-established laws of nature.

According to the simplest of these laws, the angle at which the incident ray
strikes the interface MM' is exactly equal to the angle the reflected ray makes with the
same interface. Instead of measuring the angle of incidence and the angle of reflection
from the interface MM', it is customary to measure both from a common line
perpendicular to this surface. This line NN' in the diagram is called the normal. As
the angle of incidence 4> increases, the angle of reflection also increases by exactly the
same amount, so that for all angles of incidence

• angle of incidence = angle of reflection (lj)

A second and equally important part of this law stipulates that the reflected
ray lies in the plane of incidence and on the opposite side of the normal, the plane of
incidence being defined as the plane containing the incident ray and the normal.
In other words, the incident ray, the normal, and the reflected ray all lie in the same
plane, which is perpendicular to the interface separating the two media.

The second law is concerned with the incident and refracted rays of light, and
states that the sine of the angle of incidence and the sine of the angle of refraction
bear a constant ratio one to the other, for all angles of incidence:

sin 4> = const (lk)
sin 4>'
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FIGURE IF
Reflection and refraction at the bound-
ary separating two media with refractive
indices nand n', respectively.

Furthermore, the refracted ray also lies in the plane of incidence and on the opposite
side of the normal. This relationship, experimentally established by Snell,* is known
as Snell's law. In addition the constant is found to have exactly the ratio of the
refractive indices of the two media nand n'. Hence we can write

which can be written in the symmetrical form

sin </J n'
= (ll)

sin </J' n

• n sin </J = n' sin </J' (1m)

as
By Eqs. (Ie) and (Id) the refractive indices of different optical media are defined

cn =-
v

and I Cn=-
Vi

(In)

where c is the speed of light in a vacuum (c = 2.997925 + 108 m/s) and v and Vi
are the speeds of light in the two media.

• Willebrord Snell (1591-1626), Dutch astronomer and mathematician, was born at
Leyden. At twenty-one he succeeded his father as professor of mathematics at the
University of Leyden. In 1611, he determined the size of the earth from measure-
ments of its curvature between Alkmaar and Bergen-op-Zoom. He announced
what is essentially the law of refraction in an unpublished paper in 1621. His
geometrical construction requires that the ratios of the cosecants of ,p and ,p' be
constant. Descartes was the first to use the ratio of the sines, and the law is known
as Descartes' law in France.
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By the substitution of Eqs. (lc) in Eq. (11), we obtain,

sin 4J = .£. (10)
sin 4J' v'

If one or both indices are different from unity, the ratio n' /n is often called the
relative index n' and Snell's law can be written
• sin 4J = n' (lp)

sin 4J'
If the first medium is a vacuum, n = 1.0, the relative index has just the value

of the second index and Eq. (lp) is again valid. If the first index is air at normal
temperature and pressure (n = 1.000292), and if three-figure accuracy is satisfactory,
Eq. (Ip) is again used.

Wherever practical, we shall use unprimed symbols to refer to the first medium,
primed symbols for the second medium, double primed symbols for the third medium,
etc. When the angles of incidence and refraction are very small, a good approximation
is obtained by setting the sines of angles equal to the angles themselves, obtaining

(lq)

1.7 GRAPHICAL CONSTRUCTION FOR REFRACTION

A simple method for tracing a ray of light across a boundary separating two optically
transparent media is shown in Fig. IG. Because the principles involved in this
construction are readily extended to complicated optical systems, the method is
useful in the preliminary design of many different kinds of optical instruments.

After the line GH is drawn, representing the boundary separating the two media
of index nand n', the angle of incidence 4J of the incident ray JA is selected and the
construction proceeds as follows. At one side of the drawing, and as reasonably close
as possible, a line OR is drawn parallel to JA. With a point of origin 0, two circular
arcs are drawn with their radii proportional to the two indices nand n', respectively.
Through the point of intersection R a line is drawn parallel to the boundary normal
NN', intersecting the arc n' at P. The line OP is next drawn in; parallel to it, through
A, the refracted ray AB is drawn. The angle p between the incident and refracted
ray, called the angle of deviation, is given by

p = 4J - 4J' (Ir)

To prove that this construction follows Snell's law exactly, we apply the law of
sines to the triangle 0 RP:

OR OP--=----
sin 4J' sin (1t - 4J)

Since sin (1t - 4J) = sin 4J, OR = n, and OP = n', substitution gives directly

n n'
-- =- (Is)
sin 4J' sin 4J

which is Snell's law [Eq. (ll)].
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o

H n'

FIGURE IG
Graphical construction for refraction at a smooth surface separating two media
of index nand n'.

1.8 THE PRINCIPLE OF REVERSIBILITY

The symmetry of Eqs. (1j) and (1m) with respect to the symbols used shows at once
that if a reflected or refracted ray is reversed in direction, it will retrace its original
path. For any given pair of media with indices nand n' anyone value of 4J is cor-
related with a corresponding value of n'. This will be equally true when the ray is
reversed and 4J' becomes the angle of incidence in the medium of n'; the angle of
refraction will then be 4J. Since reversibility holds at each reflecting and refracting
surface, it holds also for even the most complicated light paths. This useful principle
has more than a purely geometrical foundation, and later it will be shown to follow
from the application of wave motion to a principle in mechanics.

1.9 FERMAT'S PRINCIPLE

The term optical path was introduced in Sec. 1.5,where it was defined as the distance
a light ray would travel in a vacuum in the same time it travels from one point to
another, a specified distance, through one or more optical media. The real path of a
ray of light through a prism, with media of different refractive index on either side,
is shown in Fig. lH. The optical path from the point Q in medium n, through medium
n', and to the point Q" in medium n" is given by

• A = nd + n'd' + n"d" (1t)

One can also define an optical path in a medium of continuously varying
refractive index by replacing the summation by an integral. The paths of the rays
are then curved, and Snell's law of refraction loses its meaning.
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FIGURE IH
The refraction of light by a prism and the meaning of optical path A.

We shall now consider Fermat's. principle, which is applicable to any type of
variation of n and hence contains within it the laws of reflection and refraction as well:

The path taken by a light ray in going from one point to another through
any set of media is such as to render its optical path equal, in the first
approximation, to other paths closely adjacent to the actual one.

The other paths must be possible ones in the sense that they may undergo devi-
ations only where there are reflecting or refracting surfaces. Fermat's principle will
hold for a ray whose optical path is a minimum with respect to adjacent hypothetical
paths. Fermat himself stated that the time required by the light to traverse the path
is a minimum and the optical path is a measure of this time. But there are plenty of
cases in which the optical path is a maximum or neither a maximum nor a minimum
but merely stationary (at a point of inflection) at the position of the true ray.

Consider a ray of light that must pass through a point Q and then, after reflection
from a plane surface, pass through a second point Q" (see Fig. 11). To find the real
path, we first drop a perpendicular to GH and extend it an equal distance on the other
side to Q'. The straight line Q' Q" is drawn in, and from its intersection B the line QB

• Pierre de Fermat (1601-1665), French mathematician, born at Beaumont-de-
Lomagne. In his youth, with Pascal, he made discoveries about the properties of
numbers, on which he later built his method of calculating probabilities. His
brilliant researches in the theory of numbers rank him as the founder of modern
theory. He also studied the reflection of light and enunciated his principle of least
time. His justification for this principle was that nature is economical, but he was
unaware of circumstances where exactly the opposite is true. Fermat was a
counselor for the parliament of Toulouse, distinguished for both legal knowledge
and for strict integrity of conduct. He was also an accomplished general scholar
and linguist.
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FIGURE 11
Fermat's principle applied to reflection
at a plane surface.
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is drawn. The real light path is therefore QBQ", and, as can be seen from the sym-
metry relations in the diagram, it obeys the law of reflection.

Consider now adjacent paths to points like A and C on the mirror surface close
to B. Since a straight line is the shortest path between two points, both the paths
Q'A Q" and Q' CQ" are greater than Q'BQ". By the above construction and equivalent
triangles, QA = Q'A, and QC = Q'C, so that QAQ" > QBQ" and QCQ" > QBQ".
Therefore the real path QBQ" is a minimum. A graph of hypothetical paths close to
the real path QBQ", as shown in the lower right of the diagram, indicates the meaning
of a minimum, and the flatness of the curve between A and C illustrates that to a first
approximation adjacent paths are equal to the real optical path.

Consider finally the optical properties of an ellipsoidal reflector, as shown in
Fig. lJ. All rays emanating from a point source Q at one focus are reflected according
to the law of reflection and come together at the other focus Q'. Furthermore all
paths are equal in length. It will be remembered that an ellipse can be drawn with a
string of fixed length with its ends fastened at the foci. Because all optical paths are
equal, this is a stationary case, as mentioned above. On the graph in Fig. lK(b)
equal path lengths are represented by a straight horizontal line.

Some attention will be devoted here to other reflecting surfaces like a and c
shown dotted in Fig. lJ. If these surfaces are tangent to the ellipsoid at the point B,

F

FIGURE 1]
Fermat's principle applied to an ellipti.
cal reflector.
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FIGURE lK
Graphs of optical paths involving re-
flection illustrating conditions for (a)
maximum, (b) stationary, and (c) min-
imum light paths. Fermat's principle.

(a)
B

(b)

B
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(c)

B

the line NB is normal to all three surfaces and QBQ' is a real path for all three.
Adjacent paths from Q to points along these mirrors, however, will give a minimum
condition for the real path to and from reflector c and a maximum condition for the
real path to and from reflector a (see Fig. lK).

It is readily shown mathematically that both the laws of reflection and refraction
follow from Fermat's principle. Figure lL, which represents the refraction of a ray
at a plane surface, can be used to prove the law of refraction [Eq. (1m)]. The length
of the optical path between the point Q in the upper medium of index n and another
point Q' in the lower medium of index n' passing through any point A on the surface is

A = nd + n'd' (lu)

where d and d' represent the distances QA and AQ', respectively.
Now if we let h and hi represent perpendicular distances to the surface and p

the total length of the x axis intercepted by these perpendiculars, we can invoke the
pythagorean theorem concerning right triangles and write

d2 = h2 + (p _ X)2 d'2 = h'2 + x2

When these values of d and d' are substituted in Eq. (Ii), we obtain

A = n[h2 + (p - x)2r/2 + n'(h'2 + X2)1/2 (Iv)

According to Fermat's principle, A must be a minimum or a maximum (or in
general stationary) for the actual path. One method of finding a minimum or max-
imum for the optical path is to plot a graph of A against x and find at what value of x

FIGURE lL
Geometry of a refracted ray used in
illustrating Fermat's principle.
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a tangent to the curve is parallel to the x axis (see Fig. IK). The mathematical means
for doing the same thing is, first, to differentiate Eq. (Iv) with respect to the variable
x, thus obtaining an equation for the slope of the graph, and, second, to set this
resultant equation equal to zero, thus finding the value of x for which the slope of
the curve is zero.

By differentiating Eq. (Iv) with respect to x and setting the result equal to zero,
we obtain

dl!!.
-=
dx

which gives

or simply

P-x xn -------- = n' -----
[hZ + (p _ x)Zr/z (h'Z + XZ)l/Z

p - x , xn-- =n-
d d'

By reference to Fig. IL it will be seen that the multipliers of nand n' are just the
sines of the corresponding angles, so that we have now proved Eq. (1m), namely

n sin <p = n' sin <p' (Iw)

A diagram for reflected light, similar to Fig. IL, can be drawn and the same
mathematics applied to prove the law of reflection.

1.10 COLOR DISPERSION

It is well known to those who have studied elementary physics that refraction causes
a separation of white light into its component colors. Thus, as is shown in Fig. 1M,
the incident ray of white light gives rise to refracted rays of different colors (really a
continuous spectrum) each of which has a different value of <p'. By Eq. (1m) the value
of n' must therefore vary with color. It is customary in the exact specification of
indices of refraction to use the particular colors corresponding to certain dark lines
in the spectrum of the sun. These Fraunhofer* lines, which are designated by the
letters A, B, C, ... , starting at the extreme red end, are given in Table IA. The ones
most commonly used are those in Fig. 1M.

The angular divergence of rays F and C is a measure of the dispersion produced,
and has been greatly exaggerated in the figure relative to the average deviation of the

• Joseph von Fraunhofer (1787-1826) was the son of a Bavarian glazier. He learned
glass grinding from his father and entered the field of optics from the practical side.
Fraunhofer gained great skill in the manufacture of achromatic lenses and optical
instruments. While measuring the refractive index of different kinds of glass and
its variation with color or wavelength, he noticed and made use of the yellow
D lines of the sodium spectrum. He was one of the first to produce diffraction
gratings, and his rare skill with these devices enabled him to produce better spectra
than his predecessors. Although the dark lines of the solar spectrum were first
observed by W. H. Wollaston, they were carefully observed by Fraunhofer, under
high dispersion and resolution, and the wavelengths of the most prominent lines
were measured with precision. He mapped 576 of these lines, the principal ones,
denoted by the letters A through K, being known by his name.
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FIGURE 1M
Upon refraction, white light is spread
out into a spectrum. This is called dis-
persion.

spectrum, which is measured by the angle through which ray D is bent. To take a
typical case of crown glass, the refractive indices as given in Table IA are

nF = 1.52933 nD = 1.52300 nc = 1.52042

Now it is readily shown from Eq. (lq) that for a given small angle f/J the dispersion
of the F and Crays (f/J~ - f/Jc) is proportional to

nF - nc = 0.00891

while the deviation of the Dray (f/J - f/J~) depends on nD - I which is equal to
0.52300. Thus it is nearly 60 times as great. The ratio of these two quantities varies
greatly for different kinds of glass and is an important characteristic of any optical
substance. It is called the dispersive power and is defined by the equation

v = nF - nc (Ix)
nD - I

The reciprocal of the dispersive power is called the dispersive index v:

• (Iy)

For most optical glasses v lies between 20 and 60 (see Table 1B and Appendix III).

Table lA FRAUNHOFER'S DESIGNATIONS, ELEMENT SOURCE, WAVELENGTH,
AND REFRACTIVE INDEX FOR FOUR OPTICAL GLASSES.

Designa- Chemical Wavelength, Spectacle Light Dense Extra dense
don element At crown flint flint flint

C H 6563 1.52042 1.57208 1.66650 1.71303
D Na 5892 1.52300 1.57600 1.67050 1.72000
F H 4861 1.52933 1.58606 1.68059 1.73780
G' H 4340 1.53435 '1.59441 1.68882 1.75324

• For other glasses and crystals see Appendices III and IV.
t To change wavelengths in angstroms (A) to nanometers (nm), move decimal point one place to the left
(see Appendix VI).
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FIGURE IN
The variation of refractive index with
color.
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Figure IN illustrates schematically the type of variation of n with color that is
usually encountered for optical materials. The denominator of Eq. (ly), which is a
measure of the dispersion, is determined by the difference in the index at two points
near the ends of the spectrum. The numerator, which measures the average deviation,
represents the magnitude in excess of unity of an intermediate index of refraction.

It is customary in most treatments of geometrical optics to neglect chromatic
effects and assume, as we have in the next seven chapters, that the refractive index of
each specific element of an optical instrument is that determined for yellow sodium
D light.

Table 1B DISPERSION INDEX FOR FOUR OPTICAL
GLASSES.

Glass

v

Spectacle
crown

58.7

Light
flint

41.2

Dense
flint

47.6

Extra dense
flint

29.08

PROBLEMS.

• See Table IA.

1.1 A boy makes a pinhole camera out of a cardboard box with the dimensions 10.0 cm x
10.0 cm x 16.0 cm. A pinhole is located in one end, and a film 8.0 cm x 8.0 cm is
placed in the other end. How far away from a tree 25.0 m high should the boy place
his camera if the image of the tree is to be 6.0 cm high on the film? Ans. 66.7 m

1.2 A physics student wishes to repeat Fizeau's experiment for measuring the speed of
light. If he uses a toothed wheel containing 1440 teeth and his distant mirror is located
in a laboratory window across the college campus 412.60 m away, how fast must his
wheel be rotated if the returning light pulses show the first maximum intensity?

1.3 If the mirror R in Foucault's experiment were to rotate at 12,000 rev/min, find (a) the
rotational speed of the mirror R in revolutions per second and (b) the rotational speed
of the sweeping beam RM1 in radians per second. Find the time it takes the light to
traverse the path (c) RM1R and (d) RMzR. What is the observed slit deflection (e) EEl>
and (f) EE2? Assume the distances RM1 = RM2 = 6.0 m, RS = RE = 6.0 m, the

• Before solving any problems in this text, read Appendix VI.
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length of the water tube T = 5.0 m, the refractive index of water is 1.3330, and the
speed of light in air is 3.0 x 108 m/s.

1.4 If the refractive index for a piece of optical glass is 1.5250, calculate the speed of light
in the glass. Ans. 1.9659 x 108 mls

1.5 Calculate the difference between the speed of light in kilometers per second in a vacuum
and the speed of light in air if the refractive index of air is 1.0002340. Use velocity
values to seven significant figures.

1.6 If the moon's distance from the earth is 3.840 x 105 km, how long will it take micro-
waves to travel from the earth to the moon and back again?

1.7 How long does it take light from the sun to reach the earth? Assume the earth's
distance from the sun to be 1.50 X 108 km. Ans. 500 s, or 8 min 20 s

1.8 A beam of light passes through a block of glass 10.0 cm thick, then through water for
a distance of 30.5 cm, and finally through another block of glass 5.0 cm thick. If the
refractive index of both pieces of glass is 1.5250 and of water is 1.3330, find the total
optical path.

1.9 A water tank is 62.0 cm long inside and has glass ends which are each 2.50 cm thick.
If the refractive index of water is 1.3330 and of glass is 1.6240, find the overall optical
path.

1.10 A beam of light passes through 285.60 cm of water of index 1.3330, then through
15.40 cm of glass of index 1.6360, and finally through 174.20 cm of oil of index 1.3870.
Find to three significant figures (a) each of the separate optical paths and (b) the total
optical path. Ans. (a) 380.7, 25.19, and 241.6 cm, (b) 647 cm

1.11 A ray of light in air is incident on the polished surface of a block of glass at an angle
of 10°. (a) Ifthe refractive index of the glass is 1.5258, find the angle of refraction to
four significant figures. (b) Assuming the sines of the angles in Snell's law can be
repllJced by the angles themselves, what would be the angle of refraction? (c) Find
the percentage error.

1.12 Find the answers to Prob. 1.11, if the angle of incidence is 45.0° and the refractive
index is 1.4265.

1.13 A ray of light in air is incident at an angle of 54.0° on the smooth surface of a piece
of glass. (a) If the refractive index is 1.5152, find the angle of refraction to four
significant figures. (b) Find the angle of refraction graphically. (See Fig. P1.13).

Ans. (a) 32.272°, (b) 32.3°

FIGURE P1.13
Graph for part (b) of Prob. 1.13.

Air
Glass

n' = 1.5152



22 FUNDAMENTALS OF OPTICS

1.14 A straight hollow pipe exactly 1.250 m long, with glass plates 8.50 mm thick to close
the two ends, is thoroughly evacuated. (0) If the glass plates have a refractive index
of 1.5250, find the overall optical path between the two outer glass surfaces. (b) By
how much is the optical path increased if the pipe is filled with water of refractive index
1.33300. Give answers to five significant figures.

1.15 ReferringtoFig.1L,thedistancex = 6.0cm,h = 12.0cm,h' = 15.0cm,n = 1.3330,
and n' = 1.5250. Find ,p', ,p, d, d', p, and 11, to three significant figures.

Ans. ,p' = 21.80°, ; = 25.14°, d = 13.26 em, d' = 16.16 cm,
p = 11.63 cm, 11 = 42.3 cm

1.16 Solve Prob. 1.15 graphically.
1.17 In studying the refraction of light Kepler arrived at a refraction formula

,p'
,p = -1 ---k-s-ec-,p' where

n' - 1
k=--

n'

n' being the relative index of refraction. Calculate the angle of incidence ,p for a piece
of glass for which n' = 1.7320 and the angle of refraction ,p' = 32.0° according to
(0) Kepler's formula and (b) Snell's law. Note that sec ,p' = 1/(cos ,p').

1.18 White light is incident at an angle of 55.0° on the polished surface of a piece of glass.
If the refractive indices for red C light and blue F light are nc = 1.53828, and nF =
1.54735, respectively, what is the angular dispersion between these two colors? (0)
Find the two angles to five significant figures and (b) the dispersion to three significant
figures. Ans. (0) ,p'c = 32.1753°, ,p'F = 31.9643°, (b) 0.2110°

1.19 A piece of dense flint glass is to be made into a prism. If the refractive indices for red,
yellow, and blue light are specified as nc = 1.64357, no = 1.64900, and nF = 1.66270,
find (0) the dispersive power and (b) the dispersion constant for this glass.

1.20 A block of spectacle crown glass is to be made into a lens. The refractive indices fur-
nished by the glass manufacturer are specified as nc = 1.52042, no = 1.52300, and
nF = 1.52933. Determine the value of (0) the dispersion constant and (b) the dispersive
power.

1.21 A piece of extra dense flint glass is to be made into a prism. The refractive indices
furnished by the glass manufacturer are those given in Table 1A. Find the value of
(0) the dispersive power and (b) the dispersion constant.

Ans. (0) 0.034403, (b) 29.067
1.22 Two plane mirrors are inclined to each other at an angle ex. Applying the law of reflec-

tion show that any ray whose plane of incidence is perpendicular to the line of inter-
section of the two mirrors is deviated by two reflections by an angle ~ which is
independent of the angle of incidence. Express this deviation in terms of ex.

1.23 An ellipsoidal mirror has a major axis of 10.0 cm, a minor axis of 8.0 cm, and foci
6.0 cm apart. If there is a point source of light at one focus Q, there are only two rays
of light that pass through the point C, midway between Band Q', as can be drawn in
Fig. IJ. Draw such an ellipse and graphically determine whether these two paths
QBC and QDC are maxima, minima, or stationary.

1.24 A ray of light in air enters the center of one face of a prism at an angle making 55.0°
with the normal. Traveling through the glass, the ray is again refracted into the air
beyond. Assume the angle between the two prism faces to be 60.0° and the glass to
have a refractive index of 1.650. Find the deviation of the ray (0) at the first surface
and (b) the second surface. Find the total deviation (c) by calculation and (d)
graphically.

1.25 One end of a glass rod is ground and polished to the shape of a hemisphere with a
diameter of 10.0 em. Five parallel rays of light 2.0 em apart and in the same plane are
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incident on this curved end, with one ray traversing the center of the hemisphere
parallel to the rod axis. If the refractive index is 1.5360, calculate the distances from
the front surface to the point where the refracted rays cross the axis.

1.26 Crystals of clear strontium titanate are made into semiprecious gems. The refractive
indices for different colors of light are as follows:

A,A
n

Red

6563
2.37287

Yellow

5892
2.41208

Blue

4861
2.49242

Violet

4340
2.57168

Calculate the value of (a) the dispersion constant and (b) the dispersive power. Plot a
graph of the wavelength A.against the refractive index n. Use the blue, yellow, and red
indices. .
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2
PLANE SURFACES AND PRISMS

The behavior of a beam of light upon reflection or refraction at a plane surface is of
basic importance in geometrical optics. Its study will reveal several of the features
that will later have to be considered in the more difficult case of a curved surface.
Plane surfaces often occur in nature, e.g., as the cleavage surfaces of crystals or as the
surfaces of liquids. Artificial plane surfaces are used in optical instruments to bring
about deviations or lateral displacements of rays as well as to break light into its
colors. The most important devices of this type are prisms, but before taking up this
case of two surfaces inclined to each other, we must examine rather thoroughly what
happens at a single plane surface.

2.1 PARALLEL BEAM

In a beam or pencil of parallel light, each ray meets the surface traveling in the same
direction. Therefore anyone ray may be taken as representative of all the others.
The parallel beam remains parallel after reflection or refraction at a plane surface, as
shown in Fig. 2A(a). Refraction causes a change in width ofthe beam which is easily
seen to be in the ratio (cos 4>')/(cos4», whereas the reflected beam remains of the same
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(a) (b) (e)

N
I
I
I
I

n' I

"',ii",:"i,.,:;,i,:,.;:.,i,!,i:,!, Nii ..•.l,.,,!,;r,,: ;,., .•...;.'.! .•:, •..•!..:,'.'.:,.i..i.i~.
:;:;:;:;:::;:;:;:;:;:::;:::;:::::;:;

n <n' n>n' n >n'

FIGURE 2A
Reflection and refraction of a parallel beam: (a) external reflection; (b) internal
reflection at an angle smaller than the critical angle; (c) total reflection at or
greater than the critical angle.

width. There is also chromatic dispersion of the refracted beam but not of the reflected
one.

Reflection at a surface where n increases, as in Fig. 2A(a), is called external
reflection. It is also frequently termed rare-to-dense reflection because the relative
magnitudes of n correspond roughly (though not exactly) to those of the actual
densities of materials. In Fig. 2A(b) is shown a case of internal reflection or dense-to-
rare reflection. In this particular case the refracted beam is narrow because tP' is
close to 90°.

2.2 THE CRITICAL ANGLE AND TOTAL REFLECTION

(2a)• so that

We have already seen in Fig. 2A(a) that as light passes from one medium like air into
another medium like glass or water the angle of refraction is always less than the
angle of incidence. While a decrease in angle occurs for all angles of incidence, there
exists a range of refracted angles for which no refracted light is possible. A diagram
illustrating this principle is shown in Fig. 2B, where for several angles of incidence,
from 0 to 90°, the corresponding angles of refraction are shown from 0° to tPe,
respectively.

It will be seen that in the limiting case, where the incident rays approach an
angle of 90° with the normal, the refracted rays approach a fixed angle tPe beyond
which no refracted light is possible. This particular angle tPe, for which tP = 90°, is
called the critical angle. A formula for calculating the critical angle is obtained by
substituting tP = 90°, or sin tP = I, in Snell's law (Eq. (1m)],

n x 1 = n' sin tPc
. '" nsm'l'c =-

n'
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2
1

N (a) N (b)

FIGURE 2B
Refraction and total reflection: (0) the critical angle is the limiting angle of
refraction; (b) total reflection beyond the critical angle.

a quantity which is always less than unity. For a common crown glass of index 1.520
surrounded by air sin <Pc = 0.6579, and <Pc = 41°8'.

If we apply the principle of reversibility of light rays to Fig. 2B(a), all incident
rays will lie within a cone subtending an angle of 2<pc, while the corresponding
refracted rays will lie within a cone of 180°. For angles of incidence greater than <Pc
there can be no refracted light and every ray undergoes total reflection as shown in
Fig.2B(b).

The critical angle for the boundary separating two optical media is defined
as the smallest angle of incidence, in the medium of greater index,for which
light is totally reflected.

Total reflection is really total in the sense that no energy is lost upon reflection.
In any device intended to utilize this property there will, however, be small losses due
to absorption in the medium and to reflections at the surfaces where the light enters
and leaves the medium. The commonest devices of this kind are called total reflection
prisms, which are glass prisms with two angles of 45° and one of 90°. As shown in
Fig. 2C(a), the light usually enters perpendicular to one of the shorter faces, is totally
reflected from the hypotenuse, and leaves at right angles to the other short face.
This deviates the rays through a right angle. Such a prism may also be used in two
other ways which are illustrated in (b) and (c) of the figure. The Dove prism (c) inter-
changes the two rays, and if the prism is rotated about the direction of the light, they
rotate around each other with twice the angular velocity of the prism.

Many other forms of prisms which use total reflection have been devised for
special purposes. Two common ones are illustrated in Fig. 2C(d) and (e). The roof
prism accomplishes the same purpose as the total reflection prism (a) except that it
introduces an extra inversion. The triple mirror (e) is made by cutting off the corner
of a cube by a plane which makes equal angles with the three faces intersecting at that
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Dove or inverting

,,"... (e)" )~,
" " ""

2

1 2
Amici or roof Triple mirror Lummer-Brodhun

FIGURE 2C
Reflecting prisms utilizing the principle of total reflection.

corner.* It has the useful property that any ray striking it will, after being internally
reflected at each of the three faces, be sent back parallel to its original direction.

The Lummer-Brodhun "cube" shown in (f) is used in photometry to compare
the illumination of two surfaces, one of which is viewed by rays (2) coming directly
through the circular region where the prisms are in contact, the other by rays (I)
which are totally reflected in the area around this region.

Since, in the examples shown, the angles of incidence can be as small as 45°,
it is essential that this exceed the critical angle in order that the reflection be total.
Supposing the second medium to be air (n' = 1), this requirement sets a lower limit
on the value of the index n of the prism. By Eq. (2a) we must have

n' 1 . 450-=-~SIn
n n

so that n ~ J2 = 1.414. This condition always holds for glass and is even fulfilled
for optical materials having low refractive indices such as Lucite (n = 1.49)and fused
quartz (n = 1.46).

The principle of most accurate rejractometers (instruments for the determination
of refractive index) is based on the measurement of the critical angle cPc' In both the
Pulfrich and Abbe types a convergent beam strikes the surface between the unknown
sample, of index n, and a prism of known index n'. Now n' is greater than n, so the

• A 46-cm array of 100of these prisms is located on the moon's surface, 3.84 x 10' m
from the earth. This retrodirector, placed there during the Apollo 11 moon flight,
is used to return light from a laser beam from the earth to a point on the earth close
to the source. Such a marker can be used to accurately determine the distance to
the moon at different times. SeeJ. E. Foller and E. J. Wampler, The Lunar Reflector,
Sci. Am., March 1970, p. 38. For more details see Sec. 30.13.
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FIGURE 2D
Refraction by the prism in a Pulfrich
refractometer.

two must be interchanged in Eq. (2a). The beam is so oriented that some of its rays
just graze the surface (Fig. 2D) so that one observes in the transmitted light a sharp
boundary between light and dark. Measurement of the angle at which this boundary
occurs allows one to compute the value of ljJc and hence of n. There are important
precautions that must be observed if the results are to be at all accurate. *

2.3 PLANE-PARALLEL PLATE

When a single ray traverses a glass plate with plane surfaces that are parallel to each
other, it emerges parallel to its original direction but with a lateral displacement d
which increases with the angle of incidence ljJ. Using the notation shown in Fig. 2E,
we may apply the law of refraction and some simple trigonometry to find the dis-
placement d. Starting with the right triangle ABE, we can write

d = I sin (ljJ - ljJ') (2b)

which, by the trigonometric relation for the sine of the difference between two angles,
can be written

d = I(sin ljJ cos ljJ' - sin ljJ' cos ljJ) (2c)

From the right triangle ABC we can write
t1=--

cos ljJ'
which, substituted in Eq. (2c), gives

d = t (sin ljJ cos ljJ' _ sin ljJ' cos ljJ) (2d)
cos ljJ' cos ljJ'

From Snell's law [Eq. (1m)] we obtain

sin ljJ' = !!.. sin ljJ
n'

• For a valuable description of this and other methods of determining indices of
refraction see A. C. Hardy and F. H. Perrin, "Principles of Optics," pp. 359-364,
McGraw-Hill Book Company, New York, 1932.
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(2e)

FIGURE 2E
Refraction by a plane-parallel plate.

which upon substitution in Eq. (2d), gives

d = t (sin c/J - cos c/J .!sin c/J)
cos c/J' n'

. ( n cos c/J)d=tsIDc/J 1----
n' cos c/J'

From 0° up to appreciably large angles, d is nearly proportional to c/J, for as the
ratio of the cosines becomes appreciably less than 1, causing the right-hand factor to
increase, the sine factor drops below the angle itself in almost the same proportion. *

2.4 REFRACTION BY A PRISM

In a prism the two surfaces are inclined at some angle ex so that the deviation produced
by the first surface is not annulled by the second but is further increased. The
chromatic dispersion (Sec. 1.10) is also increased, and this is usually the main function
of a prism. First let us consider, however, the geometrical optics of the prism for
light of a single color, i.e., for monochromatic light such as is obtained from a sodium
arc.

• This principle is made use of in most of the home moving-picture film-editor devices
in common use today. Instead of starting and stopping intermittently, as it does in
the normal film projector, the film moves smoothly and continuously through the
film-editor gate. A small eight-sided prism, immediately behind the film, produces
a stationary image of each picture on the viewing screen of the editor. See Prob. 2.2
at the end of this chapter.
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FIGURE 2F
The geometry associated with refraction
by a prism.

The solid ray in Fig. 2F shows the path of a ray incident on the first surface at
the angle 4>1'

Its refraction at the second surface, as well as at the first surface, obeys Snell's
law, so that in terms of the angles shown

sin 4>1 = n' = sin 4>2 (2f)
sin 4>~ n sin 4>2

The angle of deviation produced by the first surface is P = 4>1 - 4>~, and that
produced by the second surface is '}'= 4>2 - 4>2' The total angle of deviation ~
between the incident and emergent rays is given by

~ = P + '}' (2g)

Since NN' and MN' are perpendicular to the two prism faces, 0( is also the
angle at N'. From triangle ABN' and the exterior angle 0(, we obtain

0( = 4>~ + cP2 (2h)

or

Combining the above equations, we obtain

~= P + '}'= cP1 - cP~ + cP2 - cP2 = cP1 + cP2 - (cP~ + cP2)
~= cP1 + cP2 - 0( (2i)

2.5 MINIMUM DEVIATION

When the total angle of deviation ~ for any given prism is calculated by the use of the
above equations, it is found to vary considerably with the angle of incidence. The
angles thus calculated are in exact agreement with the experimental measurements.
If during the time a ray of light is refracted by a prism the prism is rotated con-
tinuously in one direction about an axis (A in Fig. 2F) parallel to the refracting edge,
the angle of deviation ~ will be observed to decrease, reach a minimum, and then
increase again, as shown in Fig. 2G.

The smallest deviation angle, called the angle of minimum deviation <5m,occurs
at that particular angle of incidence where the refracted ray inside the prism makes
equal angles with the two prism faces (see Fig. 2H). In this special case

cP1 = 4>2 4>~ = 4>2 P = '}' (2j)

To prove these angles equal, assume 4>1 does not equal cP2 when minimum
deviation occurs. By the principle of the reversibility of light rays (see Sec. 1.8),
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FIGURE 2G
A graph of the deviation produced by a 60° glass prism of index n' = 1.50.
At minimum deviation Om = 37.r, ~1 = 48.6°, and ~1' = 30.0°.

there would be two different angles of incidence capable of giving minimum deviation.
Since experimentally we find only one, there must be symmetry and the above equalities
must hold.

In the triangle ABC in Fig. 2H the exterior angle ~m equals the sum of the
opposite interior angles p + y. Similarly, for the triangle ABN', the exterior angle a
equals the sum <P~ + <P2' Consequently

a = 2<p~ ~m = 2p <PI= <P~ + p
Solving these three equations for <P~and <PIgives

<P~ = !a
Since by Snell's law n'/n = (sin <pl)/(sin <PI.),

~ = sin !(a + ~m) (2k)
n sin !a

FIGURE 2H
The geometry of a light ray traversing a
prism at minimum deviation.
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The most accurate measurements of refractive index are made by placing the
sample in the form of a prism on the table of a spectrometer and measuring the angles
(jm and IX, the former for each color desired. When prisms are used in spectroscopes
and spectrographs, they are always set as nearly as possible at minimum deviation
because otherwise any slight divergence or convergence of the incident light would
cause astigmatism in the image.

2.6 THIN PRISMS

The equations for the prism become much simpler when the refracting angle IX

becomes small enough to ensure that its sine and the sine of the angle of deviation (j

may be set equal to the angles themselves. Even at an angle of 0.1 rad, or 5.7°, the
difference between the angle and its sine is less than 0.2 percent. For prisms having a
refracting angle of only a few degrees, we can therefore simplify Eq. (2k) by writing

n' sin t(om + IX) om + IX- = -""""'---- = ---
n sin !IX IX

• and o = (n' - 1)0(
Thin prism in air

(21)

The subscript on 0 has been dropped because such prisms are always used at or near
minimum deviation, and n has been dropped because it will be assumed that the
surrounding medium is air, n = 1.

It is customary to measure the power of a prism by the deflection of the ray in
centimeters at a distance of 1 m, in which case the unit of power is called the prism
diopter (D). A prism having a power of 1 prism diopter therefore displaces the ray
on a screen 1 m away by 1 cm. In Fig. 21(0) the deflection on the screen is x cm and
is numerically equal to the power of the prism. For small values of 0 it will be seen
that the power in prism diopters is essentially the angle of deviation 0 measured in
units of 0.01 rad, or 0.573°.

For the dense flint glass of Table lA, n~ = 1.67050, and Eq. (21)shows that
the refracting angle of a 1-0 prism should be

0( = 0.57300 = 0.85459°
0.67050

2.7 COMBINATIONS OF THIN PRISMS

In measuring binocular accommodation, ophthalmologists make use of a com-
bination of two thin prisms of equal power which can be rotated in opposite directions
in their own plane [Fig. 2I(b)]. Such a device, known as the Risley or Herschel
prism, is equivalent to a single prism of variable power. When the prisms are parallel,
the power is twice that of either one; when they are opposed, the power is zero. To
find how the power and direction of deviation depend on the angle between the
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(e)

FIGURE 21
Thin prisms: (a) the displacement x in centimeters at a distance of 1 m gives the
power of the prism in diopters; (b) Risley prism of variable power; (c) vector
addition of prism deviations.

components, we use the fact that the deviations add vectorially. In Fig. 2I(e) it will
be seen that the resultant deviation c; will in general be, from the law of cosines,

c; = •.Jc;/ + 0/ + 20102 cos p (2m)

where P is the angle between the two prisms. To find the angle y between the resultant
deviation and that due to prism 1 alone (or, we may say, between the "equivalent"
prism and prism 1) we have the relation

t 02 sin Pany=-----
01 + 02 cos P

(2n)

(2p)

(20)

so that

and

Since almost always 01 = 02' we may call the deviation by either component 0"
and the equations simplify to

° = ../20/(1 + cos P) = J40/ cos2 ~ = 20, cos ~2 2
tan y = sin P = tan ~

I + cos P 2

y=~
2

2.8 GRAPHICAL METHOD OF RAY TRACING

It is often desirable in the process of designing optical instruments to be able to trace
rays of light through the system quickly. For prism instruments the principles pre-
sented below are extremely useful. Consider first a 60° prism of index n' = 1.50
surrounded by air of index n = 1.00. After the prism has been drawn to scale, as in
Fig. 2J, and the angle of incidence tPl has been selected, the construction begins as in
Fig. 10.

Line OR is drawn parallel to lA, and, with an origin at 0, the two circular arcs
are drawn with radii proportional to nand n'. Line RP is drawn parallel to NN',
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n n'

FIGURE 2J
A graphical method for ray tracing through a prism.

and OP is drawn to give the direction of the refracted ray AB. Carrying on from the
point P, a line is drawn parallel to MN' to intersect the arc nat Q. The line OQ then
gives the correct direction of the final refracted ray BT. In the construction diagram
at the left the angle RPQ is equal to the prism angle a, and the angle ROQ is equal to
the total angle of deviation b.

2.9 DIRECT-VISION PRISMS

As an illustration of ray tracing through several prisms, consider the design of an
important optical device known as a direct-vision prism. The primary function of
such an instrument is to produce a visible spectrum the central color of which emerges
from the prism parallel to the incident light. The simplest type of such a combination
usually consists of a crown-glass prism of index n' and angle a' opposed to a f1int-
glass prism of index nil and angle a", as shown in Fig. 2K.

The indices n' and nil chosen for the prisms are those for the central color of the
spectrum, namely, for the sodium yellow D lines. Let us assume that the angle a"
of the flint prism is selected and the construction proceeds with the light emerging
perpendicular to the last surface and the angle a' of the crown prism as the unknown.

The flint prism is first drawn with its second face vertical. The horizontal line
OP is next drawn, and, with a center at 0, three arcs are drawn with radii proportional
to n, n', and nil. Through the intersection at P a line is drawn perpendicular to AC
intersecting n' at Q. The line RQ is next drawn, and normal to it the side AB of the
crown prism. All directions and angles are now known.

OR gives the direction of the incident ray, OQ the direction of the refracted
ray inside the crown prism, OP the direction of the refracted ray inside the flint prism,
and finally OP the direction of the emergent rayon the right. The angle a' of the
crown prism is the supplement of angle RQP.

If more accurate determinations of angles are required, the construction diagram
will be found useful in keeping track of the trigonometric calculations. Ifthe dispersion
of white light by the prism combination is desired, the indices n' and nil for the red
and violet light can be drawn in and new ray diagrams constructed proceeding now
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FIGURE 2K
Graphical ray tracing applied to the design of a direct-vision prism.

from left to right in Fig. 2K(b). These rays, however, will not emerge perpendicular
to the last prism face.

The principles just outlined are readily extended to additional prism com-
binations like those shown in Fig. 2L. It should be noted that the upper direct-vision
prism in Fig. 2L is in principle two prisms of the type shown in Fig. 2K placed back
to back.

V
R

FIGURE 2L
Direct-vision prisms used for producing a spectrum with its central color in line
with the incident white light.
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FIGURE 2M
The reflection of divergent rays of light
from a plane surface.

2.10 REFLECTION OF DIVERGENT RAYS

When a divergent pencil of light is reflected at a plane surface, it remains divergent.
All rays originating from a point Q (Fig. 2M) will after reflection appear to come from
another point Q' symmetrically placed behind the mirror. The proof of this prop-
osition follows at once from the application of the law of reflection (Eq. (lj)],
according to which all the angles labeled 4J in the figure must be equal. Under these
conditions the distances QA and AQ' along the line QAQ' drawn perpendicular to
the surface must be equal; i.e.,

s = s'
object distance = image distance

The point Q' is said to be a virtual image of Q since when the eye receives the reflected
rays, they appear to come from a source at Q' but do not actually pass through Q',
as would be the case if it were a real image. In order to produce a real image a surface
other than a plane one is required.

2.11 REFRACTION OF DIVERGENT RAYS

If an object is embedded in clear glass or plastic or is immersed in a transparent
liquid such as water, the image appears closer to the surface. Fig. 2N has been
drawn accurately to scale for an object Q located in water of index 1.3330at a depth
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FIGURE2N
Image positions of an object under water as seen by an observer above; n > n'.

s below the surface. Light rays diverging from this object arrive at the surface at
angles <p. There they are refracted at larger angles <p', only to diverge more rapidly
as shown. Extending these emergent rays backward, we locate their intersections in
pairs. These are image points, or virtual images. As the observer changes his position,
the virtual image moves closer to the surface and along the curve formed by the
successive images.

If the object is located in the less dense medium and is observed from the medium
of higher index, we obtain an entirely different view (see Fig. 20). An object Q in
air is observed by an underwater swimmer or fish. Rays of light diverging from any
point of this object are refracted according to Snell's law. Extended backward to
their intersections, their virtual images are located. Note how far away these images
are for large angles of <p and <p'.
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FIGURE 20
Image positions of an object in air as seen by an observer under water; n < n'.

2.12 IMAGES FORMED BY PARAXIAL RAYS

Of particular interest to many observers are the object and image distances sand s'
for rays making small angles 4J and 4J'.

Rays for which angles are small enough to permit setting the cosines equal
to unity and the sines and tangents equal to the angles are called paraxial
rays.

Consider the right triangles QAB and Q'AB in Fig. 2N, redrawn in Fig. 2P.
Since there is a common side AB = h, we can write

h = stan 4J = s' tan 4J'
From this we find

s' = s tan 4J = s sin 4J cos 4J' (2q)
tan 4J' cos 4J sin 4J'



FIGURE 2P
Paraxial rays for an object in water and
observed from the air above.
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Applying Snell's law,

sin cP n'--=-
sin cP' n

we obtain on substitution in Eq. (2q)

, n' cos cP's = s--- (2r)
n cos cP

For paraxial rays like the ones shown in the diagram, angles cP and cP' are very small;
Eq. (2q) can be written

and Eq. (2r) written

s' = sf
cP'

or s' cP-=-
s cP'

(2s)

_cP __ n_' (2t)
cP' n
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FIGURE 2Q
Light from a flashlight follows a bent transparent rod by total reflection.

s n
Paraxial rays

The ratio of the image to object distancefor paraxial rays is just equal to
the ratio of the indices of refraction.

Together Eqs. (2s) and (2t) provide the simple relation

• s' n'
(2u)

2.13 FIBER OPTICS

When light in an optically dense medium approaches the boundary of a less dense
medium at an angle cP, greater than the critical angle cPe, it is totally reflected [see
Fig. 2B(b)]. Using this knowledge, the British physicist John Tyndall demonstrated
that light rays in a tank of water shining through a hole in the side follow the stream
of water emerging from the orifice. This effect is commonly observed today in
fountains illuminated by lights from under the water. The transmission of light from
a flashlight through a glass or plastic rod is shown in Fig. 2Q.

Bundles of tiny rods or fibers of clear glass or plastic provide the basis for the
sizable industry of fiber optics. Tests on individual fibers over 50 m long show that
there are essentially no losses due to reflection on the sides. All attenuation of an
incident beam is attributable to reflection from the two ends and absorption by the
fiber material.

An ordered array or bundle of tiny transparent fibers can be used to transmit
light images around corners and over long distances. A bundle of hundreds and even
thousands of fibers is frequently made to follow a path with many turns and ends up
at a distant or nearby point (see Fig. 2R). If the individual fibers in a bundle are not
arranged in an orderly array as in the figure but are randomly interwoven, the emer-
ging image will be scrambled and meaningless.

Fibers are usually coated with a thin transparent layer of glass or other material
of lower refractive index. Total reflection will still take place between the two. This
separates the fibers of a bundle from one another, thereby preventing light leakage
between touching fibers and at the same time protecting the fire-polished reflecting
surfaces.
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FIGURE 2R
An ordered array of fine glass fibers can be used to transmit images from one end
A to the other A' along any curved path.

One method for producing coated fibers is to insert a thick, high-refractive-
index glass rod in tubing of lower index. In a special furnace the two are then drawn
down to nfoo in. diameter, and the thickness is controlled within narrow limits. A
bundle of these fibers can then be fused together to form a solid mass and drawn
down a second time so that individual fibers are about 2 J-lm in diameter. This is about
two wavelengths of visible light. Such bundles can resolve approximately 250 lines
per millimeter.

If fibers are drawn down until their diameters are close to the wavelength of
light, they cease to act like pipes and behave more like waveguides used in conduct-
ing microwaves.* Two wavelengths of light is an approximate limit for image

• For an introductory treatment of microwaves and waveguides, see Harvey E. White,
"Modern College Physics," 5th ed., pp. 547-551, D. Van Nostrand, Princeton, N.J.,
1966. For further details on fiber optics, see Narinder S. Kapany, Fiber Optics, Sci.
Am., November, 1960, pp. 71-80.
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transmission. Of the numerous practical applications of fiber optics, one of the most
important is in the field of medicine. A cystoscope, or catheter-type instrument,
enables the surgeon to observe and operate by remote control on tiny areas deep
within the body.

PROBLEMS
2.1 A ray of light is incident on a piece of glass at an angle of 45.0°. If the angle of refrac-

tion is 25.37°, find (a) the refractive index and (b) the critical angle. (c) Solve (b)
graphically (See Fig. P2.1). Ans. (a) 1.6504, (b) 37.30°, (c) 1.650 and 37.3°

FIGURE P2.1
Graph for Prob. 2.1.

n n'

2.2 Calculate the lateral displacements of rays of light incident on a block of glass with
parallel sides at the following angles: (a) 5.0°, (b) 10.0°, (c) 15.0°, (d) 20.0°, (e) 30.0°,
and (f) 40.0°. (g) Plot a graph of dversus 4J. Assume the glass thickness to be 5.0 cm.

2.3 A rectangular aquarium is to be filled with water. The sides are made of glass plates
8.0 mm thick. Inside, the walls are 35.0 cm apart, and the refractive index of the glass
is 1.5250. If a ray of light is incident on one side at an angle of 50.0°, find the lateral
displacement produced when the tank is (a) empty and (b) filled with water.

2.4 A Pulfrich refractometer is used to measure the refractive index of a clear transparent
oil. The glass prism has a refractive index of 1.52518 and a refracting angle (X of
80.0°. If the boundary between light and dark field makes an angle of 29.36° with the
normal to the second face, find the refractive index. Ans. 1.3371

2.5 A 55.0° prism made of dense flint glass is used at an angle of incidence of 4Jl = 60.0°.
Using the refractive index for D light given in Table lA, find (a) the angle of deviation
P at the first surface, (b) the angle of deviation l' at the second surface, and (c) the total
deviation by the prism.

2.6 A 50.0° crown-glass prism has a refractive index no = 1.52300 for sodium yellow light.
If a ray of this yellow light is incident on one surface at an angle of 45.0°, find (a) the
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angle of deviation P at the first surface, (b) the angle of deviation )I at the second sur-
face, and (c) the total deviation by the prism.

2.7 A 45.0° flint glass prism has a refractive index of 1.6705 for sodium yellow light, and it
is adjusted for minimum deviation. Find (a) the angle of minimum deviation and
(b) the angle of incidence. (c) Solve graphically.

2.8 A 60.0° prism produces an angle of minimum deviation of 43.60° for blue light. Find
(a) the refractive index, (b) the angle of refraction, and (c) the angle of incidence.

Ans. (a) 1.572, (b) 30.0°, (c) 51.81°
2.9 A 55.0° prism has a refractive index of 1.68059for blue light. (a) Graphically determine

the angle of deviation for each of the following angles of incidence: 40.0, 45.0, 50.0,
55.0,60.0, and 65.0°. (b) Plot a graph of 0 against ~ (see Fig. 2G).

2.10 Two thin prisms have powers of 6.0 D each. At what angles should their axes be
superimposed to produce powers of 2.0, 4.0, 6.0, 8.0, 10.0, and 12.0 D?

Ans. 160.8, 141.1, 120.0, 96.4, 67.1, and 0°
2.11 Two thin prisms of 5.0 and 7.0 D, respectively, are superimposed so their axes make

an angle of 75.0° with each other. Find (a) the resultant deviation they produce in
degrees, (b) the power of the resultant deviation in diopters, and (c) the angle the
resultant makes with the stronger of the two prisms.

2.12 A direct-vision prism is to be made of two elements like the one shown in Fig. 2K.
The flint-glass prism of index 1.720 has an angle IXH = 55.0°. Find the angle IX' for
the crown-glass prism if its refractive index is 1.520. Solve by (a) graphical methods
and (b) calculation.

2.13 A coin lies on the bottom of a bathtub. If the water is 36.0 cm deep and the refractive
index of water is 1.3330, find the image depth of the coin as seen from straight above.
Assume the sines of angles can be replaced by the angles themselves.
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SPHERICAL SURFACES

Many common optical devices contain not only mirrors and prisms having flat
polished surfaces but lenses having spherical surfaces with a wide range of curvatures.
Such spherical surfaces, in contrast with plane surfaces treated in the last chapter, are
capable of forming real images.

Cross-sectional diagrams of several standard forms of lenses are shown in Fig.
3A. The three converging, or positive, lenses, which are thicker at the center than at the
edges, are shown as (a) equiconvex, (b) plano-convex, and (c) positive meniscus. The
three diverging, or negative, lenses, which are thinner at the center, are (d) equiconcave,
(e) plano-concave, and (/) negative meniscus. Such lenses are usually made of optical
glass as free as possible from inhomogeneities, but occasionally other transparent
materials like quartz; fluorite, rock salt, and plastics are used. Although we shall
see that the spherical form for the surfaces may not be the ideal one in a particular
instance, it gives reasonably good images and is much the easiest to grind and polish.

This chapter treats the behavior of refraction at a single spherical surface
separating two media of different refractive indices, and the following chapters show
how the treatment can be extended to two or more surfaces in succession. These
combinations form the basis for the treatment of thin lenses in Chap. 4, thick lenses
in Chap. 5, and spherical mirrors in Chap. 6.
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(d)
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Diverging .or nogotive lenses

FIGURE 3A
Cross sections of common types of thin lenses.

3.1 FOCAL POINTS AND FOCAL LENGTHS

Characteristic diagrams showing the refraction of light by convex and concave
spherical surfaces are given in Fig. 3B. Each ray in being refracted obeys Snell's law
as given by Eq. (1m). The principal axis in each diagram is a straight line through the
center of curvature C. The point A where the axis crosses the surface is called the
vertex. In diagram (a) rays are shown diverging from a point source F on the axis
in the first medium and refracted into a beam everywhere parallel to the axis in the
second medium. Diagram (b) shows a beam converging in the first medium toward
the point F and then refracted into a parallel beam in the second medium. F in each
of these two cases is called the primary focal point, and the distance f is called the
primary focallength.

In diagram (c) a parallel incident beam is refracted and brought to a focus at
the point F',and in diagram (d) a parallel incident beam is refracted to diverge as
if it came from the point P. F' in each case is called the secondary focal point, and
the distance f' is called the secondary focal length.

Returning to diagrams (a) and (b) for reference, we now state that the primary
focal point F is an axial point having the property that any ray coming from it or pro-
ceeding toward it travels parallel to the axis after refraction. Referring to diagrams
(c) and (d), we make the similar statement that the secondary focal point F' is an
axial point having the property that any incident ray traveling parallel to the axis will,
after refraction, proceed toward, or appear to come from, F'.

A plane perpendicular to the axis and passing through either focal point is
called afocal plane. The significance of a focal plane is illustrated for a convex surface
in Fig. 3.C Parallel incident rays making an angle (J with the axis are brought to a
focus in the focal plane at a point Q'. Note that Q' is in line with the undeviated ray
through the center of curvature C and that this is the only ray that crosses the boundary
at normal incidence.

It is important to note in Fig. 3B that the primary focallengthffor the convex
surface [diagram (a)] is not equal to the secondary focallengthj' of the same surface
[diagram (c)]. It will be shown in Sec. 3.4 that the ratio of the focal lengths f'Lf is
equal to the ratio n'/n of the corresponding refractive indices [see Eq. (3e)]:

f' n'
- = - (3a)
f n
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(c)

(a)

Axis

FIGURE 3B
The focal points F and F' and focal lengths f and f' associated with a single
spherical refracting surface of radius r separating two media of index nand n'.

In optical diagrams it is common practice to show incident light rays traveling
from left to right. A convex surface therefore is one in which the center of curvature
C lies to the right of the vertex, while a concave surface is one in which C lies to the
left of the vertex.

If we apply the principle of the reversibility of light rays to the diagrams in
Fig. 3B, we should turn each diagram end-for-end. Diagram (a), for example, would
then become a concave surface with converging properties, while diagram (b) would
become a convex surface with diverging properties. Note that we would then have the
incident rays in the denser medium, i.e., the medium of greater refractive index.

3.2 IMAGE FORMATION

A diagram illustrating image formation by a single refracting surface is given in Fig.
3D. It has been drawn for the case in which the first medium is air with an index
n = 1 and the second medium is glass with an index n' = 1.60. The focal lengths f
and/' therefore have the ratio 1: 1.60 [see Eq. (3a)]. Experimentally it is observed
that if the object is moved closer to the primary focal plane, the image will be formed
farther to the right away from F' and will be larger, i.e., magnified. If the object is
moved to the left, farther away from F, the image will be found closer to F' and will
be smaller in size.

All rays coming from the object point Q are shown brought to a focus at Q'.
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FIGURE 3C F
How parallel incident rays are brought
to a focus at Q' in the secondary focal
plane of a single spherical surface.

Rays from any other object point like M will also be brought to a focus at a corres-
ponding image point like M'. This ideal condition never holds exactly for any actual
case. Departures from it give rise to slight defects of the image known as aberrations.
The elimination of aberrations is the major problem of geometrical optics and will be
treated in detail in Chap. 9.

If the rays considered are restricted to paraxial rays, a good image is formed with
monochromatic light. Paraxial rays are defined as those rays which make very small
angles with the axis and lie close to the axis throughout the distance from object to
image (see Sec. 2.12). The formulas given in this chapter are to be taken as applying
to images formed only by paraxial rays.

3.3 VIRTUAL IMAGES

The image M'Q' in Fig. 3D is a real image in the sense that if a flat screen is located
there, a sharply defined image of the object MQ will be formed on the screen. Not
all images, however, can be formed on a screen, as is illustrated in Fig. 3E. Light
rays from an object point Q are shown refracted by a concave spherical surface
separating the two media of index n = 1.0 and n' = 1.50, respectively. The focal
lengths have the ratio I: 1.50.

Since the refracted rays are diverging, they will not come to a focus at any point.
To an observer's eye located at the right, however, such rays will appear to be coming
from the common point Q'. In other words, Q' is the image point corresponding to
the object point Q. Similarly M' is the image point corresponding to the object point
M. Since the refracted rays do not come from Q' but only appear to do so, no image
can be formed on a screen placed at M'. For this reason such an image is said to be
virtual.

3.4 CONJUGATE POINTS AND PLANES

The principle of the reversibility of light rays has the consequence that if Q'M' in
Fig. 3D were an object, an image would be formed at QM. Hence, if any object is
placecrat the position previously occupied by its image, it will be imaged at the
position previously occupied by the object. The object and image are thus inter-
changeable, or conjugate. Any pair of object and image points such as M and M'
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n n'

-----8-----------8'--------.1
FIGURE 3D
All rays leaving the object point Q and passing through the refracting surface are
brought to a focus at the image point Q'.

in Fig. 3D are called conjugate points, and planes through these points perpendicular
to the axis are called conjugate planes.

If one is given the radius of curvature r of a spherical surface separating two
media of index nand n', respectively, as well as the position of an object, there are
three general methods that may be employed to determine the position and size of
the image: (1) graphical methods, (2) experiment, and (3) calculation using the
formula

• n n' n' - n-+-=--
s s' r

(3b)

In this equation s is the object distance and s' is the image distance. This
equation, called the gaussian formula for a single spherical surface, is derived in Sec.
3.10.

EXAMPLE 1 The end ofa solid glass rod of index 1.50 is ground and polished to a
hemispherical surface of radius 1 em. A small object is placed in air on the axis 4 em
to the left of the vertex. Find the position of the image. Assume n = 1.00 for air.

SOLUTION The given quantities are n = 1.0, n' = 1.50, r = + 1.0 em, and
s = +4.0 cm. The unknown quantity is s'. By direct substitution of the given
quantities in Eq. (3b) we obtain

!+ _1.5_0= _1._50_-_1_.00_
4 s' 1

1.50 0.50 I-=---
s' 1 4

from which s' = 6.0 cm. One concludes, therefore, that a real image is formed in
the glass rod 6 em to the right of the vertex.

As an object M is brought closer to the primary focal point, Eq. (3b) shows that
the distance AM' of the image from the vertex becomes steadily greater and that in
the limit when the object reaches F the refracted rays are parallel and the image is
formed at infinity. Then we have s' = 00, and Eq. (3b) becomes

n n' n' - n-+-=--
s 00 r
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FIGURE 3E
All rays leaving the object point Q, and passing through the refracting surface
appear to be coming from the virtual image point Q'.

Since this particular object distance is called the primary focal length f, we may
write

• n n' - n-=---I r
(3c)

Similarly, if the object distance is made larger and eventually approaches infinity,
the image distance diminishes and becomes equal to I' in the limit, s = 00. Then

n n' n' - n-+-=--
00 s' r

or, since this value of s' represents the secondary focal length I',

• n' n' - n
f' r

(3d)

Equating the left-hand members of Eqs. (3c) and (3d), we obtain

n n'
- =-
I I'

or n' I'-=-
n I

(3e)

When (n' - n)/r in Eq. (3b) is replaced by n/l or by n'/I' according to Eqs. (3c) and
(3d), there results

• n n' n-+-=-
s s' I

or n n' n'-+-=-
s s' I'

(3f)

Both these equations give the conjugate distances for a single spherical surface.
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3.5 CONVENTION OF SIGNS

The following set of sign conventions will be adhered to throughout the following
chapters on geometrical optics, and it would be well to have them firmly in mind:

1 All figures are drawn with the light traveling from left to right.
2 All object distances (s) are considered positive when they are measured to the
left of the vertex and negative when they are measured to the right.
3 All image distances (s') are positive when they are measured to the right of the
vertex and negative when to the left.
4 Both focal lengths are positive for a converging system and negative for a
diverging system.
5 Object and image dimensions are positive when measured upward from the
axis and negative when measured downward.
6 All convex surfaces are taken as having a positive radius, and all concave
surfaces are taken as having a negatfve radius.

EXAMPLE 2 A concave surface with a radius of 4 cm separates two media of
refractive index n = 1.00 and n' = 1.50. An object is located in the first medium
at a distance of 10 cm from the vertex. Find (a) the primary focal length, (b) the
secondary focal length, and (c) the image distance.

SOLUTION The given quantities are n = 1.0, n' = 1.50, r = -4.0 cm, and s =
+10.0cm. The unknown quantities are!,!', and s'. (a) We use Eq. (3c) directly to obtain

1.0

f
1.5 - 1.0

-4 or f = -4.0 = -8.0 cm
0.5

(b) We use Eq. (3d) directly and obtain

1.5 1.5 - 1.0
-=
f' -4

or f' = -6.0 = -12.0 cm
0.5

Note that in this problem both focal lengths are negative and that the ratio flf' is
1/1.5 as required by Eq. (3a). The minus signs indicate a diverging system similar
to Fig. 3E.

(c) We use Eq. (3f) and obtain, by direct substitution,

s' = -6.66 cmgiving1.0 + ~ =~
10 s' -8.0

The image is located 6.66 cm from the vertex A, and the minus sign shows it is to the
left of A and therefore virtual, as shown in Fig. 3E.

3.6 GRAPHICAL CONSTRUCTIONS.
THE PARALLEL-RAY METHOD

It would be well to point out here that although the above formulas hold for all
possible object and image distances, they apply only to images formed by paraxial
rays. For such rays the refraction occurs at or very near the vertex of the spherical
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FIGURE 3F
Parallel-ray method for graphically locating the image formed by a single
spherical surface.

surface, so that the correct geometrical relations are obtained in graphical solutions
by drawing all rays as though they were refracted at the plane through the vertex A
and normal to the axis.

The parallel-ray method of construction is illustrated in Figs. 3F alLli 3G for
convex and concave surfaces, respectively. Consider the light emitted from the
highest point Q of the object in Fig. 3F. Of the rays emanating from this point in
different directions the one (QT) traveling parallel to the axis will by definition of the
focal point be refracted to pass through P'. The ray QC passing through the center
of curvature is undeviated because it crosses the boundary perpendicular to the
surface.

These two rays are sufficient to locate the tip of the image at Q', and the rest
of the image lies in the conjugate plane through this point. All other paraxial rays
from Q, refracted by the surface, will also be brought to a focus Q'. As a check we
note that the ray QS, which passes through the point P, will (by definition of the
primary focal point) be refracted parallel to the axis and will cross the others at Q'
as shown in the figure.

This method is called the parallel-ray method. The numbers 1, 2, 3, ... indicate
the order in which the lines are customarily drawn.

When the method just described is applied to a diverging system, as shown in
Fig. 3G, similar procedures are carried out. Ray QT, drawn parallel to the axis, is
refracted as if it came from P'. Ray QS, directed toward P, is refracted parallel to the
axis. Finally ray QW, passing through C, goes on undeviated. Extending all these
refracted rays back to the left finds them intersecting at the common point Q'.
Q'M' is therefore the image of the object QM. Note that Q'M' is not a real image
since it cannot be formed on a screen.

In both these figures the medium to the right of the spherical surface has the
greater index; i.e., we have made n' > n. If in Fig. 3F the medium on the left were
to have the greater index, so that n' < n, the surface would have a diverging effect
and each of the focal points P and P' would lie on the opposite side of the vertex
from that shown, just as they do in Fig. 3G. Similarly, if we made n' < n in Fig. 3G,
the surface would have a converging effect and the focal points would lie as they do
in Fig. 3F.
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FIGURE 3G
The parallel-ray method applied to a concave spherical surface having diverging
properties.

Since any ray through the center of curvature is undeviated and has all the
properties of the principal axis, it may be called an auxiliary axis.

3.7 OBLIQUE-RAY METHODS

Method 1 In more complicated optical systems that are treated in the following
chapters it is convenient to be able graphically to trace a ray across a spherical
boundary for any given angle of incidence. The oblique-ray methods permit this to
be done with considerable ease. In these constructions one is free to choose any two
rays coming from a common object point and, after tracing them through the system,
find where they finally intersect. This intersection is then the image point.

Let MT in Fig. 3H represent any ray incident on the surface from the left.
Through the center of curvature C a dashed line RC is drawn, parallel to MT, and
extended to the point where it crosses the secondary focal plane. The line TX is
then drawn as the refracted ray and extended to the point where it crosses the axis
at M'. Since the axis may here be considered as a second ray of light, M represents
an axial object point and M' its conjugate image point.

The principle involved in this construction is the following. If MT and RA
were parallel incident rays of light, they would (after refraction and by the definition
of focal planes) intersect the secondary focal plane WF' at X. Since RA is directed
toward C, the refracted ray ACX remains undeviated from its original direction.

Method 2 This method is shown in Fig. 31. After drawing the axis MM' and the
arc representing the spherical surface with a center C, any line such as 1 is drawn to
represent any oblique ray of light. Next, an auxiliary diagram is started by drawing
XZ parallel to the axis. With an origin at 0, line intervals OK and OL are laid off
proportional to nand n', respectively, and perpendiculars are drawn through K, L,
and A. From here the construction proceeds in the order of the numbers 1, 2, 3, 4,
5, and 6. Line 2 is drawn through 0 parallel to line I, line 4 is drawn through J
parallel to line 3, and line 6 is drawn through T parallel to line 5.
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FIGURE 3H
The oblique-ray method for graphically locating images formed by a single
spherical surface.

A proof for this construction is readily obtained by writing down proportional-
ities from three pairs of similar triangles in the two diagrams. These proportionalities
are

h i
- =-
s n

h i+j-=---
r n' - n

We now transpose nand n' to the left in all three equations.

hn .
- = I
S

hn' .
-':=]
s'

h(n' - n) . + .---=1 ]
r

We finally add the first two equations and for the right-hand side substitute the
third equality:

Axis

hn + hn' . + .
- -=1 ]
S s'

M

x 0

, and

T

n n' n' - n-+-=--
s s' r

n n'

FIGURE 31
The auxiliary-diagram method for graphically locating images formed by paraxial
rays.
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It should be noted that to employ method 1 the secondary focal length /' must be
known, or it must first be calculated from the known radius of curvature and the
refractive indices nand n'. Method 2 can be applied without knowing either of the
focal lengths.

3.8 MAGNIFICATION

In any optical system the ratio between the transverse dimension of the final image
and the corresponding dimension of the original object is called the lateral mag-
nification. To determine the relative size of the image formed by a single spherical
surface, reference is made to the geometry of Fig. 3F. Here the undeviated ray 5
forms two similar right triangles QMC and Q'M'C.

The theorem of the proportionality of corresponding sides requires that

M'Q' CM'--=--
MQ CM

or -y' s' - r
-=--
y s + r

We now define y' /y as the lateral magnification m and obtain

(3g)y' s' - r
m = - = ---

y s + r

If m is positive, the image will be virtual and erect, while if it is negative, the
image is real and inverted.

•

3.9 REDUCED VERGENCE

In the formulas for a single spherical refracting surface, Eqs. (3b) to (3f), the distances
s, s', r,J, and/' appear in the denominators. The reciprocals lis, lis', l/r, Iff, and
1/1' actually represent curvatures of which s, s', r,f, andl' are the radii.

Reference to Fig. 3J will show that if we think of M in the left-hand diagram
as a point source of waves, their refraction by the spherical boundary causes them to
converge toward the image point M'. In the right-hand diagram plane waves are
refracted so as to converge toward the secondary focal point F'. Note that these
curved lines representing the crests of light waves are everywhere perpendicular to
the corresponding light rays that could have been drawn from object point to image
point.

As the waves from M strike the vertex A, they have a radius s and a curvature
l/s, and as they leave A, converging toward M', they have a radius s' and a curvature
l/s'. Similarly the incident waves arriving at A in the second diagram have an infinite
radius 00 and a curvature of 1/00, or zero. At the vertex where they leave the surface,
the radius of the refracted waves is equal to I' and their curvature is equal to 1/1'.

The gaussian formulas may therefore be considered as involving the addition
and subtraction of quantities proportional to the curvatures of spherical surfaces.
When these curvatures rather than radii are used, the formulas become simpler in
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FIGURE 3J
The refraction of light waves at a single spherical surface.

form and for some purposes more convenient. We therefore introduce at this point
the quantities

• V=~
s

V' = ~
s'

1K=-
r

p=~
f

n'p=-
f'

(3h)

The first two, Vand V', are called reduced vergences because they are direct measures
of the convergence and divergence of the object and image wave fronts; respectively.
For a divergent wave from the object s is positive, and so is the vergence V. For a
convergent wave, on the other hand, s is negative, and so is its vergence. For a
converging wave front toward the image, V' is positive, and for a diverging wave
front, V' is negative. Note that in each case the refractive index involved is that of
the medium in which the wave front is located.

The third quantity K is the curvature of the refracting surface (reciprocal of its
radius), while the fourth and 'fifth quantities are, according toEq. (3e), equal and
define the refracting power. When ali distances are measured in meters, .the reduced
vergences V and V', the curvature K, and the power P are in units called diopters. We
may think of Vas the power of the object wave front just as it touches the refracting
surface and V' as the power of the corresponding image wave front which is tangent
to the refracting surface. In these new terms, Eq. (3b) becomes

V + V' = P (3i)

• where n' - n
P=--

r
or P = (n' - n)K (3j)

EXAMPLE 3 One end of a glass rod of refractive index 1.50 is ground and polished
with a convex spherical surface of radius 10 cm. An object is placed in the air on the
axis 40 cm to the left of the vertex. Find (a) the power of the surface and (b) the
position of the image.

SOLUTION The given quantities are n = 1.0, n' = 1.50, r = + 10.0 cm, and
s = +40.0 cm. The unknown quantities are P and s'. To find the solution to (a), we
make use of Eq. (3j), substitute the given distance in meters, and obtain

P = 1.50 - 1.00 = +5.0 D
0.10
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For the answer to part (b), we first use Eq. (3h) to find the vergence V.

V = 1.00 = + 2.5 D
0.40

Direct substitution in Eq. (3i) gives

2.5 + V' = 5 from which V' = +2.5 D

To find the image distance, we have V' = n'ls', so that

s' = !!... = 1.50 = +0.60 m = +60 cm
V' 2.5

This answer should be verified by the student, using one of the graphical methods of
construction drawn to a convenient scale.

3.10 DERIVATION OF THE GAUSSIAN FORMULA

The basic equation (3b) is of sufficient importance to warrant its derivation in some
detail. While there are many ways of performing a derivation, a method involving
oblique rays will be given here. In Fig. 3K an oblique ray from an axial object point
M is shown incident on the surface at an angle 4> and refracted at an angle 4>'. The
refracted ray crosses the axis at the image point M'. If the incident and refracted
rays MT and TM' are paraxial, the angles 4> and 4>' will be small enough to permit
putting the sines of the two angles equal to the angles themselves; for Snell's law
we write

4> n'- = - (3k)
4>' n

Since t/J is an exterior angle of the triangle MTC and equals the sum of the opposite
interior angles,

4> = a + p (3D

Similarly p is an exterior angle of the triangle TCM', so that p = 4>' + y and

4>' = P - y (3m)

Substituting these values of 4> and 4>' in Eq. (3k) and multiplying out, we obtain
n'p - n'''I= na + np or na + n'''I= (n' - n)p

For paraxial rays a, p, and "I are very small angles, and we may set a = hIs, p = hI',
and "I = hIs'. Substituting these values in the last equation, we obtain

h ,h (' )hn-+n-=n-n-
s s' ,

By canceling h throughout we obtain the desired equation,

n n' n' - n- + - = -- (3n)
s s' ,
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FIGURE 3K
Geometry for the derivation of the paraxial formula used in locating images.

3.11 NOMOGRAPHY

The term nomograph is derived from the greek words nomos, meaning law, and
graphein, meaning to write. In physics the term applies to certain graphical repre-
sentations of physical laws, which are intended to simplify or speed up calculations.
Figure 3L is a nomograph relating object and image distances as given by Eq. (30,
namely,

n n' n- + - = - (30)
s s' f

Its simplicity and usefulness become apparent when it is seen that any straight
line drawn across the figure will intersect the three lines at values related by the above
equation.

EXAMPLE 4 One end of a plastic rod of index 1.5 is ground and polished to a
radius of +2.0 em. If an object in air is located on the axis 12.0 em from the vertex,
what is the image distance?

SOLUTION The given quantities are n = 1.0, n' = 1.50, r = + 2.0 em, and s =
+ 12.0 em. The unknown is s'. By direct substitution and the use of Eq. (30) we
obtain

s 12
-=-=
n 1

+12.0 and £ = _._r _ = 2
n n' - n 1.5 - 1

= +4.0

If the straight edge of a ruler is now placed on sIn = + 12.0 and fIn = +4.0,
it will intersect the third line at s'/n' = +6.0. Since n' = 1.5, s' is equal to 6 x 1.5,
or +9.0 em.

A little study of this nomograph will show that it applies to all object and image
distances, real or virtual, and to all surfaces with positive or negative radii of curvature.
Furthermore we shall find in Chap. 4 that it can be applied to all thin lenses by setting
nand n' equal to unity. For thin lenses the three axes represent s, s', andf directly,
and no calculations are necessary.
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FIGURE 3L
Nomograph for determining the object or image distance for a single spherical
surface or for a thin lens.

PROBLEMS

3.1 The left end of a long glass rod of index 1.6350 is ground and polished to a convex
spherical surface of radius 2.50 cm. A small object is located in the air and on the
axis 9.0 cm from the vertex. Find (a) the primary and secondary focal lengths, (b) the
power of the surface, (c) the image distance, and (d) the lateral magnification.

Ans. (a) +3.937 and +6.43cm,(b) +25.40D,(c) +11.44cm,(d) -0.777
3.2 Solve Prob. 3.1 graphically. (a) Find the image distance by the oblique-ray method 1.

(b) Find the relative size of the image by the parallel-ray method.
3.3 The left end of a long plastic rod of index 1.530 is ground and polished to a convex

spherical surface of radius 2.650 em. An object 2.50 em high is located in the air and
on the axis 16.0 cm from the vertex. Find (a) the primary and secondary focal lengths,
(b) the power of the surface, (c) the image distance, and (d) the size of the image.

3.4 Solve Prob. 3.3 graphically. (a) Find the image distance by the oblique-ray method 1.
(b) Find the size of the image by the parallel-ray method.

3.5 The left end of a water trough has a transparent surface of radius - 2.0 em. A small
object 2.5 cm high is located in the air and on the axis 10.0 cm from the vertex. Find
(a) the primary and secondary focal lengths, (b) the power of the surface, (c) the image
distance, and (d) the size of the image. Assume water to have an index 1.3330.

Ans. (a) - 6.01 and - 8.01 em, (b) -16.65 0, (c) - 5.0 cm, (d) +0.938 cm
3.6 Solve Prob. 3.5 graphically. (a) Find the image distance by the oblique-ray method 1.

(b) Find the size of the image by the parallel-ray method.
3.7 The left end of a long plastic rod of index 1.480 is ground and polished to a spherical

surface of radius - 2.60 em. An object 2.50 em high is located in the air and on the
axis 12.0 cm from the vertex. Find (a) the primary and secondary focal lengths,
(b) the power of the surface, (c) the image distance, and (d) the size of the image.
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3.8 Solve Prob. 3.7 graphically. (a) Find the image distance by the oblique-ray method 1.
(b) Find the size of the image by the parallel-ray method.

3.9 The left end of a long glass rod of index 1.620 is polished to a convex surface of radius
+ 1.20 em and then submerged in water of index 1.3330. A small object 2.50 em high
is located in the water 10.0 em in front of the vertex. Calculate (a) the primary and
secondary focal lengths, (b) the power of the surface, (c) the image distance, and (d)
the size of the image.

Ans. (a) + 5.57 and + 6.77 em, (b) 23.91 D, (c) + 15.31 em, (d) - 3.150 em
3.10 Solve Prob. 3.9 graphically. (a) Find the image distance by the oblique-ray method 2.

(b) Find the size of the image by the parallel-ray method.
3.11 A glass rod 2.50 em long and of index 1.70 has both ends polished to spherical surfaces

with radii '1 = + 2.80 em and 'z = - 2.80 em. An object 2.0 em high is located on the
axis 8.0 em from the first vertex. Find (a) the primary and secondary focal lengths
for each of the surfaces, (b) the image distance for the first surface, (c) the object
distance for the second surface, and (d) the final image distance from the second
vertex.

3.12 Solve Prob. 3.11 graphically after calculating the answer to part (a).
3.13 A parallel beam of light enters a clear plastic bead 2.50 em in diameter and index

1.440. At what point beyond the bead are these rays brought to a focus?
Ans. 0.795 em

3.14 Solve Prob. 3.13 graphically by the method illustrated in Fig. 31.
3.15 A clear crystal bead of index 1.720, and radius 1.50 em is submerged in a clear liquid

of index 1.360. If a parallel beam of light in the liquid is allowed to enter the bead,
at what point beyond the other side will the light be brought to a focus?

3.16 Solve Prob. 3.15 graphically by the method illustrated in Fig. 31.
3.17 A hollow glass cell is made of thin glass in the form of an equiconcave lens. The radii

of the two surfaces are 1.650 em, and the distance between the two vertices is 1.850 em.
When sealed airtight, this cell is submerged in water of index 1.3330. Calculate (a) the
focal lengths of each surface and (b) the power of each surface.

Ans. (a)/l = +6.60 cm,/~ = +4.95 cm,/z = +4.95 em, and/2 = +6.60 em,
(b) PI = +20.18 D, and Pz = +20.18 D

3.18 A spherical surface with a radius of + 2.650 em is polished on the end of a glass rod of
index 1.560. Find its power when placed in (a) air, (b) water of index 1.3330, (c) oil
of index 1.480, and (d) an organic liquid of index 1.780.
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4
THIN LENSES

Diagrams of several standard forms of thin lenses were shown in Fig. 3A as illustra-
tions of the fact that most lenses have surfaces that are spherical in form. Some
surfaces are convex, others are concave, and still others are plane. When light passes
through any lens, refraction at each of its surfaces contributes to its image-forming
properties, according to the principles put forward in Chap. 3. Not only does each
individual surface have its own primary and secondary focal points and planes, but
the lens as a whole has its own pair of focal points and focal planes.

A thin lens may be defined as one whose thickness is considered small in com-
parison with the distances generally associated with its optical properties. Such distances
are, for example, radii of curvature of the two spherical surfaces, primary and
secondary focal lengths, and object and image distances.

4.1 FOCAL POINTS AND FOCAL LENGTHS
Diagrams showing the refraction of light by an equiconvex lens and by an equi-
concave lens are given in Fig. 4A. The axis in each case is a straight line through the
geometrical center of the lens and perpendicular to the two faces at the points of
intersection. For spherical lenses this line joins the centers of curvature of the two
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FIGURE 4A
Ray diagrams illustrating the primary and secondary focal points F and F' and
the corresponding focal lengths f and f' of thin lenses.

surfaces. The primary focal point F is an axial point having the property that any ray
coming from it or proceeding toward it travels parallel to the axis after refraction.

Every thin lens in air has two focal points, one on each side of the lens and
equidistant from the center. This can be seen by symmetry in the cases of equi-
convex and equiconcave lenses, but it is also true for other forms provided the lenses
may be regarded as thin. The secondary focal point F' is an axial point having the
property that any incident ray traveling parallel to the axis will, after refraction, proceed
toward, or appear to come from, F'. The two lower diagrams in Fig. 4A are given
for the purpose of illustrating this definition. In analogy to the case of a single spher-
ical surface (see Chap. 3), a plane perpendicular to the axis and passing through a
focal point is called a focal plane. The significance of the focal plane is illustrated for
a converging lens in Fig. 4B. Parallel incident rays making an angle (J with the axis
are brought to a focus at a point Q' in line with the chief ray. The chief ray in this
case is defined as the ray which passes through the center of the lens.

The distance between the center of a lens and either of its focal points is its
focal length. These distances, designated f and f', usually measured in centimeters
or inches, have a positive sign for converging lenses and a negative sign for diverging
lenses. It should be noted in Fig. 4A that the primary focal point F for a converging
lens lies to the left of the lens, whereas for a diverging lens it lies to the right. For a
lens with the same medium on both sides, we have, by the reversibility of light rays,

f=f'

Note carefully the difference between a thin lens in air, where the focal lengths
are equal, and a single spherical surface, where the two focal lengths have the ratio
of the two refractive indices [see Eq. (3a)].
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FIGURE 4B
How parallel incident rays are brought
to a focus at the secondary focal plane
of a thin lens.

I I
f4-- /'----\

4.2 IMAGE FORMATION

When an object is placed on one side or the other of a converging lens and beyond
the focal plane, an image is formed on the opposite side (see Fig. 4C). If the object
is moved closer to the primary focal plane, the image will be formed farther away
from the secondary focal plane and will be larger, i.e., magnified. If the object is
moved farther away from F, the image will be formed closer to F' and will be smaller.

In Fig. 4C all the rays coming from an object point Q are shown as brought
to a focus Q', and the rays from another point M are brought to a focus at M'.
Such ideal conditions and the formulas given in this chapter hold only for paraxial
rays, i.e., rays close to lens axis and making small angles with it.

4.3 CONJUGATE POINTS AND PLANES

If the principle of the reversibility of light rays is applied to Fig. 4C, we observe that
Q'M' becomes the object and QM becomes its image. The object and image are
therefore conjugate, just as they are for a single spherical surface (see Sec. 3.4). Any
pair of object and image points such as M and M' in Fig. 4C are called conjugate
points, and planes through these points perpendicular to the axis are called conjugate
planes.

Ifwe know the focal length of a thin lens and the position of an object, there are
three. methods of determining the position of the image: (1) graphical construction,
(2) experiment, and (3) use of the lens formula

(4a)• 1 I 1-+-=-
s s' f

Here s is the object distance, s' is the image distance, and f is the focal length, all
measured to or from the center of the lens. This lens equation will be derived in
Sec. 4.14. We now consider the graphical methods.

4.4 THE PARALLEL-RAY METHOD

The parallel-ray method is illustrated in Fig. 4D. Consider the light emitted from the
extreme point Q on the object. Of the rays emanating from this point in different
directions the one (QT) traveling parallel to the axis will by definition of the focal point
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FIGURE 4C
Image formation by an ideal thin lens. All rays from an object point Q which
pass through the lens are refracted to pass through the image point Q'.

be refracted to pass through F'. The ray QA,which goes through the lens center where
the faces are parallel, is undeviated and meets the other ray at some point Q'. These
two rays are sufficient to locate the tip of the image at Q', and the rest of the image lies
in the conjugate plane through this point. All other rays from Q will also be brought
to a focus at Q'. As a check, we note that the ray QF which passes through the
primary focal point will by definition of F be refracted parallel to the axis and will
cross the others at Q' as shown in the figure. The numbers I, 2, 3, etc., in Fig. 4D
indicate the order in which the lines are customarily drawn.

4.5 THE OBLIQUE-RAY METHOD

Let MT in Fig. 4E represent any ray incident on the lens from the left. It is refracted
in the direction TX and crosses the axis at M'. The point X is located at the inter-
section between the secondary focal plane F' Wand the dashed line RR' drawn
through the center of the lens parallel to MT.

The order in which each step of the construction is made is again indicated by
the numbers 1,2,3, .... The principle involved in this method may be understood
by reference to Fig. 4B. Parallel rays incident on the lens are always brought to a

2

M'
M F
I I 7 y'
I I
I I
I I I Q'
I ~f J'--l I
I. 8 8' •.I

FIGURE 4D
The parallel-ray method for graphically locating the image formed by a thin lens.
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M'

FIGURE 4E
The oblique-ray method for graphically locating the image formed by a thin lens.

focus at the focal plane, the ray through the center being the only one undeviated.
Therefore, if we actually have rays diverging from M, as in Fig. 4E, we can find the
direction of anyone of them after it passes through the lens by making it intersect
the parallel line RR' through A in the focal plane. This construction locates X and
the position of the image M'. Note that RR' is not an actual ray in this case and is
treated as such only as a means of locating the point X.

4.6 USE OF THE LENS FORMULA

To illustrate the application of Eq. (4a) to find the image position, we select an
example in which all quantities occurring in the equation have a positive sign. Let
an object be located 6.0 cm in front of a positive lens of focal length + 4.0 cm. The
given quantities are s = +6.0 cm and f = +4.0 cm, and the unknown is s'. As a
first step we transpose Eq. (4a) by solving for s':

s' = s x j (4b)
s-j

From direct substitution of the given quantities in this equation we have

s' = (+6) x (+4) = + 12.0 cm
(+6)-(+4)

The image is formed 12.0 cm from the lens and is real, as it will always be when
s' has a positive sign. In this instance it is inverted, corresponding to the diagram in
Fig. 4C. These results can be readily checked by either of the two graphical methods
presented above.

The sign conventions to be used for the thin-lens formulas are identical to those
for a single spherical surface given in Sec. 3.5.

4.7 LATERAL MAGNIFICATION

A simple formula for the image magnification produced by a single lens can be
derived from the geometry of Fig. 4D. By construction it is seen that the right tri-
angles QM A and Q'M' A are similar. Corresponding sides are therefore proportional
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to each other, so that
M'Q' AM'--=--
MQ AM

where AM' is the image distance s' and AM is the object distance s. Taking upward
directions as positive, y = MQ, and y' = -M'Q'; so we have by direct substitution
y'/y = -s'/s. The lateral magnification is therefore

(4c)y' s'
m = - = --

y s

When sand s' are both positive, as in Fig. 4D, the negative sign of the mag-
nification signifies an inverted image.

•

4.8 VIRTUAL IMAGES

The images formed by the converging lenses in Figs. 4C and 4D are real in that they
can be made visible on a screen. They are characterized by the fact that rays of light
are actually brought to a focus in the plane of the image. A virtual image cannot be
formed on a screen (see Sec. 3.3). The rays from a given point on the object do not
actually come together at the corresponding point in the image; instead they must be
projected backward to find this point. Virtual images are produced with converging
lenses when the object is placed between the focal point and the lens and with diverging
lenses when the object is in any position. Examples are shown in Figs. 4F and 4G.

Figure 4F shows the parallel-ray construction for a positive lens used as a
magnifier, or reading glass. Rays emanating from Q are refracted by the lens but
are not sufficiently deviated to come to a real focus. To the observer's eye at E these
rays appear to be coming from a point Q' on the far side of the lens. This point
represents a virtual image, because the rays do not actually pass through Q'; they
only appear to come from there. Here the image is right side up and magnified. In
the construction of this figure, ray QT parallel to the axis is refracted through F',
while ray QA through the center of the lens is undeviated. These two rays when
extended backward intersect at Q'. The third ray QS, traveling outward as though it
came from F, actually misses the lens, but if the latter were larger, the ray would be
refracted parallel to the axis, as shown. When projected backward, it also intersects
the other projections at Q'.

EXAMPLE I If an object is located 6.0 cm in front of a lens of focal length + 10.0
cm, where will the image be formed?

SOLUTION The given quantities are s = + 6.0cm, and f = + 10.0cm, while the
unknown quantities are s' and m. Bymaking direct substitutions in Eq. (4b) we obtain

s' = (+6) x (+10) = +60 = -15.0 cm
(+6) - (+10) -4
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FIGURE 4F
The parallel-ray method for graphically locating the virtual image formed by a
positive lens when the object is between the primary focal point and the lens.

The minus sign indicates that the image lies to the left of the lens. Such an image is
always virtual. The magnification is obtained by the use of Eq. (4c),

s'
m = -- =

s

The positive sign means that the image is erect.

-15---=+6 +2.50x

With the negative lens shown in Fig..4G the image is virtual for all positions of
the object, is always smaller than the object, and lies closer to the lens than the object.
As is seen from the diagram, rays diverging from the object point Q are made more
divergent by the lens. To the observer's eye at E these rays appear to be coming from
the point Q' on the far side of but close to the lens. In applying the lens formula
to a diverging lens it must be remembered that the focallengthjis negative.

EXAMPLE 2 An object is placed 12.0 cm in front of a diverging lens of focal length
6.0 em. Find the image.

SOLUTION The given quantities are s = + 12.0em and! = -6.0 cm, while the
unknown quantities are s' and m. We substitute directly in Eq. (4b), to obtain

, (+12) x (-6) -72s = ------ = --
(+12)-(-6) +18

from which s' = -4.0 em. For the image size Eq. (4c) gives

s' -4
m = - - = - - = +t x

s 12
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FIGURE 4G ,
The parallel-ray method for graphically locating the virtual image formed by a
negative lens.

The image is therefore to the left of the lens, virtual, erect, and one-third the size of
the object.

4.9 LENS MAKERS' FORMULA

If a lens is to be ground to some specified focat'length, the refractive index of the glass
must be known. It is customary for manufacturers of optical glass to specify the
refractive index for yellow sodium light, the D line. Supposing the index to be known,
the radii of curvature must be so chosen as to satisfy the equation

• != (n - 1) (.!. - .!.)
f r1 r2

(4d)

As the rays travel from left to right through a lens, all convex surfaces are taken as
having a positive radius and all concave surfaces a negative radius. For an equiconvex
lens like the one in Fig. 3A(a), r1 for the first surface is positive and r2 for the second
surface negative. Substituting the value of l/f/rom Eq. (4a), we write

!+ ~= (n - 1) (_.1 _.!.) (4e)
s s r1 r2

EXAMPLE 3 A plano-convex lens having a' focal length of 25.0 cm [Fig. 3A(b)]
is to be made of glass of refractive index n = 1.520. Calculate the radius of curvature
of the grinding and polishing tools that must be used to make this lens.
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SOLUTION Since a plano-convex lens has one flat surface, the radius for that
surface is infinite, and r1 in Eq. (4d) is replaced by 00. The radius r2 of the second
surface is the unknown. Substitution of the known quantities in Eq. (4d) gives

is = (1.520 - 1) (~ - .!.)
00 r2

Transposing and solving for r2, we have

2\ = 0.520 (0 _ ~) = _ 0.520
r2 r2

r2 = -(25 x 0.520) = -13.0 cm

If this lens is turned around, as in the figure, we shall have r1 = + 13.0 cm and
r2 = 00.

4.10 THIN-LENS COMBINATIONS

The principles of image formation presented in the preceding sections of this chapter
are readily extended to optical systems involving two or more thin lenses. Consider,
for example, two converging lenses spaced some distance apart as shown in Fig. 4H.
Here an object Q1Ml is located at a given distance SI in front of the first lens, and an
image Q2M; is formed some unknown distance s; from the second lens. We first
apply the graphical methods to find this image distance and then show how to
calculate it by the use of the thin-lens formula.

The first step in applying the graphical method is to disregard the presence of
the second lens and find the image produced by the first lens alone. In the diagram
the parallel-ray method, as applied to the object point Ql' locates a real and inverted
image at Q;. Any two of the three incident rays 3, 5, and 6 are sufficient for this
purpose. Once Q'I is located, we know that all the rays leaving QI will, upon refraction
by the first lens, be directed toward Q'I' Making use of this fact, we construct a
fourth ray by drawing line 9 back from Q; through A2 to W. Line 10 is then drawn
in connecting Wand Ql'

The second step is to imagine the second lens in place and to make the following
changes. Since ray 9 is seen to pass through the center of lens 2, it will emerge without
deviation from its previous direction. Since ray 7 between the lenses is parallel to the
axis, it will upon refraction by the second lens pass through its secondary focal point
F2• The intersection of rays 9 and 11 locates the final image point Q2' Ql and Q'1are
conjugate points for the first lens, Q2 and Q2 are conjugate points for the second lens,
and Ql and Q2 are conjugate for the combination of lenses. When the image Q2M;
is drawn in, corresponding pairs of conjugate points on the axis are M1 and M~,M2

and M;, and M1 and Mi.
The oblique-ray method given in Fig. 4E is applied to the same two lenses in

Fig. 41. A single ray is traced from the object point M to the final image point M;.
The lines are drawn in the order indicated. The dotted line 6 is drawn through Al
parallel to ray 4 to locate the point R;. The dotted line 9 is drawn through A2 parallel
to ray 7 to locate R2. This construction gives the same conjugate points along the
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FIGURE 4H
The parallel-ray method for graphically locating the final image formed by two
thin lenses.

axis. Note that the axis itself is considered as the second light ray in locating the
image point M2.

Byway of comparison and as a check on the graphical solutions, we can assign
specific values to the focal lengths of the lenses and apply the thin-lens formula to
find the image. Assume that the two lenses have focal lengths of + 3 and + 4 cm,
respectively, that they are placed 2 cm apart, and that the object is located 4 cm in
front of the first lens.

We begin the solution by applying Eq. (4b) to the first lens alone. The given
quantities to be substituted are SI = +4 cm andl1 = +3 cm:

s~= SI xiI = (+4) + (+3) = + 12 cm
sl-/l (t4)-(+3)

The image formed by the first lens alone is, therefore, real and 12.0 cm to the
right of A l' The image becomes the object for the second lens, and since it is only
10.0 cm from A2• the object distance S2 becomes -10.0 cm. The minus sign is
necessary and results from the fact that the object distance is measured to the right
of the lens. We say that the image produced by the first lens becomes the object for
the second lens. Since the rays are converging toward the image of the first lens, the
object for the second lens is virtual and its distance therefore has a negative value.

T 5
2 R'-:J: I--__ 8

10 ---+-_

FIGURE 41
The oblique-ray method for graphically locating the final image formed by two
thin lenses.
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Applying the lens formula [Eq. (4b)] to the second lens, we have S2 = -10.0 cm
and/2 = +4.0 cm:

S2 = (-10) x (+4) = +2.86cm
(-10) - (+4)

The final image is 2.86 cm to the right of lens 2 and is ,eal.

4.11 OBJECT SPACE AND IMAGE SPACE

For every position of the object there is a corresponding position for the image.
Since the image may be either real or virtual and may lie on either side of the lens, the
image space extends from infinity in one direction to infinity in the other. But object
and image points are conjugate; so the same argument holds for the object space. In
view of their complete overlapping, one might wonder how it is that the distinction
between object and image space is made. This is done by defining everything that
pertains to the rays before they have passed through the refracting system as belonging
to the object space and everything that pertains to them afterward as belonging to the
image space. Referring to Fig. 4H, the object Q1 and the rays Q1T, Q1A1' and Q1V
are all in the object space for the first lens. Once these rays leave that lens, they are
in the image space of the first lens, as is also the image Q~. This space is also the
object space for the second lens. Once the rays leave the second lens, they and the
image point Q2 are in the image space of the second lens.

4.12 THE POWER OF A THIN LENS

The concept and measurement oflens power correspond to those used in the treatment
of reduced vergence and the power of a single surface as given in Sec. 3.9. The
power of a thin lens in diopters is given by the reciprocal of the focal length in
meters:

• 1p=-
/

d. 1lOpters = ------
focal length, m

(4f)

For example, a lens with a focal length of + 50.0 cm has a power of 1/0.50 m =
+ 2 D (P = + 2.0 D), whereas one of - 20.0 cm focal length has a power of 1/0.20m=
- 5 D (P = - 5.0 D), etc. Converging lenses have a positive power, while diverging
lenses have a negative power.

By making use of the lens makers' formula [Eq. (4d)] we can write

P = (n - 1) (~ - ~) (4g)
'1 '2

where '1 and '2 are the two radii, measured in meters, and n is the refractive index of
the glass.
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EXAMPLE 4 The radii of both surfaces of an equiconvex lens of index 1.60 are
equal to 8.0 em. Find its power.

SOLUTION The given quantities to be used in Eq. (4g) are n = 1.60, '1 =
0.080 m, and 'z = -0.080 m (see Fig. 3A for the shape of an equiconvex lens).

P = (n - 1) (.!.. - .!..) = (1.60 - 1) (_1 1_) = 0.60 _2_ = + 15.0D'1 rz 0.080 -0.080 0.080

Spectacle lenses are made to the nearest quarter of a diopter, thereby reducing
the number of grinding and polishing tools required in the optical shops. Further-
more, the sides next to the eyes are always concave to permit free movement of the
eyelashes and yet to keep as close and as normal to the axis of the eye as possible.
Note: It is important to insert a plus or minus sign in front of the number specifying
lens power; thus, P = +3.0 D, P = -4.5 D, etc.

4.13 THIN LENSES IN CONTACT

When two thin lenses are placed in contact, as shown in Fig. 4J, the combination will
act as a single lens with two focal points symmetrically located at F and F' on opposite
sides. Parallel incoming rays are shown refracted by the first lens toward its secondary
focal point Fi. Further refraction by the second lens brings the rays together at F'.
This latter is defined as the secondary focal point of the combination, and its distance
from the center is defined as the combination's secondary focallengthf'.

If we now apply the simple lens formula (4a) to the rays as they enter and
leave the second lens £z, we note that for the second lens alonef; is the object distance
(taken with a negative sign),f' is the image distance, andf; is the focal length. When
Eq. (4a) is applied, these substitutions for s, s', and/, respectively, give

1 1 1-+-=-
-II f' f;

or 111-=-+-
f' f; f;

Since we have assumed that the lenses are in air, the primary focal lengths are
all equal to their respective secondary focal lengths and we can drop all primes and
write

1 1 1
- = - + - (4h)
f f1 fz

In words, the reciprocal of the focal length of a thin-lens combination is equal to
the sum of the reciprocals of the focal lengths of the individual lenses. Since by Eq. (4f)
we can write PI = 1/11' Pz = 1/fz, and P = II/' we obtain for the power of the
combination

• (4i)

In general, when thin lenses are placed in contact, the power of the combination
is given by the sum of the powers of the individual lenses.
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FIGURE 4J
The power of a combination of thin lenses in contact is equal to the sum of the
powers of the individual lenses.

4.14 DERIVATION OF THE LENS FORMULA

A derivation of Eq. (4a), the lens formula, is readily obtained from the geometry of
Fig. 4D. The necessary features of the diagram are repeated in Fig. 4K, which shows
only two rays leading from the object of height y to the image of height y'. Let sand
s' represent the object and image distances from the lens center and x and x' their
respective distances from the focal points F and F'.

From similar triangles Q'TS and F' TA the proportionality between corres-
ponding sides gives

y - y' y
---=-
s' f'

Note that y - y' is written instead of y + y' because y', by the convention of signs,
is a negative quantity. From the similar triangles QTS and FAS,

y-y' -y'
---=--

s f
The sum of these two equations is

y-y' y-y' y y'
-s-+-s-'-=l' f

Sincef =1', the two terms on the right can be combined and y - y' canceled out,
yielding the desired equation,

1 1 I-+-=-
s s' f

This is the lens formula in the gaussian* form.

• Karl Friedrich Gauss (1777-1855), German astronomer and physicist, was chiefly
known for his contributions in the mathematical theory of magnetism. Coming
from a poor family, he received support for his education because of his obvious
mathematical ability. In 1841 he published the first general treatment of the first-
order theory of lenses in his now famous papers, "Dioptrische Untersuchungen."
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FIGURE 4K
The geometry used for the derivation of thin-lens formulas.

Another form of the lens formula, the newtonian form, is obtained in an
analogous way from two other sets of similar triangles, QMF and FAS on the one
hand and TAF' anq F'M'Q' on the other. We find

E. = -y'
x /

Multiplication of one equation by the other gives

and -y' y
-=-
x' /

(4j)

xx' =/2
In the gaussian formula the object distances are measured from the lens, while

in the newtonian formula they are measured from the focal points. Object distances
(s or x) are positive if the object lies to the left of its reference point (A or F, respec-
tively), while image distances (s' or x') are positive if the image lies to the right of its
reference point (A or F', respectively).

The lateral magnification as given by Eq. (4c) corresponds to the gaussian form.
When distances are measured from focal points, one should use the newtonian form,
which can be obtained directly from Eq. (4j):

y' / x'
m = - = - - = - - (4k)

y x .f
In the more general case where the medium on the two sides of the lens is

different, it will be shown in the next section that the primary and secondary focal
distances / and f' are different, being in the same ratio as the two refractive indices.
The newtonian lens formula then takes the symmetrical form

xx' =//'

4.15 DERIVATION OF THE LENS MAKERS' FORMULA

The geometry required for this derivation is shown in Fig. 4L. Let n, n', and nil
represent the refractive indices of the three media as shown,fl and/; the focal lengths
for the first surface alone, and/2 and/2 the focal lengths for the second surface alone.
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FIGURE 4L
Each surface of a thin lens has its own focal points and focal lengths, as well as
separate object and image distances.

The oblique ray MTI is incident on the first surface as though it came from an axial
object point M at a distance SI from the vertex AI' At Tl the ray is refracted ac-
cording to Eq. (3b) and is directed toward the conjugate point M':

n n' n' - n- + - = -- (41)
51 5~ rl

Arriving at T2, the same ray is refracted in the new direction T2M". For this
second surface the object ray T1 T2 has for its object distance S2, and the refracted
ray gives an image distance of S2' When Eq. (3b) is applied to this second refracting
surface,

n' nil nil - n'-+- =-- (4m)
52 5;" r2

If we now assume the lens thickness to be negligibly small compared with the
object and image distances, we note the image distance sifor the first surface becomes
equal in magnitude to the object distance s;' for the second surface. Since M' is a
virtual object for the second surface, the sign of the object distance for this surface
is negative. As a consequence we can set s{ = -S2 and write

n' n'
5~ 5;'

If we now add Eqs. (41)and (4m) and substitute this equality, we obtain

n nil n' - n nil - n'- + - = -- + --- (4n)
51 52' rl r2

If we now call SI the object distance and designate it s as in Fig. 4M and call
s!J. the image distance and designate it S", we can write Eq. (4n) as

n nil n' - n nil - n'
-+-=--+---
s S" 71 r2

(40)
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FIGURE 4M
When the media on the two sides of a thin lens have different indices, the primary
and secondary focal lengths are not equal and the ray through the lens center is
deviated.

This is the general formula for a thin lens having different media on the two
sides. For such cases we can follow the procedure given in Sec. 3.4 and define
primary and secondary focal points F and F", and the corresponding focal lengths
land!", by setting s or s" equal to infinity. When this is done, we obtain

n :, n' - n n" - n' n"
-',= -- + -- = - (4p)
f:'l 'z f"

In words, the focal lengths have the ratio of the refractive indices of the two
media nand n" (see Fig. 4M)

I n- = - (4q)
/" n"

If the medium on both sides of the lens is the same, n = n", Eq. (40) reduces to

n n" (1 1)- + - = (n' - n) - - -
s ' s" '1 'z

(4r)

Note: The minus sign in the last factor arises when n" and n' are reversed for the
removal of like terms in the last factor of Eq. (40).

Finally, if the surrounding medium is air (n = 1), we obtain the lens makers'
formula

!+ ~ = (n' - 1) (~ - ~) (4s)
s s" '1 'z,

i
In the power notation of Eq. (3i), the general formula (Eq. (40)] can be written

V+ V" = P1 + Pz (4t)

" n' - n n" - n'where V=~ V"=~ P1 ==-- Pz = (4u)
s s" '1 'z
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•
Equation (4t) can be written

V+ V" = P (4v)

where P is the power of the lens and is equal to the sum of the powers of the two
surfaces:
• P = Pi + P2 (4w)

PROBLEMS

4.1 An object located 12.0 cm in front of a thin lens has its image formed on the opposite
side 42.0 cm from the lens. Calculate (a) the focal length of the lens and (b) the lens
power. Ans. (a) +9.33 cm, (b) + 10.72 D

4.2 An object 2.50 cm high is placed 12.0 cm in front of a thin lens of focal length 3.0 cm.
Calculate (a) the image distance, (b) the magnification, and (c) the nature of the image.
(d) Check your answers by a graph.

4.3 The two faces of a thin lens have radii'l = + 10.0 cm and'2 = - 25.0 cm, respectively.
The lens is made of glass of index 1.740. Calculate (a) the focal length and (b) the
power of the lens.

4.4 An object 3.50 cm high is located 10.0 cm in front of a lens whose focal length
1= - 6.0 cm. Calculate (a) the power of the lens, (b) the image distance, and (c) the
lateral magnification. Graphically locate the image by (d) the parallel-ray method
and (e) the oblique-ray method.

4.5 An equiconcave lens is to be made of flint glass of index 1.750. Calculate the radii of
curvature if it is to have a power of - 3.0 D. Ans. Both 50.0-cm radius

4.6 A plano-convex lens is to be made of light flint glass of index 1.680. Calculate the
radius of curvature necessary to give the lens a power of 4.5 D.

4.7 Two lenses with focal lengths 11 = +5.0 cm and 12 = + 10.0 cm are located 5.0 cm
apart. If an object 2.50 cm high is located 15.0 cm in front of the first lens, find (a) the
position and (b) the size of the final image.

Ans. (a) +2.00 cm from second lens, (b) -1.0 cm
4.8 A converging lens is used to focus a sharp image of a candle flame on a screen. Without

moving the candle flame a second lens with radii'l = + 10.0 cm and'2 = -20.0 cm
and index 1.650 is placed in the converging beam 30.0 cm from the screen. (a) Calculate
the power of the second lens. (b) How close to the second lens should the screen now
be placed to obtain a sharp image of the flame? (c) Make a graph of this experiment.

4.9 A double-convex lens is to be made of glass having a refractive index of 1.580. If one
surface is to have twice the radius of the other and the focal length is to be + 6.0 cm,
find the radii.

4.10 Two lenses having focal lengths 11 = +9.0 cm and 12 = -18.0 cm are placed 3.0 cm
apart. If an object 2.50 cm high is located 20.0 cm in front of the first lens, calculate
(a) the position and (b) the size of the final image. (c) Check your answer graphically.

4.11 A lantern slide 8.0 cm high is located 3.50 m from a projection screen. What is the
focal length of the lens that will be required to project an image 1.0 m high?

4.12 An object is located 1.60 m from a white screen. A lens of what focal length will be
required to form a real and inverted image on the screen with a magnification of - 6.0?

Ans. 19.59 cm
4.13 Three thin lenses have powers + 1.50, - 2.80, and 3.40 D, respectively. What are all

the possible powers that can be obtained with these three lenses using one, two, or
three at a time in contact?
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4.14 Two thin lenses having the following radii of curvature and index are placed in contact.
For the first lens'1 = + 12.0 cm"2 = -18.0 em, and n = 1.560, and for the second
lens '1 = -30.0 em, '2 = +20.0 em, and n = 1.650. Find their (a) individual
powers, (b) combined power, (c) individual focal lengths, and (d) combined focal
length.

4.15 An object 2.50 em high is located 15.0 em in front of a lens of + 5.0 em focal length.
A lens with a focal length of -12.0 em is placed 2.50 em beyond this converging lens.
Find (a) the position and (b) the size of the final image.

Ana. (a) +8.57 em, (b) -2.143 em
4.16 An object 2.50 em high is located 8.0 em in front of a lens of - 2.40 em focal length.

A lens of + 5.0 em focal length is placed 1.50 em behind the first lens. Find (a) the
position and (b) the size of the final image. (c) Draw a graph.

4.17 Three lenses with focal lengths of +8.40, -4.60, and +6.20 em, respectively, are
located one behind each other in this order and 2.0 em apart. (a) If parallel light is
incident on the first lens, how far behind the third lens will the light be brought to a
focus? (b) Draw a scale diagram.

4.18 An object 3.50 em high is located 8.0 em in front of a lens of -7.0 em focal length.
A lens of +4.50 em focal length is placed 3.5 em behind the first lens. Find (a) the
position and (b) the size of the image. (c) Make a diagram to scale.



5
THICK LENSES

When the thickness of a lens cannot be considered small compared with its focal
length, some of the thin-lens formulas of Chap. 4 are no longer applicable. The lens
must be treated as a thick lens. This term is used not only for a single homogeneous
lens with two spherical surfaces separated by an appreciable distance but also for
any system of coaxial surfaces which is treated as a unit. The thick lens may there-
fore include several component lenses, which mayor may not be in contact. We have
already investigated one case which comes under this category, namely, the com-
bination of a pair of thin lenses spaced some distance apart, as shown in Fig. 4H.

5.1 TWO SPHERICAL SURFACES

A simple form of thick lens comprises two spherical surfaces as shown in Fig. 5A.
A treatment of the image-forming capabilities of such a system follows directly from
procedures outlined in Chaps. 3 and 4. Each surface, acting as an image-forming
component, contributes to the final image formed by the system as a whole.

Let n, n', and nil represent the refractive indices of three media separated by two
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M M'

FIGURE SA
Details of the refraction of a ray at both surfaces of a lens.

spherical surfaces of radius r1 and r2' A light ray from an axial object point Mis
shown refracted by the first surface in a direction T1M' and then further refracted
by the second surface in a direction T2M". Since the lens axis may be considered
as a second ray of light originating at M and passing through the system, M" is the
final image of the object point M. Hence M and M" are conjugate points for the
thick lens as a whole, and all rays from M should come to a focus at M".

We shall first consider the parallel-ray method for graphically locating an image
formed by a thick lens and then apply the general formulas already given for
calculating image distances. The formulas to be used are (see Sec. 3.4)

• n n' n' - n-+-=--
S1 s{ r1

For first surface

n' n" n" - n'-+-=---s; s;' r2

For second surface

(Sa)

5.2 THE PARALLEL-RAY METHOD

The parallel-ray method of graphical construction, applied to a thick lens of two
surfaces, is shown in Fig. 5B. Although the diagram is usually drawn as one, it has
been separated into two parts here to simplify its explanation. The points F1 and F;
represent the primary and secondary focal points of the first surface, and F;' and Fi
represent the primary and secondary focal points of the second surface, respectively.

Diagram (a) is constructed by applying the method of Fig. 3F to the first surface
alone and extending the refracted rays as far as is necessary to locate the image
M'Q'. This real image, M'Q', then becomes the object for the second surface, as
shown in diagram (b). The procedure is similar to that given for two thin lenses in
Fig.4H. Ray S in diagram (b), refracted parallel to the axis by the first surface, is re-
fracted as ray 7 through the secondary focal point Fi of the second surface.

Rays 8 and 9 are obtained by drawing a line from Q' back through C2 and then,
through the intersection B, drawing the line BQ. The intersection of rays 7 and 8
locates the final image point Q" and the final image M"Q".

EXAMPLE I An equiconvex lens 2 cm thick and having radii of curvature of 2 cm
is mounted in the end of a water tank. An object in air is placed on the axis of the
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FIGURE 5B
The parallel-ray method for graphically locating the image formed by a thick lens.

lens 5 cm from its vertex. Find the position of the final image. Assume refractive
indices of 1.00, 1.50, and 1.33 for air, glass, and water, respectively.

SOLUTION The relative dimensions in this problem are approximately those
shown in Fig. 5B(b). If we apply Eq. (Sa) to the first surface alone, we find the image
distance to be

_1.00_+ _1.5_0= _1._50_-_1_.0_0
5 5;' 2

or s; = +30cm

When the same equation is applied to the second surface, we note that the
object distance is s;' minus the lens thickness, or 28 cm, and that since it pertains to a
virtual object it has a negative sign. The substitutions to be made are, therefore,
S2 = -28 em, n' = 1.50, n" = 1.33, and r2 = -2.0 cm.

1.50 1.33 1.33 - 1.50-+-=----
-28 52 -2

or 5; = +9.6 cm

Particular attention should be paid to the signs of the various quantities in this second
step. Because the second surface is concave toward the incident light, r2 must have a
negative sign. The incident rays in the glass belong to an object point M', which is
virtual, and thus S2, being to the right of the vertex A2, must also be negative. The
final image is formed in the water (n" = 1.33) at a distance +9.6 cm from the second
vertex. The positive sign of the resultant signifies that the image is real.

It should be noted that Eqs. (Sa) hold for paraxial rays only. The diagrams in
Fig. 5B, showing all refraction as taking place at vertical lines through the vertices
Ai and A2, are likewise restricted to paraxial rays.
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FIGURE SC
Ray diagrams showing the primary and secondary principal planes of a thick
lens.

5.3 FOCAL POINTS AND PRINCIPAL POINTS

Diagrams showing the characteristics of the two focal points of a thick lens are given
in Fig. 5C. In the first diagram diverging rays from the primary focal point F emerge
parallel to the axis, while in the second diagram parallel incident rays are brought to a
focus at the secondary focal point F". In each case the incident and refracted rays have
been extended to their point of intersection between the surfaces. Transverse planes
through these intersections constitute primary and secondary principal planes. These
planes cross the axis at points Hand H", called the principal points. It will be noticed
that there is a point-for-point correspondence between the two principal planes, so
that each is an erect image of the other and both are the same size. For this reason
they have sometimes been called unit planes. They are best defined by saying that
the principal planes are two planes having unit positive lateral magnification.

The focal lengths, as shown in the figure, are measured from the focal points
F and F" to their respective principal points Hand H" and not to their respective
vertices Ai and A2• If the medium is the same on both sides of the lens, n" = n, the
primary focallengthfis exactly equal to the secondary focallengthf".

If the media on the two sides of the lens are different so that n" is not equal to n,
the two focal lengths are different and have the ratio of their corresponding refractive
indices:

nil f"
-=-
n f

(5b)

In general the focal points and principal points are not symmetrically located
with respect to the lens but are at different distances from the vertices. This is true
even when the media on both sides are the same and the focal lengths are equal. As a
lens with a given material and focal length is "bent" (see Fig. 50), departing in either
direction from the symmetrical shape of an equiconvex lens, the principal points are
shifted. For meniscus lenses of considerable thickness and curvature, Hand H" may
be completely outside the lens.
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FIGURE 5D
The variation of the positions of the primary and secondary principal planes as a
thick lens of fixed focal length is subjected to "bending."

5.4 CONJUGATE RELATIONS

In order to trace any ray through a thick lens, the positions of the focal points and
principal points must first be determined. Once this has been done, either graphically
or by computation, the parallel-ray construction can be used to locate the image as
shown in Fig. 5E. The construction procedure follows that given in Fig. 4M for a
thin lens, except that here all rays in the region between the two principal planes are
drawn parallel to the axis.

By a comparison of the two figures and from the derivations of Eqs. (4n) and
(40), it will be found that, provided the object and image distances are measured to or
from the principal points, we can apply the gaussian lens formula

•
or by Eq. (3h)

n nil n nil
-+-=-=-
s s" / /"

V + V" = P

(5c)

In the special case where the media on the two sides of the lens are the same, so
that n" = n, we find!" = land Eq. (5c) becomes

1 1 1 1- + - = - = - (5d)
S s" / /"

Figure 5F shows that for the purposes of graphical construction the lens may
be regarded as replaced by its two principal planes. Often the image distance is the
unknown, and Eq. (5c) can be written in the more useful form

• " nil s x/
s = ---

ns-/
(5e)

5.5 THE OBLIQUE-RAY METHOD

The oblique-ray method of construction may be used to find graphically the focal
points of a thick lens. As an illustration, consider a glass lens of index 1.50, thickness
2.0 em, and radii T1 = +3.0 em, TZ = -5.0 em, surrounded by air of index n = 1.00.
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FIGURE 5E
The parallel-ray method of construction for graphically locating an image formed
by a thick lens.

The first step is to calculate the primary and secondary focal lengths of each surface
separately by the use of the formulas for a single spherical surface (Eqs. (3c) and
(3d)]. Using the present notation, these are

• n n' n' - n-=-=--- and n' n" n" - n'-=-=--- (5f)

The given quantities are

'1 = +3.0cm '2 = -5.0cm d = 2.0cm n' = 1.50 n" = n = 1.00

By substituting these values in Eqs. (5f) we obtain

11 = +6.0 cm Ii = +9.0cm 12 = +15.0 cm 1'2 = +10.0cm

With these focal lengths known, the lens axis can be drawn as in Fig. 50 and the
known points measured off to some suitable scale. After drawing lines 2 and 3 through
the lens vertices, a parallel incident ray 4 is selected. Upon refraction at the first
surface the ray takes the new direction 5 toward Fi, the secondary focal point of that
surface. After line 6 is drawn through F'2, line 7 is drawn through C2 parallel to ray 5.
The point B where line 6 crosses line 7 determines the direction of the final refracted
ray 8. The intersection of ray 8 with the axis locates the secondary focal point F"
of the lens, while its intersection N" with the incident ray locates the corresponding
secondary principal plane H".

By turning the lens around and repeating this procedure, the position of the
primary focal point F and the position of the primary principal point H can be
determined. The student will find it well worthwhile to carry out this construction
and to check the results by measuring the focal lengths to verify the fact that they are
equal. It is to be noted that, in accordance with the assumption of paraxial rays, all
refraction is assumed to occur at the plane tangent to the boundary at its vertex.
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FIGURE SF
Principal planes and antiprincipal planes are planes of unit magnification.

5.6 GENERAL THICK-LENS FORMULAs

A set of formulas that can be used for the calculation of important constants generally
associated with a thick lens is presented below in the form of two equivalent sets.

• Gaussian formulas

n n' n" dn" n"-=-+---=-
f f; f'2 f;f'2 f"

AtF = -f(l - ~)

Power formulas

dP = Pt + P2 - - PtP2n'

-~ (1 - ~ p2)P n'

(5g)

(5h)

(5i)

(5j)

(5k)

These equations are derived from geometrical relations that can be obtained from a
diagram like Fig. 5G. As an illustration, the gaussian equation (5k) is derived as
follows. From the two similar right triangles TtAtF; and T2A2F;, we can write
corresponding sides as proportions

AtF; A2F;--=--
AtTt A2T2

or f; f; - d-=--
h j

and, from the two similar right triangles N"H"F" and T2A2F", we can write the
proportions

H"F" A F"__ =_2_
H"N" A2T2

or f" f" - H"A2-=----
h j
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FIGURE 5G
The oblique-ray method for graphically tracing paraxial rays through a thick lens.

If we solve each equation for j/h and then equate the right-hand sides of the
resultant equations, we obtain

I; - d f" - H"Az---=---~I; f"
or H"Az =I"~

I;
If we now reverse the segment H"Az to AzH" by changing the sign from + to -,
we obtain

In terms of surface power and lens power,

n n'
P1 = - =-

/1 I;
n' nil

Pz =- =-
I; f2

n n"
P=-=-I f"

(51)

the same equation can be written

In the design of certain optical systems it is convenient to know the vertex
power of a lens. This power, sometimes called effective power, is given as

P = P (5m)
" 1 - dP1/n'

and is defined as the reciprocal of the distance from the back surface of the lens to the
secondary focal point. This distance is commonly called the back local length.
Since P" = l/AzF", the above equation for vertex power is obtained by inverting
Eq. (5j). In the inversion the lens is assumed to be in air so that n" = 1.

In a similar way the distance from the primary focal point to the front surface
of the lens is called the front focal length, and the reciprocal of this distance is called
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the neutralizing power. Pn = I/A1F. Calling Pn the neutralizing power, we can take
the reciprocal of Eq. (5h) to obtain

P = P (5n)
n I - dP2/n'

The name is derived from the fact that a thin lens of this specified power and of
opposite sign will, upon contact with the front surface, give zero power to the
combination.

The following example will serve as an illustration of the use of thick-lens
formulas applied to two surfaces.

EXAMPLE 2 A lens has the following specifications: r1 = + 1.5 cm, r2 =
. + 1.5 cm, d = 2.0 cm, n = 1.00, n' = 1.60, and n" = 1.30. Find (a) the primary
and secondary focal lengths of the separate surfaces, (b) the primary and secondary
focal lengths of the system, and (c) the primary and secondary principal points.

SOLUTION (a) To apply the gaussian formulas, we first calculate the individual
focal lengths of the surfaces by means of Eq. (5f).

n n' - n 1.60 - 1.00
-=--=
jf1 r1 1.5

= 0.400

n' n" - n' 1.30 - 1.60---=----
jf;' r2 1.5

= -0.200

jf1 = 1.00 = +2.50 cm
0.40

jf{ = 1.60 = + 4.00 cm
0.40

jf;' = 1.60 = _8.00 cm
-0.20

I; = ~ = -6.50cm
-0.20

f" = ~ = 1.30 = +4.333 cm
0.30 0.30

(b) The focal lengths of the system are calculated from Eq. (5g).

n n' n" d n" 1.60 1.30 2.00 1.30
- =- + -- -- =- + --- ---1 I{ I; I{J; 4.00 - 6.50 4.00 - 6.50

~= 0.40 - 0.20 + 0.10 = 0.30
1

or jf = 1.00 = +3.333 cm and
0.30

The focal points of the system are given by Eqs. (5h) and (5j).

-jf(l - ~) = ~3.333 (1 - ~) = -4.166 em
12 -8.0

+1" (1 - ~) = +4.33 (1 - 2.0) = +2.167 em
jfl 4.0



TlDCK LENSES 87

3

4

nil

------------Axis --

n'

F
I
I I II I II-d--j
1--/---1 I. 1"--

FIGURE 5H
A graphical construction for locating the focal points and principal points of a
thick lens.

(c) The principal points are given by Eqs. (5i) and (5k).

+f~ = +3.33 2.0 = -0.833 cm
fl -8.0

-/" ~ = -4.33 2.0 = -2.167 cm
ft 4.0

Positive signs represent distances measured to the right of the reference vertex
and negative signs those measured to the left.

By subtracting the magnitudes of the two intervals A1F and A1H, the primary
focal length FH = 4.166 - 0.833 = 3.333 cm is obtained and serves as a check
on the calculations in part (b). Similarly the addition of the two intervals A2F" and
A2H" gives the secondary focal length

H"F" = 2.167 + 2.167 = 4.334 cm

The graphical solution of this same problem is shown in Fig. 5H. After the
axis is drawn and the lens vertices Al and A2 and the centers Cl and C2 are located,
the individual focal points Fl, Ft, Fl, and Fi are laid off according to the results in
part (a). The parallel ray 1 is refracted at the first surface toward F~. The oblique-ray
method is applied to this ray 2 at the second surface, and the final ray 3 is obtained.
The point where ray 3 crosses the axis locates the secondary focal point F", and the
point where its backward extension intersects ray I locates the secondary principal
plane H". Ray 4 is constructed backward by drawing it parallel to the axis and from
right to left. The first refraction gives ray 5 up and to the left as if it came from Fz.
The oblique-ray method applied to ray 5 at the left-hand surface yields ray 6. The
point where ray 6 crosses the axis locates F, and the point where it crosses the ex-
tension of ray 4 locates H. Hence parts (b) and (c) of the problem are solved graph-
ically, and they check with the calculated values.
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FIGURE 51
Special thick lenses; (a) a positive lens with equal radii of curvature; (b) a negative
lens with concentric surfaces.

5.7 SPECIAL THICK LENSES

Two special lenses of some interest as well as practical importance are presented here.
The first, as shown in Fig. 51, is a lens with spherical surfaces of equal radii, r1 = r2'

A lens of this description, surrounded by a medium of lower index, n' > n, has a
small but positive power. Its principal planes are located some distance from and to
the right of the lens, and their spacing HH" is equal to the lens thickness d. If the
surrounding medium has a greater index, as in the case of an air space between
the surfaces of two lenses of equal index, n' < n, the power is again positive but
the principal planes lie some distance to the left of the lens and a distance d apart.

The second special case is that of a concentric lens, both surfaces having the
same center of curvature. Where such a lens is surrounded by a medium of lower
index, n' > n, the system has a negative power with a long focal length and the
principal points coincide with the common center of curvature of the two surfaces.
In other words, it acts like a thin lens located at C1C2•

5.8 NODAL POINTS AND OPTICAL CENTER

Of all the rays that pass through a lens from an off-axis object point to its corres-
ponding image point, there will always be one for which the direction of the ray in
the image space is the same as that in the object space; i.e., the segments of the ray
before reaching the lens, and after leaving it, are parallel. The two points at which
these segments, if projected, intersect the axis are called the nodal points, and the
transverse planes through them are called the nodal planes. This third pair of points
and their associated planes are shown in Fig. 5J, which also shows the optical center
of the lens at C. It is readily shown that if the medium on both sides is the same, the
nodal points Nand N" coincide with the principal points Hand H" but if the two
media have different indices, the principal points and the nodal points will be
separate. Since the incident and emergent rays make equal angles with the axis, the
nodal points are called conjugate points of unit positive angular magnification.
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FIGURE 5J
The significance of the nodal points and
nodal planes of a thick lens.

If the ray is to emerge parallel to its original direction, the two surface elements
of the lens where it enters and leaves must be parallel to each other so that the effect
is like that of a plane-parallel plate. A line between these two points crosses the axis
at the optical center C. It is therefore through the optical center that the undeviated
ray must be drawn in all cases. It has the interesting property that its position,
depending as it does only on the radii of curvature and thickness of the lens, does not
vary with color of the light. All the six cardinal points (Sec. 5.9) will in general have
a slightly different position for each color.

Figure SK will help to clarify the different significance of the nodal points and
the principal points. This figure is drawn for n" 1= n, so that the two sets of points
are separate. Ray 11 through the secondary nodal point is parallel to ray 10, the
latter being incident in the direction of the primary nodal point N. On the other hand
both these segments intersect the principal planes at the same distance above the
principal points Hand H". From the small parallelogram at the center of the diagram,
it is observed that the distance between nodal planes is exactly equal to the distance
between principal planes. In general, therefore,

• NN" = HH" (50)

Furthermore in this case, where the initial and final values of the refractive index
differ, the focal lengths, which are measured from the principal points, are no longer
equal. The primary focal length FH is equal to the distance N" F", while the secondary
focal length H" F" is equal to FN:

• 1= FH = N"F" and I" = H"F" = FN (5p)

Nodal points can be determined graphically, as shown in Fig. 5K, by measuring off
the distance ZQ = HH" = Z'Q" and drawing straight lines through QZ' and ZQ".
From the geometry of this diagram, the lateral magnification y' /y is given by

y" s" - HNm = - = - --- (5q)
Y s + HN

• where HN =I"n" - n
n"

(Sr)

When the object and image distances sand s" are, as usual, measured from their
corresponding principal points Hand H", Eq. (Sc) is valid for paraxial rays.
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FIGURE5K
The parallel-ray method of graphically locating the nodal points and planes of a
thick lens.

The distance from the first vertex to the primary nodal point is given by

(
d n" - n)A1N =f - +--f2 n

(5s)

EXAMPLE 3 Find the nodal points of the thick lens given in Example 2.

SOLUTION To locate the primary nodal point N, we may use Eq. (5r) and sub-
stitute the given values of n = 1.00 and n" = 1.30 and the already calculated value
off" = +4.333 cm,

HN = 4.333 1.30 - 1.00 = + 1.00 cm
1.30

Hence the nodal points Nand N" are 1.00cm to the right of their respective principal
points Hand H".

5.9 OTHER CARDINAL POINTS

In thick-lens problems a knowledge of the six cardinal points, comprising the focal
points, principal points, and nodal points, is always adequate to obtain solutions.
Other points of lesser importance but still of some interest are (1) negative principal
points and (2) negative nodal points. Negative principal points are conjugate points
for which the lateral magnification is unity and negative. For a lens in air they lie at
twice the focal length and on opposite sides of the lens. Negative nodal points lie as
far from the focal points as the ordinary cardinal nodal points but on opposite sides.
Their position is such that the angular magnification is unity and negative. Although
a knowledge of these two pairs of cardinal points is not essential to the solution of
optical problems, in certain cases considerable simplification is achieved by using
them.
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FIGURE SL
Focal points and principal points of a system involving two thin lenses.

S.10 THIN-LENS COMBINATION AS A THICK LENS

A combination of two or more thin lenses may also be referred to as a thick lens
because the optical properties of a set of coaxially mounted lenses can be con-
veniently treated in terms of only two focal points and two principal points. If the
object space and image space have the same refractive index (and this is nearly always
the case), the nodal points and planes coincide with the principal points and planes.

A combination of two thin lenses with focal lengths of 8.0 and 9.0 em, respec-
tively, is shown in Fig. 5L. By the oblique-ray method the focal points F and F" and
the principal points Band B" have been determined graphically. In doing so the
refraction at each lens was considered in the same way as the refraction at the in-
dividual surfaces of the thick lens of Fig. 5G. There is a strong resemblance between
these two diagrams; i.e., for a thin lens we assume that all the deviation occurs at
one plane, just as for a single surface. This assumption is justified only when the
separation of the principal planes of the lens can be neglected. The definition of a
thin lens is just a statement of this fact: a thin lens is one in which the two principal
planes and the optical center coincide at the geometrical center of the lens. The locations
of the centers of the two lenses in this example are labeled AI and A2 in Fig. SL.

A diagram for a combination of a positive and a negative lens is given in Fig.
SM. The construction lines are not shown, but the graphical procedure used in
determining the paths of the two rays is the same as that shown in Fig. 5L. Note
here that the final principal points Band B" lie outside the interlens space but that
the focal lengths f and f" measured from these points are as usual equal. The lower
ray, although shown traveling from left to right, is graphically constructed by drawing
it from right to left.

The positions of the cardinal points of a combination of two thin lenses in air
can be calculated by means of the thick-lens formulas given in Sec. 5.6. As used for
thin lenses inplace of individual refracting surfaces, AI and A2 become the two lens
centers, while fI' f2 and PI' P2 become their separate focal lengths and powers,
respectively. The latter are given by

(5t)
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FIGURE 5M
The oblique-ray method applied to positive and negative thin lenses in combina-
tion.

where'1 and ,; are the radii of the first lens of index nj and '2 and '2 are the radii
of the second lens of index n2' The surrounding media have indices n, n', and n"
(see Fig. 5L). The other formulas, Eqs. (5g) to (5k), remain unchanged.

To illustrate the use of these formulas, let us consider the following problem on
a lens combination similar to that shown in Fig. SM.

EXAMPLE 4 An equiconvex lens with radii of 4 cm and index nl = 1.50 is located
2.0 cm in front of an equiconcave lens with radii of 6.0 cm and index n2 = 1.60. The
lenses are to be considered as thin. The surrounding media have indices n = 1.00,
n' = 1.33, and n" = 1.00. Find (a) the power, (b) the focal lengths, (c) the focal
points, and (d) the principal points of the system.

SOLUTION (a) In this instance we shall solve the problem by the use of the
power formulas. By Eqs. (5t) the powers of the two lenses in their surrounding media
are

p = 1.50 - 1.00 1.33 - 1.50 = 12.50 + 4.17 = + 16.67 D
1 0.04 + -0.04

P2 = 1.60 - 1.33 + 1.00 - 1.60 = -4.45 _ 10.0 = -14.45 D
-0.06 0.06

By Eq. (5g), we obtain
P = 16.67 - 14.45 + 0.015 x 16.67 x 14.45

or P = +5.84 D

(b) Using Eq. (51),we find
n 1.001=- = - = 0.171 m = 17.1 cm
P 5.84

I" = n" = 1.00 = 0.171 m = 17.1 cm
P 5.84
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(c) By Eqs. (5h) to (5k) we obtain

AIF = - 1.00 (1 + 0.015 x 14.45) = -0.208 m = -20.8 cm
5.84

AIH = + 1.00 0.015 (-14.45) = -0.037 m = -3.7 cm
5.84

A2F" = + 1.00 (1 - 0.015 x 16.67) = +0.128 m = + 12.8 cm
5.84

(d) The principal points are

A2H" = - 1.000.015 x 16.67 = -0.043 m = -4.3 cm
5.84

As a check on these results we find that the difference between the first two
intervals AIF and AIH gives the primary focal length FH = 17.1 cm. Similarly the
sum of the second two intervals A2F" and A2H" gives the secondary focal length
H"F" = 17.1 cm.

5.11 THICK-LENS COMBINATIONS

The problem of calculating the positions of the cardinal points of a thick lens con-
sisting of a combination of several component lenses of appreciable thickness is one
of considerable difficulty, but one which can be solved by use of the principles already
given. In a combination of two lenses such as that in Fig. 5L, if the individual lenses
cannot be considered as thin, each must be represented by a pair of principal planes.
There are thus two pairs of principal points, HI and Hi for the first lens and H5. and
Hi for the second, and the problem is to combine these to find a single pair Hand
H" for the combination and to determine the focal lengths. By carrying out a con-
struction similar to Fig. 5G for each lens separately, it is possible to locate the
principal points and focal points of each. Then the construction of Fig. 5L can be
accomplished, taking account of the unit magnification between principal planes.

Formulas can be given for the analytical solution of this problem, but because
of their complexity they will not be given here.* Instead, we shall describe a method
of determining the positions of the cardinal points of any thick lens by direct
experiment.

S.12 NODAL SLIDE

The nodal points of a single lens or of a combination of lenses can be located experi-
mentally by mounting the system on a nodal slide. This is merely a horizontal support
which permits rotation of the lens about any desired point on its axis. As is shown in

• These equations are given, for example, in G. S. Monk, "Light, Principles and
Experiments," Dover Publications, Inc., New York, 1963.
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FIGURE 5N
The use of the nodal slide in locating nodal points.

Fig. 5N, light from a source S is sent through a slit Q, adjusted to lie at the secondary
focal point of the lens. Emerging as a parallel beam, this light is reflected back on
itself by a fixed plane mirror M, passing again through the lens system and being
brought to a focus at Q", This image of the slit is formed slightly to one side of the
slit itself on the white face of one of the slit jaws. The nodal slide carrying the lens
system is now rotated back and forth and the lens repeatedly shifted, until the rotation
produces no motion of the image Q", When this condition is reached, the axis of
rotation N" locates one nodal point. By turning the nodal slide end-for-end and
repeating the process, the other nodal point N is found. When performed in air, this
experiment of course locates the principal points as well, and the distance N" Q" is an
accurate measure of the focal length.

The principle of this method of rotation about a nodal point is illustrated in
Fig, 50. In the first diagram ray 4 along the axis passes through Nand N" to the
focus at Q", In the second diagram the lens system has been rotated about N" and
the same bundle of rays passes through the lens, coming to a focus at the same point
Q". Ray 3 is now directed toward N and ray 4 toward N". When projected across
from the plane of N to that of N", the rays still converge toward Q" even though F"
is now shifted to one side. Note that ray 3 approaches N in exactly the same direction
that it leaves N", corresponding to the defining condition for the nodal points.

1
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I
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~

FIGURE 50
Rotation of a lens about its secondary nodal point shifts the refracted rays but
not the image.



FIGURE 5P
In the panoramic camera the lens rotates
about a nodal point as a center.
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If a camera lens is pivoted about its secondary nodal point and a long strip of
photographic film is curved to a circular arc ofradiusj", a continuous picture covering
a very wide angle can be taken. Such an instrument, shown schematically in Fig. SP,
is known as a panoramic camera. The shutter usually consists of a vertical slit just
in front of the film, which moves with the rotation so that it always remains centered
on the lens axis.

PROBLEMS

In Probs. 1 to 23 if the primary and secondary focal lengths of each of the two elements of the
optical system are not already given, they must first be calculated.

5.1 An equiconvex lens located in air has radii of 5.20 cm, an index of 1.680, and a thick-
ness of 3.50 cm. Calculate (a) the focal length and (b) the power of the lens. Find (c)
the distances from the vertices to the focal points and (d) the principal points.
Ans. (a) +4.43 cm, (b) +22.59 D, (c) A1F = -3.222 cm, and A2r = +3.222 cm,

(d) A1H = + 1.206 cm, and A2H" = -1.206 cm
5.2 Solve Prob. 5.1 graphically, locating the focal points and principal points.
5.3 A plano-convex lens 2.80 cm thick is made of glass of index 1.530. If the second sur-

face has a radius of 3.50 cm, find (a) the focal length of the lens and (b) the power of
the lens. Find the distances from the vertices to (c) the focal points and (d) the
principal points.

5.4 Solve Prob. 5.3 graphically, locating the focal points and principal points.
5.5 A glass lens with radii rl = +2.50 cm and r2 = +4.50 cm has a thickness of 2.90 cm

and an index of 1.630. Calculate (a) the focal length and (b) the power of the lens.
Find the distances from the vertices to (c) the focal points and (d) the principal points.
Ans. (a) +5.73cm,(b) +17.46D,(e)A1F= -7.163 cm, and A2r = +3.162cm,

(d) A1H = -1.433 cm, and A2H" = - 2.568 em
5.6 Solve Prob. 5.5 graphically, locating the focal points and principal points.
5.7 A glass lens with radii rl = + 6.50 cm and r2 = + 3.20 cm has a thickness of 2.80 em

and an index of 1.560. Calculate (a) the focal length and (b) the power of this lens in
air. Find the distances from the vertices to (c) the focal points and (d) the principal
points.
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5.8 Solve Prob. 5.7 graphically, locating the focal points and principal points. Use the
method outlined in Fig. 5H.

5.9 A thick lens with radii'l = - 4.50 cm and '2 = - 3.60 cm has a thickness of 3.0 cm
and an index of 1.560. Calculate (a) the focal length and (b) the power of the lens.
Find also the distances from the vertices to the corresponding (c) focal points and
(d) principal points.
Ans. (a) + 14.64 cm, (b) +6.83 D, (c) A1F = -10.26 cm, and A2P" = + 18.14 cm,

(d) A1H = +4.38 cm, and A2H" = +3.502 cm
5.10 Solve Prob. 5.9 graphically, locating the focal points and principal points. Use the

method shown in Fig. 5R.
5.11 A thick glass lens is placed in the end of a tank containing a transparent liquid of

refractive index 1.420. The lens, with radii '1 = + 3.80 cm and '2 = - 1.90 cm, is
4.60 cm thick and has a refractive index of 1.620. If'2 is in contact with the liquid,
find (a) the primary and secondary focal lengths and (b) the power of the lens. Find
the distances from the vertices to (c) the focal points and (d) the principal points.

5.12 Solve Prob. 5.11 graphically, locating the focal points and principal points. Use the
method shown in Fig. 5R.

5.13 A glass lens 3.20 cm thick has radii'l = +4.50 cm and'2 = -2.20 cm and an index
of 1.630. If'I is in contact with the air and '2 is in contact with a transparent oil of
index 1.350, find (a) the primary and secondary focal lengths and (b) the power of the
system. Find the distances from the vertices to the (c) focal points, (d) principal points,
and (e) nodal points.

5.14 Solve Prob. 5.13 graphically, locating the six cardinal points of the optical system.
Use the methods of Fig. 5R.

5.15 A glass lens with radii'l = + 3.0 cm and'2 = + 3.0 cm has an index of 1.60, and a
thickness of 3.0 cm. It is placed in the end of a tank so that air is in contact with
face '1> and a transparent oil of index 1.30 is in contact with face '2' Find (a) the
primary and secondary focal lengths and (b) the power of the system as a lens. Calcu-
late the positions of (c) focal points, (d) principal points, and (e) nodal points.

Ans. (a) + 7.27 and + 9.46 cm, (b) P = + 13.75 D,
(c) A1F = -8.64 cm, A2P" = -3.546 cm,
(d) A1H = -1.364 cm and A2H" = + 5.91 cm,
(e) HN = +2.182 = H"N"

5.16 Solve Prob. 5.15 graphically, locating the six cardinal points of the optical system.
5.17 A glass lens 4.50 cm thick, and index 1.70, has radii of '1 = + 3.0 cm and '2 =

+ 3.50 cm. If a liquid of index 1.320 is in contact with, 1 and a very dense, transparent,
oil of index 2.20 is in contact with '2' find (a) the primary and secondary focal lengths
and (b) the power of this optical system. Also find the distances from the two vertices
to (c) the principal points, (d) the focal points, and (e) the nodal points. (f) If an object
is located in the liquid of index 1.320 and 13.50 cm from '1> find the image position.

5.18 Solve Prob. 5.17 graphically, locating the six cardinal points of the lens system and the
image distance.

5.19 Two thin lenses in air, with focal lengths of + 8.0 and + 10.0 cm, respectively, are
placed 3.0 cm apart. For this optical combination, find (a) the focal lengths, (b) the
power, and distances from the lens centers to (c) the focal points and (d) the principal
points.

Ans. (a) /1 = /2 = + 5.33 cm, (b) + 18.75 D,
(c) A1F = -3.733 cm, and A2F" = +3.333 cm,
(d) A1H = + 1.60 cm, and A2H" = -2.0 cm
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5.20 Solve Prob. 5.19 graphically, locating the focal points and principal points. Use the
method of Fig. 5L.

5.21 Two thin lenses with focallengthsf1 = +24.0 cm andf2 = -6.0 cm, respectively,
are mounted in a holder so their centers are 4.0 em apart. If air surrounds both lenses,
find the (a) focal length, (b) the power, and (c) the distances from the lens centers to the
focal points and principal points.

5.22 Solve Prob. 5.21 graphically, locating the focal points and principal points. Use the
method of Fig. SM.

5.23 A lens with equal radii of curvature"1 = '2 = +4.0 cm, is 3.50 cm thick and has an
index of 1.650. If the lens is surrounded by air, find (a) the power and (b) the focal
length of this thick lens. Calculate the positions of (c) the focal points and (d) the
principal points.

Ans. (a) + 6.03 D, (b) f = f" = + 16.60 cm,
(c) A 1F = - 22.48 cm, and A2Fh = + 10.72 cm,
(d) AtB = -5.88 cm, and A2Hh = -5.88 cm

5.24 Solve Prob. 5.23 graphically, locating the focal points and principal points. Use the
method shown in Fig. 5R.

5.25 With Fig. 5G as a guide, make a diagram locating the secondary focal point. From
similar triangles in your diagram derive Eq. (5j).

5.26 With Fig. 5J as a guide, make a diagram locating the primary focal point. From
similar triangles in your diagram derive Eq. (5h).
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6
SPHERICAL MIRRORS

A spherical reflecting surface has image-forming properties similar to those of a thin
lens or of a single refracting surface. The image from a spherical mirror is in some
respects superior to that from a lens, notably in the absence of chromatic effects due
to dispersion that always accompany the refraction of white light. Therefore mirrors
are occasionally used in place of lenses in optical instruments, but their applications
are not so broad as those of lenses because they do not offer the same possibilities for
correction of the other aberrations of the image (see Chap. 9).

Because of the simplicity of the law of reflection compared with the law of
refraction, the quantitative study of image formation by mirrors is easier than for
lenses. Many features are the same, and these we shall pass over rapidly, putting the
chief emphasis upon those characteristics which are different. To begin with, we
restrict the discussion to images formed by paraxial rays.

6.1 FOCAL POINT AND FOCAL LENGTH

Diagrams showing the reflection of a parallel beam of light 1bya concave mirror and
by a convex one are given in Fig. 6A. A ray striking the mirror at some point such
as T obeys the law of reflection cP" = cPo All rays are shown as brought to a common
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FIGURE 6A
The primary and secondary focal points of spherical mirrors coincide.

(6a)•

focus at F, although this will be strictly true only for paraxial rays. The point F is
called the focal point and the distance FA the focal length. In the second diagram the
reflected rays diverge as though they came from a common point F. Since the angle
TCA also equals l/J, the triangle TCF is isosceles, and in general CF = FT. But for
very small angles l/J (paraxial rays), FT approaches equality with FA. Hence

FA = t(CA)

f= -tr
and the focal length equals one-half the radius of curvature [see also Eq. (6d)].

The negative sign is introduced in Eq. (6a) so that the focal length of a concave
mirror, which behaves like a positive or converging lens, will also be positive.
According to the sign convention of Sec. 3.5, the radius of curvature is negative in
this case. The focal length of a convex mirror, which has a positive radius, will then
come out to be negative. This sign convention is chosen as being consistent with that
used for lenses; it gives converging properties to a mirror with positivefand diverging
properties to a mirror with negative f. By the principle of reversibility it can be seen
from Fig. 6A that the primary and secondary focal points of a mirror coincide. In
other words, it has but one focal point.

As before, a transverse plane through the focal point is called the focal plane.
Its properties, as shown in Fig. 6B, are similar to those of either focal plane of a lens;
e.g., parallel rays incident at any angle with the optic axis are brought to a focus at
some point in the focal plane. The image Q' of a distant off-axis point object occurs
at the intersection with the focal plane of that ray which goes through the center of
curvature C.

6.2 GRAPHICAL CONSTRUCTIONS

Figure 6C, which illustrates the formation of a real image by a concave mirror, is
self-explanatory. When the object MQ is moved toward the center of curvature C,
the image also approaches C and increases in size until when it reaches C, it is the
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Axis

FIGURE 6B
Parallel rays incident on a concave
mirror but inclined to the axis are
brought to a focus in the focal plane.

same size as the object. The conditions when the object is between C and F can be
deduced from the interchangeability of object and image as applied to this diagram.
When the object is inside the focal point, the image is virtual, as with a converging
lens. The methods of graphically constructing the image follow the same principles
as those used for lenses, including the fact that paraxial rays must be represented as
being deflected at the tangent plane instead of at the actual surface.

An interesting experiment can be performed with a large concave mirror set up
under the condition of unit magnification, as shown in Fig. 60. A bouquet of flowers
is suspended upside down in a box and illuminated by a shaded lamp S. The large
mirror is placed with its center of curvature C at the top surface of the stand, on which
a real vase is placed. The observer's eye at E sees a perfect reproduction of the
bouquet, not merely as a picture but as a faithful three-dimensional replica, which
creates a strong illusion that it is a real object. As shown in the diagram, the rays
diverge from points on the image just as they would if the real object were in the same
position.

The parallel-ray method of construction is given for a concave mirror in Fig.
6E. Three rays leaving Q are, after reflection, brought to the conjugate point Q'.
The image is real, inverted, and smaller than the object. Ray 4 drawn parallel to the
axis is, by definition of the focal point, reflected through F. Ray 6 drawn through F is
reflected parallel to the axis, and ray 8 through the center of curvature strikes the

M
I
I
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I
I
I
I
I-

Axis

~-----8'-----~8------------ .....
FIGURE 6C
Real image due to a concave mirror.
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FIGURE 6D
Experimental arrangement for an optical illusion produced by a real image of
unit magnification. The three-dimensional image shows parallax, as the real
flowers do, and the image is so real that the eye cannot detect the difference
between the real image and the real object.

mirror normally and is reflected back on itself. The crossing point of any two of these
rays is sufficient to locate the image.

A similar procedure is applied to a convex mirror in Fig. 6F. The rays from the
object point Q, after reflection, diverge from the conjugate point Q'. Ray 4, starting
parallel to the axis, is reflected as if it came from F. Ray 6 toward the center of
curvature C is reflected back on itself, while ray 7 going toward F is reflected parallel
to the axis. Since the rays never pass through Q', the image Q'M' in this case is virtual.

The oblique-ray method can also be used for mirrors, as illustrated in Fig. 6G
for a concave mirror. After drawing the axis I and the mirror 2, we layout the points
C and F and draw a ray 3 making any arbitrary angle with the axis. Through F, the
broken line 4 is then drawn parallel to 3. Where this line intersects the mirror at S,
a parallel ray 6 is drawn backward to intersect the focal plane at P. Ray 7 is then
drawn through TP and intersects the axis at M'. By this construction M and M'
are conjugate points, and 3 and 7 are the parts of the ray in object and image spaces.
The' principle involved in this construction is obvious from the fact that if 3 and 4

Q

3

M
I

I
I
I
I
I
I- 8---------_

FIGURE 6E
Parallel-ray method for graphically locating the image formed by a concave
mirror.
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FIGURE 6F
ParaIlel-ray method for graphically locating the image formed by a convex mirror.

were parallel incident rays, they would come to a focus at P in the focal plane. If in
place of ray 4 another ray were drawn through C and parallel to ray 3, it too would
cross the focal plane at P. A ray through the center of curvature would be reflected
directly back upon itself.

6.3 MIRROR FORMULAS

In order to be able to apply the standard lens formulas of the preceding chapters to
spherical mirrors with as little change as possible, we must adhere to the following
sign conventions:

1 Distances measuredfrom left to right are positive while those measuredfrom
right to left are negative.

M C A
I II II I fI
I I s'
I I 2
I I- T

I- 8

FIGURE 6G
Oblique-ray method for locating the image formed by a concave mirror.
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2 Incident rays travelfrom left to right and reflected rays from right to left.
3 Thefocal length is measuredfrom thefocal point to the vertex. This givesf a
positive sign for concave mirrors and a negative sign for convex mirrors.
4 The radius is measuredfrom the vertex to the center of curvature. This makes
r negative for concave mirrors and positive for convex mirrors.
5 Object distances s and image distances s' are measured from the object and
from the image respectively to the vertex. This makes both sand s' positive
and the object and image real when they lie to the left of the vertex; they are
negative and virtual when they lie to the right.

The last of these sign conventions implies that for mirrors the object space and the
image space coincide completely, the actual rays of light always lying in the space to
the left of the mirror. Since the refractive index of the image space is the same as
that of the object space, the n' of the previous equations becomes numerically equal
to n.

The following is a simple derivation of the formula giving the conjugate relations
for a mirror. In Fig. 6G it is observed that by the law of reflection the radius CT
bisects the angle MTM'. Using a well-known geometrical theorem, we can then
write the proportion

MC CM'-=--
MT M'T

Now, for paraxial rays, MT ~ MA = sand M'T ~ M'A = s', where the symbol
~ means "is approximately equal to." Also, from the diagram,

MC = MA - CA = s + r

and CM' = CA - M'A = -r - s' = -(s' + r)

Substituting in the above proportion gives
s + r s' + r
s s'

which can easily be put in the form

• 112- + - =
s s' r
Mirror formula

(6b)

The primary focal point is defined as that axial object point for which the image
is formed at infinity, so substituting s = f and s' = ex> in Eq. (6b), we have

I 1 2- + - =
f ex> r

from which I 2 f= r (6c)- = or --
f r 2
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The secondary focal point is defined as the image point of an infinitely distant object
point. This is s' = /' and s = 00, so that

I I 2-+-=
00 /' r

from which
I 2 /'= r (6d)- = or
/' r 2

Therefore the primary and secondary focal points fall together, and the magnitude
of the focal length is one-half the radius of curvature. When - 21r is replaced by
IIf, Eq. (6b) becomes

I I I- + - = - (6e)
s s' f

just as for lenses.
The lateral magnification of the image from a mirror can be evaluated from the

geometry of Fig. 6C. From the proportionality of sides in the similar triangles
Q'AM' and QAMwe find that -y'ly = s'ls, giving

y' s'
m = - = (6f)

y s

EXAMPLE 1 An object 2.0 cm high is situated 10.0 cm in front of a concave mirror
of radius 16.0 cm. Find (a) the focal length of the mirror, (b) the position of the image,
and (c) the lateral magnification.

SOLUTION The given quantities are y = +2.0 cm, s = + 10.0 cm, and r =
-16.0 cm. The unknown quantities are f, s', and m. (a) By Eq. (6c),

f= -16
---=

2
+8.0 cm

(b) By Eq. (6e),

giving

(c) By Eq. (6f),

1 1 1-+-=-
10 s' 8

or
I I I

-=---=-
s' 8 10 40

s' = +40.0 cm

m = -t8 = -4

The image occurs 40.0 cm to the left of the mirror, is 4 times the size of the object,
and is real and inverted.

6.4 POWER OF MIRRORS

The power notation that was used in Sec. 4.12 to describe the image-forming properties
of lenses can readily be extended to spherical mirrors as follows. As definitions, we
let

1p=-
f

IV=-
s

V' = .!.
s'

IK=-
r

(6g)
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Equations (6b), (6e), (6c), and (6f) then take the forms

• V + V' = -2K
V + V' = P

P = -2K

(6h)

(6i)

(6j)

m = ~ = V (6k)
y V'

EXAMPLE 2 An object is located 20.0 cm in front of a convex mirror of radius
50.0 cm. Calculate (a) the power of the mirror, (b) the position of the image, and
(c) its magnification.

SOLUTION Expressing all distances in meters, we have

1
K=-= +2D

0.50
and

1V= - = +5D
0.20

P = -2K= -4D
(a) By Eq. (6j),

(b) By Eq. (6i),
5 + V' = -4 or V' = -9 D

or I IS=-=
V'

1-- =
9

-0.111 m = -11.1 cm

(c) By Eq. (6k),
5

m = -- = +0.555-9
The power P = -4 D, and the image is virtual and erect. It is located 11.1 cm to
the right of the mirror and has a magnification of 0.555 x .

6.S THICK MIRRORS

The term thick mirror is applied to a lens system in which one of the spherical surfaces
is a reflector. Under these circumstances the light passing through the system is
reflected by the mirror back through the lens system, from which it emerges finally
into the space from which it entered the lens. Three common forms of optical systems
that may be classified as thick mirrors are shown in Fig. 6H. In each case the surface
farthest to the right has been drawn with a heavier line than the others, designating
the reflecting surface. A parallel incident ray is also traced through each system to
where it crosses the axis, thus locating the focal point.

In addition to a focal point and focal plane every thick mirror has a principal
point and a principal plane. Two graphical methods by which principal points and
planes can be located are given below. The oblique-ray method is applied to (a) the
thin lens and mirror combination in Fig. 61, while the auxiliary-diagram method is
applied to (b) the thick lens and mirror combination in Fig. 6J.
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(a) (b) (c)

FIGURE 6H
Diagrams of several types of thick mirrors, showing the location of their respec-
tive focal points.

In the first illustration the lens is considered thin so that its own principal points
may be assumed to coincide at H1, its center. An incident ray parallel to the axis is
refracted by the lens, reflected by the mirror, and again refracted by the lens before it
crosses the axis of the system at F. The point T where the incident and final rays,
when extended, cross each other locates the principal plane, and H represents the
principal point. If we follow the sign conventions for a single mirror (Sec. 6.3), the
focal length f of this particular combination is positive and is given by the interval
FH.

In the second illustration (Fig. 6J) the incident ray is refracted by the first
surface, reflected by the second, and finally refracted a second time by the first surface
to a point F where it crosses the axis. The point T where the incident and final rays
intersect locates the principal plane and principal point H.

The graphical ray-tracing construction for this case, shown in the auxiliary
diagram in Fig. 6J, is started by drawing XZ parallel to the axis. With the origin 0
near the center, intervals proportional to nand n' are measured off in both directions

F1 F2

I I 5--
I 16
19
I

FIGURE 61
Oblique-ray construction for locating the focal point and principal point of a
thick mirror.
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FIGURE 6J
Auxiliary-diagram method of graphically locating the focal point and principal
point of a thick mirror.

along XZ. After the vertical lines representing nand n' are drawn, the remaining
lines are drawn in the order of the numbers 1,2,3, .... Each even-numbered line
is drawn parallel to its preceding odd-numbered line. The proof that this construction
is exact for paraxial rays is similar to that given for Fig. 31.

6.6 THICK-MIRROR FORMULAS

These formulas will be given in the power notation for case (0) shown in Fig. 6H.
When r1, r2, and r3 are the radii of the three surfaces consecutively from left to right,
the power of the combination can be shown* to be given by

• (61)

where, for the case in diagram (0) only and n" = n,

P1 = (n' - n)(Kl - K2) (6m)

P2 = -2nK3 (6n)

and

* For a derivation of these equations, see J. P. C. Southall, "Mirrors, Prisms, and
Lenses," 3d ed., p. 379, The Macmillan Company, New York, 1936.
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[see Eqs. (4p) and (6d)]. Of the refractive indices, n' represents that of the lens and
n that of the surrounding space. The distance from the lens to the principal point of
the combination is given by

where HI is located at the center of the lens and

H1H=
c (60)

I - cP1
d (6p)c=-
n

It is important to note from Eq. (60) that the position of H is independent of the
power P 2 of the mirror and therefore of its curvature K3•

EXAMPLE 3 A thick mirror like that shown in Fig. 6H(0) has as one component
a thin lens of index n' = 1.50, radii r1 = +50.0 cm, and r2 = -50.0 cm. This lens is
situated 10.0cm in front of a mirror of radius - 50.0 cm. Assuming that air surrounds
both components, find (0) the power of the combination, (b) the focal length, and (c)
the principal point.

SOLUTION (a) By Eq. (6m), the power of the lens is

PI = (1.50 - 1)(_1 1_) = +2D
0.50 -0.50

Equation (6n) gives for the power of the mirror

1
P2 = -2 -- = +4 D

-0.50
From Eq. (6p),

d 0.10c = - = - = 0.10 m
n 1

Finally the power of the combination is given by Eq. (61)as

P = (I - 0.10 x 2)(2 x 2 + 4 - 0.10 x 2 x 4)
= 0.8(4 + 4 - 0.8) = +5.76 D

(b) A power of +5.76 D corresponds to a focal length

1 If= - = - = 0.173 m = +17.3 cm
P 5.76

(c) The position of the principal point H is determined from Eq. (60) through
the distance

H
1
H = 0.10 = 0.10 = 0.125 m = + 12.5 cm

1 - 0.10 x 2 0.80

It is therefore 12.5 cm to the right of the lens, or 2.5 cm in back of the mirror.
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6.7 OTHER THICK MIRRORS

As a second illustration of a thick mirror, consider the thick lens silvered on the back,
as shown in Fig. 6H(b). A comparison of this system with the one in diagram (a)
shows that Eqs. (61)to (6p) will apply if the powers PI and P2 are properly defined.
For diagram (b), PI refers to the power of the first surface alone, and P2 refers to the
power of the second surface as a mirror of radius r2 in a medium of index n'. In
other words,

2n'
P2 = --

r2
and dc=-

n'
(6q)

With these definitions the power of thick mirror (b) is given by Eq. (61)and the
principal point by Eq. (60).

The third illustration of a thick mirror consists of a thin lens silvered on the
back surface as shown in Fig. 6H(c). This system may be looked upon (1) as a special
case of diagram (a), where the mirror has the same radius as the back surface of the
thin lens and the spacing d is reduced to zero, or (2) as a special case of diagram (b),
where the thickness is reduced to practically zero. In either case Eq. (61)reduces to

• (6r)

and the principal point H coincides with HI at the common center of the lens and
mirror. PI represents the power of the thin lens in air and P2 the power of the mirror
in air, or PI represents the power of the first surface of radius rl and P2 represents
the power of the second surface as a mirror of radius r2 in a medium of index n'
[see Eq. (6q)].

6.8 SPHERICAL ABERRATION

The discussion of a single spherical mirror in the preceding sections has been confined
to paraxial rays. Within this rather narrow limitation, sharp images of objects at
any distance may be formed on a screen, since bundles of parallel rays close to the
axis and making only small angles with it are brought to a sharp focus in the focal
plane. If, however, the light is not confined to the paraxial region, all rays from one
object point do not come to a focus at a common point and we have an undesirable
effect known as spherical aberration. The phenomenon is illustrated in Fig. 6K,
where parallel incident rays at increasing distances h cross the axis closer to the
mirror. The envelope of all rays forms what is known as a caustic surface. If a small
screen is placed at the paraxial focal plane F and then moved toward the mirror, a
point is reached where the size of the circular image spot is a minimum. This disklike
spot is indicated in the diagram and is called the circle of least confusion.

The proof that rays from an outer zone of a concave mirror cross the axis inside
the paraxial focal point can be simply given by reference to Fig. 6L. According to
the law of reflection applied to the ray incident at T, the angle of reflection 4>" is
equal to the angle of incidence 4>. This in turn is equal to the angle TeA. Having
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FIGURE 6K
Spherical aberration of a concave spherical mirror.

two equal angles, triangle CTX is isosceles, and hence CX = XT. Since a straight
line is the shortest path between two points,

Therefore

CT< CX+ XT

Now CT is the radius of the mirror and equals CA, so that

CA < 2CX

-lCA < CX

The geometry of the figure shows that as T is moved toward A, the point X approaches
F, and in the limit CX = XA = FA = -lCA.

Over the past years numerous methods of reducing spherical aberration have
been devised. If instead of a spherical surface the mirror form is that of a paraboloid
of revolution, rays parallel to the axis are all brought to a focus at the same point as
in Fig. 6M(a). Another method is the one shown later in Fig. IOQ of inserting a
corrector plate in front of a spherical mirror, thereby deviating the rays by the proper
amount prior to reflection. With the plate located at the center of curvature of the
mirror, a very useful optical arrangement known as the Schmidt system is obtained.
Still a third system, known as a Mangin mirror, is shown in Fig. 6M(b). Here a

FIGURE 6L
Geometry showing how marginal rays
parallel to the axis of a spherical mirror
cross the axis inside the focal point.

Axis
c A
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Mangin mirror
(b)

FIGURE 6M
(a) Concave parabolic mirror and (b) concave spherical mirror, corrected for
spherical aberration.

meniscus lens is employed in which both surfaces are spherical. When the back
surface is silvered to form the concave mirror, all parallel rays are brought to a
reasonably good focus.

6.9 ASTIGMATISM

This defect of the image occurs when an object point lies some distance from the axis
of a concave or convex mirror. The incident rays, whether parallel or not, m~ke an
appreciable angle 4J with the mirror axis. The result is that, instead of a point image,
two mutually perpendicular line images are formed. This effect is known as astigma-
tism and is illustrated by a perspective diagram in Fig. 6N. Here the incoming rays
are parallel while the reflected rays are converging toward two lines Sand T. The
reflected rays in the vertical or tangential plane RASE are seen to cross or to focus at
T, while the fan of rays in the horizontal or sagittal plane JAKE cross or focus at S.
If a screen is placed at E and moved toward the mirror, the image will become a
vertical line at S, a circular disk at L, and a horizontal line at T.

If the positions of the T and S images of distant object points are determined
for a wide variety of angles, their loci will form a paraboloidal and a plane surface
respectively, as shown in Fig. 60. As the obliquity of the rays decreases and they
approach the axis, the line images not only come closer together as they approach the
paraxial focal plane but they shorten in length. The amount of astigmatism for any
pencil of rays is given by the distance between the T and S surfaces measured along
the chief ray.

Equations giving the two astigmatic image positions are*
1 1 2 1 1 2 cos 4J• -+-= --- -+-= ----
s s; r cos 4J s s~ r

• For a derivation of these equations, see G. S. Monk, "Light, Principles and Experi-
ments," Dover Publications, Inc., New York, 1963.
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A~i5

E

---------- R

FIGURE 6N
Astigmatic images of an off-axis object point at infinity, as formed by a concave
spherical mirror. The lines T and S are perpendicular to each other.

In both equations sand s' are measured along the chief ray. The angle 4> is the angle
of obliquity of the chief ray, and r is the radius of curvature of the mirror.

The Schmidt optical system, which will be discussed later (Fig. IOQ), and the
Mangin mirror shown in Fig. 6M(b) constitute instruments in which the astigmatism
of a spherical mirror is reduced to a minimum. While the two focal surfaces T and S
exist for these devices, they lie very close together and the loci of their mean position
(such as L in Fig. 6N) form a nearly spherical surface. The center of this spherical
surface is located at the center of curvature of the mirror, as shown in Fig. IOQ.

A paraboloidal mirror is free from spherical aberration even for large apertures
but shows unusually large astigmatic S - T differences off the axis. For this reason
paraboloidal reflectors are limited in their use to devices.that require a small angular
spread, such as astronomical telescopes and searchlights.

FIGURE 60
Astigmatic surfaces for a concave
spherical mirror. S T

A
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PROBLEMS

6.1 A spherical mirror has a radius of - 24.0 em; An object 3.0 em high is located in front
of the mirror at a distance of (a) 48.0 em, (b) 36.0 em, (c) 24.0 em, (d) 12.0 em, and
(e) 6.0 em. Find the image distance for each of these object distances.

Ans. (a) + 16.0 em, (b) + 18.0 em, (c) + 24.0 em, (d) + 12.0 em, (e) -12.0 em
6.2 Solve Prob. 6.1 graphically. '
6.3 A spherical mirror has a radius of - 15.0 em. An object 2.50 em high is located in front

of the mirror at a distance of (a) 45.0 em, (b) 30.0 em, (c) 15.0 em, (d) 10.0 em, and
(e) 5.0 em. Find the image distance for each of these object distances.

6.4 Solve Prob. 6.3 graphically.
6.5 The radius ofa spherical mirror is + 18.0 em. An object 4.0 em high is located in

front of the mirror at a distance of (a) 36.0 em, (b) 24.0 em, and (c) 12.0 em. Find the
image distance and image size for each of these object distances.

Ans. (a) -7.20 em from vertex and +0.80 em high, (b) -6.55 em from vertex
and + 1.092 em high, (c) - 5.40 em from vertex and + 1.712 em high

6.6 Solve Prob. 6.5 graphically.
6.7 The radius of a spherical mirror is + 8.0 cm. An object 3.50 em high is located in

front of the mirror at a distance of (a) 16.0 em, (b) 8.0 cm, (c) 4.0 cm, and (d) 2.0 em.
Find the image distance and image size for each of these object distances.

6.8 Solve Prob. 6.7 graphically.
6.9 A concave mirror is to be used to focus the image of a tree on a photographic film

8.50 m away from the tree. If a lateral magnification of --/0 is desired, what should
be the radius of curvature of the mirror? , Ans. - 85.2 em

6.10 A thin equiconvex lens of index 1.530 and radii of 16.0 em is silvered on one side.
Find the (a) focal length and (b) power of this system if light enters the unsilvered side.

6.11 A thin lens of index 1.650 has radii'1 = + 5.0 cm and'2 = -15.0 em. If the second
surface is silvered, what is (a) the focal length and (b) the power of the system?

6.12 A thin lens of index 1.720 located in air has'radii'1 = - 6.0 cm and'2 = -12.0 em.
If the second surface is silvered, what is the 'bower of the system? Use the special-case
formulas (6q) and (6r).

6.13 A thin lens with a focal length of + 10.0 em is located 2.00 em in front of a spherical
mirror with a radius of ":'18.0 em. Find (iz) the power, (b) the focal length, (c) the
principal point, and (d) the focal point of this thick-mirror optical system.

Ans. (a) +23.11 D, (b) +4.33 em, (c) H1H = +2.50cm, (d) -1.83 cm
6.14 Solve Prob. 6.13 graphically. Use the method shown in Fig. 61.
6.15 A thin lens with a focal length of -12.30 cm is placed 2.50 cm in front of a spherical

mirror of radius -9.20 cm. Find the power of (a) the first lens and (b) the second lens.
Calculate (c) the power of the system and (4) its focal length. Locate (e) the principal
point and (f) the focal point.

6.16 Solve Prob. 6.15 graphically. Use the method of Fig. 61.
6.17 A thick lens of index 1.560 has radii'1 = + I5.0cm and'2 = - 30.0 em. If the second

surface is silvered and the lens is 5.0 em thick, find (a) the power, (b) the focal length,
(c) the principal point, and (d) the focal point.
Ans. (a) +14.67 D, (b) +6.82 cm, (c) H~H = +3.640 em, (d) H1F = +3.180 em

6.18 Solve Prob. 6.17 graphically.
6.19 A lens 4.50 em thick has an index of 1.720 and radii'l = - 6.0 cm and,:z = -12.0

cm. If the second surface is silvered, find (a) the power, (b) the focal length, (c) the
position of the principal point, and (d) the position of the focal point.

6.20 Solve Prob. 6.19 graphically.
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6.21 The curved surface of a plano-convex lens has a radius of 20.0 cm. The refractive
index of the glass is 1.650, and the thickness is 2.750 cm. If the curved surface is
silvered, find (a) the power, (b) the focal length, (c) the principal point, and (d) the
focal point. Ans. (a) + 16.50 D, (b) + 6.06 cm, (c) + 1.667 cm, (d) +4.394 cm

6.22 Solve Prob. 6.21 graphically. Use the method shown in Fig. 6J.
6.23 If the plane surface of the lens given in Prob. 6.21 is silvered in place of the curved

surface, what are the answers to parts (a) to (d)?
6.24 Solve Prob. 6.23 graphically. Use the method shown in Fig. 61.
6.25 An object is located 20.0 cm in front of a mirror of radius - 16.0 cm. Plot a graph of

the two astigmatic surfaces for (a) tP = 0°, (b) tP = 10.0°, (c) tP = 20.0°, and (d)
tP = 30.0°.

6.26 Plot a graph of the two astigmatic surfaces for a spherical mirror having a radius of
- 20.0 cm. Assume parallel incident light, and show the curves for (a) tP = 0°,
(b) tP = 10.0°, (c) tP = 20.0°, and (d) tP = 30.0°.



7
THE EFFECTS OF STOPS

One subject in geometrical optics, though very important from a practical standpoint,
is frequently neglected because it does not directly concern the size, position, and
sharpness of the image. This is the question of the field of view, which determines
how much of the surface of a broad object can be seen through an optical system.
In treating the field of view it is of primary importance to understand how and where
the bundle of rays traversing the system is limited. The effect of stops or diaphragms,
which will always exist (even if only as the rims of lenses or mirrors), must be
investigated.

7.1 FIELD STOP AND APERTURE STOP

In Fig. 7A a single lens with two stops is shown forming the image of a distinct object.
Three bundles of parallel rays from three different points on the object are shown
brought to a focus in the focal plane ofthe lens. It can be seen from these bundles that
the stop close to the lens limits the size of each bundle of rays, while the stop just in
front of the focal plane limits the angle at which the incident bundles can get through
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FIGURE 7A
The difference between a field stop and an aperture stop.

to this plane. The first is called an aperture stop. It obviously determines the amount
of light reaching any given point in the image and therefore controls the brightness
of the latter. The second, orfield stop, determines the extent of the object, or the field,
that will be represented in the image.

7.2 ENTRANCE AND EXIT PUPILS

A stop P' E' I..: placed behind the lens as in Fig. 7B is in the image space and limits the
image rays. By a graphical construction or by the lens formula, the image of this
real stop, as formed by the lens, is found to lie at the position PEL shown by the
broken lines. Since P' E' I..:is inside the focal plane, its image PEL lies in the object
space and is virtual and erect. It is called the entrance pupil, while the real aperture
P' E' I..: is, as we have seen, called the aperture stop. When it lies in the image space,
as it does here, it becomes the exit pupil. (For a treatment of object and image spaces
see Sec. 4.1I.)

It should be emphasized that P and P', E and E', and L and I..:are pairs of
conjugate points. Any ray in the object space directed through one of these points
will after refraction pass through its conjugate point in the image space. Ray IT
directed toward P is refracted through P', ray KR directed toward E is refracted
through E', and ray NU directed toward L is refracted through I..:. The image point
Q' is located graphically by the broken line JQ', parallel to the others and passing
undeviated through the optical center A. The aperture stop P' E' I..: in the position
shown also functions to some extent as a field stop, but the edges of the field will not
be sharply limited. The diaphragm which acts as a field stop is usually made to
coincide with a real or virtual image, so that the edges will appear sharp.
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FIGURE 7B
How an aperture stop and its image can become the exit and entrance pupils,
respectively, of a system.

7.3 CHIEF RAY

Any ray in the object space that passes through the center of the entrance pupil is
called a chief ray. Such a ray after refraction also passes through the center of the
exit pupil. In any actual optical instrument the chief ray rarely passes through the
center of any lens itself. The points E and E' at which the chief ray crosses the axis
are known as the entrance-pupil point and the exit-pupil point. The former, as we shall
see, is particularly important in determining the field of view.

7.4 FRONT STOP

In certain types of photographic lenses a stop is placed close to the lens, either before
it (front stop) or behind it (rear stop). One of the functions of such a stop, as will be
seen in Chap. 9, is to improve the quality of the image formed on the photographic
film. With a front stop as shown in Fig. 7C its small size and its location in the object
space make it the entrance pupil. Its image P' E' E formed by the lens is in the image
space and constitutes the exit pupil. Parallel rays IT, JW, and NU have been drawn
through the two edges of the entrance pupil and through its center. The lens causes
these rays to converge toward the screen as though they had come from the con-
jugate points P', E', and E in the exit pupil. Their intersection at the image point Q'
occurs where the undeviated ray KA crosses the secondary focal plane. Note that the
chief ray is directed through the center of the entrance pupil in the object space and
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FIGURE 7C
A front stop and its image can become the respective entrance and exit pupils of a
system.

emerges from the lens as though it had come from the center of the exit pupil in the
image space.

While a certain stop of an optical system may limit the rays getting through the
system from one object point, it may not be the aperture stop for other object points
at different distances away along the axis. For example, in Fig. 7D a lens with a front
stop is shown with an object point at M. For this point the periphery of the lens
itself becomes the aperture stop, and since it limits the object rays, it is the entrance
pupil. Its image, which is again the lens periphery, is also the exit pupil. The lens
margin is therefore the aperture stop, the entrance pupil, and the exit pupil for the
point M. If this object point were to lie to the left of Z, PEL would become the
entrance pupil and the aperture stop and its image P' E' 11 the exit pupil.

In the preliminary design of an optical instrument it may not be known which
element of the system will constitute the aperture stop. As a result the marginal rays
for each element must be investigated one after the other to determine which one
actually does the limiting. Regardless of the number of elements the system has, it
will usually contain but one limiting aperture stop. Once this stop is located, the
entrance pupil of the entire system is the image of the aperture stop formed by all lenses
preceding it and the exit pupil is the image formed by all lenses following it. Figures
7B and 7C, where there is only a single lens either before or behind the stop, should be
studied in connection with this statement.

7.5 STOP BETWEEN TWO LENSES

A common arrangement in photographic lenses is to have two separate lens elements
with a variable stop, or iris diaphragm, between them. Figure 7E is a diagram
representing such a combination, and in it the elements 1 and 2 are thin lenses while
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FIGURE 7D
The entrance and exit pupils are not the same for all object and image points.

PoEoLo is the stop. By definition the entrance pupil of this system is the image of the
stop formed by lens 1. This image is virtual, erect, and located at PEL. Similarly
by definition the exit pupil of the entire system is the image of the stop formed by
lens 2. This image, located at P' E' E, is also virtual and erect. The entrance pupil
PEL lies in the object space oflens 1, the stop PoEoLo lies in the image space of lens
1 as well as in the object space of lens 2, and the exit pupil P' E' E lies in the image
space of lens 2. Points Po and P, Eo and E, and Lo and L are conjugate pairs of
points for the first lens, while Po and P', Eo and E', and Lo and E are conjugate
pairs for the second lens. This makes points like P and P' conjugate for the whole
system. If a point object is located on the axis at M, rays MP and ML limit the
bundle that will get through the system. At the first lens these rays are refracted

Exit
PUf"
I
If'

••••(1)
..•.•..•..••.

M

Stop

FIGURE 7E
Stop between two lenses. The entrance pupil of a system is in its object space,
while the exit pupil is in its image space.
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FIGURE 7F
The direction taken by any chief ray is such that it passes through the centers of
the entrance pupil, the stop, and the exit pupil.

through Po and Lo, and at the second lens they are again refracted in such directions
that they appear to come from P' and I: as shown. The purpose of using primed and
unprimed symbols to designate exit and entrance pupils respectively should now be
clear; one lies in the image space, the other in the object space, and they are conjugate
images.

The same optical system is shown again in Fig. 7F for the purpose of illustrating
the path of a chief ray. Of the many rays that can start from any specified object
point Q and traverse the entire system, a chief ray is one which approaches the lens
in the direction of E, the entrance pupil point, is refracted through Eo, and finally
emerges traveling toward Q' as though it came from E', the exit pupil point.

7.6 TWO LENSES WITH NO STOP

The theory of stops is applicable not only where circular diaphragms are introduced
into an optical system but to any system whatever, since actually the periphery of any
lens in the system is a potential stop. In Fig. 7G two lenses, I and 2, are shown,
along with their mutual images as possible stops. Assuming PI to be a stop in the
object space, its image P' formed by lens 2 lies in the final image space. Looking
upon Pz as a stop in the image space, its image P formed by lens I lies in the first
object space. There are therefore two possible entrance pupils, PI and P, in the object
space of the combination of lenses, and two possible exit pupils, Pz and P', in the
image space of the combination. For any axial point M lying to the left of Z, PI
becomes the limiting stop and therefore the entrance pupil of the system. Its image pi
becomes the exit pupil. If, on the other hand, M lies to the right of Z, P becomes the
entrance pupil and Pz the exit pupil.
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FIGURE 7G
The margin of any lens may be the aperture stop of the system.

7.7 DETERMINATION OF THE APERTURE STOP

In the system of two lenses with a stop between them represented in Figs. 7E and 7F,
the lenses were made sufficiently large not to become aperture stops. If, however,
they are not large compared with the stop, as may well be the case with a camera lens
when the iris diaphragm is wide open, the system of stops and pupils may become
similar to those shown in Fig. 7H. This system consists of two lenses and a stop,
each one of which, along with its various images, is a potential aperture stop. Pi is
the virtual image of the first lens formed by lens 2, Po the virtual image of the stop P
formed by lens 2, Po the virtual image of P formed by lens I, and P2 the virtual image
of the second lens formed by lens I. In other words, when looking through the
system from the left one would see the first lens, the stop, and the second lens in the
apparent positions PI' Po, and P2• Looking from the right, one would see them at
PI' P~, and P2. Of all these stops Po, PI' and P2 are potential entrance pupils located
in the object space of the system.

For all axial object points lying to the left of X, PI limits the entering bundle of
rays to the smallest angle and hence constitutes the entrance pupil of the system. In
general the object of which it is the image will be the aperture stop, which in this case
is the aperture PI of lens I itself. The image of the entrance pupil formed by the entire
lens system, namely Pi, constitutes the exit pupil. For object points lying between
X and Z, Po becomes the entrance pupil, P the aperture stop, and Po the exit pupil.
Finally, for points to the right of Z, P2 is the entrance pupil while P; is both the
aperture stop and the exit pupil. It is apparent from this discussion that the aperture
stop of any system may change with a change in the object position. The general
rule is that the aperture stop of the system is determined by that stop or image of a
stop which subtends the smallest angle as seenfrom the object point. If it is determined
by an image, the aperture stop itself is the corresponding object. In most actual
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FIGURE 7H
A system composed of several elements has a number of possible stops and pupils.

optical instruments the effective stop does not change over the range of object
positions normally covered by the instrument in use.

Having established the methods of determining the positions of the aperture
stop and of the entrance and exit pupils, we may now take up the two important
properties of an optical system, field of view and brightness. To begin with, let us
consider the former property.

7.8 FIELD OF VIEW

When one looks out at a landscape through a window, the field of view outside is
limited by the size of the window and by the position of the observer. In Fig. 7I the
eye of the observer is shown at E, the window opening at JK, and the observed field
at GB. In this simple illustration the window is the field stop (Sec. 7.1). When the
eye is moved closer to the window, the angular field lX is widened, while when it is
moved farther away, the. field is narrowed. It is common practice with optical
instruments to specify the field of view in terms of the angle lX and to express this angle
in degrees. The angle 9 which the extreme rays entering the system make with the
axis is called the half-field angle and limits the width of the object that can be seen.
This object field includes the angle 29, and in this instance is the same as the image
field of angular width lX.

7.9 FIELD OF A PLANE MIRROR

The field of view afforded by a plane mirror is very similar to that ofa simple window.
As shown in Fig. 7J, TU represents a plane mirror, and P'E'E the pupil of the
observer's eye, which here constitutes the exit pupil. The entrance pupil PEL is the
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E
FIGURE 71
Field of view through a window.

virtual image of the eye pupil formed by the mirror and is located just as far behind
the mirror as the actual pupil is in front of it. The chief rays E'T and E' U limit the
field of view in image space, while the corresponding incident rays ER and ES define
the field of view in object space. The latter show the limits of the field in which an
object can be situated and still be visible to the eye. In this case also, although not in
general, it subtends the same angle as the image field.

The formation of the image of an object point Q within this field is also
illustrated. From this point three rays have been drawn toward the points P, E, and
L in the entrance pupil. Where these rays encounter the mirror, the reflected rays are
drawn toward the conjugate points P', E', and I.: in the exit pupil. The object Q
and the entrance pupil PEL are in the object space, while the image Q' and the exit
pupil P' E' I.: are in the image space. If Q happens to be located close to RT, only part
of the bundle of rays defined by the entrance pupil will be intercepted by the mirror
and will be reflected into the exit pupil. In defining the field of view it is customary to
use the chief ray RTE', although in the present case this distinction is not important
because of the relative smallness of the pupil of the eye. Its size is obviously greatly
exaggerated in the diagram. .

Since the limiting chief ray is directed toward the entrance pupil point E, the

Q

p'
Exit E'
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FIGURE 7J
Field of view looking in a plane mirror.
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FIGURE 7K
Field of view looking in a convex mirror.

half-field angle 0 is in general determined by the smallest angle subtended at E by
any stop, or image of a stop, in the object space. The stop determined in this way is
the field stop of the system. For a single mirror the field stop is the border of the
mirror itself.

7.10 FIELD OF A CONVEX MIRROR

When the mirror has a curvature, the situation is little changed except that the object
field and the image field no longer subtend the same angle (0 :F 0' in Fig. 7K). In
this figure P' E' E represents the real pupil of an eye placed on the axis of a convex
mirror TU. The mirror forms an image PEL of this exit pupil, and this is the entrance
pupil which is now smaller. Following the same procedure as for a plane mirror, the
lines limiting the image field and the object field have been drawn. Rays emanating
from an object point Q toward P, E, and L of the entrance pupil are shown as reflected
toward P', E', and E in the exit pupil. When extended backward, these rays locate
the virtual image Q'. The half-field angle 0 is here larger than 0', which determines
the field of view to the eye. A similar but somewhat more complicated diagram can
be drawn for the field of view of a concave mirror. This case will be left as an exercise
for the student, since it is very similar to that of a converging lens to be discussed next.
See Prob. 7.12.

7.11 FIELD OF A POSITIVE LENS

The method of determining the half-field angles 0 and 0' for a single converging lens
is shown in Fig. 7L. The pupil of the eye, as an exit pupil, is situated on the right, and
its real inverted image appears at the left. The chief rays through the entrance pupil
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FIGURE 7L
Field of view looking in a converging lens.

point E which are incident at the periphery of the lens are refracted through the
conjugate point E'.

The shaded areas, or rather cones, ETU and ERS mark the boundaries within
which any object must lie in order to be seen in the image field. The field stop in this
case is the lens TU itself, since it determines the half-field angle subtended at the
entrance pupil point. If the eye, and therefore the exit pupil, is moved closer to the
lens, thereby increasing the image-field angle ()', the inverted entrance pupil moves to
the left, causing a lengthening of the object-field cone ETU.

The same lens has been redrawn in Fig. 7M, where an object QM is shown in a
position inside the primary focal point. Through each of the three points P, E, and
L, rays are drawn from Q to the lens. From there the refracted rays are directed
through the corresponding points P', E', and I.:on the exit pupil. By extending them
backward to their common intersection, the virtual image is located at Q'. The
oblique-ray or parallel-ray methods of construction (not shown) may be used to
confirm this position of the image. It will be noted that if objects are to be placed
near the entrance pupil point E, they must be very small; otherwise only a part of

p'

E' Exit
pupil

FIGURE 7M
Image formation within the field of a converging-lens system.
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them will be visible to an eye placed at E'. The student will find it instructive to select
object points that lie outside the object field and to trace graphically the rays from
them through the lens. It will be found that invariably they miss the exit pupil.

When a converging lens is used as a magnifier, the eye should be placed close
to the lens, since this widens the image-field angle and extends the object field so that
the position of the object is less critical.

PROBLEMS

7.1 A thin lens with an aperture of 4.80 em and a focal length of + 3.50 em has a 3.0-cm
stop located 1.50 em in front of it. An object 1.50 em high is located with its lower
end on the axis 8.0 em in front of the lens. Locate graphically and by formula (a) the
position and (b) the size of the exit pupil. (c) Locate the image of the object graphically
by drawing the two marginal rays and the ehief ray from the top end of the object.

Ans. (a) s' = -2.625 cm, (b) 5.250 cm,
(c) See Fig. P7.1; y' = -1.167 em; s' = +6.222 cm

M
. +B.OOem

E. .,'xltPuP'l P'

Tv
I

Entrance pupi'

P

+6.22 em
M'

Q'

FIGURE P7.1
Graphical solution for Prob. 7.1.

7.2 A thin lens with a focal length of + 5.0 em and an aperture of 6.0 cm has a 3.80-cm
stop located 1.60 em behind it. An object 2.20 em high is located with its lower end on
the axis 8.0 em in front of the lens. Locate graphically and by formula (a) the position
and (h) the size of the entrance pupil. (c) Locate the image graphically by drawing two
marginal rays and the chief ray from the top end of the object.

7.3 A thin lens with a focal length of - 6.0 em and an aperture of 7.0 em has a 3.0-cm stop
located 3.0 em in front of it. An object 2.0 cm high is located with its lower end on the
axis 10.0 cm in front of the lens. Find graphically and by formula (a) the position
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and (b) the size of the exit pupil. (c) Graphically locate the image by drawing the two
marginal rays and the chief ray from the top of the object.

7.4 A thin lens with a focal length of +6.0 em has an aperture of 6.0 em. A 6.0-em stop
is located 2.0 em in front of the lens, and a 4.0-em stop is located 2.0 em behind the
lens. An object 4.0 em high is centrally located on the axis 12.0 em in front of the
lens. Find the images of the two stops, and determine (a) the stop of the system, (b)
its size, and (c) its position with respect to the lens. (d) Locate the image and determine
its size by drawing the two marginal rays and the chief ray from the top end of the
object. (e) Solve graphically (Fig. P7.4).
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FIGURE P7.4
Graphical solution for Prob. 7.4.

Ans. (a) the 4.0-em stop is the stop of the system, and its image, which is in object
space, is the entrance pupil; (b) 6.0 em; (c) 3.0 em behind the lens;

(d) y' = -4.0 em, s' = + 12.0 em, real and inverted
7.5 Two thin lenses with focallengths of +5.0 and +7.0 em and apertures of 8.0 and 9.0 em,

respectively, are located 3.50 em apart. A stop 5.0 em in diameter is located between
the two lenses and 2.0 em from the first lens. An object 4.0 em high is located with its
center 10.0 em in front of the first lens. Find graphically and by formula (a) the
position and (b) the size of the entrance pupil. Find (c) the position and (d) the size
of the exit pupil. Find (e) the position and (f) the size of the final image. Draw the
two marginal rays and the chief ray from the top end of the object to the image.

7.6 Two thin lenses with focal lengths of + 7.0 and +6.0 em and apertures of 9.0 and
8.0 em, respectively, are located 5.0 em apart. A stop of 6.0 em diameter is located
between the two lenses 2.0 em from A1• An object 6.0 em high is located with its center
9.0 em in front of the first lens. Find graphically and by formula (a) the position and
(b) the size of the entrance pupil. Find (c) the position and (d) the size of the exit
pupil. Find (e) the position and (f) the size of the final image. Draw two marginal
rays and the chief ray from the top end of the object to the image.
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7.7 A thin lens with an aperture of 6.0 cm and focal length of -10.0 cm is located 4.0 cm
behind another thin lens with an aperture of 8.0 cm and a focal length of + 5.0 cm.
An object 4.0 cm high is located with its center on the axis + 12.0 cm in front of the
first lens, and a stop 5.0 cm in diameter is located midway between the lenses. Calcu-
late and graphically find (a) the size and position of the entrance pupil, (b) the size and
position of the exit pupil, and (c) the size and position of the final image. See Fig. P7.7
below.

Ans. (a) +8.33 and - 3.333 cm, (b) +4.17 and -1.667 cm,
(c) + 5.26 and +8.42 cm
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FIGURE P7.7
Graphical solution for Prob. 7.7.
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7.8 A thin lens with a focal length of 9.0 cm and an aperture of 6.0 cm is located 4.50 cm
in front of a diverging lens with a focal length of - 8.0 cm and an aperture of 6.0 cm.
For light incident on the first lens parallel to the axis calculate the position and size of
(a) the entrance pupil and (b) the exit pupil. (c) Solve graphically. Find (d) the focal
point of the system, (e) the principal point to which it is measured, and (f) the focal
length.

7.9 A clear glass marble is ground into a Coddington magnifier lens (see Fig. 10J). The
sphere diameter is 2.40 cm, the refractive index is 1.52, and the cylinder diameter is
1.80 cm. The central groove is ground 0.30 cm deep. Find (a) the position and (b) the
size of the entrance pupil; (c) the position and (d) the size of the exit pupil; (e) the
focal length of the magnifier; (f) the position of the focal point; and (g) the position
of the principal point.

7.10 An exit pupil with a 5.0-cm aperture is located 10.0 cm in front of a spherical mirror
with a radius of curvature of + 16.0 cm. An object 3.0 cm high is centrally located on
the axis 7.0 cm in front of the mirror. Find graphically (a) the entrance pupil, (b) the
image of the object, and (c) the minimum aperture for the mirror required to see the
entire object from all points of the exit pupil (see Fig. P7.10).
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FIGURE P7.10
Graphical solution for Prob. 7.10.

Entrance pupil
I__ I--=---~--- -.......-.....
E---~- F
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Ans. (a)AE= -4.44cm,PL = 2.22 em, (b) -3.73cm,QM= + 1.60 em, (c) 2.52 em
7.11 An exit pupil 4.0 em in diameter is located 8.0 em in front of a spherical mirror of

radius + 14.0 em. An object 3.0 em high is centrally located on the axis + 5.0 em in
front of the mirror. Graphically determine (a) the size and (b) the position of the
entrance pupil. Find (c) the position and (d) the size of the image by drawing the two
marginal rays and chief ray from the bottom of the object.

7.12 An exit pupil with a 10.0-cm aperture is located 48.0 em in front of a concave spherical
mirror with a radius of - 30.0 em. An object 5.0 em high is centrally placed on the
axis 36.0 em in front of the mirror. Graphically find (a) the position and (b) the size
of the entrance pupil. Find also (c) the position and (d) the size of the image by draw-
ing the two marginal rays and the chief ray from the top of the object.

7.13 A lens with an aperture of 2.0 em and a focal length of +3.0 em is used as a magnifier.
An object 1.60 em high is centrally located on the axis 2.0 em to the left of the lens, and
an exit pupil 1.0 em high is centrally located on the right 1.50 em from the lens.
Graphically locate (a) the position and (b) the size of the entrance pupil. Find also
from your graph (c) the image position and (d) the image size. (e) Calculate the
magnification.



8
RAY TRACING

Up to this point the discussion of image formation by a system of one or more
spherical surfaces has been confined to the consideration of paraxial rays. With this
limitation it has been possible to derive relatively simple methods of calculating and
constructing the position and size of the image. In practice the apertures of most
lenses are so large that paraxial rays constitute only a very small fraction of all the
effective rays. It is therefore important to consider what happens to rays that are not
paraxial. The straightforward method of attacking this problem is to trace the paths
of the rays through the system; accurately applying Snell's law to the refraction at
each surface.

8.1 OBLIQUE RAYS

All rays which lie in a plane through the principal axis and are not paraxial are called
oblique rays. When the law of refraction is accurately applied to a number of rays
through one or more coaxial surfaces, the position of the image point is found to vary
with the obliquity of the rays. This leads to a blurring of the image known as lens
aberrations, and the study of these aberrations will be the subject of the following



RAY TRACING 131

chapter. Experience shows that it is possible, by properly choosing the radii and
positions of spherical refracting surfaces, to reduce the aberrations greatly. Only
in this way have optical instruments been designed and constructed having large
usable apertures and at the same time good image-forming qualities.

Lens designers follow three general lines of approach to the problem of finding
the optimum conditions. The first is to use graphical methods to find the approximate
radii and spacing of the surfaces that should be used for the particular problem at
hand. The second is to use well-known aberration formulas to calculate the approx-
imate shapes and spacings. If the results of these methods of approach do not produce
image-forming systems of sufficiently high quality and better definition is required,
the third method, known as ray tracing, is applied. It consists in finding the exact
paths of several representative rays through the system selected. Some of these rays
will be paraxial and some oblique, and each is traced from the object to the image.

If the results are not satisfactory, the surfaces are moved, the radii are changed,
and the process is repeated until an apparent minimum of aberration is obtained.
Until recent years this was a long and tedious trial process, requiring in some cases
hundreds of hours of work. Five-, six-, or seven-place logarithms were required,
and certain standard tabular forms were printed by the different designers for re-
cording the calculations and results. Recent researches in electronics have led to
the development of high-speed calculators capable of ray tracing through complicated
systems in a very short time. Such calculators undoubtedly lead today to the design
and production of new and better high-quality optical systems.

In this chapter we shall first consider the method of graphical ray tracing and
then the method of calculation ray tracing. Lens aberrations and the approximate
methods using aberration formulas will be treated in Chap. 9.

8.2 GRAPHICAL METHOD FOR RAY TRACING

The graphical method for ray tracing to be presented here is an extension of the
procedure given in Sec. 1.10 and shown for refraction at plane surfaces in Figs. 10
and 2J. It is important to note that while the principles used follow Snell's law
exactly, the accuracy of the results obtained depends upon the precision with which
the operator makes his drawing. A good drawing board, with T square and triangles,
or a drafting machine is therefore essential; as large a drawing board as is feasible is
to be preferred. The use of a sharp pencil is a necessity.

The diagrams in Fig. SA illustrate the construction for refraction at a single
spherical surface separating two media of index nand n'. After the axis and the surface
with a center at C are drawn, any incident ray like 1 is selected for tracing. An
auxiliary diagram is now constructed below, comparable in size, and with its axis
parallel to that of the main diagram. With the point 0 as a center two circular arcs
are drawn with radii proportional to the refractive indices. Succeeding steps of the
construction are carried out in the following order: Line 2 is drawn through 0
parallel to ray 1. Line 3 is drawn through points T and C. Line 4 is drawn through
N parallel to line 3 and extended to where it intersects the arc n' at Q. Line 5 connects
o and Q, and line 6 is drawn through T parallel to line 5.
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M M'

o

FIGURE SA
A graphical method for ray tracing through a single spherical surface. The method
is exact and obeys Snell's law for all rays.

In this diagram the radial line TC is normal to the surface at the point T and
corresponds to the normal NN' in Fig. IG. The proof that such construction follows
Snell's law exactly is given in Sec. 1.10.

The graphical method applied to a system involving a series of coaxial spherical
surfaces is shown in Fig. 8B. Two thick lenses having indices n' and nfl, respectively,
are surrounded by air of index n = 1.00. In the auxiliary diagram below arcs are

~
o~~

n 16 n' n"

FIGURE SB
Exact graphical method for ray tracing through a centered system of spherical
refracting surfaces.
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Axis C

FIGURE 8e
Ray tracing through a thick mirror.

drawn for the three indices n, n', and n". All lines are drawn in parallel pairs as before
and in consecutive order starting with the incident light ray 1. Each even-numbered
line is drawn parallel to the odd-numbered line just preceding it, ending up with the
final ray 18. Note that the radius of the fourth surface is infinite and line 15 drawn
toward its center at infinity is parallel to the axis. The latter is in keeping with the
procedures in Figs. 1G, 2J, and 2K.

When the graphical method of ray tracing is applied to a thick mirror, the arcs
representing the various known indices are drawn on both sides of the origin, as
shown in Fig. 8e. Again in this case the lines are drawn in parallel pairs with each
even-numbered line parallel to its preceding odd-numbered line. Where the ray is
reflected by the concave mirror, the rays 10 and 14 must make equal angles with the
normal. Note that in the auxiliary diagram the corresponding lines 9, 12, and 13
form an isosceles triangle. The particular optical arrangement shown here is known
as a concentric optical system. The fact that all surfaces have a common center of
curvature gives rise to some very interesting and useful optical properties (see Sec.
10.21).
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FIGURE 8D
Geometry used in deriving the ray-tracing formulas,

8.3 RAY-TRACING FORMULAS

A diagram from which these formulas can be derived is given in Fig. 8D. An oblique
ray MT making an angle (J with the axis is refracted by the single spherical surface at
T so that it crosses the axis again at M'. The line TC is the radius of the refracting
surface and constitutes the normal from which the angles of incidence and refraction
at T are measured. As regards the signs of the angles involved, we consider that

1 Slope angles are positive when the axis must be rotated counterclockwise
through an angle of less than nl2 to bring it into coincidence,with the ray.
2 Angles of incidence and refraction are positive when the radius of the surface
must be rotated counterclockwise through an angle of less than nl2 to bring it
into coincidence with the ray.

Accordingly, angles (J, cP, and cP' in Fig. 8D are positive, while angle (J' is negative.
Applying the law of sines to the triangle MTC, one obtains

sin (n - cP) sin f)
----=--

r + s r
Since the sine of the supplement of an angle equals the sine of the angle itself,

sin cP sin (J--=--
r + s r

Solving for sin cP, we find

• 'A. r+s'(JSIn'/'= --SIn
r

(8a)

Now by Snell's law the angle of refraction cP' in terms of the angle of incidence cP is
given by

• sin cP' = !!.. sin cP
n'

(8b)

In the triangle MTM' the sum of all interior angles must equaln. Therefore

f) + (n - cP) + cP' + (-f)') = n
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which, upon solving for ()', gives

• ()'= ljJ' + ()- ljJ (8c)

This equation allows us to calculate the slope angle of the refracted ray. To find
where the ray crosses the axis and the image distance s', the law of sines may be
applied to the triangle TCM', giving

- sin ()' sin ljJ'
---=--

r s' - r
The image distance is therefore

• , sin ljJ'
s =r-r--

sin ()'
(8d)

An important special case is that in which the incident ray is parallel to the axis.
Under this simplifying condition it may be seen from Fig. 8E that

• • A. h
Sln'Y = -

r
(8e)

where h is the height of the incident ray PT above the axis. For the triangle TCM',
the sum of the two interior angles ljJ' and ()' equals the exterior angle at C. When the
angles are assigned their proper signs, this gives

• ()'= ljJ' - ljJ (8f)

The six equations above which are numbered form an important set by which any
oblique ray lying in a meridian plane can be traced through a number of coaxial
spherical surfaces. A meridian plane is defined as any plane containing the axis of
the system. While most of the rays emanating from an extraaxial object point do not
lie in a meridian plane, the image-forming properties of an optical system can usually
be determined from properly chosen meridian rays. Skew rays, or rays that are not
confined to a meridian plane, do not intersect the axis and are difficult to trace.

8.4 SAMPLE RAY-TRACING CALCULATIONS

For a single spherical refracting surface, either concave or convex, Eqs. (8a), (8b),
(8c), and (8d), respectively, are used to find the image distance s'. If the incident
light is parallel to the axis, Eqs. (8e), (8b), (8f), and (8d) are used, in that order. This
second set of equations will be used for the sample calculations in the example below.

A desk calculator is by far the least time-consuming way of solving ray-tracing
problems, and if a computer capable of being programmed is available, the time can
be even shorter. Seven-place logarithms can be used, but the process is long, tedious,
and subject to frequent errors. If logarithm tables are used, the subtraction of one
logarithm from another to find a quotient can be avoided by employing the co-
logarithms of all quantities occurring in the denominator. Thus the operations are
reduced to those of addition.
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FIGURE 8E
Geometry for ray tracing with parallel incident light.

EXAMPLE 1 A convex spherical surface of radius r = +5.0 cm is ground and
polished on the end of a large cylindrical glass rod of index 1.67200. Assume incident
light parallel to the axis by using rays at heights of (a) 3.0 cm, (b) 2.0 cm, (c) 1.0 cm,
and (d) O.

SOLUTION It is convenient to set these given quantities up in tabular form, as
shown in Table 8A.

Table 8A RAY-TRACING CALCULATIONS FOR A SINGLE CONVEX SPHERICAL
SURFACE.
r = +5.0 cm n = 1.0 cm n' = 1.67200

Eq. Unknown Relationship h = 3.0 h = 2.0 h = 1.0 h=O

(8e) sin q, h +0.6000000 0.4000000 0.2000000 0.6000000-
r

(8b) sin q,' ~sin q, +0.3588517 0.2392344 0.1196172 0.3588517
n

q, + 36.869898° 23.578178° 11.536959°
q,' + 21.029692° 13.841356° 6.8700110°

(8f) 9' q,' - q, -15.840206° 9.7368220° 4.6669480°

sin 9' -0.2729554 0.1691228 0.0813636 0.2411483

(8d) r - s' sin q,'
-6.5734494 7.0728015 7.3507809 7.4404775r--

sin 9'

s' + 11.573449 12.072802 12.350781 12.440478

• Although the refractive index of air at normal temperature and pressure is 1.000292, it is customary in
ray tracing to use the value 1.000000.
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o

n'
FIGURE 8F
Graphical construction for parallel rays refracted at a single spherical surface.

The equation numbers in the first column and the unknowns and known quantities
in the next two columns clearly show what is being calculated and how it is used in the
following lines. A graphical solution of this example is shown in Fig. 8F.

At or near h = 0 we are dealing with paraxial rays, where all angles are ex-
tremely small. Here the sines of angles and the angles themselves are interchangeable.
Hence Eq. (8f) can be written

• sin (J' = sin <p' - sin <p (8g)

For h = 0, therefore, the following procedure should be used. First select the
number that corresponds to one of the values of sin <p in another column. For example,
in the column headed h = 3.0 cm, we find sin <p = 0.6000000, and under it sin <p' =
0.3588517. The difference between these two values is, by Eq. (8g), entered for
sin (J' as 0.2411483. To find the value 7.4404775 in row (8d), multiply 0.3588517 by
5.0 and divide by 0.2411483. Adding r = 5.0 cm, we obtain 12.440478, the paraxial
value of s' given in the last row. The first three figures of s' are found graphically
in Fig. 8G.

Let us now see how the above equations and procedures are employed to calcu-
late the image distances for a thick lens with two surfaces (see Fig. 8H).
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o n n'

FIGURE 8G
Graphical construction for paraxial rays refracted at a single spherical surface.

EXAMPLE 2 A double convex lens 3.0 cm thick and with radii r1 = + 15.0 cm
and r2 = -15.0 cm has a refractive index of 1.62300. If rays of light parallel to the
axis are incident on the first surface at heights of 6.0, 4.0, 2.0, and 0 cm, find the
image distances S2 (a) by calculation and (b) graphically.

SOLUTION (a) For the first surface, with light incident parallel to the axis,
we use the same four equations as in the preceding example. With subscripts of 1 on
r, tP, tP' and s', these become

sin tPl h (8h)
r1

sin tP~ n . tP (8i)= - sm 1
n'

0' = tP; - tPl (8j)

r1 ' sin tPl (8k)- Sl = r1-- sin 0'
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FIGURE 8H
Geometry involved in the use of ray-tracing formulas for a thick lens.

Since the images for the first surface become the objects for the second surface,
the lens thickness is subtracted, the sign is changed, and we obtain

s~=d-s; (81)

For refraction at the second surface we use Eqs. (8a), (8b), (8c), and (8d) and
with subscripts of 2 obtain

,i .,/,., r2 + s~ . ()'sm '1'2 = --- sm
r2

(8m)

. " n'. ,sm <P2 = - sm <P2
nil

(8n)

()"= <P; + 0' - <P',. (80)

(8p)

At or near h = 0 we are again dealing with paraxial rays, and all angles are
extremely small. Since the sines of angles and the angles themselves are inter-
changeable, Eqs. (8j) and (80) can be written:

sin 0' ~ sin <PI- sin <P~ (8q)
rt

sin ()""'; sin <P; + sin ()' - sin <P',. (8r)

For paraxial rays we use Eqs. (8h) through (8p), with Eqs. (8q) and (8r) sub-
stituted for Eqs. (8j) and (80), and follow the same procedure as in Example 1. First
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Table 8B RAY-TRACING CALCULATIONS FOR A THICK DOUBLE CONVEX LENS.
'1 = + 15.0 em 'z = -15.0 cm d = 3.0 em n = n" = 1.00000 n' = 1.62500

Eq. Unknown Relationship h = 6.0 em h = 4.0 em h = 2.0 em h = 0

(8h) sin (Jl

(8i) sin (J~

h

n .~sm (J
n

+ 0.400000OO

+0.24615385

0.26666667 0.13333333 0.400000oo

0.16410257 0.08205128 0.24615385

+ 23.5781785° 15.4660119° 7.6622555°
+ 14.2500327° 9.4451058° 4.7064843°

(8j)

(8k)

(81)

e'

'1 - sl

S2

sin 8'

sin (J1
'i--sin (J'

Sl
d - sl

-9.3281458°

-0.16208858

-22.7795601

+37.7795601
-34.7795601

6.0209061° 2.9557712°

0.10489134 0.05156506 0.15384615

23.4675230 23.8682656 24.0000010

38.4675230 38.8682656 39.0000010
35.4675230 35.8682565 36.0000010

-49.7795601

+3.3186373

50.4675230

3.3645015

50.8682656

3.3912177

51.0000010

3.4000007

(8m) sin (J'z

(8n) sin (Ji n'. I-; sm (Jz
n

-0.5379132

-0.8741091

0.35290707 0.17486834 0.5230770

0.5737371 0.28416105 0.8500002

-60.9397126°
-9.3281458°
-32.5416940°

35.0112384°
6.0209061°
20.6652279°

16.5087070°
2.9557712°
10.0709964°

(80) 0" (Ji + (J' - (J~ - 37.7261644° 20.3669166° 9.3934818°

-0.6118882 0.34803079 0.16321370 0.4807694

(8p) sin (Ji'z--sin 0"
-21.4281571 24.7278596 26.1155513 26.519997

S2 +6.4281571

5.0918399

9.7278596

1.7921374

11.1155513 11.519997

0.4044457 0

• Although the refractive index for air is 1.000292, the value for a vacuum is used here.
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FIGURE 81
Graphical solution for ray tracing through a thick lens; see Example 2.

find the number that corresponds to one of the values of sin <PI in another column.
For example, in the column headed h = 6.0 cm we find sin <PI = +0.400000O and
under it sin <P~ = +0.24615385. The difference between these two numbers is, by
Eq. (8q), entered for sin ()' as -0.15384615. To find the value 24.0000010 in row
(8k) we multiply 0.24615385 by 15.0 and divide by 0.15384615. Adding'l = 15.0
cm, we obtain 39.0000010 cm. From here on through Eq. (8n) we use only values
in the last column, obtaining sin <Pi = -0.8500002. For Eq. (80) we now use Eq.
(8r) and with values of sin <Pi = -0.8500002, sin ()' = -0.15384615, and sin <P'z =
-0.5230770, find sin ()" = -0.4807694.

The final figur~s show "'at when parallel rays are incident on the lens at heights
of 6.0, 4.0, 2.0, and 0 cm, the axial intercepts are, to seven significant figures, at
si = + 6.428157, +9.727860, + 11.115551and 11.519997cm, respectively.

(b) Graphical solutions to this problem are given in Figs. 81and 8J. It will be
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FIGURE 8J
Graphical solution for paraxial rays passing through a thick lens; see Example 2.

seen that the distance from the lens vertex to the focal point is not a constant but
varies slightly for different zones of the lens (see Fig. 8K). This defect in the image-
forming properties of all lenses with spherical surfaces is called spherical aberration
and will be treated in detail in the next chapter. The focal distances s~ and s~ for
h = 0 and for (J = 0 in Table 8B are identical with the values obtained with the
paraxial-ray formulas given in Sec. 5.1.

Whenever a plane surface is encountered, refraction is traced exactly by means
of Eq. (11). If, for example, the second surface of a lens is plane, Snell's law becomes

sin (J" = ~ sin (J'
nil

j

r

and Eq. (2q) becomes
, tan (J'si = 82--
tan (J"

--

where (J" = 4J~and (J' = 4J;. The calculations are carried out by tabulating the proper
values as in Table 8B.
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FIGURE 8K
Change in focal length for parallel rays entering a double convex glass lens in air;
see Example 2.

During the early nineteen-thirties, T. Smith developed a useful set of equations
for handling ray tracing in complex thick-lens systems. The simple form of the ray-
tracing equations, Eqs. (8a) to (8f), and the respective way in which they are applied
to surface after surface suggested the use of matrices. The successive refractions and
transfers can then be carried out mathematically with matrix operators.

Although these preliminary developments went unnoticed by lens designers for
almost 30 years, the matrix approach began to be used in the nineteen-sixties. Al-
though the matrix treatment is beyond the scope of this book, some students may find
it useful to look into. *

• For a detailed development of the matrix method of ray tracing, see K. Hallbach,
Matrix Representation of Gaussian Optics, Am. J. Phys., 32:90 (1964); W. Brouwer,
"Matrix Methods in Optical Instrument Design"; E. L. O'Neill, "Introduction to
Statistical Optics," and A. Nussbaum, "Geometrical Optics."
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PROBLEMS

8.1 A single spherical surface of radius + 6.50 em is ground on the end of a large cylin-
drical glass rod of index 1.65820. Find the axial distance Sf for a parallel incident ray
at a height of 6.0 em (a) graphically, to three significant figures, and (b) by ray-tracing
calculations, to six significant figures.

Ans. (a) + 13.05 em, (b) + 13.04646 em (see Fig. P8.1)

o

A

n 1.65820

FIGURE P8.1
Graphical solution for Probs. 8.1 to 8.3.

8.2 Solve Prob. 8.1 for a ray at a height of 4.0 em.
Ans. (a) + 15.15 em, (b) + 15.14873 em (see Fig. P8.1)

8.3 Solve Prob. 8.1 for a ray at a height of 2.0 em.
Ans. (a) + 16.09 em, (b) + 16.08820 em (see Fig. P8.1)

8.4 Solve Prob. 8.1 for a bundle of paraxial rays (h = 0).
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8.5 A single concave spherical surface of radius - 7.0 em is ground on one end of a large
cylindrical glass rod of index 1.68500. Find the axial distance s' for a parallel incident
ray at a height of 6.0 em (a) graphically, to three significant figures, and (b) by ray-
tracing calculations, to six significant figures.

8.6 Solve Prob. 8.5 for a ray at a height of 4.0 em.
8.7 Solve Prob. 8.5 for a ray at a height of 2.0 em.
8.8 Solve Prob. 8.5 for a bundle of paraxial rays, h = O.
8.9 A single spherical surface is ground and polished on the end of a large cylindrical glass

rod of index 1.82500. The radius of curvature, = + 8.0 em. The rod is immersed in
a thin oil of index 1.35600. Find the axial distances s' for parallel incident rays at a
height of (a) 6.0 em, (b) 4.0 em, (c) 2.0 em, and (d) 0 em. Solve graphically and by
calculation. -

Ans. (a) +25.54043 em, (b) +28.85935 em, (c) +30.58603 em,
(d) + 31.13007 (see Fig. P8.9)

F'

s'

,o n n.~~
~

FIGURE P8.9
Graphical solution for Prob. 8.9.

8.10 A double convex lens 6.0 em thick and with radii'1 = + l6.0cm and'2 = - 20.0 em
has a refractive index of 1.750. If a ray of light parallel to the axis is incident on the
first surface at a height of 6.0 em, find (a) by graphical means and (b) by calculation to
six figures, the distance s;.

8.11 Solve Prob. 8.10 if the incident ray is at a height of 4.0 em.
8.12 Solve Prob. 8.10 if the incident ray is at a height of 2.0 em.
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8.13 Solve Prob. 8.10 for paraxial rays, h = O.
Ans. (a) + 10.71 cm, (b) + 10.71225 cm (see Fig. P8.13)

n'"n, n

n

o

----------
cPl

FIGURE P8.13
Graphical construction for paraxial rays, h = 0, Prob. 8.13.

8.14 A double concave lens 1.0 cm thick and with radii '1 = -15.0 cm and '2 = + 15.0
cm has a refractive index of 1.732. If a ray of light parallel to the axis is incident on the
first surface at a height of 5.0 cm, find the distance s; (a) by graphical means and (b)
by calculation, to six figures.

8.15 Solve Prob. 8.14 if the incident ray is at a height of 4.0 cm.
8.16 Solve Prob. 8.14 if the incident ray is at a height of 2.0 cm.
8.17 Solve Prob. 8.14 if the incident ray is a paraxial bundle parallel to the axis.
8.18 A double convex lens of index 1.63700 has radii '1 = + 13.50 cm and '2 = -13.50

cm and forms one end of a tank containing oil of index 1.42500. If face '2 is in contact
with the oil and air is in contact with '10 find the axial crossover points s; for parallel
incoming light at heights of (a) 6.0 cm, (b) 4.50 cm, (c) 3.0 cm, and (d) 1.50 cm, and
(e) 0 cm. Solve graphically, and by calculations using ray-tracing methods.

Ans. (a) + 17.4514 cm, (b) + 19.06432 em, (c) + 19.9898 cm,
(d) 20.4842 cm, (e) +20.6408 cm (see Fig. P8.18)

8.19 A plano-convex lens 3.0 cm thick is silvered on the flat side to form a thick mirror.
If'I = + 15.0 cm and '2 = 00 and the index of the glass is 1.50000, find (a) by
graphical means and (b) by ray-tracing calculations the distance s2 for a ray parallel
to the axis and at a height of 6.0 cm.

8.20 Solve Prob. 8.19 for a paraxial bundle of rays close to the axis, h = O.
Ans. (a) + 13.93 cm, (b) + 13.92857 cm (see Fig. P8.20)
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FIGURE P8.l8
Graphical solution for Prob. 8.18.
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FIGURE P8.20
Paraxial ray tracing to find the focal point F".
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8.21 A double convex lens has radii'l = + 10.0 em and '2 = -10.0 em, a thickness of
2.0 em, and a refractive index of 1.52300. If the lens is in air, assume n = nH =
1.00000. Find by ray-tracing calculations the values of si for incident rays parallel to
the axis and at heights of (a) 6.0 em, (b) 4.0 em, (c) 2.0 em, and (d) 0 em. (e) Plot a
graph ofthe focal surface of this lens, values of si horizontally and values of h vertically.



9
LENS ABERRATIONS

The processes of ray tracing presented in the. last chapter serve to emphasize the
inability of the paraxial-ray formulas of the Gauss theory to give an accurate account
of image detail. A wide beam of rays incident on a lens parallel to the axis, for
example, is not brought to a focus at a unique point. The resulting image defect is
known as spherical aberration. The gaussian'formulas developed and used in the
preceding chapters give, therefore, only an idealized account of the images produced
with lenses of wide.aperture.

When ray tracing is applied to object points located farther and farther off the
axis, the observed image defects become more. and more pronounced. The methods
of reducing these aberrations to a minimum, arid thereby permitting the formation of
reasonably satisfactory images, are one of the. chief problems of geometrical optics.
It would be impossible within the scope of this book to give all the details of the
extensive mathematical theory involved in this problem.* Instead we shall attempt to

• For a more thorough account of lens aberrations the reader is referred to A. E.
Conrady, "Applied Optics and Optical Design," vol. 1, Oxford University Press,
New York, 1929; reprinted (paperback) vols. I and 2, Dover Publications, Inc.,
New York, 1960.
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show how most of the aberrations manifest themselves and at the same time discuss
some of the known formulas to see how they may be used in the design of high-
quality optical systems.

9.1 EXPANSION OF THE SINE. FIRST-ORDER THEORY

In order to formulate a satisfactory theory of lens aberrations, many theoreticians
have found it convenient to start with the correct and precise ray-tracing formulas,
as given in Eqs. (8a) through (8f), and to expand the sines of each angle into a power
series. An expansion of the sine of an angle by Maclaurin's theorem gives

• (:J3 (:J5 (:J' (:J9
sm (:J = (:J - - + - - - + - ... (9a)3! 5! 7! 9!

For small angles this is a rapidly converging series. Each member is small
compared with the preceding member. It shows that for paraxial rays where the slope
angles are very small we may, to a first approximation, neglect all terms beyond the
first and write

sin (:J = (:J

When (:J is small, the other angles 4>, 4>', and (:J' are also small, provided the ray
lies close to the axis. By substituting (:J for sin (:J, 4> for sin 4>, and e' for sin (:J', in
Eqs. (8a), (8b), and (8d), we obtain

(:J' = 4>' + (:J - 4>

4>' = !!.. 4>
n'

, 4>'s =r-r-
(:J'

By the algebraic substitution of the first equation in the second, the resultant equation
in the third, and this resultant in the fourth, all angles can be eliminated. The final
equation obtained by these substitutions is none other than the gaussian formula,

n n' n' - n-+-=--
s s' r

This equation and others developed from it form the basis of what is usually called
first-order theory.

The justification for writing sin e = e, etc., for all small angles is illustrated in
Fig. 9A and in Table 9A. For an angle of 10°, for example, the arc length (:J is only
0.5 percent greater than sin 10°, while for 40° it is about 10 percent greater. These
differences are measures of spherical aberration and, therefore, of image defects.
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Table 9A VALUES OF sin 8 AND ITS FIRST THREE EXPAN.
SION TERMS

83 85
sin 8 8 31 51

10° 0.1736482 0.1745329 0.0008861 0.0000135
20° 0.3420201 0.3490658 0.0070888 0.0000432
30° 0.5000000 0.5235988 0.0239246 0.0003280
40° 0.6427876 0.6981316 0.0567088 0.0013829

9.2 THIRD-ORDER THEORY OF ABERRATIONS

If all the sines of angles in the ray-tracing formulas [Eqs. (8a) to (8f)] are replaced
by the first two terms of the series in Eq. (9a), the resultant equations, in whatever
form they are given, represent the results of third-order theory. Thus sin e is replaced
by e - 03/3!, sin <jJ is replaced by <jJ - <jJ3/3!, etc. The resulting equations give a
reasonably accurate account of the principal aberrations.

In this theory the aberration of any ray, i.e., its deviation from the path pre-
scribed by the gaussian formulas, is expressed in terms of five sums, Sl to Ss, called
the Seidel sums. If a lens were to be free of all defects in its ability to form images, all
five of these sums would have to equal zero. No optical system can be made to satisfy
all these conditions at once. Therefore it is customary to treat each sum separately,
and the vanishing of certain ones corresponds to the absence of certain aberrations.
Thus, if for a given axial object point the Seidel sum Sl = 0, there is no spherical
aberration at the corresponding image point. If both Sl = 0 and S2 = 0, the system
will also be free of coma. If, in addition to Sl = 0 and S2 = 0, the sums S3 = 0
and S4 = 0 as well, the images will be free of astigmatism and curvature of field. If
finally Ss could be made to vanish, there would be no distortion of the image. These
aberrations are also known as the five monochromatic aberrations because they exist
for any specified color and refractive index. Additional image defects occur when the

FIGURE 9A
The arc of an angle 8 in relation to its
sine.

o

8
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FIGURE 9B
The spherical aberration in the image of an axial object point as formed by a
single spherical refracting surface.

light contains various colors. We shall first discuss each of the monochromatic
aberrations and then take up the chromatic effects.

9.3 SPHERICAL ABERRATION OF A SINGLE SURFACE

This is a term introduced in Sec. 6.8, and shown in Fig. 6K, to describe the blurring
of the image formed when parallel light is incident on a spherical mirror. A similar
blurring of the image that occurs upon refraction by spherical surfaces will now be
discussed. In Fig. 9B M is an object point on the axis of a single spherical refracting
surface, and M' is its paraxial image point. Oblique rays incident on the surface in a
zone of radius h are brought to a focus closer to, and at a distance of s~ from, the
vertex A.

The distance N'M', as shown in the diagram, is a measure of the longitudinal
spherical aberration, and its magnitude is found from the third-order formula

n n' _ n' - n [h
2
n
2
r (1 1)2(1 n' - n)J-+----+ -- -+- -+--

s s~ r 2f'n' s r r ns

Since from the paraxial-ray formula, Eq. (3b), we have

n n' n' - n-+-=--
s s; r

the right-hand bracket in Eq. (9b) is a measure of the deviations from first-order
theory. Its magnitude varies with the position of the object point and for any fixed
point is approximately proportional to h2, the square of the radius of the zone on the
refracting surface through which the rays pass.

If the object point is at infinity so that the incident rays are parallel to the axis,
as shown in Fig. 9C, this equation reduces to
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FIGURE 9C
Longitudinal spherical aberration for parallel light incident on a single spherical
refracting surface.

Again the magnitude of the aberration is proportional to h2, the square of the
height of the ray above the axis.

9.4 SPHERICAL ABERRATION OF A THIN LENS

The existence of spherical aberration for a single spherical surface indicates that it
may also occur in combinations of such surfaces, e.g., in a thin lens. Since many of the
lenses in optical instruments are used to focus parallel incident or emergent rays, it is
usual for comparison purposes to determine the spherical aberration for parallel
incident light. Figure 9D(a) illustrates this special case and shows the position of the
paraxial focal point F' as well as the focal points A, B, and C for zones of increasing
diameter. Diagram (b) in Fig. 9D illustrates the difference between longitudinal
spherical aberration, abbreviated Long. SA, and lateral spherical aberration, abbrevi-
ated Lat. SA.

As a measure of the actual magnitudes involved in longitudinal spherical aber-
ration, we can use the figures calculated by ray-tracing methods for some of the
lenses in the preceding chapter. For example, the focal lengths for three zones of a
double convex lens can be taken from Table 8B. The results are + 11.52000 em for
paraxial rays, + 11.11555 cm for rays from zone h = 2.0 cm, +9.72786 cm from
zone h = 4.0 cm, and +6.42816 cm from zone h = 6.0 cm. These give a longitudinal
spherical aberration of + 1.79214 cm for the 4.0-cm zone, or about 15.6 percent of
the paraxial focal length. A graph showing this variation of focal length with zone
radius is given in Fig. 9E(a). For small h the curve approximates a parabola, and since
the marginal rays intersect the axis to the left of the paraxial focal point, the spherical
aberration is said to be positive. A similar curve, drawn for a typical double concave
lens of nearly the same dimensions, is shown in Fig. 9E(b). Bending to the right, this
lens is said to have negative spherical aberration.

A series of positive lenses of the same diameter and paraxial focal length but of
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FIGURE 90
Illustrations of lateral and longitudinal spherical aberration of a lens.

Lat. SA

different shape is presented in Fig. 9F(a). The alteration of shape represented in this
series is known as bending the lens. Each lens is labeled by a number q called its
shape facto" defined by the formula

• '2 + '1q=--
'2 - '1

(9d)

As an example, if the two radii of a converging meniscus lens are '1
and '2 = - 5.0 cm, it has a shape factor

-5 - 15
q=---= -2

-5 + 15

-15.0 cm

The usual reason for considering the bending of a lens is to find that shape for which
the spherical aberration is a minimum. That such a minimum exists is shown by the
graphs of Fig. 9F(b). These curves are drawn for the same lenses as shown in (a),
and the values were taken from Table 9B. They were calculated by the ray-tracing
methods of Table 8B. It will be noted that lens 5, for which the shape factor q is
+0.5, has the least spherical aberration. The amount of this aberration for the ray
having h = 1.0 cm is shown for the same series of lenses by the curves of Fig. 90.
Over the range of shape factors from about q = +0.4 to q = + 1.0 the spherical
aberration varies only slightly, since it is close to a minimum. At no point, however,
does it go to zero. We see therefore that by choosing the proper radii for the two
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FIGURE 9E
Change in focal length of two glass lenses in air: (a) double convex and (b) double
concave.
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FIGURE 9F
(a) Lenses of different shapes but with the same power or focal length. The
difference is one of bending. (b) Focal length versus ray height h for these lenses.

surfaces of a lens the spherical aberration can be reduced to a minimum but cannot
be made to vanish completely.

Reference to the diagrams of Fig. 9D will show that with spherical surfaces the
marginal rays are deviated through too large an angle. Hence any reduction of this
deviation will improve the sharpness of the image. The existence of a condition of
minimum deviation in a prism (Sec. 2.8) clearly indicates that when the shape of a
lens is changed, the deviation of the marginal rays will be least when they enter the
first lens surface and leave the second at more or less equal angles. Such an equal
division of refraction will yield the smallest spherical aberration. For parallel light
incident on a crown-glass lens, this appears from Fig. 9G to occur at a shape factor
of about q = +0.7, not greatly different from the plano-convex lens, for which
q = +1.0.

Spherical aberration can be completely eliminated for a single lens by aspherizing.
This is a tedious hand-polishing process by which various zones of one or both lens
surfaces are given different curvatures. For only a few special instruments are such
lenses useful enough to justify the added expense of hand figuring. Furthermore,
since it is figured for only one object distance, such a lens is not free from spherical
aberration for other distances. The most common practice in lens design is to adhere
to the simple spherical surfaces and to reduce the spherical aberration by a proper
choice of radii.
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FIGURE 9G
A graph of the spherical aberration for lenses of different shape but the same
focal length. For the lenses shown h = 1 em, f = +10 em, d = 2 em, and
n' = 1.51700.

9.5 RESULTS OF THIRD-ORDER THEORY

Although the derivation of an equation for spherical aberration from third-order
theory is too lengthy to be given here, some of the resulting equations are of interest.
For a thin lens we have the reasonably simple formula

• h2 1L =----
• 8/3 n(n - 1)

[
n_+_2 q2 + 4(n + l)pq + (3n + 2)(n _ l)p2 + _n

3_J
n-l n-l

(ge)

1 1
where L. = ;; - ;;

h p

As shown in Fig. 9D(b), s~ is the image distance for an oblique ray traversing the lens
at a distance h from the axis, s; is the image distance for paraxial rays, and / the
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paraxial focal length. The constant p is called the position factor, and q is the shape
factor defined by Eq. (9d). The position factor is defined as

• s' - s
p=--

s' + s
(9f)

Making use of the first-order equation Iff = lis + lis', the position factor may also
be expressed in terms off as

p = 2f _ 1 = 1 _ 2f (9g)
s s'

The difference between the two image distances, s; - s~,is called the longitudinal
spherical aberration:

Long. SA = s~ - s~

The intercept of the oblique ray with the paraxial focal plane is the lateral
spherical aberration and from Fig. 9D(b) is seen to be given by

Lat. SA = (s; - s~) tan (J'

If we solve Eq. (ge) for the difference s; - s~,we obtain

• Long. SA = s;s~L. and Lat. SA = s;1IL. (9h)

The image distance s~ for any ray through any zone is given by

A comparison of the third-order theory with the exact results of ray tracing is in-
cluded in Fig. 9G. When the shape factor is not far from that corresponding to the
minimum, the agreement is remarkably good. The numerical results of third-order
theory for the seven lenses of Fig. 9F are presented in the last column of Table 9B.

Equations useful in lens design are obtained by finding the shape factor that

Table 9B SPHERICAL ABERRATION OF LENSES HAVING THE SAME
FOCAL LENGTH BUT DIFFERENT SHAPES q
Lens thickness = 1 em f = 10 em n = 1.5000 h = 1 em

Ray Third-order
Shape of lens Tl T2 q tracing theory

Concavo-convex -10.000 - 3.333 -2.00 0.92 0.88
Plano-convex ao - 5.000 -1.00 0.45 0.43
Double convex 20.000 - 6.666 -0.50 0.26 0.26
Equiconvex 10.000 -10.000 0 0.15 0.15
Double convex 6.666 -20.000 +0.50 0.10 0.10
Plano-convex 5.000 ao + 1.00 0.11 0.11
Concavo-convex 3.333 10.000 +2.00 0.27 0.29
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will make Eq. (ge) a minimum. This may be done by differentiating with respect to
the shape factor and equating to zero:

dL. h2 2(n + 2)q + 4(n - 1)(n + l)p
dq = 8/3 n(n - 1)2

Equating to zero and solving for q, we obtain

• q= 2(n2 - l)p
n+2

(9i)

as the required relation between shape and position factors to produce minimum
spherical aberration. As a rule a lens is designed for some particular pair of object
and image distances so that p can be calculated from Eq. (9f). For a lens of a given n
the shape factor that will produce a minimum lateral spherical aberration can be
obtained at once from Eq. (9i). In order to determine the radii that will correspond
to such a calculated shape factor and still yield the proper focal length, one can then
use the lens maker's formula

!+ ~ = (n - 1) (.!. - .!.) = !
s S '1 '2 /

Substitution of values of s, s' and '1> '2 from Eqs. (9g) and (9d) gives the following
useful set of equations, due to Coddington:

s =-.l:L
l+p
2/(n - 1)'1=----q + 1

s' = -.l:L
I-p
2/(n - 1)'2 = ----q - 1

(9j)

The last two relations give the radii in terms of q and f Division of one of these
by the other gives

(9k)'1 q - 1-=--'2 q + 1

As a problem let us suppose that a single lens is to be made with a focal length
of 10.0 cm and that we wish to find the radii of the surfaces which will give the
minimum spherical aberration for parallel incident light. For simplicity we shall
assume that the glass has an index n = 1.50. In using Eq. (9i) the position factor p
and the shape factor q must first be determined. Substitution of s = 00 and s' =
10.0 cm in Eq. (9f) gives

•

10-00
p=---=-1

10 + 00

It can be seen that if s is not infinite but is allowed to approach infinity, the ratio
(s' + s)/(s' - s) will approach the value -1 and will in the limit be equal to this.
Substituting this position factor in Eq. (9i), we obtain

q = _ 2(2.25 - 1)(-1) = 2.5 = 0.714
1.5 + 2 3.5
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This value falls at the minimum of the curve of Fig. 9G. The ratio of the two radii
is given by Eq. (9k) as

~ = 0.714 - 1 = -0.286 = -0.167
'2 0.714 + 1 1.714

The negative sign means that the surfaces curve in opposite directions, and the
numerical value indicates a ratio of the radii of about 6: 1. Their individual values
are found from Eq. (9j) to be

10'1 = -- = 5.83 cm
1.714

and 10'2 = -- = -35.0 cm
0.286

Such a lens lies between lenses 5 and 6 in Fig. 9F and has essentially the same
amount of spherical aberration as either one. For this reason plano-convex lenses are
often employed in optical instruments with the convex side facing the parallel incident
rays. Should such a lens be turned around so that the flat side is toward the incident
light, its shape factor becomes q = - 1.0 and the spherical aberration increases about
fourfold.

Although spherical aberration cannot be entirely eliminated for a single
spherical lens, it is possible to do so for a combination of two or more lenses of
opposite sign. The amount of spherical aberration introduced by one lens of such a
combination must be equal and opposite to that introduced by the other. If, for
example, the doublet is to have a positive power and no spherical aberration, the
positive lens should have the greater power and its shape should be at or near that
for minimum spherical aberration, while the negative lens should have a smaller
power and its shape should not be near that for the minimum. Neutralization by
such an arrangement is possible because spherical aberration varies as the cube of the
focal length, and therefore changes sign with the sign ofj[see Eq. (ge)]. In a cemented
lens of two elements, the two interfaces should have the same radius. The other two
may then be varied and used to correct for spherical aberration. With four radii
to manipulate, other aberrations like chromatic aberration can be reduced at the
same time. This subject will be considered in Sec. 9.13.

9.6 FIFTH-ORDER SPHERICAL ABERRATION

The two curves that were given in Fig. 9G show that, for a lens having a shape factor
anywhere near the optimum, the agreement between the exact results of ray tracing
and the approximate results of third-order theory is remarkably good. For larger
values of h, however, and for shapes further removed from the optimum appreciable
differences occur. This indicates the necessity of including the fifth-order terms in the
theory. The third-order equation (ge) shows that spherical aberration should be
proportional to h2, so that the curves in Fig. 9F(b) should be parabolas. Nevertheless
accurate measurements show that for larger h departures from proportionality to h2
do occur and that spherical aberration is more closely represented by an equation
of the form

Long. SA = ah2 + bh4 (91)
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where a and b are constants. The term ah2 represents the third-order effect and bh4

the fifth-order effect. Some numerical results for a single lens, indicating the necessity
for the inclusion of the latter term, are shown in Table 9C. The boldface values in the
fourth row are the true values for longitudinal spherical aberration, obtained by ray.
tracing methods, while those in the last row correspond to a parabola that has been
fitted at h = 1.0 cm to the equation

Long. SA = a' h2
with af = 0.11530 cm-I•

The first row gives the third-order corrections ah2 and the second row the fifth.
order corrections bh4• The third row contains the values calculated from Eq. (91)by
fitting the curve at the two points h = 1.0 cm and h = 2.0 cm. Assuming the values
0.11530 and 0.48208 at these points, the constants become

a = 0.11356 and b = 0.00174

A comparison of the totals in the third row with the correct values in the fourth row
reveals the excellent agreement of the latter with Eq. (91). Graphs of the values in
rows 2 and 3 are given in Fig. 9H and show the negligible contribution of the fifth-
order correction at small values of h. If only the third-order aberration were present
in a lens, it would be possible to combine a positive and a negative lens having equal
aberrations to obtain a combination corrected for all zones. Because they actually
would have different amounts of fifth-order aberration, however, such a combination
can be corrected for one zone only.

A graph illustrating the spherical aberration of a cemented doublet which is
corrected for the marginal zone is shown in Fig. 9H(c). It will be seen that the curve
comes to zero only at the origin and at the margin. The combination becomes badly
overcorrected if the aperture is further increased. The plane of best focus lies a little
to the left of the paraxial and marginal focal points, and its position (the vertical
broken line) corresponds to that of the circle of least conf~sion.

Let a and b in Eq. (91)represent the constants for a thin-lens doublet. If the
combination is to be corrected at the margin, i.e., for a ray at the height hm, we must
have

or

Long. SA = ahm2 + bhm 4 = 0

a = -bhm
2

Table 9C FIFIH-ORDER CORRECTION TO SPHERICAL ABERRATION
f= to.Oem '1 = +5.0 em '2 = 00 n = 1.500 d = 1.0 em

Row h,em 0.5 1.0 1.5 2.0 2.5 3.0

1 ah2 0.02839 0.11356 0.25551 0.45424 0.70975 1.02204
2 bh4 0.00011 0.00174 0.00881 0.02784 0.06797 0.14094
3 ah2 + bh4 0.02850 0.11530 0.26432 0.48208 0.77772 1.16928
4 Ray tracing 0.02897 0.11530 0.26515 0.48208 0.77973 1.16781
5 Parabola 0.02882 0.11530 0.25942 0.46120 0.71812 1.03770
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FIGURE 9H
(a) Third-order and (b) fifth-order contributions to longitudinal spherical aberra-
tion. (c) Longitudinal spherical aberration of a corrected doublet as used in
telescopes.

Substitution in Eq. (91)yields
Long. SA = - bhm 2h2 + bh4

where hm is fixed and h may take any value between 0 and hm• To find where this
expression has a maximum value, we differentiate with respect to h and equate to
zero, as follows:

d(Long. SA) = -2bh 2h + 4bh3 = 0
dh m

Dividing by - 2bh, we obtain

as the radius ofthe zone at which the aberration reaches a maximum [see Fig. 9H(c)].
In lens design spherical aberration is always investigated by tracing a ray through the
combination for the zone of radius O.707hm•

9.7 COMA

The second of the monochromatic aberrations of third-order theory is called coma.
It derives its name from the !cometlike appearance of the image of an object point
located just off the lens axis. Although the lens may be corrected for spherical
aberration and may bring all rays to a good focus on the axis, the quality of the
images of points just off the axis will not be sharp unless the lens is also corrected for
coma. Figure 91 illustrates this lens defect for a single object point infinitely distant
and off the axis. Of the fan of rays in the meridian plane that is shown, only those
through the center of the lens form an image at A'. Two rays through the margin
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FIGURE 91
Coma, the second of the five monochromatic aberrations of a lens. Only the
tangential fan of rays is shown.

(9m)•

come together at B'. Thus it appears that the magnification is different for different
parts of the lens. If the magnification for the outer rays through a lens is greater than
that for the central rays, the coma is said to be positive, while if the reverse is true as
in the diagram, the coma is said to be negative.

The shape of the image of an off-axis object point is shown at the upper right in
Fig. 91. Each of the circles represents an image from a different zone of the lens.
Details of the formation of the comatic circle by the light from one zone of the lens
are shown in Fig. 9J. Rays 1, which correspond to the tangential rays B in Fig. 91,
cross at 1 on the comatic circle, while rays 3, called the sagittal rays, cross at the top
of that circle. In general all points on a coma tic circle are formed by the crossing of
pairs of rays passing through two diametrically opposite points of the same zone.
Third-order theory shows that the radius of a comatic circle is given by

'h2
C, = ~ (Gp + Wq)

f
where j, h, and fare the distances indicated in Fig. 9K(a) and p and q are the Codding-
ton position and shape factors given by Eqs. (9f) and (9d). The other two constants
are defined as

• G = 3(2n + 1)
4n

and W = 3(n + 1)
4n(n - 1)

FIGURE 9J
Each zone of a lens forms a ring-shaped
image called a comatic circle.



164 FUNDAMENTALS OF OPTICS

(a)

z

z

z

FIGURE 9K
Geometry of coma, showing the relative magnitudes of sagittal and tangential
magnifications.

The shape of the comatic figure is given by

y = Cs(2 + cos 2"') z = Cs sin 2'"
which shows that the tangential coma CT is three times the sagittal coma Cs [see
Fig. 9K(b)]. Thus

CT = 3Cs
To see how coma is affected by changing the shape of a lens a graph of the height

of the comatic figure CT is plotted against the shape factor q in Fig. 9L. The numerical
values plotted in this graph are calculated from Eq. (9m) and listed in Table 9D.

A parallel beam of light is assumed to be incident on the lens at an angle of 110
with the axis. The values of the longitudinal spherical aberration, given for com-
parison purposes, are also calculated from third-order theory, Eq. (ge), and assume

Table 9D COMPARISON OF COMA AND SPHERICAL
ABERRATION FOR LENSES OF THE SAME
FOCAL LENGTH BUT DIFFERENT SHAPE
FACTOR
h = 1.0 em f = + 10.0em y = 2.0 em
n = 1.5000

Shape Spherical
Shape of lens factor Coma,cm aberration, em

Concavo-convex -2.0 -0.0420 +0.88
Plano-convex -1.0 -0.0270 +0.43
Double convex -0.5 -0.0195 +0.26
Equiconvex 0 -0.0120 +0.15
Double convex +0.5 -0.0045 +0.10
Plano-convex +1.0 +0.0030 +0.11
Concavo-convex +2.0 +0.0180 +0.29
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FIGURE 9L
Graphs comparing coma with longitudinal spherical aberration for a series of
lenses having different shapes.

parallel light incident on the lens parallel to the axis and passing through the same
zone.

The fact that the line representing coma crosses the zero axis indicates that a
single lens can be made that is entirely free of this aberration. It is important to note,
for the lenses shown, that the shape factor q = 0.800 for no coma is so near the shape
factor q = 0.714 for minimum spherical aberration that a single lens designed for
CT = 0 will have practically the minimum amount of spherical aberration.

In order to calculate the value of q that will make Eq. (9m) vanish, Cs is set
equal to zero. There results

• G
q= --p

W
(9n)

If the shape and position factors of a single lens obey this relation, the lens is coma-
free. A doublet designed to correct for spherical aberration can at the same time be
corrected for coma. A graph showing the residual spherical aberration and coma for
a telescope objective is given in Fig. 9M.
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FIGURE 9M
Curves for a cemented doublet, showing
the variable position of the focal point
F' (longitudinal spherical aberration)
and the variable focallengthf' (coma =
H'F' - f,). 9.90 9.95

1
h
I

Axis
I

10.0 10.05

9.8 APLANATIC POINTS OF A SPHERICAL SURFACE

An optical system free of both spherical aberration and coma is said to be aplanatic.
An aplanatic lens can also be found for any particular pair of conjugate points, al-
though in general it will need to be an asphericallens. Except for a few special cases,
no lens combination with spherical surfaces is completely free of both these
aberrations.

One special case which is of considerable importance in microscopy is that of a
single spherical refracting surface. To demonstrate the existence of aplanatic points
for a single surface, a useful construction, originally discovered by Huygens, will first
be described. In Fig. 9N(a) the ray RT represents any ray in the first medium, of
index n, incident on the surface at T and making an angle </J with the normal NC.
Around C as a center and with radii

n'P = T-
n

and , n
P = T-

n'
(90)

the broken circular arcs are drawn as shown. Where RT, when produced, intersects
the larger circle, a line JC is drawn, and this intersects the smaller circle at K. Then
TK gives the direction of the refracted ray in accordance with the law of refraction. *
Furthermore any ray whatever directed toward J will be refracted through K.

The aplanatic points of a single surface are located where the two construction
circles cross the axis [see Fig. 9N(b)]. All rays initially traveling toward M will pass
through M', and similarly all rays diverging from M' will after refraction appear to
originate at M. The application of this principle to a microscope is illustrated in
Fig. 90. A drop of oil having the same index as the hemispherical lens is placed on the
microscope slide and the lens lowered into contact as shown. All rays from an object

* For a proof of this proposition, see J. P. C. Southall, "Mirrors, Prisms, and Lenses,"
3d ed., p. 512, The Macmillan Company, New York, 1936.
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FIGURE 9N
(a) A graphical construction for refraction at a single spherical surface; p = rn'ln,
and p' = rnln'. (b) Location of the aplanatic points of a single spherical surface.

at M leave the hemispherical surface after refraction as though they came from M',
and this introduces a lateral magnification of M'A/MA. If a second lens is added
which has the center of its concave surface at M' (and therefore is normal to all rays),
refraction at its upper surface, of radius n' x CM', will give added magnification
without introducing spherical aberration. This property of the upper lens, however,
holds strictly only for rays from the single point M, and not for points adjacent to it.
There is a limit to this process which is set by chromatic aberration (see Sec. 9.13).

9.9 ASTIGMATISM

If the first two Seidel sums vanish, all rays from points on or very close to the axis of a
lens will form point images and there will be no spherical aberration or coma. When
the object point lies at some distance away from the axis, however, a point image will
be formed only if the third sum 83 is zero. If the lens fails to satisfy this third con-
dition, it is said to be afflicted with astigmatism, and the resulting blurred images
are said to be astigmatic. The formation of real astigmatic images from a concave
spherical mirror is discussed in Sec. 6.9. To help understand the formation of astig-
matic images by a lens, a ray diagram has been drawn in perspective in Fig. 9P(a).
Considering the rays from a point object Q, all those in the fan contained in the vertical
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FIGURE 90
Aplanatic surfaces of the first elements
of an oil-immersion microscope objec-
tive.

(4)

FIGURE 9P
(a) Perspective diagram ShO"Ul~ me two focal lines which constitute the image
of an off-axis object point Q. (b) Loci of the tangential and sagittal images.
The two surfaces approximate paraboloids of revolution.
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or tangential plane cross at T,while the fan of rays in the horizontal or sagittal plane
crosses at S. The tangential and sagittal planes intersect the lens in RS. and JK,
respectively. Rays in these planes are chosen because they locate the two local lines
T and S formed by all rays going through the lens. These are perpendicular to their
respective tangential and sagittal planes. At L the image is approximately disk-
shaped, and constitutes the circle of least confusion for this case.

If the positions of the T and S images are determined for a wide field of distant
object points, their loci will form paraboloidal surfaces whose sections are shown in
Fig. 9P(b). The amount of astigmatism, or astigmatic difference, for any pencil of
rays is given by the distance between these two surfaces measured along the chief
ray. On the axis, where the two surfaces come together, the astigmatic difference is
zero; away from the axis it increases approximately as the square of the image height.
Astigmatism is said to be positive when the T surface lies to the left of S, as shown in
the diagram. It should be noted that for a concave mirror (Fig. 60), the sagittal
surface is a plane coinciding with the paraxial focal plane.

If (as in Fig. 9Q) the object is a spoked wheel in a plane perpendicular to the
axis with its center at M, the rim would be found to be in focus on the T surface
while the spokes would be in focus on the S surface. It is for this reason that the
terms tangential and sagittal are applied to the planes and images. On the surface
T all images will be lines parallel to the rim as shown at the left in Fig. 9Q, while
on the surface S all images will be lines parallel to the spokes as shown at the right.

Equations giving the astigmatic image distances for a single refracting surface
are*

n cosz c/J n' cosz c/J' n' cos c/J'- n cos c/J--- + --- = ------
s ST r

n n' n' cos c/J'- n cos c/J-+-=------
S S8 r

(9p)

where c/Jand c/J'are the angles of incidence and refraction of the chief ray, r the radius
of curvature, s the object distance, and Sr and Ss the T and S image distances, the
latter being measured along the chief ray. For a spherical mirror these equations
reduce to

111-+-=--
5 5;' Icos c/J

and 1 1 cos c/J-+-=--
5 Ss I

Coddington has shown that for a thin lens in air with an aperture stop at the lens,
the positions of the tangential and sagittal images are given by

1 1 1 (n cos c/J' 1)(1 1)
; + ~ = cos c/J cos c/J - r1 - rZ

!+ ~ = cos c/J(n_co_s_c/J_'- 1)("!' - ..!.)
5 5s cos c/J r1 rz

(9q)

* For a derivation of these formulas see G. S. Monk, "Light, Principles and Experi-
ments," Dover Publications, Inc., New York, 1963.
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FIGURE 9Q
Astigmatic images of a spoked wheel.

T s

The angle t/J is the angle of obliquity of the incident chief rays, and t/J' the angle of
this ray within the lens. Therefore n = sin t/J/sin t/J'. The application of these formulas
to thin lenses shows that the astigmatism is approximately proportional to the focal
length and is very little improved by changing the shape.

Although a contact doublet composed of one positive and one negative lens
shows considerable astigmatism, the introduction of another element consisting of a
stop or a lens can be made to greatly reduce it. By the proper spacing of the lens
elements of any optical system or by the proper location of a stop if one is used, the
curvature of the astigmatic image surfaces can be changed considerably. Four
important stages in the flattening of the astigmatic surfaces due to these alterations
are shown in Fig. 9R. Diagram (a) represents the normal shape of the T and S
surfaces for a contact doublet or a single lens. In diagram (b) the separation of lens
elements is such that the two surfaces fall together at P. Further alteration of the
lens shapes and their spacing can be made and the T and S curves straightened, as in
diagram (c), or moved still farther apart until they are bisected by the normal plane
through the focal point F', as in diagram (d). Of these four arrangements, only the
second is free of astigmatism. The single paraboloidal surface P, over which point
images are formed, is called the Petzval surface.

9.10 CURVATURE OF FIELD

If for an optical system the first three Seidel sums are zero, the system will form point
images of point objects on as well as off the axis. Under these circumstances the
images fall on the curved Petzval surface where the tangential and sagittal surfaces
come together, as in Fig. 9R(b). Even though astigmatism is corrected for such a
system, the focal surface is curved. If a flat screen is placed in position B, the center
of the field will be in sharp focus but the edges will be quite blurred. With a screen
at A, the center of the field and the field margins will be blurred, while sharp focus
will be obtained about halfway out.

Mathematically a Petzval surface exists for every optical system, and if the
powers and refractive indices of the lenses remain fixed, the shape of the Petzval
surface cannot be changed by altering the shape factors of the lenses or their spacing.
Such alterations, however, will change the shapes of the T and S surfaces, but always
in such a way that the ratio of the distances PT and PS is 3 : l. It will be noted that
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FIGURE 9R
Diagrams showing the astigmatic surfaces T and S in relation to the fixed
Petzval surface P as the spacing between lenses (or between lens and stop) is
changed.

this ratio is maintained throughout Fig. 9R. If a system is designed to make the
T surface fiat, as in Fig. 9R(c), the 3: I ratio of distances requires the S surface to
be curved, but not strongly so. If a screen is placed at a compromise position A, the
images over the entire field will be in reasonably good focus. This condition of
correction is commonly used for certain types of photographic lenses. If more
negative astigmatism is introduced, the condition shown in Fig. 9R(d) is reached, in
which the T surface is convex and the S surface is concave by an equal amount. In
this case a screen placed at the paraxial focus will show considerable blurring at the
field edges.

Curvature of field can be corrected for a single lens by means of a stop. Acting
as a second element of the system, a stop limits the rays from each object point in
such a way that the paths of the chief rays from different points go through different
parts of the lens [Fig. 9S(a)J. Certain manufacturers of inexpensive box cameras
employ a single meniscus lens and a stop and with them obtain reasonably good
images. The stop is located in front of the lens, with the light incident on the concave
surface. Although the compromise field is flat and sharp focus is obtained at the
center, astigmatism gives rise to blurred images at the margins.

In complex lens systems it is possible, because of differences in third- and fifth.
order corrections, to control the astigmatism and cause the tangential and sagittal
surfaces to come together at an outer zone as well as at the center of the field. Typical
curves for the camera objective called an anastigmat are shown in Fig. 9S(b). Ex-
perience has shown that the best state of correction is obtained by making the crossover
point, called the node, occur at a relatively short distance in front of the focal plane.

9.11 DISTORTION

Even if an optical system were designed so that the first four Seidel sums were zero,
it could still be affected by the fifth aberration known as distortion. To be free
of distortion a system must have uniform lateral magnification over its entire field.
A pinhole camera is ideal in this respect, for it shows no distortion; all straight lines
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FIGURE 9S
(a) A properly located stop may be used to reduce field curvature. (b) Astigmatic
surfaces for an anastigmat camera lens.

connecting each pair of conjugate points in the object and image planes pass through
the opening. Constant magnification for a pinhole camera as well as for a lens implies,
as may be seen from Fig. 9T(a), that

tan l/J'
-- = const
tan l/J

The common forms of image distortion produced by lenses are illustrated in the lower
part of Fig. 9T. Diagram (b) represents the undistorted image of an object consisting
of a rectangular wire mesh. The second diagram shows barrel distortion, which arises
when the magnification decreases toward the edge of the field. The third diagram
represents pincushion distortion, corresponding to a greater magnification at the
borders.

A single thin lens is practically free of distortion for all object distances. It
cannot, however, be free of all the other aberrations at the same time. If a stop is
placed in front of or behind a thin lens, distortion is invariably introduced; if it is
placed at the lens, there is no distortion. Frequently in the design of good camera
lenses astigmatism, as well as distortion, is corrected for by a nearly symmetrical
arrangement of two lens elements with a stop between them.

To illustrate the principles involved, consider the lens shown in Fig. 9U(a),
which has a front stop. Rays from object points likeM, at or near the axis, go through
the central part of the lens, while rays from off-axis object points like Q2 are refracted
only by the upper half. In the latter case the stop decreases the ratio of image to object
distances measured along the chief ray, thereby reducing the lateral magnification
below that obtaining for object points near the axis. This system therefore suffers
from barrel distortion. When the lens and stop are turned around, as in Fig. 9U(b),
the ratio of image to object distances is seen to increase as the object point lies farther
off the axis. The result is increased magnification and pincushion distortion.

By combining two identical lenses with a stop midway between them as in Fig.
9U(c), a system is obtained which because of its symmetry is free from distortion for
unit magnification. With other magnifications, however, the lenses must be corrected
for spherical aberration with respect to the entrance and exit pupils. These two pupils
S' and S" coincide with the principal planes of the combination. Such a corrected
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(b) (c) (d)

FIGURE 9T
(a) A pinhole camera shows no distortion. Images of a rectangular object screen
shown with (b) no distortion, (c) barrel distortion, and (d) pincushion distortion.

lens system is calJed an orthoscopic doublet, or rapid rectilinear lens. Because this
combination cannot be corrected for spherical aberration for the object and image
planes and for the entrance and exit pupils at the same time, the lens suffers from this
aberration as well as from astigmatism. Photographic lenses of this type are discussed
in Sec. 10.5.

Summarizing very briefly the various methods of correcting for aberrations,
spherical aberration and coma can be corrected by using a contact doublet of the
proper shape; astigmatism and curvature of field require for their correction the use
of several separated components; and distortion can be minimized by the proper
placement of a stop.

9.12 THE SINE THEOREM AND ABBE'S SINE CONDITIONS

In Chap. 3 it was found that the lateral magnification produced by a single spherical
surface is given by the relation

y' s' - r
m=-=----

y s + r

This equation folJows from the similarity of triangles MQC and M'Q'C in Fig. 3F.
From Eq. (8a) we obtain the exact relation

sin A..
s+r=r--'I'

sin {1
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FIGURE 9U
(a) A stop in front of a lens giving rise to barrel distortion. (b) A stop behind a
lens giving rise to pincushion distortion. (c) A symmetrical doublet with a stop
between is relatively free of distortion.

and from Eq. (8d) , sin 4>'s - r= -r--
sin (}'

If we substitute these two equations in the first equation, we obtain

y' sin 4>' sin (}
-=-----
y sin (}'sin 4>

According to Snell's law
sin 4>' n--=-
sin 4> n'

which upon substitution gives
y' n sin (}
-=---

or

y n' sin (}'
ny sin (}= n' y' sin (}' Sine theorem
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FIGURE 9V
Refraction at a spherical surface illustrating the sine theorem as it applies to coma.

Here y and y' are the object and image heights, nand n' are the indices of the object
and image spaces, and 0 and 0' are the slope angles of the ray in these two spaces,
respectively (see Fig. 9V). This very general theorem applies to all rays, no matter
how large the angles 0 and 0' may be.

For paraxial rays where 0 and 0' are both small, sin 0 and sin 0' can be replaced
by Op and Op, respectively, to give

nyOp = n'y'Op Lagrange theorem

a relation referred to as the Lagrange theorem. In both these theorems all quantities
on the left side refer to object space, while those on the right side refer to image space.

Figure 9V shows a pair of sagittal rays QR and QS from the object point Q
through one zone of a single refracting surface. These two particular rays, after
refraction, come to a focus at a point Qs on the auxiliary axis. On the other hand,
a pair of tangential rays QT and QU through the same zone come to a focus at QT'
while paraxial rays come to a focus at Q;. Because of the general spherical aberration
and astigmatism of the single surface the paraxial, the sagittal, and the tangential
focal planes do not coincide. The conventional comatic figure shown at the right in
Fig. 9V arises only in the absence of spherical aberration and astigmatism.

Since coma is confined to lateral displacements in the image in which y and y'
are relatively small, we can neglect astigmatism and apply the above theorems to the
single surface as follows: Note that 0 and 0' for the object point Q, which are the
slope angles of the zonal rays QS and QsS relative to the chief ray (cr), are virtually
equal to the slope angles of the rays from the axial object point M through the same
zone of the surface. We can therefore apply the sine theorem to find the sagittal
image magnification for any zone and obtain

ms = Ys = n sin 0
y n' sin 0'

where Ys = QsMs, in Fig. 9V.
To show that the sine theorem and the Lagrange theorem can be extended to a

complete optical system containing two or more lens surfaces, we recognize that in
the image space of the first lens surface the two products are n~y~ sin O~ and n~y~Op1>
respectively. These products are identical for the object space of the second surface
because n~ = n2, y~ = Y2, and O~ = O2; hence the products are invariant for all
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(9r)Sine condition

the spaces in the system including the original object space and the final image space.
This is a most important property.

Now for a complete system to be free of coma and spherical aberration it must
satisfy a relation known as the sine condition. This is a condition discovered by
Abbe, in which the magnification for each zone of the system is the same as for
paraxial rays. In other words, if in the final image space y~ = y', and m. = m, we
may combine the two preceding equations and obtain

sin (J (Jp
-- = - = const
sin (J' (J;'

Any optical system is therefore free of coma, if in the absence of spherical
aberration (sin O)/(sin0') = const for all values of O. In lens design coma is sometimes
tested for by plotting the ratio (sin O)/(sin (J') against the height of the incident ray.
Because most lenses are used with parallel incident or emergent light, it is customary
to replace sin (J by h, the height of the ray above the axis, and to write the sine con-
dition in the special form

h-- = const (9s)
sin 0'

The ray diagram in Fig. 9W shows that the constant in this equation is the focal
distance measured along the image ray, which we here call1'. To prevent coma, I'
must be the same for all values of h. Since freedom from spherical aberration requires
that all rays cross the axis at F', an accompanying freedom from coma requires that
the principal "plane" be a spherical surface (represented by the dotted line in the
figure) of radius 1'. It is thus seen that whereas spherical aberration is concerned
with the crossing of the rays at the focal point, coma is concerned with the shape of
the principal surface. It should be noted that the aplanatic points of a single spherical
surface (see Sec. 9.8) are unique in that they are entirely free of spherical aberration
and coma and satisfy the sine condition exactly.

9.13 CHROMATIC ABERRATION

In the discussion of the third-order theory given in the preceding sections, no account
has been taken of the change of refractive index with color. The assumption that n is
constant amounts to investigating the behavior of the lens for monochromatic light
only. Because the refractive index of all transparent media varies with color, a single
lens forms not only one image of an object but a series of images, one for each color
of light present in the beam. Such a series of colored images of an infinitely distant
object point on the axis of the lens is represented diagramatically in Fig. 9X(a). The
prismatic action of the lens, which increases toward its edge, is such as to cause dis-
persion and to bring the violet light to a focus nearest to the lens.

As a consequence of the variation of focal length of a lens with color, the lateral
magnification must vary as well. This may be seen by the diagram of Fig. 9X(c),
which shows only the red and violet image heights of an off-axis object point Q. The
horizontal distance between the axial images is called axial or longitudinal chromatic
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FIGURE9W
For a lens to be free of spherical aberra-
tion and coma the principal surface
should be spherical and of radius f'.

aberration, while the vertical difference in height is called lateral chromatic aberration.
Because these aberrations are often comparable in magnitude with the Seidel
aberrations, correction for both lateral and longitudinal color is of considerable
importance. As an indication of relative magnitudes, it may be noted that the
longitudinal chromatic aberration of an equiconvex lens of spectacle crown glass
having a focal length of 10.0cm and a diameter of 3.0 cm is exactly the same (2.50 mm)
as the spherical aberration of marginal rays in the same lens.

While there are several general methods for correcting chromatic aberration,
the method of employing two thin lenses in contact, one made of crown glass and the
other of flint glass, is the commonest and will be considered first. The usual form of
such an achromatic doublet is shown in Fig. 9X(b). The crown-glass lens, which has a
large positive power, has the same dispersion as the flint-glass lens, for which the
power is smaller and negative. The combined power is therefore positive, while
the dispersion is neutralized, thereby bringing all colors to approximately the same
focus. The possibility of achromatizing such a combination rests upon the fact that
the dispersions produced by different kinds of glass are not proportional to the
deviations they produce (Sec. 1.4). In other words, the dispersive powers l/v differ
for different materials.

Typical dispersion curves showing the variation of n with color are plotted for a
number of common optical glasses in Fig. 9Y, and the actual values of the index n
for the different Fraunhofer lines are presented in Table 9E. The peak of the visual

Table 9E REFRACTIVE INDICES OF TYPICAL OPTICAL MEDIA FOR FOUR
COLORS

Desig- ICT
Medium nation type nc no nF no

Borosilicate crown BSC 500/664 66.4 1.49776 1.50000 1.50529 1.50937
Borosilicate crown BSC-2 517/645 64.5 1.51462 1.51700 1.52264 1.52708
Spectacle crown SPC-I 523/587 58.7 1.52042 1.52300 1.52933 1.53435
Light barium crown LBC-I 541/599 59.7 1.53828 1.54100 1.54735 1.55249
Telescope flint TF 530/516 51.6 1.52762 1.53050 1.53790 1.54379
Dense barium flint DBF 670/475 47.5 1.66650 1.67050 1.68059 1.68882
Light flint LF 576/412 41.2 1.57208 1.57600 1.58606 1.59441
Dense flint DF-2 617/366 36.6 1.61216 1.61700 1.62901 1.63923
Dense flint DF-4 649/338 33.9 1.64357 1.64900 1.66270 1.67456
Extra dense flint EDF-3 720/291 29.1 1.71303 1.72000 1.73780 1.75324
Fused quartz SiOz 67.9 1.4585
Crystal quartz (0 ray) SiOz 70.0 1.5443
Fluorite CaFz 95.4 1.4338
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FIGURE 9X
(a) Chromatic aberration of a single lens. (b) A cemented doublet corrected for
chromatic aberration. (c) Illustrating the difference between longitudinal chro-
matic aberration and lateral chromatic aberration.

brightness curve* in Fig. 9Y occurs not far from the yellow D line. It is for this
reason that the index no has been chosen by optical designers as the basic index for
ray tracing and for the specification of focal lengths. Two other indices, one on either
side of no, are then chosen for purposes of achromatization. As indicated in the
table, the ones most often used are nc for the red end of the spectrum and nFor no for
the blue end.

For two thin lenses in contact, the resultant focallengthfo or power Po of the
combination for the D line is given by Eqs. (4h) and (4i):

1 1 1- = - + - or Po = Ph + P~ (9t)
fo f~ f~

where the index D indicates that the quantity depends on no, f~ and Ph refer to the
focal length and power of the crown-glass component, and f~ and P~ to the focal
length and power of the flint-glass component. In terms of indices of refraction and
radii of curvature, the power form of the equation becomes

Po = (no - 1) (.!. - .!.) + (nD - 1) (-!.. - -!..) (9u)
r; r~ r~ ri

• Brightness is a sensory magnitude in light just as loudness is a sensory magnitude
in sound. Over a considerable range both vary approximately as the logarithm of
the energy. The curve shown represents the logarithms of the standard luminosity
curve.
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FIGURE 9Y
Graphs of the refractive indices of several kinds of optical glass. These are called
dispersion curves.

For convenience let

• K' = (1. - 1.)r; r2 and K" - (1. - 1.)
r'{ r~

(9u')

Then Eq. (9u) can be written more simply as

Po = (no - l)K' + (no - l)K" (9v)

Similarly, for any other colors or wavelengths like the F and C spectrum lines, we
can write

(9v')
PF = (n" - l)K' + (nF - l)K"

Pc = (nc - l)K' + (n~ - l)K"

To make the combination achromatic we make the resultant focal length the same for
F and C light. This means, making PF = Pc,

(n" - l)K' + (nF - l)K" = (nc - l)K' + (n~ - l)K"

Multiplying out and canceling gives
K'
K"

nF - n~
nF - nc (9v")
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Since both the numerator and denominator on the right have position values,
the minus sign shows that one K must be negative and the other positive. This means
that one lens must be negative.

Now for the D line of the spectrum the separate powers of the two thin lenses
are given by

Po = (nf> - l)K'

Dividing one by the other gives

and P;; = (n;; - l)K" (9w)

K' (n;; - l)Pf>
K II (nf> - l)P;;

Equating Eqs. (9v") and (9w') and solving for P;;/ Po gives

(9w')

P"..E=Po
(n;; - l)/(n~ - n~) =
(nf> - l)/(n~ - nc)

V"

V'
(9w")

where v' and v" are the dispersion constants of the two glasses.
These constants, usually supplied by manufacturers when optical glass is

purchased, are
nf> - 1v' =---
n~ - nc and II n;; - 1

V =---
n~ - n~

(9x)

Values of V for several common types of glass are given in Table 9E. Since the
dispersive powers are all positive, the negative sign in Eq. (9w") indicates that the
powers of the two lenses must be of opposite sign. In other words, if one lens is
converging, the other must be diverging. From the extreme members of Eq. (9w")
we obtain

Pf> P;;-+-=0
v' v"

or V'f' + v"f" = 0 (9x')

Substituting the value of Po or that of P;; from Eq. (9t) in Eq. (9x'), we obtain

v'
Po = Po---v' - V"

and
V"P;; = -Po ---

v' - V"
(9x")

The use of the above formulas to calculate the radii for a desired achromatic
lens involves the following steps:

1 A focal lengthfo and a power PD are specified.
2 The types of crown andflint glass to be used are selected.
3 If they are not already known, the dispersionconstants v' and V" are calculated
from Eq. (9x).

4 Po and P;; are calculatedfrom Eq. (9x").
5 The values of K' and K" are determined by Eq. (9w).
6 The radii are then found from Eq. (9u/).

Calculation 6 is usually made with other aberrations in mind.
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EXAMPLE An achromatic lens having a focal length of 10.0 cm is to be made as a
cemented doublet using crown and flint glasses having the following indices:

Glass

Crown
Flint

nc

1.50868
1.61611

1.51100
1.62100

1.51673
1.63327

1.52121
1.64369

Find the radii of curvature for both lenses if the crown-glass lens is to be equiconvex
and the combination is to be corrected for the C and F lines.

SOLUTION The focal length of 10.0 cm is equivalent to a power of + 10 D.
The dispersion constants v' and v" are, from Eq. (9x),

v' = 1.51100 - 1.00000 = 63.4783
1.51673 - 1.50868

v" = 1.62100 - 1.00000 = 36.1888
1.63327 - 1.61611

from which

Applying Eq. (9x'), we find that the powers of the two lenses must be

P' = 10 63.4783 = 232611 D
o 63.4783 - 36.1888 +.

P" = -10 36.1888 132611 D
o 63.4783 _ 36.1888 -.

The fact that the sum of these two powers Po = + 10.0000 D serves as a check on
the calculations to this point. Knowing the power required in each lens, we are now
free to choose any pair of radii that will give such a power. If two or more surfaces
can be made to have the same radius, the necessary number of grinding and polishing
tools will be reduced. For this reason the positive element is often made equiconvex,
as it is here. Letting r{ = -r2, we apply Eq. (9u') and then Eq. (9w) to obtain

K' = .!.. - .!.. = ~ = ~ = 23.2611 = 45.5207
r{ r2 r{ no - 1 0.51100

r{ = 0.0439361 m = 4.39361 cm

Since the lens is to be cemented, one surface of the negative lens must fit a surface of
the positive lens. This leaves the radius of the last surface to be adjusted to give the
proper power of -13.2611 D. Therefore we let r~ = -r{ and apply Eqs. (9u') and
(9w) as before, to find

K" = -!- - -!- =,~ '2
This gives

1 1 P~--=---=
0.0439361 '2 n~ - 1

-13.2611
= -21.3544

0.62100

-!- = 21.3544 - 1 = 21.3544 - 22.7603
r2 0.0439361

and 1 -1.4059 '2 = -0.71129 m = -71.13 cm
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The required radii are therefore

r; = 4.39 cm

r5. = -4.39 cm

r~ = -4.39 cm

r;= -71.l3cm

It will be noted that, with the crown-glass element of this achromat placed toward
incident parallel light, the two exposed surfaces are close to what they should be for
minimum spherical aberration and coma. This emphasizes the importance of choosing
glasses having the proper dispersive powers.

To see how well this lens has been achromatized, we now calculate its focal
length for the three colors corresponding to the C, F, and G/ lines. By Eq. (9v/)

giving

Pc = (nc - 1)K' + (nc - 1)K"

= 0.50868 x 45.5207 + O,61611(-21.3544)

= 23.1555 - 13.1567

/c = 10.0012 cm

Similarly for the colors corresponding to the F and G/ lines we obtain

PF = +9.9988 D or IF = 10.0012cm

PG, = +9.9804 D or /G' = 10.0196cm

The differences between/C,/D, andlF are negligibly small, but/G, is about t mm larger
than the others. This difference for light outside the region of the C and F lines
results in a small circular zone of color about each image point which is called the
secondary spectrum.

Although the lens in our example would appear to have been corrected for
longitudinal chromatic aberration, it has actually been corrected for lateral chromatic
aberration. Equal focal lengths for different colors will produce equal magnification,
but the different colored images along the axis will coincide only if the principal
points also coincide. Practically speaking, the principal points of a thin lens are so
close together that both types of chromatic aberration can be assumed to have been
corrected by the above arrangement. In a thick lens, however, longitudinal chromatic
aberration is absent if the colors corrected for come together at the same axial image
point as shown in Fig. 9Z(a). Because the principal points for blue and red, HI, and
H;, do not coincide, the focal lengths are not equal and the magnification is different
for different colors. Consequently the images formed in different colors will have
different sizes. This is the lateral chromatic aberration or lateral color mentioned
at the beginning of this section.

9.14 SEPARATED DOUBLET

Another method of obtaining an achromatic system is to employ two thin lenses made
of the same glass and separated by a distance equal to half the sum of their focal
lengths. To see why this is true, we begin with the thick-lens formula, Eq. (5g), as
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(a) Cemented doublet corrected,. for longitudinal chromatic aberration. (b)
Separated doublet corrected for longitudinal chromatic aberration. (c) Separated
doublet corrected for lateral chromatic aberration.

or

applied to two thin lenses sep~rated by a distance d:

1 lId-=-+---
I /1 12 Id2

(9y)

which, by analogy with Eq. (9v), may be written

P = (n1 - 1)K1 + (n2 - 1)K2' - d(n1 - 1)(n2 - I)K1K2

The subscripts 1 and 2 are used here in pla~ of the primes to designate the two
lenses, and the K's are given by Eq. (9u'). Since the two lenses are of the same kind
of glass, we set n1 = n2' so that '

'. 2P = (n - 1)(K1 + K2) - d(n - I) K1K2
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If this power is to be independent of the variation ofn with color, dPjdn must vanish.
This gives

Multiplying by n - 1 and substituting for each (n - I)K the corresponding P,
we find

(9z)or

Pi + P2 - 2dPiP2 = 0

d = PI + P 2 and d = 11 + 12
2P1P2 2

This proves the proposition stated above that two lenses made of the same glass
separated by half the sum of their focal lengths have the same focal length for all
colors near those for which 11 and 12 are calculated. For visual instruments this
color is chosen to be at the peak of the visual-brightness curve (Fig. 9Y). Such
spaced doublets are used as oculars in many optical instruments because the lateral
chromatic aberration is highly corrected through constancy of the focal length. The
longitudinal color, however, is relatively large, due to wide differences in the principal
points for different colors. An illustration of a system that has no longitudinal
chromatic aberration is shown in Fig. 9Z(b). It is to be contrasted with the system
shown in Fig. 9Z(c), in which there is no lateral chromatic aberration.

We have seen in this chapter that a lens may be affected by as many as seven
primary aberrations-five monochromatic aberrations of the third and higher orders
and two chromatic aberrations. One might therefore wonder how it is possible to
make a good lens at all when rarely can a single aberration be eliminated completely,
much less all of them simultaneously. Good usable lenses are nevertheless made by
the proper balancing of the various aberrations. The design is guided by the purpose
for which the lens is to be used. In a telescope objective, for example, correction for
chromatic aberration, spherical aberration, and coma are of primary importance.
On the other hand astigmatism, curvature of field, and distortion are not as serious
because the field over which the objective is to be used is relatively small. For a good
camera lens of wide aperture and field, the situation is almost exactly reversed. *

PROBLEMS

9.1 A convex spherical surface with a radius of +8.0 cm is ground and polished on the
end of a glass rod. If the rod is in air and the refractive index of the glass is 1.620,
calculate the (a) longitudinal spherical aberration and (b) the lateral spherical aberra-
tion. Assume the height of the incident ray to be 6.0 cm.

Ans. (a) +2.0233 cm, (b) -0.6430 cm

• Other treatments of the subject of aberrations will be found in A. C. Hardy and
F. H. Perrin, "The Principles of Optics," McGraw-Hili Book Company, New York,
1932; G. S. Monk, "Light, Principles and Experiments," Dover Publications, Inc.,
New York, 1963; D. H. Jacobs, "Fundamentals of Optical Engineering," McGraw-
Hill Book Company, New York, 1943; A. E. Conrady, "Applied Optics and Optical
Design," Dover Publications, Inc., New York, 1963; E. Hecht and A. Zajac,
"Optics," Addison-Wesley Publishing Company, Inc., Reading, Mass., 1974.
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9.2 A single spherical surface with a radius of + 20.0 cm is polished on the end of a glass
rod. If the rod is in air and the refractive index of the glass is 1.750, find (a) the
longitudinal spherical aberration and (b) the lateral spherical aberration. Assume the
height of the incident ray to be 6.0 cm.

9.3 A thin lens with a refractive index of 1.60 has radii'1 = +45.0 cm and'2 = -15.0
cm. If light is incident on this lens parallel to the axis, find (a) the focal1ength for
paraxial rays, (b) the longitudinal spherical aberration, and (c) the lateral spherical
aberration for a ray at a height of 2.50 cm.

9.4 A thin glass lens with radii'1 = -12.0 cm and'2 = + 12.0 cm has a refractive index
of 1.850. If parallel incident light falls on the first surface at a height of 2.50 cm, find
(a) the paraxial focal length, (b) the position factor, (c) the shape factor, (d) the longi-
tudinal spherical aberration, and (e) the lateral spherical aberration.

Ans. (a) -7.0588 cm, (b) -1.0, (c) 0, (d) - 0.85741 cm, (e) - 0.345652
9.5 A thin lens of index 1.6250 has radii'l = + 8.0 cm and'2 = - 8.0 cm. Find (a) the

position factor, (b) the shape factor, (c) the paraxial focal length, (d) the longitudinal
spherical aberration, and (e) the lateral spherical aberration for an axial object point
32.0 cm in front of the lens and for rays through a zone of radius h = 2.0 cm.

9.6 A thin lens with an index of 1.7620 has radii'1 = +40.0 cm and'2 = -10.0 cm. If
this lens is to be used with parallel incident light, find (a) the position factor, (b) the
shape factor, (c) the paraxial focal length, (d) the longitudinal spherical aberration,
and (e) the lateral spherical aberration for a ray at a height of 2.0 cm.

9.7 A thin plano-convex lens has a refractive index of 1.52300. The second surface has a
radius of -10.0 cm. If light is incident at a height of 2.0 cm on the flat surface, parallel
to the axis, find (a) the position factor, (b) the shape factor, (c) the paraxial focal1ength,
(d) the longitudinal spherical aberration, and (e) the lateral spherical aberration.

Ans. (a) -1.0, (b) -1.0, (c) + 19.12046 cm, (d) +0.84766 cm, (e) -0.092778 cm
9.8 Find the answers to Prob. 9.7 if the lens is turned around so the incident light is

incident on the convex surface.
9.9 A piece of optical glass with a refractive index of 1.5230 is to be made into a lens

having a focal length of + 24.0 cm. If it is to be used with parallel incident light and is to
have a minimum spherical aberration, what would be (a) the position factor, (b) the
shape factor, (c) the radius of the first surface, and (d) the radius of the second surface?

9.10 A piece of dense flint glass with an index of 1.7930 is to be made into a diverging lens
with a focal length of - 20.0 cm. If it is to be used with parallel incident light and is
to have a minimum spherical aberration, what would be (a) the position factor, (b)
the shape factor, (c) the radius of the first surface, and (d) the radius of the second
surface?

9.11 A thin lens 5.0 cm in diameter has a refractive index of 1.6520 and radii'1 = + 15.0
cm and '2 = - 30.0 cm. Find (a) the position factor, (b) the shape factor, (c) the
G factor, (d) the Wfactor, and (e) the height of the comatic figure if the paraxial image
point for parallel incident light is 5.0 cm off the principal axis. Give answers to four
significant figures. Ans. (a) p = -1.0, (b) q = +0.33333, (c) G = + 1.9540,

(d) W = + 1.8466, (e) CT = -0.13911 cm
9.12 A thin lens 6.50 cm in diameter has a refractive index of 1.5230 and radii'1 = -15.0

cm and'2 = + 30.0 cm. Find (a) the focal length of the lens, (b) the position factor,
(c) the shape factor, (d) the G factor, (e) the Wfactor, and (f) the height of the comatic
figure if the lens is used with parallel incident light and brings the paraxial image point
to focus 3.0 cm off the principal axis.

9.13 A thin lens is to be made of a piece of optical crown glass of index 1.6750 and is to
have a focal length of 5.0 cm. An object is to be mounted 25.0 cm in front of this
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lens and a real image is to be formed on a white screen. Calculate (a) the image
distance and (b) the position factor. If this lens is to have a minimum spherical
aberration for this object-image distance relation, find (c) the shape factor, (d) the
radius of'1> and (e) the radius of '2'

9.14 A thin glass lens of index 1.5250 is to be completely free of coma for an object placed
15.0 cm in front of the lens and the image formed 75.0 cm behind the lens. Find (a) the
focal length of the lens, (b) the position factor, (c) the shape factor, (d) the radius of
the first surface, and (e) the radius of the second surface.

Ans. (a) + 12.50 cm, (b) +0.6667, (c) -0.5614, (d) + 29.924 cm, (e) - 8.406 cm
9.15 A thin lens is made of flint glass of index 1.6520. If its focal length is + 12.50 cm, and

an object is to be placed 50.0 cm in front of the lens, find (a) the image distance, (b)
the position factor, (c) the shape factor, (d) the radius of the first surface, and (e) the
radius of the second surface. The image is to show no coma.

9.16 A thin diverging lens is to be made of crown glass of index 1.5230 and have a focal
length of -12.0 cm. If an object is to be placed 20.0 cm in front of this lens, and the
image is to be free of coma, find (a) the image distance, (b) the position factor, (c) the
shape factor, (d) the radius of the first surface, and (e) the radius of the second surface.

9.17 A meniscus lens 0.750 cm thick and of index 1.520 is to be aplanatic for two points on
the concave side of the lens. If the closest of these two points is to be 5.0 cm from
the closest vertex, find (a) the radii of the two lens surfaces and (b) the distance from
the closest vertex to the farther aplanatic point.

Ans. (a)'1 = - 3.4682 em and'2 = - 5.0 cm, (b) 7.990 cm
9.18 A meniscus lens 0.650 cm thick, and refractive index 1.585 is to be made of such a shape

that it is aplanatic for two points 5.0 cm apart (see Fig. 90). Find (a) the two radii of
curvature and (b) the distances from the concave surface to the two points.

9.19 Apply Abbe's sine condition to the rays traced through the first lens surface in Table
8B and give the values of h/(sin 0') for h = 1.50, h = 1.0, h = 0.50, and h = 0.00.

9.20 Apply Abbe's sine condition to the rays traced through the second surface of the lens
in Table 8B and give the values of (sin (J')/(sin 0") for all four rays.

Ans. 0.26490,0.30139,0.31594, and 0.32000
9.21 An achromatic lens with a focal length of 25.0 cm is to be made of crown and flint

glasses of the types BSC-2 and DF.2 (see Table 9E for indices). If the crown glass lens
is to be equiconvex and the combination is to be cemented, find (a) the v values, (b) the
two lens powers for sodium light, and (c) the radii of the four lens surfaces to correct
for the C and F lines.

9.22 An achromatic lens with a focal length of 16.0 cm is to be made of crown and flint
glasses of the types BSC and DF-4 (see Table 9E). If the flint glass lens is to have its
outer face flat and the combination is to be cemented, find (a) the power of the lens,
(b) the v values of the two glasses, (c) the powers of the two component lenses for
sodium yellow light, and (d) the radii of the three remaining lens surfaces. The lens
is to be corrected for C and Flight.

9.23 An achromatic lens is to be made of SPC-I and DF-4 glasses and is to have a focal
length of 12.50 cm (see Table 9E). If the flint glass lens is to have its outer face flat
and the two lenses are to be cemented, find (a) the power of the lens, (b) the v values
of the two glasses, (c) the powers of the two lenses, and (d) the radii of the three curved
surfaces. The lens is to be corrected for C and 0' light.

Ans. (a) + 8.0 D, (b) 37.5449 and 20.9422, (c) + 18.09104 and -1O.09104D,
(d)'1 = +5.25147 cm,'2 = -6.43145 cm, and,; = -6.43145 cm

9.24 An achromatic lens is to be made of two pieces ofLBC-1 and EDF-3 optical glass with
refractive indices given in Table 9E. If the crown-glass lens is to be equiconvex and
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the two lenses are to be cemented, find (a) the power of the final lens if its focal length
is to be 8.0 em, (b) the dispersion constants of the glasses, (c) the separate powers ofthe
lenses, (d) the radii of all four lens faces, arid (e) the focal lengths of the final lens for
C, D, F, and G/ light. The lens is to be corrected for C and G/ light. Plot a graph of
wavelength A versus focallengthf. Assume Ac = 6563 A, AD = 5892 A, AF = 4861A,
and Ao = 4307 A.

9.25 An achromatic lens is to be made of two pieces of optical glass with refractive indices
given for BSC-2 and DF-4 in Table 9E. If its focal length is to be +20.0 em, the second
surface of the flint glass lens is to be flat, and the lens is to be cemented, find (a) the
power of the completed lens, (b) the dispersion constants of the glass, (c) the separate
powers of the lenses, (d) the radii of the foUr surfaces, and (e) the focal lengths of the
completed lens for C, D, F, and G/ light. The lens is to be corrected for C and Flight.
(/) Plot a graph of wavelength A versus fo~l length f. Assume Ac = 6563, A AD =
5892 A, AF = 4861 A, and Ao = 4307 A.



10
OPTICAL INSTRUMENTS

The design of efficient optical instruments is the ultimate purpose of geometrical
optics. The principles governing the formation of images by a single lens, and
occasionally by simple combinations of lenses, have been set forth in the previous
chapters. These principles find a wide variety of applications in the many practical
combinations of lenses, frequently including also mirrors or prisms, which fall in the
category of optical instruments. This subject is one of such large scope and has
developed so many ramifications that in a book devoted to the fundamentals of optics
it is only possible to describe the principles involved in a few standard types of
instruments. In this chapter a description will be given of the more important features
of camera lenses, magnifiers, microscopes, telescopes, and oculars. These will serve
to illustrate some applications ofthe basic ideas already discussed and will, it is hoped,
be of interest to the student who has used, or expects to use, some ofthese instruments.

10.1 THE HUMAN EYE

As human beings our sense of vision is one of our most prized possessions. For those
of us that enjoy normal vision this marvelous gift of nature is the most useful of all
recording instruments, yet in a few instances it should not be relied upon to tell the
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FIGURE lOA
A cross-sectional diagram of a human eye, showing the principal optical com-
ponents and the retina.

truth. As an illustration of how unreliable vision can be, mention should be made of
a whole group of phenomena known as optical illusions. *

In spite of these imperfections in our vision, most of us are able to enjoy the
beauties of color, form, and motion, all made possible by illumination with visible
white light. The eye is like a fine camera, with a shutter, iris, and lens system on
one side and a sensitive film called the retina on the other (see Fig. lOA). The function
of the lens system is to focus on the retina an image of objects to be seen. Like a
camera, the iris diaphragm opens wider for faint light and closes down for bright
sunlight. The pigment determining the color of the eye is in the iris.

The retina of the eye contains hundreds of cones and rods, whose function it is
to receive light pulses and change them into electric currents. How these electric
currents are produced by the cones and rods, and how they are translated by the brain
into what we call vision is only partially understood by scientists working in the field.

• See H. E. White, "Modern College Physics," 6th ed., pp. 20-26, D. Van Nostrand,
New York, 1972, and N. F. Beeler and F. M. Branley, "Experiments in Optical
Illusion," Thomas Y. Crowell Co., New York, 1951.
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It is known that the cones respond to bright light only and are responsible for our
distinction of colors. Rods, on the other hand, are sensitive to faint light, to motion,
and to slight variations in intensity.

At the very center of the retina is a slightly yellowish indentation called the
fovea. This small area contains a large number of cones and no rods. It is on this
spot in each eye that one focuses the image of objects one wishes to see in minute
detail. Note, for example, that when one looks at any single word on this page,
words close by are quite blurred.

We divide the subject of light perception into two parts: (I) the optical com-
ponents leading to the formation of sharp images on the retina and (2) the property
of the nerve canal and brain to interpret the electrical impulses produced. When
light from any object enters the eye, the lens system forms a real but inverted image
on the retina. While all the images are inverted, as shown in Fig. lOB, it is of course
a most amazing fact that we interpret them by the brain as being erect.

Figure lOB also gives some of the pertinent facts for a normal human eye. The
dimensions shown are all in millimeters, and the diagram follows Gul/strand's
schematic eye.* Table lOA gives dimensions for the eye that may be of use to the
student.

• See H. H. Ernsley, "Visual Optics," 3d ed., p. 346, BuUerworths, Scarborough, Ont.,
1955.

Table lOA PRINCIPAL DIMENSIONS FOR GULLSTRAND'S SCHE-
MATIC EYE
Overall power of eye = 58.64 0

Axis Radius
Refractive position, curvature,
index mm mm

Cornea, anterior 1.376 0 7.7
and posterior 0.5 6.8

Aqueous humor 1.336

Vitreous humor 1.336

Lens:
Cortex, anterior 1.386 3.6 10.0
and posterior 7.2 -6.0

Core, anterior 1.406 4.15 7.9
and posterior 6.57 5.8

Cardinal points:
AH 1.348
AH' 1.602
AN 7.08
AN' 7.33
AF -15.70
AF' 24.38
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FIGURE lOB
Schematic eye as developed by Gullstrand, showing the real and inverted image
on the retina (dimensions are in millimeters).

10.2 CAMERAS AND PHOTOGRAPHIC OBJECTIVES

The fundamental principle of the camera is that of a positivt' lens forming a real
image, as shown in Fig. lOCo Sharp images of distant or nearby objects are formed
on a photographic film or plate, which is later developed and printed to obtain the
final picture. Where the scene to be taken involves stationary objects, the cheapest
camera lens (if it is stopped down almost to a pinhole and a time exposure used)
can yield photographs of excellent definition. If, however, the subjects are moving
relative to the camera (and this includes the case where the camera is held in the hand),
extremely short exposure times are often imperative and lenses of large aperture
become a necessity. The most important feature of a good camera, therefore, is that
it be equipped with a lens of high relative aperture capable of covering as large an
angular field as possible. Because a lens of large aperture is subject to many aber-
rations, designers of photographic objectives have resorted to the compromises as
regards correction that best suit their particular needs. It is the intention here, there-
fore, to discuss briefly some of these purposes and compromises in connection with a
few of the hundreds of well-known makes of photographic objectives.

10.3 SPEED OF LENSES

The amount oflight per unit area reflected or emitted by an object being photographed
is called its brightness or luminance B. The amount of light per unit area falling on a
photographic film or plate is called the illuminance E. The illuminance E depends upon
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Axis

Object

FIGURE lOe
Principles of a camera.

three factors: the brightness B of the object, the area of the entrance pupil of the lens,
rca2/4, and the focal length of the lens f (see Fig. IOD).

The light entering a camera is proportional to the brightness of the object, is
proportional to the area of the entrance pupil, and is inversely proportional to the
square of the focal length. As an equation,

E = kB rca
2
/4
p

where k is a proportionality constant and a is the diameter of the entrance pupil.
For any given object to be photographed, we can write

a2E ex: - (lOa)p
It can be seen from Fig. 10C that iff is doubled, the light will be spread over

4 times the area, thereby reducing the illuminance on the film to one-quarter. If the
lens diameter is doubled, the lens area is quadrupled, the light falling on the film is
quadrupled, while the film area and picture size remain unchanged.

In words, the ratio (a/f)2 is a direct measure of the speed of a camera lens.
Instead of specifying this ratio, however, it is customary in the photographic world to
specify the focal ratio, or f value:

• fvalue =.f...
a

(lOb)

Thus a lens which has a focal length of 10.0 em and a linear aperture of 2.0 em is
said to have an f value of 5, or, as it is usually stated, the lens is an f/5 lens.

In order to take pictures of faintly illuminated subjects, or of ones which are in
rapid motion and require a very short exposure, a lens of small f value is required.
Thus anf/2 lens is "faster" than anf/4.5 lens (or than anf/2 lens stopped down to
f/4.5) in the ratio (4.5/2)2 = 5.06. A lens of such large relative aperture is difficult
to design, as we shall see.
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FIGURE IOD
(a) Geometry for determining the speed of a lens. (b) An achromatic meniscus
lens with a front stop.

10.4 MENISCUS LENSES

Many of the cheapest cameras employ a single positive meniscus lens with a fixed
stop such as was shown in Fig. 10D(a). Developed in about 1812and called a landscape
lens, this simple optical device exhibits considerable spherical aberration, thereby
limiting its useful aperture to about/Ill. Off the lens axis, the astigmatism limits the
field to about 40°. The proper location of the stop results in a flat field, but with only
a single lens there is always considerable chromatic aberration.

By using a cemented doublet as shown in Fig. lOD(b), lateral chromatism can
be corrected. Instead of correcting for the C and F lines of the spectrum, however,
the combination is usually corrected for the yellow D line, near the peak sensitivity
of the eye, and the blue G' line, near the peak sensitivity of many photographic
emulsions. Called DG achromatism, this type of correction produces the best photo-
graphic definition at the sharpest visual focus. In some designs the lens and stop are
turned around as in the arrangement of Fig. 9U(b).

10.5 SYMMETRICAL LENSES

Symmetrical lenses consist of two identical sets of thick lenses with a stop midway
between them; a number of these are illustrated in Fig. IOE. In general, each half
of the lens is corrected for lateral chromatic aberration, and by putting them together,
curvature of field and distortion are eliminated, as was explained in Sec. 9.11. In the
rapid rectilinear lens, flattening of the field was made possible only by the introduction
of considerable astigmatism, while spherical aberration limited the aperture to about
/18. By introducing three different glasses, as in the Goerz Dagor, each half of the
lens could be corrected for lateral color, astigmatism, and spherical aberration. When
combined they are corrected for coma, lateral color, curvature, and distortion.
Zeiss calls this lens a Triple Protar, while Goerz calls it the DAGor, signifying Double
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FIGURE IOE
Symmetrical and unsymmetrical camera lenses.

Zeiss "Tessor"

Anastigmat Goerz. The Speed Panchro lens developed by Taylor, Taylor, and
Hobson in 1920is noteworthy because of its fine central definition combined with the
high speed ofl12 and evenll1.5. The Zeiss Topogon lens is but one of a number of
special "wide-angle" lenses, particularly useful in aerial photography. Additional
characteristics of symmetrical lenses are (1) the large number of lenses employed,
and (2) the rather deep curves, which are expensive to produce.

The greater the number of free glass surfaces in a lens, the greater the amount
of light lost by reflection. The I value alone, therefore, is not the sole factor in the
relative speeds of objectives. The development in recent years of lens coatings that
practically eliminate reflection at normal incidence has offered greater freedom in the
use of more elements in the design of camera lenses (see Sec. 14.6).

10.6 TRIPLET ANASTIGMATS

A great step forward in photographic lens design was made in 1893when H. D. Taylor
of Cooke and Sons developed the Cooke Triplet (Fig. lOE). The fundamental
principles involved in this system follow from the fact that (1) the power which a given
lens contributes to a system of lenses is proportional to the height at which marginal
rays pass through the lens, whereas (2) the contribution each lens makes to field
curvature is proportional to the power of the lens regardless of the distance of the
rays from the axis. Hence astigmatism and curvature of field can be eliminated by
making the power of the central flint element equal and opposite to the sum of the
powers of the crown elements. By spacing the negative lens between the two positive
lenses, the marginal rays can be made to pass through the negative lens so close to
the axis that the system has an appreciable positive power. A proper selection of
dispersions and radii enables additional corrections to be made for color and spherical
aberration. The Tessar, one of the best known modern photographic objectives, was
developed by Zeiss in 1902. Made in many forms to meet various requirements, the
system has a general structure similar to that of a Cooke Triplet in which the rear
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FIGURE lOF
Principles of the telephoto lens.

crown lens is replaced by a doublet. The Leitz Hector, working atff2, is also of the
Cooke Triplet type, but each element is replaced by a compound lens. This very fast
lens is excellent in a motion-picture camera.

10.7 TELEPHOTO LENSES

Since the image size for a distant object is directly proportional to the focal length
of the lens, a telephoto lens which is designed to give a large image is a special type
of objective with a longer effective focal length than that normally used with the same
camera. Because this would require a greater extension of the bellows than most
cameras will permit, the principle of a single highly corrected thick lens is modified
as follows. As is shown in Fig. IOF by the refraction of an incident parallel ray,
with two such lenses considerably separated the principal point H' can be placed
well in front of the first lens, thereby giving a long focal length H' F' with a short
lens-to-focal-plane distance (f;, in Fig. IOF). The latter distance, or the back focal
length as it is usually called, is measured from the real lens to the focal plane, as
shown.

Although the focal lengths of older types of telephoto lenses could be varied by
changing the distance between the front and rear elements, these lenses are almost
always made with a fixed focal length. Flexibility is then obtained by having a set of
lenses. This has become necessary through the desire for lenses of greater speed and
better correction of the aberrations. A Cooke Telephoto as produced by Taylor,
Taylor, and Hobson is shown in Fig. lOG.

10.8 MAGNIFIERS

The magnifier is a positive lens whose function it is to increase the size of the retinal
image over and above that which is formed with the unaided eye. The apparent size
of any object as seen with the unaided eye depends on the angle subtended by the
object (see Fig. lOH). As the object is brought closer to the eye, from A to B to C in
the diagram, accommodation permits the eye to change its power and to form a
larger and larger retinal image. There is a limit to how close an object may come to
the eye if the latter is still to have sufficient accommodation to produce a sharp image.
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FIGURE lOG
A well-corrected telephoto lens.

Although the nearest point varies widely with various individuals, 25.0 cm is taken
to be the standard near point, sometimes called the distance 0/ most distinct vision.
At this distance, indicated in Fig. 100(a), the angle subtended by object or image will
be called (J.

If a positive lens is now placed before the eye in the same position, as in diagram
(b), the object y can be brought much closer to the eye and an image subtending a
larger angle (J' will be formed on the retina. What the positive lens has done is to form
a virtual image y' of the object y and the eye is able to focus upon this virtual image.
Any lens used in this manner is called a magnifier or simple microscope. If the object y
is located at F, the focal point of the magnifier, the virtual image y' will be located at
infinity and the eye will be accommodated for distant vision as is illustrated in Fig.
100(c). If the object is properly located a short distance inside of F as in diagram (b),
the virtual image may be formed at the distance of most distinct vision and a slightly
greater magnification obtained, as will now be shown.

The angular magnification M is defined as the ratio of the angle (J' subtended
by the image to the angle (J subtended by the object.

f)'
M = - (tOe)

(J

From diagram (b), the object distance s is obtained by the regular thin-lens formula as

or1 1 1-+-=-
s -25 /

From the right triangles, the angles f) and f)' are given by

1 25 +/-=---
s 25/

tan f) = L
25

and , Y 25 +/tan f) = - = y--
s 25/

A

Axis

FIGURE lOH
The angle subtended by the object determines the size of the retinal image.
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FIGURE tol
The angle subtended by (0) an object at the near point to the naked eye, (b) the
virtual image of an object inside the focal point, (c) the virtual image of an object
at the focal point.

For small angles the tangents can be replaced by the angles themselves to give
approximate relations

()= y,
25

giving for the magnification, from Eq. (lOc),

•

and ()' _ 25 + /
- y 25/

()' 25
M=-=-+lo / (10d)

In diagram (c) the object distance s is equal to the focal length, and the small angles
o and ()' are given by

giving for the magnification

()= L
25

and ()'= ~
/

• ()' 25
M=-=-() /

(lOe)
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The angular magnification is therefore larger if the image is formed at the distance
of most distinct vision. For example, let the focal length of a magnifier be 1 in. or
2.5 cm. For these two extreme cases, Eqs. (lOd) and (We) give

25
M = - + 1 = llx

2.5
and 25

M = - = lOx
2.5

Because magnifiers usually have short focal lengths and therefore give ap-
proximately the same magnifying power for object distances between 25.0 cm and
infinity, the simpler expression 25/1 is commonly used in labeling the power of
magnifiers. Hence a magnifier with a focal length of 2.5 cm will be marked lOx
and another with a focal length of 5.0 cm will be marked 5x , etc.

10.9 TYPES OF MAGNIFIERS

Several common forms of magnifiers are shown in Fig. IOJ. The first, an ordinary
double-convex lens, is the simplest magnifier and is commonly used as a reading glass,
pocket magnifier, or watchmaker's loupe. The second is composed of two identical
plano-convex lenses each mounted at the focal point of the other. As shown by
Eq. (9z), this spacing corrects for lateral chromatic aberration but requires the object
to be located at one of the lens faces. To overcome this difficulty, color correction is
sacrificed to some extent by placing the lenses slightly closer together, but even then
the working distance or back focal length [see Eq. (5m)] is extremely short.

The third magnifier, cut from a sphere of solid glass, is commonly credited to
Coddington but was originally made by Sir David Brewster. It too has a relatively
short working distance, as can be seen by the marginal rays, but the image quality is
remarkably good due in part to the central groove acting as a stop. Some of the best
magnifiers of today are cemented triplets, like those shown in the last two diagrams.
These lenses are symmetrical to permit their use either side up. They have a relatively
large working distance and are made with powers up to 20x.

10.10 SPECTACLE LENSES

The ability of the human eye to focus on nearby and distant objects, attributed to the
crystalline lens, is most prominent in children. Changing the shape of the lens is
accomplished by a rather complicated system of ligaments and muscles. Due to
tension in the lens capsule, the crystalline lens, if completely free, would tend to become
spherical in shape. Surrounding the edge of the lens is an annular ring called the
sciliary muscle, which on contracting squeezes the lens, causing it to bulge. In effect
this reduces the focal length of the lens, bringing nearby objects to a sharp focus on the
retina.

If the sciliary muscle relaxes, the suspensory ligaments pull outward on the lens
periphery, causing it to flatten. This increases the focal length, bringing distant
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FIGURE 10J
Common types of magnifiers.

objects to focus on the retina. This ability is part of the process of vision called
accommodation.

As a person grows older, the crystalline lens becomes harder and harder, and
the muscles that control its shape grow weaker and weaker, thus making accommoda-
tion more and more difficult. This condition is referred to as presbyopia. When the
length of the eyeball is such that incident parallel light rays converge to a point
behind the retina, the person is far-sighted and is said to have hypermetropia [see
Fig. lOK(a)]. When parallel rays come to a focus in front of the retina, as in diagram
(b), the person is near-sighted and is said to have myopia.

In order to correct these defects in one's vision, a converging lens of the
appropriate focal length is placed in front of the hypermetropic eye, and a diverging
lens is placed in front of the myopic eye. A positive lens adds some convergence to
the rays just before they reach the cornea, thereby enabling the person to see distant
objects in sharp focus [see Fig. IOL(a)]. A diverging lens in front of the myopic eye
can bring distant objects to a sharp focus.

In ophthalmology and optometry it is customary to specify the focal length of
spectacle lenses in diopters. The power of any lens in diopters is defined as the reciprocal

Hypermetropia. farsighted Myopia, nearsighted

FIGURE 10K
Typical eye defects, largely present in the adult population.
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FIGURE lOL
Typical eye defects can be corrected by spectacle lenses.

01 the local length in meters. The symbol for lens power is P, and the unit diopter is
abbreviated D. See Sec. 4.12 and Eq. (4f).

D. 1mlOpter = --------
focal length in meters
1P = - (1Of)
I

The lens with by far the greatest power in the eye is the cornea, with 43.0 D.
The entire optical system of the eye has a power of 58.6 D. See Table lOA and Fig.
lOB.

EXAMPLE A converging lens has a focal length of 27.0 em. What would be its
power in diopters?

SOLUTION Direct substitution of the given quantity, I = 0.270 m, in Eq. (1Of)
gives

P = 1
0.270 m

This answer is read, plus three point seven zero diopters.

10.11 MICROSCOPES

+3.70 D

The microscope, which in general greatly exceeds the power of a magnifier, was
invented by Galileo in 1610. In its simplest form, the modern optical microscope
consists of two lenses, one of very short focus called the objective, and the other of
somewhat longer focus called the ocular or eyepiece. While both these lenses actually
contain several elements to reduce aberrations, their principal function is illustrated
by single lenses in Fig. 10M. The object (1) is located just outside the focal point of
the objective so there is formed a real magnified image at (2). This image becomes the
object for the second lens, the eyepiece. Functioning as a magnifier, the eyepiece
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FIGURE 10M
Principlesof the microscope,shownwith
the eyepiece adjusted to produce the
image at the distance of most distinct
vision.

forms a large virtual image at (3). This image becomes the object for the eye itself,
which forms the final real image on the retina at (4).

Since the function of the objective is to form the magnified image that is observed
through the eyepiece, the overall magnification of the instrument becomes the product
of the linear magnification m1 of the objective and the angular magnification M2
of the eyepiece. By Eqs. (4k) and (lOe), these are given separately by

x' and 25
=-
12

(lOg)M= x' 25
11/2

It is customary among manufacturers to label objectives and eyepieces according
to their separate magnifications ml and M2•

The overall magnification is therefore

•

10.12 MICROSCOPE OBJECTIVES

A high-quality microscope is usually equipped with a turret nose carrying three
objectives, each of a different magnifying power. By turning the turret, anyone of
the three objectives can be rotated into proper alignment with the eyepiece. Diagrams
of three typical objectives are shown in Fig. ION. The first, composed of two
cemented achromats, is corrected for spherical aberration and coma and has a focal
length of 1.6 em, a magnification of lOx, and a working distance of 0.7 em. The
second is also an achromatic objective with a focal length of 0.4 em, a magnification
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FIGURE ION
Microscope objectives: (a) low-power, (b) medium-power, and (c) high-power oil
immersion.

of 40x, and a working distance of 0.6 em. The third is an oil-immersion type of
objective with a focal length of 0.16 em, a magnification of lOOx, and a working
distance of only 0.035 em. Great care must be exercised in using this last type of lens
to prevent scratching of the hemispherical bottom lens. Although oil immersion
makes the two lowest lenses aplanatic (see Fig. 90), lateral chromatic aberration is
present. The latter is corrected by the use of a compensating ocular, as will be
explained in Sec. 10.18.

10.13 ASTRONOMICAL TELESCOPES

Historically the first telescope was probably constructed in Holland in 1608 by an
obscure spectacle-lens grinder, Hans Lippershey. A few months later Galileo, upon
hearing that objects at a distance could be made to appear close at hand by means of
two lenses, designed and made with his own hands the first authentic telescope. The
elements of this telescope are still in existence and may be seen on exhibit in Florence.
The principle of the astronomical telescopes of today is the same as that of these early
devices. A diagram of an elementary telescope is shown in Fig. 100. Rays from one
point of the distant object are shown entering a long-focus objective lens as a parallel
beam. These rays are brought to a focus and form a point image at Q'. Assuming
the distant object to be an upright arrow, this image is real and inverted as shown.
The eyepiece has the same function in the telescope that it has in a microscope,
namely, that of a magnifier. If the eyepiece is moved to a position where this real
image lies just inside its primary focal plane F2, a magnified virtual image at Q"
may be seen by the eye at the near point, 25.0 em. Normally, however, the real image
is made to coincide with the focal points of both lenses, with the result that the image
rays leave the eyepiece as a parallel bundle and the virtual image is at infinity. The
final image is always the one formed on the retina by rays which appear to have come
from Q". Figure lOP is a diagram of the telescope adjusted in this manner.

In all astronomical telescopes the objective lens is the aperture stop. It is there-



H
I I
I I

I Objective

OPTICAL INSTRUMENTS 203

Eyepiece

Eye

FlGURE 100
Principles of the astronomical telescope, shown with the eyepiece adjusted to
produce the image at the distance of most distinct vision.

fore the entrance pupil, and its image as formed by all the lenses to its right (here,
only the eyepiece) is the exit pupil. These elements are shown in Fig. 10Q, which
traces the path of one ray incident parallel to the axis and of a chief ray from a
distant off-axis object point. The distance from the eye lens, i.e., the last lens of the
ocular, to the exit pupil is called the eye reliefand should normally be about 8.0 mm.

The magnifying power of a telescope is defined as the ratio between the angle
subtended at the eye by the final image Q" and the angle subtended at the eye by the
object itself. The object, not shown in Fig. lOQ, subtends an angle ()at the objective
and would subtend approximately the same angle to the unaided eye. The angle
subtended at the eye by the final image is the ()'. By definition [see Eq. (lOe)]

()'
M=-

()

The angle () is the object-field angle, and ()' is the image-field angle. In other words,
() is the total angular field taken in by the telescope while ()' is the angle that the field

,
Objectivtl

Axis

Exit
pupil

FlGURE lOP
Principles of the astronomical telescope, shown with the eyepiece adjusted to
produce the image at infinity.
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FIGURE lOQ
Entrance and exit pupils of an astronomical telescope.

(lOh)
s'

From the right triangles ABC and EBC, in Fig. lOQ,

h htan () = - and tan ()' =
s

appears to cover (Sec. 7.11).

Applying the general lens formula l/s + l/s' = l/f, we have

which, substituted in Eq. (lOh), gives

tan () = h
10 +IE

and

10- =
s' lilo + IE)

(lOi)

For small angles, tan () ~ () and tan ()' ~ (J'. Substituting them in Eq. (lOg), we
obtain

(lOj)• M = ~ = _10
() IE

Hence the magnifying power of a telescope is just the ratio of the focal lengths of
objective and eyepiece respectively, the minus sign signifying an inverted image. .

If D and d represent the diameters of the objective and exit pupil respectively,
the marginal ray passing through Fo and FE in Fig. lOQ forms two similar right
triangles, from which the following proportion is obtained

giving, as an alternative equation for the angular magnification,

D
M = - (I Ok)

d

A useful method of determining the magnification of a telescope is therefore to
measure the ratio of the diameters of the objective lens and of the exit pupil. The
latter is readily found by focusing the telescope for infinity a-nd then turning it toward
the sky. A thin sheet of white paper held behind the eyepiece and moved back and
forth will locate a sharply defined disk of light. This, the exit pupil, is commonly
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called the Ramsden circle. Its size, relative to that of the pupil of the eye, is of great
importance in determining the brightness of the image and the resolving power of the
instrument (see Sec. 15.9).

Another method of measuring the magnification of a telescope is to sight
through the telescope with one eye, observing at the same time the distant object
directly with the other eye. With a little practice the image seen in the telescope can
be made to overlap the smaller direct image, thereby affording a straightforward
comparison of the relative heights of image and object. The object field of the
astronomical telescope is determined by the angle subtended at the center of the
objective by the eyepiece aperture. In other words, the eyepiece is the field stop of
the system. In Fig. IOQ the angle 0 is the half-field angle (Sec. 7.8).

10.14 OCULARS AND EYEPIECES

Although a simple magnifier of one of the types shown in Fig. 10J may be used as an
eyepiece for a microscope or telescope, it is customary to design special lens combina-
tions for each particular instrument. Such eyepieces are commonly called oculars.
One of the most important considerations in the design of oculars is correction for
lateral chromatic aberration. It is for this reason that the basic structure of most of
them involves two lenses of the same glass separated by a distance equal to half the
sum of their focal lengths [see Eq. (9z)].

The two most popular oculars based on this principle are known as the Huygens
eyepiece and the Ramsden eyepiece (Fig. lOR). In both these systems the lens nearest
the eye is called the eye lens, while the lens nearest the objective is called the field lens.

10.15 HUYGENS EYEPIECE

In eyepieces of this design the two lenses are usually made of spectacle crown glass
with a focal-length ratio fflle varying from 1.5 to 3.0. As shown in Fig. 10R(a),
rays from an objective to the left (and not shown) are converging to a real image point
Q. The field lens refracts these rays to a real image at Q', from which they diverge
again to be refracted by the eye lens into a parallel beam. In most telescopes the
objective of the instrument is the entrance pupil of the entire system. The exit pupil
or eyepoint is, therefore, the image of the objective formed by the eyepiece and is
located at the position marked "Exit pupil" in the figure. Here the chief ray crosses
the axis of the ocular. A field stop FS is often located at Q', the primary focal point
of the eye lens, and if cross hairs or a reticle are to be employed, they are mounted in
this plane. Although the eyepiece as a whole is corrected for lateral chromatic
aberration, the individual lenses are not, so that the image of the cross hairs or reticle
formed by the eye lens alone will show considerable distortion and color. Huygens
eyepieces with reticles are used in some microscopes, but in this case the reticle is
small and is confined to the center of the field. The Huygens eyepiece shows some
spherical aberration, astigmatism, and a rather large amount of longitudinal color
and pincushion distortion. In general, the eye relief, i.e., the distance between the
eye lens of the ocular and the exit pupil, is too small for comfort.
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FIGURE lOR
Common eyepieces used in optical instruments.

10.16 RAMSDEN EYEPIECE

Ramsden eyepiece

(b)

In eyepieces of this type as well, the two lenses are usually made of the same kind of
glass, but here they have equal focal lengths. To correct for lateral color, their
separation should be equal to the focal length. Since the first focal plane of the system
coincides with the field lens, a reticle or cross hairs must be located there. Under
some conditions this is considered desirable, but the fact that any dust particles on the
lens surface would also be seen in sharp focus is an undesirable feature. To overcome
this difficulty, the lenses are usually moved a little closer together, thus moving the
focal plane forward at some sacrifice of lateral achromatism.

The paths of the rays through a Ramsden eyepiece are shown in Fig. IOR(b).
The image formed by an objective (not shown) is located at the first focal point F,
and it is here that a field stop FS and a reticle or cross hairs are often located. After
refraction by both lenses, parallel rays emerge and reach the eye at or near the exit
pupil. With regard to aberrations, the Ramsden eyepiece has more lateral color than
the Huygens eyepiece, but the longitudinal color is only about half as great. It has
about one-fifth the spherical aberration, about half the distortion, and no coma.
One important advantage over the Huygens ocular is its 50 percent greater eye relief.

10.17 KELLNER OR ACHROMATIZED RAMSDEN EYEPIECE

Because of the many desirable features of the Ramsden eyepiece, various attempts
have been made to improve its chromatic defects. This aberration can be almost
eliminated by making the eye lens a cemented doublet (Fig. lOS). Such eyepieces are
commonly used in prism binoculars, because the slight amount of lateral color is
removed and spherical aberration is reduced through the aberration characteristics
of the Porro prisms [See Fig. 2C(b)J.

10.18 SPECIAL EYEPIECES

The orthoscopic eyepiece shown in the middle diagram of Fig. lOS is characterized
by its wide field and high magnification. It is usually employed in high-power
telescopes and range finders. Its name is derived from the freedom from distortion
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FIGURE lOS
Three types of achromatized eyepieces.

characterizing the system. The symmetrical eyepiece shown at the right in Fig. lOS
has a larger aperture than a Kellner of the same focal length. This results in a wider
field as well as a long eye relief, hence its frequent use in various types of telescopic
gun sights. The danger of having a short eye relief with a recoiling gun should be
obvious.

Since lateral chromatic aberration, as well as the other aberrations of an eye-
piece, is affected by altering the separation of the two elements, some oculars are
provided with means for making this distance adjustable. Some microscopes come
equipped with a set of such compensating eyepieces, thereby permitting the under-
correction of lateral color in any objective to be neutralized by an overcorrection of
the eyepiece.

10.19 PRISM BINOCULARS

Prism binoculars are in reality a pair of identical telescopes mounted side by side,
one for each of the two eyes. Such an instrument is shown in Fig. lOT with part of
the case cut away to show the optical parts. The objectives are cemented achromatic
pairs, while the oculars are Kellner or achromatized Ramsden eyepieces. The dotted
lines show the path of an axial ray through one pair of Porro prisms. The first prism
reinverts the image and the second turns it left for right, thereby finally giving an image
in the proper position. The doubling back of the light rays has the further advantage
of enabling longer focus objectives to be used in short tubes, with consequent higher
magnification.

There are four general features that go to make up good binoculars: (1)
magnification, (2) field of view, (3) light-gathering power, and (4) size and weight.
For hand-held use, binoculars with five-, six-, seven-, or eightfold magnification are
most generally used. Glasses with powers above 8 are desirable, but require a rigid
mount to hold them steady. For powers less than 4, lens aberrations usually offset
the magnification, and the average person can usually see better with the unaided eyes.
The field of view is determined by the eyepiece aperture and should be as large as is
practicable. For seven-power binoculars a 6° object field is considered large, since in
the eyepiece the same field is spread over an angle of 7 x 6°, or 4r.

The diameter of the objective lenses determines the light-gathering power.
Large diameters are important only at night when there is little light available.
Binoculars with the specification 6 x 30 have a magnification of 6 and objective lenses
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FIGURE lOT
Diagram of prism binoculars, showing the lenses and totally reflecting Porro
prisms.

with an effective diameter of 30.0 mm. The specification 7 x 50 means a mag-
nification of 7 and objectives 50.0 mm in diameter. Although glasses with the latter
specifications are excellent for day or night use, they are considerably larger and more
cumbersome than the daytime glasses specified as 6 x 30 or 8 x 30. For general
civilian use, the latter two are much the most useful.

The diameters of the field and eye lenses of the oculars (FL and EL in Fig. lOR)
determine the size of field of view.

10.20 THE KELLNER-SCHMIDT OPTICAL SYSTEM

The Kellner-Schmidt optical system combines a concave spherical mirror with an
aspheric lens as shown in Fig. IOU. Kellner devised and patented* this optical system
in 1910 as a high-quality source of parallel light. Years later Schmidt introduced the
system as a high-speed camera, and it has since become known as a Schmidt camera.
While Schmidt was the first to emphasize the importance of placing the corrector
plate at the mirror's center of curvature, Kellner shows it in this position in his patent
drawing.

The purpose of the lens is to refract incoming parallel rays in such directions
that after reflection from the spherical mirror they all come to a focus at the same axial
point F. This corrector plate therefore eliminates the spherical aberration of the
mirror. With the lens located at the center of curvature of the mirror, parallel rays

• u.s. Patent 969,785, 1910.
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FIGURE IOU
Kellner-Schmidt optical system.

entering the system at large angles with the axis are brought to a relatively good focus
at other points like F'. The focal surface of such a system is spherical, with its center
of curvature at C.

Such an optical system has several remarkable and useful properties. First
as a camera, with a small film at the center or with a larger film curved to fit the focal
surface, it has the very high speed off/O.5. Because of this phenomenal speed, Schmidt
systems are used by astronomers to obtain photographs of faint stars or comets.
They are used for similar reasons in television receivers to project small images from
an oscilloscope tube onto a relatively large screen. In this case the convex oscilloscope
screen is curved to the focal surface so that the light from the image screen is reflected
by the mirror and passes through the corrector lens to the observing screen.

If a convex silvered mirror is located at FF', rays from any distant source
entering the system will form a point image on the focal surface and after reflection
will again emerge as a parallel bundle in the exact direction of the source. When
used in this manner the device is called an autocollimator. If the focal surface is
coated with fluorescent paint, ultraviolet light from a distant invisible source will
form a bright spot at some point on FF' and the visible light emitted from this spot
will emerge only in the direction of the source~ If a hole is made in the center of the
large mirror, an eyepiece may be inserted in the rear to view the fluorescent screen
and any ultraviolet source may be seen as a visible source. As such, the device be-
comes a fast, wide-angled, ultraviolet telescope.

10.21 CONCENTRIC OPTICAL SYSTEMS*

The recent development and use of concentric optical systems warrants at least
some mention of their remarkable optical properties. Such systems have the general
form of a concave mirror and a concentric lens of the type shown in Fig. 51. As the
title implies, and as is shown in Fig. lOY, all surfaces have a common center of
curvature C.

The purpose of the concentric lens is to reduce spherical aberration to a
minimum. Off-axis rays traversing the lens are bent away from the axis and (by the

• A. Bouwers, "Achievements in Optics," Elsevier Press, Inc., Houston, Tex., 1950.
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FIGURE lOY
Concentric optical system.

proper choice of radii, refractive index, and lens thickness) can be made to cross the
axis at the paraxial focal point F. Since any ray through C may be considered as an
axis, the focal surface is also a sphere with C as a center of curvature. In some
applications the back surface of the lens is made to be the focal surface.

Since the principal planes of the concentric lens both coincide with a plane
through C perpendicular to the axial ray of any bundle, it is as if the corrector were a
thin lens located at C and oriented at the proper angle for all incident parallel beams.

Since there are no oblique and no sagittal rays, the system is free of coma and
astigmatism. The complete performance ofthe system is known as soon as the imagery
of an axial object point is known. Here lies the essential advantage over the Kellner-
Schmidt system. Chromatic aberrations resulting from the lens are small as long as
the focal length is long compared with that of the mirror, and this is nearly always the
case.

Other important features of the concentric system can be seen from the diagram.
There is an unusually small decrease in image brightness with increasing angle of
incidence. The corrector lens may be placed in front of C, in position 2. In this
position the same optical performance is realized. Finally, a concentric convex
mirror may be placed about halfway between the lens and the mirror. The reflected
light is then brought to a focus through a hole in the center of the large mirror. This
latter arrangement, among other things, makes an excellent objective system for a
reflecting microscope.

Today many high-precision optical instruments and devices employ the Kellner-
Schmidt and concentric optical systems. The Armed Services research laboratories
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have developed missile-tracking systems and missile-homing-guidance systems em-
ploying ultraviolet, visible, and infrared light. Fine telephoto objectives and compact
commerical telescopes are also on the market. *

PROBLEMS

10.1 A clear glass bead in the form of a sphere is exactly 2.0 cm in diameter. If the glass
has a refractive index of 1.5250, find by calculation (a) its focal length, (b) its magnify-
ing power, (c) its back focal length, and (d) the location of its secondary principal
point. (e) Solve graphically.

10.2 A magnifier is made with two thin plano-convex lenses, each with a focal length of
+ 2.50 cm and spaced 1.50 cm apart with their convex surfaces facing each other [see
Fig. 10H(b)]. Apply gaussian formulas to find (a) the focal length, (b) the magnifying
power, (c) the back focal length, and (d) the position ofthe secondary principal point.
(e) Solve graphically.

10.3 A Ramsden eyepiece is made of two thin plano-convex lenses, each with a focal
length of 3.50 cm and spaced 2.50 cm apart. Applying the thin-lens formulas, find
(a) its focal length, (b) its magnifying power, and (c) its back focal length.

10.4 A Ramsden eyepiece is made of two thin lenses, each with a focal length of 36.0 mm
and spaced 28.0 mm apart. Applying the thin-lens formulas, find (a) its focal length,
(b) its magnifying power, and (c) its back focal length.

Ans. (a) +29.46 mm, (b) +8.49x, (c) 6.55 mm
10.5 A Huygens eyepiece is made of two thin lenses of the same glass, with focal lengths of

+ 2.50 and 1.50 cm, respectively. If the lenses are spaced to correct for chromatic
aberration (see Sec. 9.14), find (a) the focal length of the eyepiece, (b) the magnifica-
tion, and (c) the back focal length of the ocular. (d) Make a scale diagram.

10.6 A microscope has an ocular marked + 15x and an objective with a focal length of
+4.5 mm. What is the total magnification if the objective forms its image 16.0 cm
beyond its secondary focal plane?

10.7 A microscope is fitted with an ocular having a focal length of 12.0 mm and an
objective with a focal length of 3.20 mm. If the objective forms its image 16.0 cm
beyond its secondary focal plane, find the total magnification. Ans. -1042x

10.8 The objective and ocular of a microscope are 20.0 cm apart. The focal length of the
objective is 7.0 mm, and the focal length of the ocular is 5.0 mm. Treating these as
though they were thin lenses, find (a) the distance from the objective to the object
viewed, (b) the linear magnification by the objective, and (c) the overall magnification
if the final image is formed at infinity.

10.9 The ocular and objective of a microscope have focal lengths of + 5.20 and + 8.20 mm,
respectively, and are located 18.0 cm apart. Treating these as thin lenses, find (a) the
distance from the objective to the object viewed, (b) the linear magnification produced
by the objective, and (c) the overall magnification if the final image is formed at
infinity.

10.10 An objective of an astronomical telescope has a diameter of 12.5 cm and a focal
length of 85.0 cm. When it is used with an eyepiece having a focal length of 2.50 cm
and a diameter of 1.50cm, what will be (a) the angular magnification, (b) the diameter

.• See J. J. Villa, Catadioptic Lenses, Opt. Spectra, March 1968, p. 57.
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of the exit pupil, (c) the object-field angle, (d) the image-field angle, and (e) the eye
relief? Ans. (a) 34.0, (b) 0.3676 cm, (c) 0.491°, (d) 16.70°, (e) 2.574 cm

10.11 The objective of a small astronomical telescope has a focal length of +40.0 cm and a
diameter of 4.0 cm. When it is used with an eyepiece having a focal length of + 12.50
mm and a diameter of 10.0mm, find (a) the angular magnification, (b) the diameter of
the exit pupil, (c) the object-field angle, (d) the image-field angle, and (e) the eye relief.

10.12 The objective lenses of a pair of binoculars have a focal length 26.50 cm and an
aperture of 65.0 mm. The oculars have a focal length of 25.0 mm and an aperture of
12.50 mm. Find (a) the angular magnification, (b) the diameter of the exit pupils,
(c) the object-field angle, (d) the image-field angle, (e) the eye relief, and (f) the field
at a distance of 1000 m.



PART TWO

Wave Optics





11
VIBRATIONS AND WAVES

The world around us is filled with waves. Some of them we can see or hear, but many
more our senses of sight or hearing cannot detect. In the submicroscopic world,
atoms and molecules are made up of electrons, protons, neutrons, and mesons that
move around as waves within their boundaries. Appropriately stimulated, these same
atoms and molecules emit waves we cally rays, X rays, light waves, heat waves, and
radio waves.

In our world of macroscopic bodies, water waves and sound waves are produced
by moving masses of considerable size. Earthquakes produce waves as the result
of sudden shifts in land masses. Water waves are produced by the wind or ships as
they pass by. Sound waves are the result of quick movements of objects in the air.

Any motion that repeats itself in equal intervals of time is called periodic motion.
The swinging of a clock pendulum, the vibrations of the prongs of a tuning fork, and
a mass dancing from the lower end of a coiled spring are but three examples. These
particular motions and many others like them that occur in nature are referred to as
simple harmonic motion (SHM).
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11.1 SIMPLE HARMONIC MOTION

Simple harmonic motion is defined as the projection on any diameter of a graph point
moving in a circle with uniform speed. The motion is illustrated in Fig. llA. The
graph point p moves around the circle of radius a with a uniform speed v. If at every
instant of time a normal is drawn to the diameter AB, the intercept P, called the mass
point, moves with SHM.

Moving back and forth along the line AB, the mass point is continually changing
speed vx' Starting from rest at the end points A or B, the speed increases until it
reaches C. From there it slows down again coming to rest at the other end of its path.
The return of the mass point is a repetition of this motion in reverse.

The displacement of an object undergoing SHM is defined as the distance from
its equilibrium position C to the point P. It will be seen in Fig. 11A that the dis-
placement x varies in magnitude from zero up to its maximum value a, which is the
radius of the circle of reference.

The maximum displacement a is called the amplitude, and the time required to
make one complete vibration is called the period. If a vibration starts at B, it is com-
pleted when the mass point P moves across to A and back again to B. If it starts at C
and moves to B and back to C, only half a vibration has been completed. The ampli-
tude a is measured in meters, or a fraction thereof, while the period is measured in
seconds.

The frequency of vibration is defined as the number of complete vibrations per
second. If a particular vibrating body completes one vibration in t s, the period
T = t s and it will make three complete vibrations in 1 s. If a body makes 10 vibra-
tions in 1 s, its period will be T = fo s. In other words, the frequency of vibration v
and the period T are reciprocals of each other:

In algebraic symbols,

1frequency = ----.-
penod

. d 1peno = ----
frequency

1
v=-

T
1T=-
v

(l1a)

If the vibration of a body is described in terms of the graph point p, moving in
a circle, the frequency is given by the number of revolutions per second, or cycles per
second

1 cycle/second = 1 vibration/second (I Ib)
now called the hertz* (Hz)

1 vib/s = I Hz (llc)

• Heinrich Rudolf Hertz (1857-1894), German physicist, was born at Hamburg.
He studied physics under HelmholtZ in Berlin, at whose suggestion he first became
interested in Maxwell's electromagnetic theory. His researches with electromagnetic
waves which made his name famous were carried out at Karlsruhe Polytechnic
between 1885 and 1889. As professor of physics at the University of Bonn, after
1889, he experimented with electrical discharges through gases and narrowly missed
the discovery of X rays described by Rontgen a few years later. By his premature
death, science lost one of its most promising disciples.
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A

FIGURE llA
Simple harmonic motion along a straight
line AB.

11.2 THE THEORY OF SIMPLE HARMONIC MOTION

At this point we present the theory of SHM and derive an equation for the period of
vibrating bodies. In Fig. lIB we see that the displacement x is given by

x = a cos 0

As the graph point p moves with constant speed D, the radius vector a rotates with
constant angular speed ro, so that the angle (J changes at a constant rate

x = a cos rot (lId)

The graph point p, moving with a speed D, travels once around the circle of
reference, a distance equal to 271:a, in the time of one period T.We now use the relation
in mechanics that time equals distance divided by speed, and obtain

T = 271:a (lIe)
D

(1If)orT = 271:
ro

To obtain the angular speed ro of the graph pointin terms of the period, we have

271:ro =-
T

An object moving in a circle with uniform speed D has a centripetal acceleration
toward the center, given by

Since this acceleration ac continually changes the direction of the motion, its
component ax along the diameter, or x axis, changes in magnitude and is given by
ax = ac cos O. Substituting in Eq. (I 19), we find
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FIGURE llB
The acceleration Q" of any mass moving
with simple harmonic motion is toward a
position of equilibrium C.
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From the right triangle CPp, cos () = x/a, direct substitution gives

v2 xax = -- .or
a a

and

We now multiply both sides of the equation by a2/axv2, take the square root of both
sides of the equation, and obtain

~= ~
v ~~

For a/v in Eq. (lIe) we now substitute ./"0a" and obtain for the period of any
SHM the relation

T = 21t ~ (l1h)
~~

If the displacement is to the right of C, its value is +x, and if the acceleration is to the
left, its value is - ax. Conversely, when the displacement is to left of C, we have - x,
and the acceleration is to the right, or +ax. This is the reason for writing

• T = 21t J- x (11i)
ax

11.3 STRETCHING OF A COILED SPRING

As an illustration of the relationships generally applied to vibrating sources, we con-
sider in some detail the stretching of a coiled spring, followed by its vibration with
SHM when the stretching force is suddenly released (see Fig. ltc).

As a laboratory experiment, one end of a meterstick is placed at marker Q.
A force of 2.0 newtons (N) is applied to the spring, stretching it a distance of 1.25 cm.
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FIGURE lIe
An experiment for measuring the distance x a coiled spring S stretches for different
values of the applied force.

When a total force of 4.0 N is applied, the total stretch is 2.50 em. By applying forces
of 6.0, 8.0, and 10.0 N, respectively, the total distances recorded are as shown in
Table IIA.

Plotting these data on graph paper produces a straight line, as shown in Fig. II D.
Properly interpreted, this graph means that the applied force F and the displacement
of the spring x are directly proportional to each other, and we can write

Focx or F= kx

The proportionality constant k is the slope of the straight line and is a direct
measure of the stiffness of the spring. The experimental value of k in this experiment
is calculated as follows:

k = !:. = 10 N = 160 N/m (llj)
x 0.0625 m

The stiffer the spring, the larger its stretch constant k.
Within the limits of this experiment, the spring exerts an equal and opposite

force - F, as the reaction to the applied force + F. For the spring, - F = kx, and
we can write

F = - kx (11k)

Table llA RECORDED DATA FOR
STRETCHING A
COll..ED SPRING

F
N

o
2
4
6
8
10

o
0.0125
0.0250
0.0375
0.0500
0.0625
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N

-----x
FIGURE ltD
Experimental results on the stretching of a coiled spring as shown in Fig. 11C.
This is a demonstration of Hooke's law.

The fact that we obtain a straight line graph in Fig. 11D shows that the stretching
of a spring obeys Hooke's law. * This is typical of nearly all elastic bodies as long as
the body is not permanently deformed, indicating that the forces applied had been
carried beyond the elastic limit.

Since the work done in stretching the spring is given by the force multiplied by
the distance and the force here varies linearly with the distance,

Work = f F dx (Ill)

As can be seen in Fig. 11E, the average force is given by tF. This, multiplied by
the distance x through which it acts, gives the area under the curve, which is the work
donet

w = tFx

If we now replace F by its equivalent value kx from Eq. (llj), we obtain

(11m)

• (lln)

• Robert Hooke (1635-1703), English experimental physicist, is known principally
for his contributions to the wave theory of light, universal gravitation, and atmo-
spheric pressure. He originated many physical ideas but perfected few of them.
Hooke's scientific achievements would undoubtedly have received greater acclaim
if his efforts had been confined to fewer subjects. He had an irritable temper and
made many virulent attacks on Newton and other men of science, claiming that
work published by them was due to him.
t In most elementary physics texts it is shown that the area under the curve of a graph,
where F is plotted against x, is equal to the total work done.
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FIGURE lIE
The work done and the energy stored in
stretching a spring are given by the area
under the graph line F = kx.
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This relation shows that if the stretch of a spring increases twofold, the energy
required, or stored, is increased fourfold, and increasing the displacement threefold
increases the energy ninefold.

11.4 VIBRATING SPRING

All bodies in nature are elastic, some more so than others. If a distorting force is
applied to change the shape of a body and its shape is not permanently altered, upon
release of the force it will be set in vibration.

This property is demonstrated in Fig. IIF by a mass m suspended from the lower
end of a spring. In diagram (a) a force F has been applied to stretch the spring a
distance a. Upon release, the mass moves up and down with SHM. In diagram
(c), m is at its highest point and the spring is shown compressed. The amplitude of the
vibration is determined by the distance the spring is stretched from its equilibrium
position, and the period of vibration T is given by

• (110)

where k is the stiffness of the spring and m is the mass of the vibrating body. This
equation shows that if a stiffer spring is used, k being in the denominator, the period
is decreased and the vibration frequency is increased. If the mass m is increased, the
period is increased and the frequency is decreased.

Since the stretching of the spring obeys Hooke's law, we can apply Eq. (11k).
Using the force equation from mechanics,

F= rna
and replacing Fin Eq. (11k) by ma, we obtain

ma = -kx or -x m
-=-
a k

(lIp)

Hence by the replacement of -x/a by m/k in Eq. (IIi) we obtain Eq. (110).
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(a) (b) (c)

F

FIGURE llF
A mass m suspended from a coiled spring is shown in three positions as it vibrates
up and down with simple harmonic motion.

EXAMPLE 1 If a 4.0-kg mass is suspended from the lower end of a coiled spring,
as shown in Fig. lIF, it stretches a distance of 18.0em. If the spring is then extended
farther and released, it will be set vibrating up and down with SHM. Find (a) the
spring constant k, (b) the period T, (c) the frequency v, and (d) the total energy stored
in the vibrating system.

SOLUTION The given quantities in the mks system of units are m = 4.0 kg,
x = 0.180 m; the acceleration due to gravity is g = 9.80 m/s2•

(a) We can use Eq. (II k), solve for the value of k, and substitute the appro-
priate values:

k = -F = 4.0 x 9.80 = 217.8 N/m
x 0.180

(b) We can use Eq. (110), and upon direct substitution of the known values
obtain

T = 21t J 4.0 kg
217.8 N/m

T = 0.852 s
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FIGURE 11G
Machine for demonstrating transverse waves.

(c) Since the frequency is the reciprocal of the period,

I Iv = - = -- = 1.174 Hz
T 0.852

(d) The total energy stored in the vibrating system is given by Eq. (lIn).
By substitution of the given quantities we obtain

w = tkx2 = t[(217.8)(O.l80)2] = 3.528 N m = 3.528 J

This answer is read three point five two eight joules.

11.S TRANSVERSE WAVES

All light waves are classified as transverse waves. Transverse waves are those in which
each small part of the wave vibrates along a line perpendicular to the direction of
propagation and all parts are vibrating in the same plane. A wave machine for demon-
strating transverse waves is shown in Fig. llG. When the handle H is turned clock-
wise the small white balls at the top ofthe vertical rods move up and down with SHM.
As each ball moves along a vertical line, the wave form ABCDEFG moves to the right.
When the handle is turned counterclockwise, the wave form moves to the left. In
either case each ball performs the exact same motion along its line of vibration, the
difference being that each ball is slightly behind or ahead of its neighbor.

When a source vibrates with SHM and sends out transverse waves through
a homogeneous medium, they have the general appearance of the waves shown in
Fig. 11H. The distance between two similar points of any two consecutive wave forms
is called the wavelength..1.. One wavelength, for example, is equal to the distance
between two wave crests or two wave troughs.
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FIGURE llH
Diagram of a transverse wave, vibrating in the plane of the page, showing the
wavelength J., the amplitude a, the displacement y, and the speed v.

The displacement y of any given point along a wave, at any given instant in time,
is given by the vertical distance of that point from its equilibrium position. The value
is continually changing from + to - to +, etc. The amplitude of any wave is given by
the letter a in Fig. 11H, and is defined as the maximum value of the displacement y.

The frequency of a train of waves is given by the number of waves passing by,
or arriving at, any given point per second, and is specified in hertz, or in vibrations per
second. From the definition of frequency v and the wavelength A, the speed of the
waves v is given by the wave equation

v = VA (llq)

The length of one wave times the number of waves per second equals the distance the
waves will travel in 1 s.

11.6 SINE WAVES

The simplest kind of wave train is that for which the motions of all points along the
wave have displacements y given by the sine or cosine of some uniformly increasing
function. This in effect describes what we have called SHM.

Consider transverse waves in which the motions of all parts are perpendicular
to the direction of propagation. The displacement y of any point on the wave is then
given by

y = a sin 2~X (llr)

A graph of this equation is shown in Fig. 11I, and the significance of the con-
stants a and A is clear. To make the wave move to the right witil a velocity v, we intro-
duce the timet as follows:

. 2n ( )y = a SIn - X - vt
A

(11s)

Any particle of the wave, such as P in the diagram, will carry out SHM and will
occupy successive positions P, P', PIt, p"" etc., as the wave moves.
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FIGURE 111
Contour of a sine wave at time t = O.

The time for one complete vibration of anyone point is the same as any other
point. Furthermore, the period T and its reciprocal the frequency v are given by the
wave equation (lIq):

A.v = vA. = - (I It)
T

If we substitute several of these variables in Eq. (I Is), we can obtain useful
equations for wave motion in general:

11.7 PHASE ANGLES

y = a sin 2n (~ - ~)

• 21t ( x)Y = a sm T t - ~

Y = a sin 21tv (t - ~)
(l1u)

In wave motion the instantaneous displacement and direction of propagation are
described by specifying the position of the graph point on the circle of reference
(see Fig. IIJ). The angle e, measured counterclockwise from the +x axis, specifying
the position is called the phase angle. As an example consider a point moving up and
down along the y axis, as shown in Fig. IIJ. The position ofthe mass point P is given
by the projection of the graph point p on the y axis. From the right triangle PpC
on the diagram

y = a sin e (I Iv)

With the graph point moving at constant speed v, the angular speed ro is constant,
and we can write for any angle e

e = rot
Substitution in Eq. (II v) gives

y = a sin rot (l1w)

At time t = 0 the graph point is at +po and the mass point is at Po, At some
later time t when the mass point is at P, the graph point is atp and we must modify Eq.
(II w) by adding the angle a as follows:

y = a sin (rot + a) (11x)
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y

FIGURE III
Simple harmonic motion along the y
axis, showing the circle of reference, the
initial phase angle «, the angular speed
ro, and the point Po at time t = O.

t=O

x

The angle IX is a constant and is called the initial phase angle. As the point p
moves around the circle, the angle rot increases at a uniform rate and is alwaysmeasured
from the starting angle IX. The total quantity in parentheses is the total angle measured
from the +x axis.

It is customary to express all angles in radian measure rather than in degrees.

EXAMPLE 2 A given point is vibrating with SHM with a period of 5.0 s and an
amplitude of 3.0 em. If the initial phase angle is nf3 rad, (60°), find (a) the initial
displacement and (b) the displacement after 12.0 s. (c) Make a graph.

SOLUTION (a) Since the graph point makes one revolution in 5.0 s, the angular
speed ro is 2n rad in 5.0 s, or 2nf5 radfs [see Eq. (11f)]' At the time t = 0, direct
substitution in Eq. (1Ix) gives

(b) After 12.0 s, substitution in Eq. (1Ix) gives

y = 3 sinC; 12 + ~)
= 3 sin (4.8 n + ~)
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FIGURE 11K
Graph for the example T = 5.0 S, a = 3.0 em, and « = n/3 rad.

The total phase angle of 4.8n + n/3 is equivalent to 864° + 60°, or 924°, and measured
from the +x axis places the graph point 24° below the - x axis on the circle of refer-
ence. This angle gives

sin 24° = 0.407

and

or

y = 3 (-0.407)

y = -1.220cm

A plot of this example is shown in Fig. 11K. The time T is plotted horizontally,
and the displacement is plotted vertically for the first complete vibration, or 5.0 s.
The up-and-down motion is traced out to show the starting point and initial phase
angle and the time when the motion reaches its first maximum and minimum displace-
ment and when the displacement is zero. The amplitude a = 3.0 cm is seen near the
left side and is equal to the radius of the circle of reference.

A useful and concise way of expressing the equation for simple harmonic waves
is in terms of the angular frequency w = 2nv and the propagation number k = 2n/)..
Equation (llu) then becomes

y = a sin (kx - wt) = a sin (wt - kx + n)

= a cos (wt - kx + ~)

The addition of a constant to the quantity in parentheses is oflittle physical significance,
since such a constant can be eliminated by suitably adjusting the zero of the time scale.
Thus the equations when written

y = a cos (wt - kx) and y = a sin (wt - kx) (lly)

will describe the wave of Fig. 111, if the curve applies at times t = T/4 and T/2,
respectively, instead of at t = O.
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11.8 PHASE VELOCITY AND WAVE VELOCITY

It is now possible to state more precisely what actually moves with a wave. The dis-
cussion given in connection with Fig. 11K may be summed up by saying that a wave
constitutes the progression of a condition of constant phase. This condition might
be, for instance, the crest of the wave, where the phase is such as to yield the maximum
upward displacement. The speed with which a crest moves along is usually called
the wave velocity, although the more specific term phase velocity is sometimes used.
That it is identical with the quantity v in our previous equations is shown by evaluating
the rate of change of the x coordinate under the condition that the phase remain
constant. When the form of the phase in Eq. (lly) is used, the latter requirement
becomes

wt - kx = const

and the wave velocity dx w
v=-=-

dt k
(lIz)

Substitution of w = 2rrv and k = 2rr/ A gives agreement with Eq. (II q). For a wave
traveling toward - x, the constant phase takes the form wt + kx, and the correspond-
ing v = -w/k.

The ratio w/k for a given kind of wave depends on the physical properties of
the medium in which the waves travel and also, in general, on the frequency w itself.
For transverse elastic waves involving distortions small enough for the forces to obey
Hooke's law, the wave velocity is independent of frequency and is given simply as

v = J!f (llza)

N being the shear modulus and p the density. The proof of this relation is not difficult.
From Fig. IlL it will be seen that the sheet of small thickness ~x is sheared through
the angle ex. The shear modulus is the constant ratio of stress to strain. The strain is
measured by tan ex, so that

S. ~ftram =-ox
where f is the function giving the shape of the wave at a particular instant. The stress
is the tangential force F per unit area acting on the surface of the sheet, and this by
Hooke's law must equal the product of the shear modulus and the strain, so that

~fStress = Fx = N -
Ox

Because of the curvature of the wave, the stress will vary with x, and the force acting
on the left side of the sheet will not be exactly balanced by the force acting on its right
side. The net force per unit area is

of 02f
F - F +. = - ~x = N - ~xx x ux ox ox2
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ty

FIGURE llL
The geometry and mechanics for the
shear involved in a transverse wave.

We now apply Newton's second law of motion, equating this force to the product of
the mass and the acceleration of unit area of the sheet:

a21 a21N - [)x = p [)x -ax2 at2
From the fact that they can be polarized (Chap. 24), light waves are known to

be transverse waves. Measurements show that their velocity in a vacuum is approx-
imately 3 x 1010 cm/s. If one assumes them to be elastic waves, as was commonly
done in the nineteenth century, the question arises: What medium transmits them?
In the early elastic-solid theory, a medium called the "ether", having the property
of a high ratio of rigidity to density, was assumed to occupy all space. Its density was
supposed to increase in material substances to account for the lower velocity. There
are obvious objections to such a hypothesis. For example, in spite of its resistance
to shear, which had to be postulated because light waves are transverse, the ether
produces no detectable effects on the motions of astronomical bodies. All the diffi-
culties disappeared when Maxwell developed the present electromagnetic theory
of light (Chap. 20). Here the mechanical displacement of an element of the medium
is replaced by a variation of the electric field (or more generally of the dielectric dis-
placement) at the corresponding point.

The elastic-solid theory was successful in explaining a number of properties of
light. There are many parallelisms in the two theories, and much of the mathematics
of the earlier theory can be rewritten in electromagnetic terms without difficulty.
Consequently, we shall frequently find mechanical analogies useful in understanding
the behavior of light. In fact, for the material presented in the next seven chapters,
it is immaterial what type of waves are assumed.

11.9 AMPLITUDE AND INTENSITY

Waves transport energy, and the amount of it that flows per second across unit area
perpendicular to the direction of travel is called the intensity of the wave. If the wave
flows continuously with the velocity v, there is a definite energy density, or total
energy per unit volume. All the energy contained in a column of the medium of unit
cross section and of length v will pass through the unit of area in I s. Thus the intensity
is given by the product of v and the energy density. Either the energy density or the
intensity is proportional to the square of the amplitude and to the square of the
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frequency. To prove this proposition for sine waves in an elastic medium, it is neces-
sary only to determine the vibrational energy of a single particle executing simple
harmonic motion.

Consider for example the particle P in Fig. Ill. At the time for which the figure
is drawn, it is moving upward and possesses both kinetic and potential energy. A
little later it will have the position P'. Here it is instantaneously at rest, with zero
kinetic energy and the maximum potential energy. As it subsequently moves down-
ward, it gains kinetic energy, while the potential energy decreases in such a way that
the total energy stays constant. When it reaches the center, at P", the energy is all
kinetic. Hence we may find the total energy either from the maximum potential
energy at P' or from the maximum kinetic energy at P". The latter procedure gives
the desired result most easily.

According to Eq. (Ily), the displacement of a particular particle varies with
time according to the relation

y = a sin (wt - a)

where a is the value of kx for that particle. The velocity of the particle is

dy = wa cos (wt - a)
dt

When y = 0, the sine vanishes and the cosine has its maximum value. Then the velocity
becomes - wa, and the maximum kinetic energy

Since this is also the total energy of the particle and is proportional to the energy per
unit volume, it follows that

• (llzb)

The intensity, v times this quantity, will then also be proportional to w2 and a2•
In spherical waves, the intensity decreases as the inverse square of the distance

from the source. This law follows directly from the fact that, provided there is no
conversion of the energy into other forms, the same amount must pass through any
sphere with the source as its center. Since the area of a sphere increases as the square
of its radius, the energy per unit area at a distance r from the source, or the intensity,
will vary as l/r2• The amplitude must then vary as I/r, and one may write the equation
of a spherical wave as

y = ~sin (wt - kr)
r

(lIzc)

Here a means the amplitude at unit distance from the source.
If any of the energy is transformed to heat, i.e., if there is absorption, the ampli-

tude and intensity of plane waves will not be constant but will decrease as the wave
passes through the medium. Similarly with spherical waves, the loss of intensity will
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be more rapid than is required by the inverse-square law. For plane waves, the fraction
dIll of the intensity lost in traversing an infinitesimal thickness dx is proportional to
dx, so that

dI
- = -0( dx
I

To obtain the decrease in traversing a finite thickness x, the equation is integrated to
give

I
x dI IX- = -0( dx
010

Evaluating these definite integrals, we find

• (llzd)

This law, which has been attributed to both Bouguer* and Lambert, t we shall refer
to as the exponential law of absorption. Figure IIM is a plot of the intensity against
thickness according to this law for a medium having DC = 0.4 per centimeter. The wave
equations can be modified to take account of absorption by multiplying the amplitude
by the factor e-ax/2, since the amplitude varies with the square root of the intensity.

For light, the intensity can be expressed in joules per square meter per second.
Full sunlight, for example, has an intensity in these units of about 1.4 x 103• Here it
is important to realize that not all this energy flux affects the eye, and not all that does
is equally efficient. Hence the intensity as defined above does not necessarily corre-
spond to the sensation of brightness, and it is more usual to find light flux expressed
in visual units.t The intensity and the amplitude are the purely physical quantities,
however, and according to modern theory the latter must be expressed in electrical
units. Thus it may be shown that according to equations to be derived in Chap. 20
the amplitude in a beam of sunlight having the above-mentioned value of the intensity
represents an electric field strength of 7.3 Y/cm and an accompanying magnetic
field of 2.4 x 10- 7 tesla (T).

The amplitude of light always decreases more or less rapidly with the distance
traversed. Only for plane waves traveling in vacuum, such as the light from a star
coming through outer space, is it nearly constant. The inverse-square law of intensi-
ties may be assumed to hold for a small source in air at distances greater than about
10 times the lateral dimension of the source. Then the finite size of the source causes
an error of less than 0.1 percent in computing the intensity, and for laboratory dis-
tances the absorption of air may be neglected. In greater thicknesses, however, all
"transparent" substances absorb an appreciable fraction of the energy. We shall take
up this subject again in some detail in Chap. 22.

• Pierre Bouguer (1698-1758). Royal Professor of Hydrography at Le Havre.
t Johann Lambert (1728-1777). German physicist, astronomer, and mathematician.
Worked primarily in the field of heat radiation. Another law, which is always called
Lambert's law, refers to the variation with angle of the radiation from a surface.
t See, for example, F. W. Sears, "Principles of Physics," vol. 3, "Optics," 3d cd.,
chap. 13, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1948.
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FIGURE 11M
Logarithmic decrease of intensity in an absorbing medium.

11.10 FREQUENCY AND WAVELENGTH

Any wave motion is generated by some sort of vibrating source, and the frequency
of the waves is equal to that of the source. The wavelength in a given medium is then
determined by the velocity in that medium and by Eq. (lIt) is obtained by dividing
the velocity by the frequency. Passage from one medium to another causes a change
in the wavelength in the same proportion as it does in the velocity, since the frequency
is not altered. If we remember that a wave front represents a surface on which the
phase of motion is constant, it should be clear that, regardless of any changes of
velocity, two different wave fronts are separated by a certain number of waves.
That is, the length of any ray between two such surfaces is the same, provided this
length is expressed in wavelengths in the appropriate media.

As applied to light, the last statement is equivalent to saying that the optical
path is the same along all rays drawn between two wave fronts. For since wavelengths
are proportional to velocities, we have

A C
-=-=n
Am V

when the light passes from a vacuum, where it has wavelength A and velocity c, into
a medium where the corresponding quantities are Am and v. The optical path corre-
sponding to a distance d in any medium is therefore

or the number of wavelengths in that distance multiplied by the wavelength in vacuum.
It is customary in optics and spectroscopy to refer to the wavelength of a particular
radiation, of a single spectral line, for example, as its wavelength in air under normal
conditions. This we shall designate by A (without subscript), and except in rare cir-
cumstances it may be taken as the same as the wavelength in vacuum.
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The wavelengths of visible light extend between about 4 x 10-7 m or 400 nm
for the extreme violet and 7.2 x 10-7 m or 700 nm for the deep red. Just as the ear
becomes insensitive to sound above a certain frequency, so the eye fails to respond
to light vibrations of frequencies greater than that of the extreme violet or less than
that of the extreme red. The limits, of course, depend somewhat upon the individual,
and there is evidence that most persons can see an image with light of wavelength
as short as 300 nm, but this is a case of fluorescence in the retina. In this case the light
appears to be bluish gray in color and is harmful to the eye. Radiation of wavelength
shorter than that of the visible is termed ultraviolet light down to a wavelength of
about 5 nm and beyond this we are in the region of X rays to 6 x 10-1 nm. Shorter
than these, in turn, are the y rays from radioactive substances. On the long-wavelength
side of the visible lies the infrared, which may be said to merge into the radio waves
at about I x 106 nm. Figure 11N shows the names which have been given to the
various regions of the spectrum of radiation, though we know that no real lines of
demarcation exist. It is convenient to use the same units of length throughout such an
enormous range. Hence wavelengths are now generally expressed in nanometers (nm)
or angstroms (A) (see Appendix VI). *

It will be seen that visible light covers an almost insignificant fraction of this
range. Therefore, although all these radiations are similar in nature, differing only
in wavelength, the term light is conventionally extended only to the adjacent portions
of the spectrum, namely, the ultraviolet and infrared. Many of the results that we
shal~ discuss for light are common to the whole range of radiation, but naturally there
are qualitative differences in behavior between the very long and very short waves,
which we shall occasionally point out. The divisions between the different types of
radiation are purely formal and are roughly fixed by the fact that in the laboratory
the different types are generated and detected in different ways. Thus the infrared
is emitted copiously by hot bodies and is detected by an energy-measuring instrument
such as the thermopile. The shortest radio waves are generated by electric discharges
between fine metallic particles immersed in oil and are detected by electrical devices.
Nichols and Tear, in 1917, produced infrared waves having wavelengths up to
4.2 x lOs nm and radio waves down to 2.2 x lOs nm. The two regions may therefore
be said to overlap, keeping in mind, however, that the waves themselves are of the
same nature for both. The same holds true for the boundaries of all the other regions
of the spectrum.

In sound and other mechanical waves, a change of wavelength occurs when the
source has a translational motion. The waves sent out in the direction of motion are
shortened, and, in the opposite direction, lengthened. No change is produced in the
velocity of the waves themselves; so a stationary observer receives a frequency which
is larger or smaller than that of the source. If, on the other hand, the source is at
rest and the observer in motion, a change of frequency is also observed, but for a
different reason. Here there is no change of wavelength, but the frequency is altered
by the change in relative velocity of the waves with respect to the observer. The two
cases involve approximately the same change of frequency for the same speed of motion,

* A. J. Angstrom (1814-1874). Professor of physics at Uppsala, Sweden. Chiefly
known for his famous atlas of the solar spectrum, which was used for many years as
the standard for wavelength determinations.
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FIGURE llN
Seale of wavelengths for the range of known electromagnetic waves.

provided this is small compared with the velocity of the waves. These phenomena are
known as the doppler effect* and are most commonly experienced in sound as changes
in the acoustic pitch.

Doppler mistakenly attributed the different colors of stars to their motions
toward or away from the earth. Because the velocity of light is so large, an appreciable
change in color would require that a star have a component of velocity in the line of
sight impossibly large compared with the measured velocities at right angles to it.
For most stars, the latter usually range between 10 and 30 km/s, with a few as high
as 300 km/s. Since light travels at nearly 300,000 km/s, the expected shifts of fre-
quency are small. Furthermore, it makes little difference whether one assumes that
the observer or the source is in motion. Suppose that the earth were moving with a
velocity u directly toward a fixed star. An observer would then receive u/).. waves in
addition to the number v = c/).. that would reach him ifhe were at rest. The apparent
frequency would be

, c+u ( u)v=--=v 1+-
).. c

With the velocities mentioned, this would differ from the true frequency by less than
1part in 1000. A good spectroscope can, however, easilydetect and permit the measure-
ment of such a shift as a displacement of the spectrum lines. In fact, this legitimate
application of Doppler's principle has become a powerful method of studying the
radial velocities of stars. Figure 110 shows an example where the spectrum of p.
Cassiopeiae, in the center strip, is compared with the lines of iron from a laboratory
source, photographed above and below. All the iron lines also appear in the stellar
spectrum as white lines (absorption lines) but are shifted toward the left, i.e., toward

• Christian Johann Doppler (1803-1853). Native of Salzburg, Austria. A~ the age of
thirty-two, unable to secure a position, he was about to emigrate to America.
However, at that time he was made professor of mathematics at the Realschule in
Prague and later became professor of experimental physics at the University of
Vienna.
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FIGURE 110
Doppler shift of spectrum lines in a star. Both spectra are negatives. (Courtesy of
McKellar.)

shorter wavelengths. Measurement shows that the increase of frequency corresponds
to a velocity of approach of 115 kmfs, which is unusually high for stars in our own
galaxy. The spectra of other galaxies (spiral nebulae) all show displacements toward
the red, which for the most distant ones amqunt to several hundred angstroms. Such
values would indicate recessional velocities of tens of thousands of kilometers per
second, and have been so interpreted. It is rather interesting that here there is enough
reddening to change the color of the object, as postulated by Doppler, but in this case
it occurs for objects far too faint to be seen by the naked eye.

In the laboratory, there have been found two ways of achieving velocities
sufficient to produce detectable doppler shifts. Byreflecting light from mirrors mounted
on the rim of a wheel rotating at high speed, one can produce speeds of a virtual
source as high as 400mfs. Much larger values are attained by beams of atoms moving
in vacuum, as will be discussed later in Sec. 19.15. There, it is also shown that with
the abandonment of the material ether necessitated by relativity theory the distinction
between the cases of source in motion and of observer in motion disappears. Relativity
leads to an equation which is substantially Eq. (llze) with u representing the relative
velocity of approach or recession.

11.11 WAVE PACKETS

No source of waves vibrates indefinitely, as would be required for it to produce a
true sine wave. More commonly the vibrations die out because of the dissipation of
energy or are interrupted in some way. Then a group of waves of finite length, such
as that illustrated in Fig. UP, is produced. The mathematical representation of a
wave packet of this type is rather more complex and will be briefly discussed in the
next chapter. Since wave packets are of frequent occurrence, however, some features
of their behavior should be mentioned here. In the first place, the wavelength is
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FIGURE UP
Example of a wave packet.

not well defined. If the packet is sent through any device for measuring wavelengths,
e.g., light through a diffraction grating, it will be found to yield a continuous spread
over a certain range AA. The maximum intensity will occur at the value of Ao indicated
in Fig. lIP, but energy will appear in other wavelengths, the intensity dying off more
or less rapidly on either side of Ao' The larger the number N of waves in the group, the
smaller the spread AA, and in fact theory shows that AAfAo is approximately equal to
IfN. Hence only when N is very large may we consider the wave to have an accurately
defined wavelength.

If the medium through which the packet travels is such that the velocity depends
on frequency, two further phenomena will be observed. The individual wave crests
will travel with a velocity different from that of the packet as a whole, and the packet
will spread out as it progresses. We then have two velocities, the wave (or phase)
velocity and the group velocity. The relation between these will be derived in Sec. 12.7.

In light sources, the radiating atoms emit wave trains of finite length. Usually,
because of collisions or damping arising from other causes, these packets are very short.
According to the theorem mentioned above, the consequence is that the spectrum lines
will not be very narrow but will have an appreciable width AA. A measurement of
this width will yield the effective "lifetime" of the electromagnetic oscillators in the
atoms and the average length of the wave packets. A low-pressure discharge through
the vapor of mercury containing the single isotope 198Hgyields very sharp spectral
lines, of width about 0.005 A. Taking the wavelength of one of the brightest lines,
5461 A, we may estimate that there are roughly }O6 waves in a packet and that the
packets themselves are some 50 cm long.

PROBLEMS

11.1 A coil spring hangs from the ceiling as shown in Fig. llF. When a mass of 50.0 g is
fastened to the lower end, the spring is stretched a distance of 15.89 em. If the mass is
now pulled down another 5 em and released, it wilI vibrate up and down with SHM.
Find (a) the spring constant, (b) the period of vibration, (c) the frequency, (d) the
angular velocity of a graph point drawn for the vibration, (e) the maximum velocity
of the mass, and (f) its maximum acceleration. (g) Plot a graph of the vibration for
the time interval t = 0 to t = 3.0 s if the initial phase angle is 270°. (h) Find the time
to reach the first maximum and (i) the total energy of vibration. (j) Write down an
equation for the motion.

Ans. (a) 30.837 N/m, (b) 0.8001 s, (c) 1.2499 Hz, (d) 5.027 rad/s,
(e) 0.39265 mis, (f) 0.4754 m/s2, (g) see Fig. PILl, (h) 4.001 s,

(i) 3.8546 J, (j) y = 0.050 sin (5.027t + 270°) m
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FIGURE Pl1.1
Graph for part (g) of Prob. 11.1

11.2 A coil spring hangs from the ceiling as shown in Fig. 1IF. A mass of 1.60 kg is sus-
pended from the lower end of the spring, stretching it a distance of 12.40 cm. The mass
is now pulled down a distance of 4.0 cm more and then released to vibrate in a vertical
line. Find (a) the spring constant, (b) the period of vibration, (c) the frequency, (d) the
angular velocity of a graph point, (e) the maximum velocity of the mass, and (f) the
maximum acceleration. (g) Plot a graph or the vibration for the time interval t = 0
to t = 2.20 s if the initial phase angle is 225°. (h) Find the time at which the mass first
reaches its highest point and (i) the total energy. (j) Write down an equation for the
motion.

11.3 A wave is specified by y = 6 sin 2n(8t - 4x + i). Find (a) the amplitude, (b) wave-
length, (c) frequency, (d) initial phase angle, and (e) the initial displacement at time
t = 0 and x = O.

11.4 A wave is specified by y = 15 sin 2n(4t - 5x + t). Find (a) the amplitude, (b) the
wavelength, (c) the frequency, (d) the initial phase angle, and (e) the displacement at
time t = 0 and x = O. Ans. (a) 15, (b) t, (c) 4, (d) 240°, (e) -13.0



12
THE SUPERPOSITION OF WAVES

When two sets of waves are made to cross each other, e.g., the waves created by drop-
ping two stones simultaneously in a quiet pool, interesting and complicated effects
are observed. In the region of crossing there are places where the disturbance is
.practically zero and others where it is greater than that given by either wave alone.
A very simple law can be used to explain these effects, which states that the resultant
displacement of any point is merely the sum of the displacements due to each wave
separately. This is known as the principle of superposition and was first clearly stated
by Young* in 1802. The truth of this principle is at once evident when we observe that
after the waves have passed out of the region of crossing, they appear to have been
entirely uninfluenced by the other set of waves. Amplitude, frequency, and all other
characteristics are just as if they had crossed an undisturbed space. This could hold
only provided the principle of superposition were true. Two different observers can

• Thomas Young (1773-1829). English physician and physicist, usually called the
founder of the wave theory of light. An extremely precocious child (he had read the
Bible twice through at the age of four), he developed into a brilliant investigator.
His work on interference constituted the most important contribution on light since
Newton. His early work proved the wave nature of light but was not taken seriously
by others until it was corroborated by Fresnel.
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see different objects through the same aperture with perfect clearness, whereas the
light reaching the two observers had crossed in going through the aperture. The
principle is therefore applicable with great precision to light, and we can use it in
investigating the disturbance in regions where two or more light waves are super-
imposed.

12.1 ADDITION OF SIMPLE HARMONIC MOTIONS ALONG
THE SAME LINE

Considering first the effect of superimposing two sine waves of the same frequency,
the problem resolves itself into finding the resultant motion when a particle executes
two simple harmonic motions at the same time. The displacements due to the two
waves are here taken to be along the same line, which we shall call the Y direction.
If the amplitudes of the two waves are al and a2' these will be the amplitudes of the
two periodic motions impressed on the particle, and, according to Eq. (llx) of the
last chapter, we can write the separate displacements as follows:

Yl = a1 sin (rot - OCl)

Y2 = a2 sin (rot - O(2)

Note that ro is the same for both waves, since we have assumed them to be of the
same frequency. According to the principle of superposition, the resultant displace-
ment Y is merely the sum of Yl and Y2, and we have

y = al sin (rot - OCl) + 02 sin (rot - O(2)

When the expression for the sine of the difference of two angles is used, this can be
written

Y = 01 sin rot cos OCI - 01 cos rot sin OC1 + 02 sin rot cos OC2 - 02 cos rot sin OC2

= (a1 cos OC1 + 02 cos O(2) sin rot - (01 sin OCI + 02 sin O(2) cos rot (l2b)

Now since the o's and oc'sare constants, we are justified in setting

a1 cos OC1 + 02 cos OC2 = A cos ()
01 sin OCI + 02 sin OC2 = A sin ()

(12c)

provided that constant values of A and ()can be found which satisfy these equations.
Squaring and adding Eqs. (l2c), we have

A2(cOS2 () + sin2
() = a/(cos2 OC1 + sin2

OCl) + 0/(cos2 OC2 + sin2
O(2)

+ 201a2(cos OCI cos OC2 + sin OCI sin O(2)

or A2 = 0/ + 0/ + 20102 cos (OCI - O(2) (l2d)

Dividing the lower equation (l2c) by the upper one, we obtain

t () °1 sin OCI + a2 sin OC2an = --------
al cos OCI + a2 cos OC2

(12e)
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Equation (I2d) and (I2e) show that values of A and 9 exist which satisfy Eqs. (l2c),
and we can rewrite Eq. (I2b), substituting the right-hand members of Eq. (l2c).
This gives

y = A cos 9 sin rot - A sin 9 cos rot

which has the form of the sine of the difference of two angles and can be expressed as

y = A sin (rot - 9) (l2f)

This equation is the same as either of our original equations for the separate simple
harmonic motions but contains a new amplitude A and a new phase constant 9.
Hence we have the important result that the sum of two simple harmonic motions
of the same frequency and along the same line is also a simple harmonic motion of
the same frequency. The amplitude and phase constant of the resultant motion can
easily be calculated from those of the component motions by Eqs. (12d) and (l2e),
respectively.

The addition of three or more simple harmonic motions of the same frequency
will likewise give rise to a resultant motion of the same type, since the motions can
be added successively, each time giving an equation of the form of Eq. (12f). Unless
considerable accuracy is desired, it is usually more convenient to use the graphical
method described in the following section. A knowledge of the resultant phase
constant 9, given by Eq. (l2e), is not of interest unless it is needed in combining the
resultant motion with still another.

The resultant amplitude A depends, according to Eq. (l2d), upon the amplitudes
al and a2 of the component motions and upon their difference of phase b = OC1 - OC2'

When we bring together two beams of light, as is done in the Michelson interfero-
meter (Sec. 13.8), the intensity of the light at any point will be proportional to the
square of the resultant amplitude. By Eq. (l2d) we have, in the case where a1 = a2,

bI ~ A2 = 2a2(1 + cos b) = 4a2 cos2 - (l2g)
2

If the phase difference is such that b = 0, 2n:,4n:,... , this gives 4a2, or 4 times the
intensity of either beam. If b = n, 3n, 5n:,... , the intensity is zero. For intermediate
values, the intensity varies between these limits according to the square of the cosine.
These modifications of intensity obtained by combining waves are referred to as
interference effects, and we shall discuss in the next chapter several ways in which
they can be brought about and used experimentally.

12.2 VECTOR ADDITION OF AMPLITUDES

A very simple geometrical construction can be used to find the resultant amplitude
and phase constant of the combined motion in the above case of two simple harmonic
motions along the same line. If we represent the amplitudes a1 and a2 by vectors
making angles OC1 and OC2 with the x axis,. as in Fig. 12A(a), the resultant amplitude A

• Here we depart from the usual convention of measuring positive angles in the
counterclockwise direction, because it is customary in optics to represent an advance
of phase by a clockwise rotation of the amplitude vector.
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FIGURE 12A
Graphical composition of two waves of the same frequency, but different ampli-
tude and phase.

is the vector sum of al and a2 and makes an angle 0 with that axis. To prove this
proposition, we first note from Fig. 12A(b) that in the triangle formed by at> a2' and
A the law of cosines gives

A2 = a/ + a/ - 2a(a2 cos [n - ((X( - (X2)] (I2h)

which readily reduces to Eq. (I2d). Furthermore, Eq. (I2e) is obtained at once from
the fact that the tangent of the angle 0 is the quotient of the sum of the projections of
a( and a2 on the y axis by the sum of their projections on the x axis.

That the resultant motion is also simple harmonic can be concluded if we re-
member that this type of motion may be represented as the projection on one of the
coordinate axes of a point moving with uniform circular motion. Figure 12A is
drawn for the time t = 0, and as time progresses, the displacements y( and Y2 will
be given by the vertical components of the vectors a( and a2' if the latter revolve
clockwise with the same angular velocity w. The resultant, A, will then have the same
angular velocity, and the projection P' of its terminus P will undergo the resultant
motion. If one imagines the vector triangle in part (b) of the figure to revolve as a
rigid frame, it will be seen that the motion of P' will agree with Eq. (I2f).

The graphical method is particularly useful where wehave more than two motions
to compound. Figure 12Bshows the result of adding fivemotions of equal amplitudes
a and having equal phase differences 15. Clearly the intensity I = A2 can here vary
between zero and 25a2, according to the phase difference 15. This is the problem
which arises in finding the intensity pattern from a diffraction grating, as discussed
in Chap. 17. The five equal amplitudes shown in the figure might be contributed by
five apertures of a grating, an instrument which has as its primary purpose the intro-
duction of an equal phase difference in the light from each successive pair of apertures.
It will be noted that as Fig. 12Bis drawn, the vibrations, starting with that at the origin,
lag successively farther behind in phase.
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FIGURE 12B
Vector addition of five amplitudes
having the same magnitude and phase
difference li.

(I2i)
(I2j)

Either the trigonometric or graphical methods for compounding vibrations may
be used to find the resultant of any number of motions with given amplitudes and
phases. It is even possible, as we shall see, to apply these methods to the addition of
infinitesimal vibrations, so that the summations become integrations. In such cases,
and especially if the amplitudes of the individual contributions vary, it is simpler to
use a method of adding the amplitudes as complex numbers. We shall take up this
method in Sec. 14.8, where it first becomes necessary.

12.3 SUPERPOSITION OF TWO WAVE TRAINS OF THE
SAME FREQUENCY

From the preceding section we can conclude directly that the result of superimposing
two trains of sine waves of the same frequency and traveling along the same line is to
produce another sine wave of that frequency but having a new amplitude which is
determined for given values of 01 and 02 by the phase difference ~ between the motions
imparted to any particle by the two waves. As an example, let us find the resultant
wave produced by two waves of equal frequency and amplitude traveling in the same
direction +x, but with one a distance A ahead of the other. The equations of the
two waves, in the form of Eq. (1Iy), will be

Y1 = 0 sin (wt - kx)

Y2 = 0 sin [wt - k(x + A)]

By the principle of superposition, the resultant displacement is the sum of the separate
ones, so that

Y = Y1 + Y2 = o{sin (wt - kx) + sin [wt - k(x + A)]}

Applying the trigonometric formula

sin A + sin B = 2 sin!(A + B) cos!(A - B) (I2k)
we find
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FIGURE 12C
Superposition of two wave trains (a) almost in phase and (b) almost 180' out of
phase.

This corresponds to a new wave of the same frequency but with the amplitude 2a cos
(kN2) = 2a cos (nNA). When A is a small fraction of a wavelength, this amplitude
will be nearly 2a, while if A is in the neighborhood of tA, it will be practically zero.
These cases are illustrated in Fig. 12C, where the waves represented by Eqs. (12i)
and (12j) (light curves) and (121) (heavy curve) are plotted at the time t = O. In these
figures it will be noted that the algebraic sum of the ordinates of the light curves
at any value of x equals the ordinate of the heavy curve. The student may easily
verify by such graphical construction the facts that the two amplitudes need not
necessarily be equal to obtain a sine wave as the resultant and that the addition of
any number of waves of the same frequency and wavelength also gives a similar result.
In any case, the resultant wave form will have a constant amplitude, since the compon-
ent waves and their resultant all move with the same velocity and maintain the same
relative position. The true state of affairs may be pictured by having all the waves in
Fig. 12C move toward the right with a given velocity.

The formation of standing waves in a vibrating cord, giving rise to nodes and
loops, is an example of the superposition of two wave trains of the same frequency
and amplitude but traveling in opposite directions. A wave in a cord is reflected from
the end, and the direct and reflected waves must be added to obtain the resultant
motion of the cord. Two such waves can be represented by the equations

Yl = a sin (rot - kx) Y2 = a sin (rot + kx)

By addition one obtains, in the same manner as for Eq. (121),

Y = 2a cos (-kx) sin rot

which represents the standing waves. For any value of x we have simple harmonic
motion, whose amplitude varies with x between the limits 2a when kx = 0, n, 2n, 3n, ...
and zero when kx = nf2, 3nf2, 5nf2, .... The latter positions correspond to the nodes
and are separated by a distance Ax = nfk = Al2. Figure 12C may also serve to illus-
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FIGURE 12D
Formation and detection of standing M P
waves in Wiener's experiment.

Parallel light waves
\ Ir

a B

Mirrar
M

trate this case if one pictures the two lightly drawn waves as moving in opposite
directions. The resultant curve, instead of moving unchanged toward the right, now
oscillates between a straight-line position when rot = n/2, 3n/2, 5n/2, ... and a sine
curve of amplitude 2a when rot = 0, n, 2n, .... At the nodes, such as N and Nt in
the figure, the resultant displacement is zero at all times.

The standing waves produced by reflecting light at normal incidence from a
polished mirror can be observed by means of an experiment due to Wiener, * which
is illustrated in Fig. 120. A specially prepared photographic film only one-thirtieth
of a wavelength thick is placed in an inclined position in front of the reflecting surface
so that it will cross the nodes and loops successively, as at A, a, B, b, C, c, D, d, ....
The light will affect the plate only where there is an appreciable amount of vibration
and not at all at the nodes. As expected, the developed plate shows a system of dark
bands separated by lines of no blackening where it crossed the nodes. Decreasing
the angle of inclination of the plate with the reflecting surface causes the bands to
move farther apart, since a smaller number of nodal planes are cut in a given distance.
Measuring these bands establishes an important fact: the standing waves have a node
at the reflecting surface. The phase relations of the direct and reflected waves at this
point are therefore such that they continuously annul each other. This is analogous
to the reflection of the waves in a rope from a fixed end. Other similar experiments
performed by Wiener will be discussed in Sec. 25.12.

12.4 SUPERPOSITION OF MANY WAVES WITH
RANDOM PHASES

Suppose that we now consider a large number of wave trains of the same frequency
and amplitude to be traveling in the same direction and specify that the amount by
which each train is ahead or behind any other is a matter of pure chance. From what
has been said above, we can conclude that the resultant wave will be another sine wave
of the same frequency, and it becomes of interest to inquire into the amplitude and
intensity of this wave. Let the individual amplitudes be a, and let there be nwave trains
superimposed. The amplitude of the resultant wave will be the amplitude of motion
of a particle undergoing n simple harmonic motions at once, each of amplitude a.
If these motions were all in the same phase, the resultant amplitude would be na and

• O. Wiener, Ann. Phys., 40:203 (1890).
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FIGURE 12E
The resultant of 12 hl"Jlplitude vectors
drawn with phases at random.

the intensity n2a2, or n2 times that of one wave. In the case we are considering, however,
the phases are distributed purely at random. With the graphical method of compound-
ing amplitudes (Sec. 12.2), one would now obtain a picture like Fig. 12E. The phases
()(10 ()(2,' •• take perfectly arbitrary values between 0 and 2n. The intensity due to the
superposition of such waves will now be determined by the square of the resultant A.
To find A2, we must square the sum of the projections of all vectors a on the x axis
and add the square of the corresponding sum for the y axis. The sum of the x projec-
tions is

a(cos ()(t + cos ()(2 + cos ()(3 + ... + cos ()(n)

When the quantity in parentheses is squared, we obtain terms of the form cos2 ()(t and
others of the form 2 cos ()(t cos ()(2' When n is large, one might expect the latter terms
to cancel out, because they take both positive and negative values. In anyone arrange-
ment of the vectors this is far from true, however, and in fact the sum of these cross.
product terms actually increases approximately in proportion to their number. Thus
we do not obtain a definite result with one given array of randomly distributed waves.
In computing the intensity in any physical problem, we are always presented with a
large number of such arrays, and we wish to find their average effect. In this case it is
safe to conclude that the cross-product terms will average to zero, and we have only
the cos2 ()( terms to consider. Similarly, for the y projections of the vectors one obtains
sin2 ()( terms, and the terms like 2 sin ()(t sin ()(2 cancel. Therefore we have

1 ~ A2 = a2(cos2 ()(t + cos2
()(2 + cos2

()(3 + ... + cos2
()(n)

+ a2(sin2 ()(t + sin2
()(2 + sin2

()(3 + ... + sin2
()(n)

Now since sin2 ()(k + cos2 ()(k = I, we find at once that

Thus the average intensity resulting from the superposition of n waves with random
phases is just n times that due to a single wave. This means that the amplitude A
in Fig. 12E, instead of averaging to zero when a large number of vectors a are re-
peatedly added in random directions, must actually increase in length as n increases
being proportional to J~. '
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The above considerations can be used to explain why when a large number of
violins in an orchestra are playing the same note, interference between the sound
waves need not be considered. Owing to the random condition of phases, 100violins
would give about 100 times the intensity due to one alone. The atoms in a sodium
flame are emitting light without any systematic relation of phases, and furthermore
each is shifting its phase many million times per second. Thus we may safely conclude
that the observed intensity is exactly that due to one atom multiplied by the number
of atoms. This discussion assumes that stimulated emission as found to occur in lasers
does not occur here to any large extent. See Chap. 30.

12.5 COMPLEX WAVES

The waves we have considered so far have been of thc simple type in which the dis-
placements at any instant are represented by a sine curve. As we have seen, super-
position of any number of such waves having the same frequency but arbitrary ampli-
tudes and phases still gives rise to a resultant wave of the same type. However, if
only two waves having appreciably different frequencies are superimposed, the result-
ing wave is complex; Le., the motion of one particle is no longer simple harmonic,
and the wave contour is not a sine curve. The analytical treatment of such waves
will be referred to in the following section, and here we shall consider only some of
their more qualitative aspects.

It is instructive to examine the results of adding graphically two or more waves
traveling along the same line and having various relative frequencies, amplitudes,
and phases. The wavelengths are determined by the frequencies according to the
relation VA = v, so that greater frequency means shorter wavelength, and vice versa.
Figure 12F illustrates the addition for a number of cases, the resultant curves in each
case being obtained, according to the principle of superposition, by merely adding
algebraically the displacements due to the individual waves at every point. Figure
12F(a) illustrates the case, mentioned in Sec. 12.3, of the addition of two waves of
the same frequency but different amplitudes. The resultant amplitude depends on
the phase difference, which in the figure is taken as zero. Other phase differences
would be represented by shifting one of the component waves laterally with respect
to the other and will give a smaller amplitude for the resultant sine wave, its smallest
value being the difference in the amplitudes of the components. In (b) three waves
of different frequencies, amplitudes, and phases are added, giving a complex wave as
the resultant, which is evidently very different from a sine curve. In (c) and (d),where
two waves of the same amplitude but frequencies in the ratio 2:1 are added, it is seen
that changing the phase difference may produce a resultant of very different form. If
these represent sound waves, the eardrum would actually vibrate in a manner rep-
resented by the resultant in each case, yet the ear mechanism would respond to two
frequencies and these would be heard and interpreted as the two original frequencies
regardless of their phase difference. If the resultant wave forms represent visible
light, the eye would similarly receive the sensation of a mixture of two colors, which
would be the same regardless of the phase difference. Finally (e) shows the effect
of adding a wave of very high frequency to one of very low frequency and (f) the effect
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FIGURE 12F
Superposition of two or more waves traveling in the same direction with different
relative frequencies, amplitudes, and phases.

of adding two of nearly the same frequency. In the latter case, the resultant wave
divides up into groups, which in sound produce the well-known phenomenon of beats.
In any of the above cases, if the component waves all travel with the same velocity, the
resultant wave form will evidently move with this velocity, keeping its contour un-
changed. '

Experimental illustrations of the superposition of waves are easily accomplished
with the apparatus shown in Fig. 12G. Two small mirrors, M1 and M2, are cemented
to thin strips of spring steel which are clamped vertically and illuminated by a narrow
beam of light. Such a beam is conveniently produced by the concentrated-arc lamp
described in Sec. 21.2. An image of this source S is focused on the screen by the lens L.
The beam is reflected in succession from the two mirrors, and if one of them is set
vibrating, the reflected beam will vibrate up and down with SHM. If now this beam
on its way to the screen is reflected from a rotating mirror, the spot of light will trace
out a sine wave form which will appear continuous by virtue of the persistence of
vision. When both Mt and M2 are set vibrating at once, the resultant wave form is
the superposition of that produced by each separately. In this way all the curves of
Fig. l2F may be produced by using two or more strips of suitable frequencies. The
frequencies may be easily altered by changing the free length of the strips above the
clamps.

Since for visible light the frequency determines the color, complex waves of
light are produced when beams of light of different colors are used. The "impure"
colors which are not found in the spectrum will therefore have waves of a complex
form. White light, which since Newton's original experiments with prisms we usually
speak of as composed of a mixture of all colors, is the extreme example of the super-
position of a great number of waves having frequencies differing by only infinitesimal
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FIGURE 12G
Mechanical and optical arrangement for
illustrating the. superposition of two
waves.

amounts. We shall discuss the resultant wave form for white light in the following
section. It was mentioned in the preceding chapter that even the most monochromatic
light we can produce in the laboratory still has a finite spread of frequencies. The
question of the actual wave forms in such cases, and of how they can be described
mathematically, should therefore be considered.

12.6 FOURIER ANALYSIS

Since we can build up a wave of very complex form by the superposition of a number
of simple waves, it is of interest to ask to what extent the converse process may be
accomplished-that of decomposing a complex wave into a number of simple ones.
According to a theorem due to Fourier, any periodic function can be represented
as the sum of a number (possibly infinite) of sine and cosine functions. Bya periodic
function we mean one that repeats itself exactly in successive equal intervals, such as
the lower curve in Fig. 12F(b). The wave is given by an equation of the type

y = ao + a 1 sin wt + a 2 sin 2wt + a3 sin 3wt + .
+ a~ cos wt + a; cos 2wt + a; cos 3wt + .

This is known as a Fourier series and contains, besides the constant term ao, a series
of terms having amplitudes a1 a2,' ... , a~, a;, ... and angular frequencies w, 2w,
3w,. . .. Therefore the resultant wave is regarded as being built up of a number of
waves whose wavelengths are as I : t :t :t :..'. In the case of sound, these represent
the fundamental note and its various harmonics. The evaluation of the amplitude
coefficients af for a given wave form can be carried out by a straightforward mathema-
tical process for some fairly simple wave forms but in general is a difficult matter.
Usually one must have recourse to one of the various forms of harmonic analyzer,
a mechanical or electronic device for determining the amplitudes and phases of the
fundamental and its harmonics. *

• For a de1ailed account of mechanical harmonic analyzers, see D. C. Miller, "The
Science of Musical Sounds," The Macmillan Company, New York, 1922.
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Fourier analysis is frequently used today in studying light waves because it is
impossible to observe directly the form of a light wave. It is in the investigation of the
quality of light and sound that the Fourier analysis of waves has been most used.
However, it is important for us to understand the principles of the method, because,
as we shall see, a grating or a prism essentially performs a Fourier analysis of the
incident light, revealing the various component frequencies which it contains and which
appears as spectral lines.

Fourier analysis is not limited to waves of a periodic character. The upper
part of Fig. 12H shows three types of waves which are not periodic, because, instead
of repeating their contour indefinitely, the waves have zero displacement beyond a
certain finite range. These wave packets cannot be represented by Fourier series;
instead Fourier integrals must be used, in which the component waves differ only by
infinitesimal increments of wavelength. By suitably distributing the amplitudes for
the various components, any arbitrary wave form can be expressed by such an integral. *
The three lower curves in Fig. 12H represent qualitatively the frequency distribution
of the amplitudes which will produce the corresponding wave groups shown above.
That is, the upper curves represent the actual wave contour of the group, and this
contour can be synthesized by adding up a very large (strictly, an infinite) number
of wave trains, each of frequency differing only infinitesimally from the next. The
curves shown immediately below each group show the necessary amplitudes of the
components of each frequency, in order that their superposition will produce the
wave form indicated above. They represent' the so-called Fourier transforms of
the corresponding wave functions.

Curve (a) shows the typical wave packet discussed before, and has the Fourier
transform (b) corresponding to a single spectral line of finite width. The group shown
in (c) would be produced by passing perfectly monochromatic light through a shutter
which is opened for an extremely short time. It is worth remarking here that the corre-
sponding amplitude distribution, shown in curve (d), is exactly that obtained for the
Fraunhofer diffraction by a single slit, as will be described in Sec. 15.3. Another
interesting case, shown in curve (e), is that of a single pulse, such as the sound pulse
sent out by a pistol shot or (better) by the discharge of a spark. The form of such a
pulse may resemble that shown, and when a Fourier analysis is made, it yields the
broad distribution of wavelengths shown in curve (f). For light, such a distribution
is called a continuous spectrum and is obtained with sources of white light such as an
incandescent solid. The distribution of intensity in different wavelengths, which is
proportional to the square of the ordinates in the curve, is determined by the exact
shape of the pulse. This view of the nature of white light is one which has been em-
phasized by Gouy and others, t and raises the question whether Newton's experiments
on refraction by prisms, which are usually saidto prove the composite nature of white

* For a brief discussion of these integrals, and for other references, see J. A. Stratton,
"Electromagnetic Theory," pp. 285-292, McGraw-Hill Book Company, New York,
1941. See also J. W. Goodman, "Introduction to Fourier Optics," McGraw-Hill
Book Company, New York, 1968, and R. C. Jennison, "Fourier Transforms and
Convolutions for the Experimentalist," Pergamon Press, Oxford, England, 1965.

t The reader will find the more detailed discussion of the various representations of
white light given in R. W. Wood, "Physical Optics," paperback, Dover Publications,
Inc., New York, 1968, of interest in this connection.
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FIGURE 12H
Distribution of amplitudes of different frequencies for various types of wave
disturbance of finite length.

light, were of much significance in this respect. Since white light may be regarded
as consisting merely of a succession of random pulses, of which the prism performs a
Fourier analysis, the view that the colors are manufactured by the prism, which was
held by Newton's predecessors, may be regarded as equally correct.

12.7 GROUP VELOCITY

It will be readily seen that if all the component simple waves making up a group travel
with the same velocity, the group will move with this velocity and maintain its form
unchanged. If, however, the velocities vary with wavelength, this is no longer true,
and the group will change its form as it progresses. This situation exists for water
waves, and if one watches the individual waves in the group sent out by dropping
a stone in still water, they will be found to be moving faster than the group as a whole,
dying out at the front of the group and reappearing at the back. Hence in this case
the group velocity is less than the wave velocity, a relation which always holds when
the velocity of longer waves is greater than that of shorter ones. It is important to
establish a relation between the group velocity and wave velocity, and this can easily
be done by considering the groups formed by superimposing two waves of slightly
different wavelength, such as those already discussed and illustrated in Fig. 12F (f).
We shall suppose that the two waves have equal amplitudes but slightly different
wavelengths, A. and A.', and slightly different velocities, v and v'. The primed quantities
in each case will be taken as the larger. Then the propagation numbers and angular
frequencies will also differ, such that k > k' and w > w'. The resultant wave will
be given by the sum

y = a sin (wt - kx) + a sin (w't - k'x)

Again applying the trigonometric relation of Eq. (12k), this equation becomes

. (w + w' k + k') (w - w' k - k' )y = 2a sm 2 t - --2- x cos 2 t - --2- x (12n)
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FIGURE 121
Groups and group velocity of two waves of slightly different wavelength and
frequency.

In Figs. 121(a) and (b) the two waves are plotted separately, while (c) gives their sum,
represented by this equation with t = O. The resultant waves have the average wave-
length of the two, but the amplitude is modulated to form groups. The individual
waves, having the average of the two k's, correspond to variations of the sine factor
in Eq. (12n), and according to Eq. (liz), their phase velocity is the quotient of the
multipiiers of t and x

w + w' wv=---~-
k + k' k

That is, the velocity is essentially that of either of the component waves, since these
velocities are very nearly the same. The envelope of modulation, indicated by the
broken curves shown in Fig. 121, is given by the cosine factor. This has a much smaller
propagation number, equal to the difference of the separate ones, and a correspondingly
greater wavelength. The velocity of the groups is

w - w' dw
u = k _ k' ~ dk (120)

Since no limit has been set on the smallness of the differences, they may be treated
as infinitesimals and the approximate equality becomes exact. Then, since w = vk, we
find for the relation between the group velocity u and the wave velocity v

dvu=v+k-
dk

If the variable is changed to A, through k = 2TC/A, one obtains the useful form

dv• u = v - A - (12p)
dA

It should be emphasized that A here represents the actual wavelength in the medium.
For light, this will not in most problems be the ordinary wavelength in air (see Sec.
23.7).
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Equations (120) and (l2p), although derived for an especially simple type of
group, are quite general and can be shown to hold for any group whatever, e.g., the
three illustrated in Fig. 12H(a), (e), and (e).

The relation between wave and group velocities can also be derived in a less
mathematical way by considering the motions of the two component wave trains in
Fig. 121(a)and (b). At the instant shown, the crests A and A' of the two trains coincide
to produce a maximum for the group. A little later the faster waves will have gained
a distance A.' - ..1.on the slower ones, so that B' coincides with B and the maximum
of the group will have moved back a distance..1.. Since the difference in velocity
of the two trains is dv, the time required for this is d..1.fdv. But in this time both wave
trains have been moving to the right, the upper one moving a distance v d..1.fdv. The
net displacement of the maximum of the group is thus v(d..1.fdv) - ..1.in the time d..1./dv,
so that we obtain, for the group velocity,

u = v(d..1./dv) - ..1. = V-A dv
d..1.fdv d),

in agreement with Eq. (l2p).
A picture of the groups formed by two waves of slightly different frequency

may easily be produced with the apparatus described in Sec. 12.5. It is merely neces-
sary to adjust the two vibrating strips until the frequencies differ by only a few vibra-
tions per second. See Fig. 12G.

The group velocity is the important one for light, since it is the only velocity
which we can observe experimentally. We know of no means offollowing the progress
of an individual wave in a group of light waves; instead, we are obliged to measure
the rate at which a wave train of finite length conveys the energy, a quantity which
can be observed. The wave and group velocities become the same in a medium having
no dispersion, i.e., in which dv/d..1. = 0, so that waves of all lengths travel with the
same speed. This is accurately true for light traveling in a vacuum, so that there is no
difference between group and wave velocities in this case.

12.8 GRAPHICAL RELATION BETWEEN WAVE AND
GROUP VELOCITY

A very simple geometrical construction by which we can determine the group velocity
from a curve of the wave velocity against wavelength is based upon the graphical
interpretation of Eq. (12p). As an example, the curve of Fig. 12J represents the varia-
tion of the wave velocity with ..1.for water waves in deep water (gravity waves) and is
drawn according to the theoretical equation v = const x Ji At a certain wave-
length AI' the waves have a velocity v, and the slope of the curve at the corresponding
point P gives dv/d..1.. The line PR, drawn tangent to the curve at this point, intersects
the v axis at the point R, the ordinate of which is the group velocity u for waves of
wavelength in the neighborhood of ..1.1'This is evident from the fact that PQ equals
Al dv/d..1., that is, the abscissa of P multiplied by the slope of PRo Hence QS, which is
drawn equal to RO, represents the difference V-A dv/d..1., and this is just the value of
u, by Eq. (l2p). In the particular example chosen here, it will be left as a problem
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FIGUREl2J
Graphical determination of group veloc-
ity from a wave-velocity curve.

for the student to prove that u = tv for any value of A. In water waves of this type,
the individual waves therefore move with twice the velocity with which the group as a
whole progresses.

12.9 ADDITION OF SIMPLE HARMONIC MOTIONS AT
RIGHT ANGLES

Consider the effect when two sine waves of the same frequency but having displace-
ments in two perpendicular directions act simultaneously at a point. Choosing the
directions as y and z, we may express the two component motions as

and Z = a2 sin (rot - o(2) (12q)

These are to be added, according to the principle of superposition, to find the path
of the resultant motion. One does this by eliminating t from the two equations,
obtaining

L = sin rot cos OCl - cos rot sin OC1 (12r)
a1

!... = sin rot cos OC2 - cos rot sin OC2 (12s)
a2

Multiplying Eq. (l2r) by sin OC2 and Eq. (12s) by sin OC1 and subtracting the first equa-
tion from the second gives

y . z . . (' . )- - sm OC2 + - S111 (Xl = sm rot cos OC2 sm (Xl - cos OCl sm OC2
al a2

(12t)

Similarly, multiplying Eq (l2r) by cos OC2 and Eq. (12s) by cos OCt> and subtracting the
second from the first, we obtain

y z (' . )- cos OC2 - - cos OC1 = cos rot cos OC2 sm OC1 - cos OC1 sm OC2
al a2

(12u)

We can now eliminate t from Eqs. (12t) and (12u) by squaring and adding these equa-
tions. This gives
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FIGURE 12K
Composition at right angles of two simple harmonic motions of the same fre-
quency but different phase.

as the equation for the resultant path. In Fig. 12K the heavy curves are graphs of
this equation for various values of the phase difference lJ = !Xl- !X2• Except for the
special cases where they degenerate into straight lines, these curves are all ellipses.
The principal axes of the ellipse are in general inclined to the y and z axes but coincide
with them when lJ = nf2, 3nf2, 5nf2, ... , as can readily be seen from Eq. (l2v). In
this case

which is the equation of an ellipse with semiaxes 0 land O2, coinciding with the y and z
axes, respectively. When lJ = 0, 2n, 4n, ... , we have

representing a straight line passing through the origin, with a slope Od02' If () =
n, 3n, 5n, ... ,

y=

a straight line with the same slope, but of opposite sign.
That the two cases lJ = nf2 and lJ = 3nf2, although giving the same path, are

physically different can be seen by graphical constructions such as those of Fig. 12L.
In both parts of the figure the motion in the y direction is in the same phase, the point
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(al (bl

FIGURE 12L
Graphical composition of motions in which y is (0) one-quarter and (b) three-
quarters of a period ahead of z.

having executed one-eighth of a vibration beyond its extreme positive displacement.
The z motion in part (a) lacks one-eighth of a vibration of reaching this extreme posi-
tion, while in part (b) it lacks five-eighths. Consideration of the directions of the
individual motions, and of that of their resultant, will show that the latter corresponds
to the indications of the curved arrows. In the two cases the ellipse is traversed in
opposite senses.

Light can be produced for which the form of vibration is an ellipse of any
desired eccentricity. The so~called plane-polarized light (Chap. 24) approximates
a sine wave lying in a plane-say the xy plane of Fig. 12M-and the displacements
are linear displacements in the y direction. If one combines a beam of this light with
another consisting of plane-polarized waves lying in the xz plane (dotted curve)
and having a constant phase difference with the first, the resultant motion at any value
of x will be a certain ellipse in the yz plane. Such light is said to be elliptically polarized
and may readily be produced by various means (Chap. 27). A special case occurs
when the amplitudes at and a2 of the two waves are equal and the phase difference
is an odd multiple of nf2. The vibration form is then a circle, and the light is said to
be circularly polarized. When the direction of rotation is clockwise «(j = nf2, 5nf2, ... )
looking opposite to the direction in which the light is traveling, the light is called
right circularly polarized, while if the rotation is counterclockwise «(j = 3nf2, 7nf2, ... )
it is called left circularly polarized.

The various types of motion shown in Fig. 12K can readily be demonstrated
with the apparatus described in Sec. 12.5. For this purpose, the two strips are arranged
to vibrate at right angles to each other, and the rotating mirror is eliminated. Then
one strip imparts a horizontal vibration to the spot of light, and the other a vertical
vibration. When both are actuated simultaneously, the spot will trace out an ellipse.
This will remain fixed if the two strips are tuned to exactly the same frequency. If
they are only slightly detuned, the figure will progress through the forms corresponding



256 FUNDAMENTALS OF OPTICS

y

%

-z

FIGURE 12M
Composition of two sine waves at right angles.

to all possible values of the phase difference, passing in succession a sequence like
that shown in Fig. 12K.

PROBLEMS

12.1 Two waves traveling together along the same line are given by Y1 = 5 sin(rot + 77:/2)
and Y2 = 7 sin (rot + 77:/3). Find (a) the resultant amplitude, (b) the initial phase
angle of the resultant, and (c) the resultant equation of motion.

Ans. (a) 11.60, (b) 72.4°, (c) Y = 11.60 sin (rot + 72.4°)
12.2 Two waves traveling together along the same line are represented by

Y1 = 25 sin (rot - 77:/4) and Y2 = 15 sin (rot - 77:/6)
Find (a) the resultant amplitude, (b) the initial phase angle of the resultant, and (c) the
resultant equation for the sum of the two motions.

12.3 Three simple harmonic motions are given by Y1 = 2 sin (rot - 30°), Y2 =
5 sin (rot + 30°), and Y3 = 4 sin (rot + 90°). If they are added together, find (a)
the resultant amplitude, (b) the initial phase angle of the resultant, and (c) the resultant
equation of motion.

12.4 Six simple harmonic motions of the same amplitude and period but differing from
the next by + 16° are to be added vectorily as shown in Fig. 12B. If each has an
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amplitude of 5.0 em, find (a) the resultant amplitude and (b) the initial phase angle
of the resultant with respect to the first. '. Ans, (a)~~6.:7~_c.iri;(b) 40.0°

12.5 Two waves having amplitudes of 5 and 8 units and equal frequencies come together
at a point in space. If they meet with a phase difference of 51r/8 rad, find the resultant
intensity relative to the sum of the two separate intensities.

12.6 Calculate the vibration energy resulting from the superposition of six waves having
equal amplitudes of 5 units and initial phase angles of 0, 36, 72, 108, 144, and 180°.
Is the resultant energy increased or decreased if the first and sixth waves are removed?

12.7 Compound graphically two waves having wavelengths in the ratio 3: 2 and ampli-
tudes 1:2, respectively. Assume that they start in phase.

12.8 Compound graphically two waves having wavelengths in the ratio 4:3 and ampli-
tudes in the ratio 2: 3, respectively. Assume that they start in phase.

12.9 Two sources vibrating according to the equations Yl = 4 sin 2m and Y2 = 3 sin 2m
send out waves in all directions with a velocity of 2.40 m/s. Find the equation of
motion of a .particle 5 m from the first source and 3 m from the second. Note:
ill = 21rrad/s. Ans. Y = 6.08 sin (2m - 25.3°)

12.10 Standing waves are produced by the superposition of two waves,

(
t 2X)

YI = 7 sin 21r T - -; and (
t 2X.)

Y2 = 7 sin 21t T + -;

traveling in opposite directions. Find (a) the amplitude, (b) the wavelength A, (c) the
length of one loop, (d) the velocity of the waves, and (e) the period.

12.11 If Weiner's experiment is performed with yellow light, A= 5800 x 10- S cm and the
photographic film is inclined at 0.250° with the mirror, find the distance between
successive dark bands on the developed film.

12.12 Four equal sources emit waves of the same frequency and amplitude and phases
differing by either 0 or 1r rad. Assuming that each possible combination of phases is
equally probable (there are 16 of them) show that the average intensity is just 4 times
that of anyone of the waves. Remember that the intensity due to each combination
is given by the square of the resultant amplitude.

Ans. + + + +(16), - - - -(16), - - - +(4), + + + -(4), - - + -(4),
++-+(4), -+--(4), +-++(4), +---(4), -+++(4),
- - + + (0), + + - - (0), - + + - (0), + - - + (0), - + - + (0),

+ - + -(0); sum = 64; average = 4
12.13 Prove that for water waves controlled by gravity the group velocity equals half the

wave velocity.
12.14 Calculate the wave and group velocities of water waves at (a) A = 2 cm, (b) A =

8.0 cm, and (c) A= 20.0 cm. The wave velocity of short waves such as these are
given by

where A is the wavelength in meters, T is the surface tension in newtons per meter,
which at room temperature is 0.073N/m, g is the acceleration due to gravity, 9.80m/s2,
and d is the density of the liquid in kilograms per cubic meter.

12.15 The phase velocity of waves in a certain medium is represented by v = C1 + C2A,
where the C's are constants. What is the value of the group velocity?

Ans. U = C1



258 FUNDAMENTALS OF OPTICS

12.16 Two simple harmonic motions at right angles are represented by y = 3 sin 21tt and
z = 5 sin (21tt - 31t/4). Find the equation for the resultant path, and plot this path
by the method indicated in Fig. 12L. Verify at least two points on this path by
substitution in the resultant equation.

12.17 How must the equation for the y motion in Prob. 12.16 be modified to yield an
ellipse having its major axis coincident with z to yield a counterclockwise rotation?

12.18 For the type of waves described in Prob. 12.14, (a) find the exact value of the wave-
length for which the wave and group velocities become equal and (b) find their
velocity. (c) Plot a graph of v versus Afrom 0 to 8.0 cm.



13
INTERFERENCE OF TWO BEAMS OF LIGHT

It was stated at the beginning of the last chapter that two beams of light can be made
to cross each other without either one producing any modification of the other after
it passes beyond the region of crossing. In this sense the two beams do not interfere
with each other. However, in the region of crossing, where both beams are acting
at once, we are led to expect from the considerations of the preceding chapter that the
resultant amplitude and intensity may be very different from the sum of those con-
tributed by the two beams acting separately. This modification of intensity obtained
by the superposition of two or more beams of light we call interference. If the resultant
intensity is zero or in general less than we expect from the separate intensities, we have
destructive interference, while if it is greater, we have constructive interference. The
phenomenon in its simpler aspects is rather difficult to observe, because of the very
short wavelength of light, and therefore was not recognized as such before 1800, when
the corpuscular theory of light was predominant. The first man successfully to demon-
strate the interference of light, and thus establish its wave character, was Thomas
Young. In order to understand his crucial experiment performed in 1801, we must
first consider the application to light of an important principle which holds for any
type of wave motion.
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FIGURE 13A
Diffraction of waves passing through a
small aperture.

13.1 HUYGENS' PRINCIPLE

A

B

c

D

E

When waves pass through an aperture or past the edge of an obstacle, they always
spread to some extent into the region which is not directly exposed to the oncoming
waves. This phenomenon is called diffraction. In order to explain this bending of
light, Huygens nearly three centuries ago proposed the rule that each point on a wave
front may be regarded as a new source of waves. * This principle has very far-reaching
applications and will be used later in discussing the diffraction of light, but we shall
consider here only a very simple proof of its correctness. In Fig. 13A let a set of plane
waves approach the barrier AB from the left, and let the barrier contain an opening
S of width somewhat smaller than the wavelength. At all points except S the waves
will be either reflected or absorbed, but S will be free to produce a disturbance behind
the screen. It is found experimentally, in agreement with the above principle, that
the waves spread out from S in the form of semicircles.

Huygens' principle as shown in Fig. 13A can be illustrated very successfully
with water waves. An arc lamp on the floor, with a glass-bottomed tray or tank above
it, will cast shadows of waves on a white ceiling. A vibrating strip of metal or a wire
fastened to one prong of a tuning fork of low frequency will serve as a source of waves
at one end of the tray. If an electrically driven tuning fork is used, the waves can be
made apparently to stand still by placing a slotted disk on the shaft of a motor in
front of the arc lamp. The disk is set rotating with the same frequency as the tuning
fork to give the stroboscopic effect. This experiment can be performed for a fairly
large audience and is well worth doing. Descriptions of diffraction experiments in
light will be given in Chap. 15.

If the experiment in Fig. 13A is performed with light, one would naturally
expect, from the fact that light generally travels in straight lines, that merely a narrow
patch of light would appear at D. However, if the slit is made very narrow, an ap-

• The "waves" envisioned by Huygens were not continuous trains but a series of
random pulses. Furthermore, he supposed the secondary waves to be effective only
at the point of tangency to their common envelope, thus denying the possibility of
diffraction. The correct application of the principle was first made by Fresnel,
more than a century later.
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FIGURE 13B
Photograph of the diffraction of light from a slit of width 0.001 mm.

preciable broadening of this patch is observed, its breadth increasing as the slit is
narrowed further. This is remarkable evidence that light does not always travel in
straight lines and that waves on passing through a narrow opening spread out into a
continuous fan of light rays. When the screen CE is replaced by a photographic plate,
a picture like the one shown in Fig. l3B is obtained. The light is most intense in the
forward direction, but its intensity decreases slowly as the angle increases. If the slit is
small compared with the wavelength of light, the intensity does not come to zero even
when the angle of observation becomes 90°. While this brief introduction to Huygens'
principle will be sufficient for understanding the interference phenomena we are to
discuss, we shall return in Chaps. 15 and 18 to a more detailed consideration of
diffraction at a single opening.

13.2 YOUNG'S EXPERIMENT

The original experiment performed by Young is shown schematically in Fig. l3C.
Sunlight was first allowed to pass through a pinhole 8 and then, at a considerable
distance away, through two pinholes 81 and 82, The two sets of spherical waves
emerging from the two holes interfered with each other in such a way as to form
a symmetrical pattern of varying intensity on the screen AC. Since this early experi-
ment was performed, it has been found convenient to replace the pinholes by narrow
slits and to use a source giving monochromatic light, i.e., light of a single wavelength.
In place of spherical wave fronts we now have cylindrical wave fronts, represented
equally well in two dimensions by the same Fig. l3C. If the circular lines represent
crests of waves, the intersections of any two lines represent the arrival at those points
of two waves with the same phase or with phases differing by a multiple of 2n. Such
points are therefore those of maximum disturbance or brightness. A close examina-
tion of the light on the screen will reveal evenly spaced light and dark bands or fringes,
similar to those shown in Fig. l3D. Such photographs are obtained by replacing the
screen AC of Fig. l3C by a photographic plate.



262 FUNDAMENTALS OF OPTICS

A

c

FIGURE l3e
Experimental arrangement for Young's double-slit experiment.

A very simple demonstration of Young's experiment can be accomplished in the
laboratory or lecture room by setting up a single-filament lamp L (Fig. BE) at the
front of the room. The straight vertical filament S acts as the source and first slit.
Double slits for each observer can be easily made from small photographic plates
about 1 to 2 in. square. The slits are made in the photographic emulsion by drawing
the point of a penknife across the plate, guided by a straightedge. The plates need not
be developed or blackened but can be used as they are. The lamp is now viewed by
holding the double slit D close to the eye E and looking at the lamp filament. If the
slits are close together, for example, 0.2 mm apart, they give widely spaced fringes,
whereas slits farther apart, for example, 1.0 mm, give very narrow fringes. A piece
of red glass F placed adjacent to and above another of green glass in front of the
lamp will show that the red waves produce wider fringes than the green, which we
shall see is due to their greater wavelength.

Frequently one wishes to perform accurate experiments by using more nearly
monochromatic light than that obtained by white light and a red or green glass filter.
Perhaps the most convenient method is to use the sodium arc now available on the
market or a mercury arc plus a filter to isolate the green line, 25461. A suitable filter
consists of a combination of didymium glass, to absorb the yellow lines, and a light
yellow glass, to absorb the blue and violet lines.

FIGURE 130
Interference fringes produced by a double slit using the arrangement shown in
Fig. 13C.
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F

FIGURE 13E
Simple method for observing interference fringes.

D

13.3 INTERFERENCE FRINGES FROM A DOUBLE SOURCE

We shall now derive an equation for the intensity at any point P on the screen (Fig.
13F) and investigate the spacing of the interference fringes. Two waves arrive at P,
having traversed different distances S2P and SIP. Hence they are superimposed with
it phase difference given by

It is assumed that the waves start out from SI and S2 in the same phase, because
these slits were taken to be equidistant from the source slit S. Furthermore, the ampli-
tudes are practically the same if (as is usually the case) SI and S2 are of equal width
and very close together. The problem of finding the resultant intensity at P therefore
reduces to that discussed in Sec. 12.1, where we considered the addition of two simple
harmonic motions of the same frequency and amplitude, but of phase difference l>.
The intensity was given by Eq. (12g) as

where a is the amplitude of the separate waves and A that of their resultant.
It now remains to evaluate the phase difference in terms of the distance x on

the screen from the central point Po, the separation d of the two slits, and the distance
D from the slits to the screen. The corresponding path difference is the distance
S2A in Fig. l3F, where the dashed line SIA has been drawn to make SI and A equidis-
tant from P. As Young's experiment is usually performed, D is some thousand times
larger than d or x. Hence the angles () and ()' are very small and practically equal.
Under these conditions, S1AS2 may be regarded as a right triangle, and the path
difference becomes d sin ()' ~ d sin (). To the same approximation, we may set the
sine of the angle equal to the tangent, so that sin () ~ x/D. With these assumptions,
we obtain

~ = d sin () = d!. (13c)
D

This is the value of the path difference to be substituted in Eq. (13a) to obtain the
phase difference l>. Now Eq. (l3b) for the intensity has maximum values equal to
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FIGURE 13F
Path difference in Young's experiment.

4a2 whenever fJ is an integral multiple of 2n, and according to Eq. (13a) this will occur
when the path difference is an integral multiple of A. Hence we have

xd- = 0, A, 2,1" 3,1" ... = mA
D

or

• Dx=mA-
d

Bright fringes (13d)

The minimum value of the intensity is zero, and this occurs when fJ = n, 3n, 5n, ....
For these points

or

• Dark fringes (l3e)

The whole number m, which characterizes a particular bright fringe, is called the order
of interference. Thus the fringes with m = 0, 1,2, ... are called the zero, first, second,
etc., orders.

According to these equations the distance on the screen between two successive
fringes, which is obtained by changing m by unity in either Eq. (l3d) or (13e), is
constant and equal to AD/d. Not only is this equality of spacing verified by measure-
ment of an interference pattern such as Fig. 130, but one also finds by experiment
that its magnitude is directly proportional to the slit-screen distance D, inversely pro-
portional to the separation of the slits d, and directly proportional to the wavelength A.
Knowledge of the spacing of these fringes thus gives us a direct determination of A in
terms of known quantities.
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FIGURE 13G
The composition of two waves of the
same frequency and amplitude but
different phase.

These maxima and minima of intensity exist throughout the space behind the
slits. A lens is not required to produce them, although they are usually so fine that a
magnifier or eyepiece must be used to see them'. Because of the approximations made
in deriving Eq. (I3c), careful measurements would show that, particularly in the region
near the slits, the fringe spacing departs from the simple linear dependence required
by Eq. (l3d). A section of the fringe system in the plane of the paper of Fig. I3C,
instead of consisting of a system of straight lines radiating from the midpoint between
the slits, is actually a set of hyperbolas. The hyperbola, being the curve for which the
difference in the distance from two fixed points is constant, obviously fits the condition
for a given fringe, namely, the constancy of the path difference. Although this
deviation from linearity may become important with sound and other waves, it is
usually negligible when the wavelengths are as short as those of light.

13.4 INTENSITY DISTRIBUTION, IN THE FRINGE SYSTEM

To find the intensity on the screen at points between the maxima, we may apply the
vector method of compounding amplitudes described in Sec. 12.2 and illustrated
for the present case in Fig. I3G. For the maxima, the angle ~ is zero, and the compo-
nent amplitudes al and a2 are parallel, so that if they are equal, the resultant A = 2a.
For the minima, a1 and a2 are in opposite directions, and A = O. In general, for any
value of~, A is the closing side of the triangle. The value of A2

, which measures the
intensity, is then given by Eq. (I3b) and varies according to cos2 (~/2). In Fig. I3R
the solid curve represents a plot of the intensity against the phase difference.

In concluding our discussion of these fringes, one question of fundamental
importance should be considered. If the two beams of light arrive at a point on the
screen exactly out of phase, they interfere destructively and the resultant intensity is
zero. One may well ask what becomes of the energy of the two beams, since the law
of conservation of energy tells us that energy cannot be destroyed. The answer to
this question is that the energy which apparently disappears at the minima actually
is stilI present at the maxima, where the intensity is greater than would be produced
by the two beams acting separately. In other words, the energy is not destroyed but
merely redistributed in the interference patter!1. The average intensity on the screen
is exactly that which would exist in the absence of interference. Thus, as shown in
Fig. I3B, the intensity in the interference pattern varies between 4a2 and zero. Now
each beam acting separately would contribute a2, and so without interference we
would have a uniform intensity of 2a2, as indicated by the broken line. To obtain
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FIGURE 13H
Intensity distribution for the interference fringes from two waves of the same
frequency.

the average intensity on the screen for n fringes, we note that the average value of the
square of the cosine is -t. This gives, by Eq. (13b), I ~ 2a2, justifying the statement
made above, and it shows that no violation of the law of conservation of energy is
involved in the interference phenomenon.

13.5 FRESNEL'S BIPRISM*

Soon after the double-slit experiment was performed by Young, the objection was
raised that the bright fringes he observed were probably due to some complicated
modification of the light by the edges of the slits and not to true interference. Thus the
wave theory of light was still questioned. Not many years passed, however, before
Fresnel brought forward several new experiments in which the interference of two
beams of light was proved in a manner not open to the above objection. One of these,
the Fresnel biprism experiment, will be described in some detail.

A schematic diagram of the biprism experiment is shown in Fig. 131. The thin
double prism P refracts the light from the slit sources S into two overlapping beams
ae and be. If screens M and N are placed as shown in the figure, interference fringes
are observed only in the region be. When the screen ae is replaced by a photographic
plate, a picture like the upper one in Fig. 13J is obtained. The closely spaced fringes
in the center of the photograph are due to interference, while the wide fringes at the
edge of the pattern are due to diffraction. These wider bands are produced by the
vertices of the two prisms, each of which acts as a straightedge, giving a pattern which
will be discussed in detail in Chap. 18. When the screens M and N are removed from

• Augustin Fresnel (1788-1827). Most notable French contributor to the theory of
light. Trained as an engineer, he became interested in light, and in 1814-1815 he
rediscovered Young's principle of interference and extended it to complicated cases
of diffraction. His mathematical investigations gave the wave theory a sound
foundation.
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FIGURE 131
Diagram of Fresnel's biprism experiment.

the light path, the two beams will overlap over the whole region ae. The lower photo-
graph in Fig. 13J shows for this case the equally spaced interference fringes super-
imposed on the diffraction pattern of a wide aperture. (For the diffraction pattern
above, without the interference fringes, see lowest figures in Fig. 18U.) With such an
experiment Fresnel was able to produce interference without relying upon diffraction
to bring the interfering beams together.

Just as in Young's double-slit experiment, the wavelength of light can be deter-
mined from measurements of the interference fringes produced by the biprism. Calling
Band C the distances of the source and screen, respectively, from the prism P, d the
distance between the virtual images 81 and 82, and ~x the distance between the suc-
cessive fringes on the screen, the wavelength of the light is given from Eq. (13d) as

A = ~x d (13f)
B+C

Thus the virtual images 81 and 82 act like the two slit sources in Young's experiment.
In order to find d, the linear separation of the virtual sources, one can measure

their angular separation ()on a spectrometer and assume, to sufficient accuracy, that
d = B(). If the parallel light from the collimator covers both halves of the biprism,
two images of the slit are produced and the angle ()between these is easily measured
with the telescope. An even simpler measurement of this angle can be made by holding
the prism close to one eye and viewing a round frosted light bulb. At a certain distance
from the light the two images can be brought to the point where their inner edges
just touch. The diameter of the bulb divided by the distance from the bulb to the
prism then gives ()directly.

Fresnel biprisms are easily made from a small piece of glass, such as half a
microscope slide, by beveling about t to t in. on one side. This requires very little
grinding with ordinary abrasive materials and polishing with rouge, since the angle
required is only about 10

•
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••FIGURE 13J
Interference and diffraction fringes produced in the Fresnel biprism experiment.

13.6 OTHER APPARATUS DEPENDING ON DIVISION OF
THE WAVE FRONT

Two beams can be brought together in other ways to produce interference. In the
arrangement known as Fresnel's mirrors, light from a slit is reflected in two plane
mirrors slightly inclined to each other. The mirrors produce two virtual images of
the slit, as shown in Fig. 13K. They act in every respect like the images formed by
the biprism, and interference fringes are observed in the region be, where the reflected
beams overlap. The symbols in this diagram correspond to those in Fig. 131, and
Eq. (13f) is again applicable. It will be noted that the angle 2(} subtended at the point
of intersection M by the two sources is twice the angle between the mirrors.

The Fresnel double-mirror experiment is usually performed on an optical bench,
with the light reflected from the mirrors at nearly grazing angles. Two pieces of ordi-
nary plate glass about 2 in. square make a very good double mirror. One plate should
have an adjusting screw for changing the angle () and the other a screw for making
the edges of the two mirrors parallel.

An even simpler device, shown in Fig. 13L, produces interference between the
light reflected in one long mirror and the light coming directly from the source without
reflection. In this arrangement, known as Lloyd's mirror, the quantitative relations
are similar to those in the foregoing cases, with the slit and its virtual image con-
stituting the double source. An important feature of the Lloyd's-mirror experiment
lies in the fact that when the screen is placed in contact with the end of the mirror
(in the position MN, Fig. 13L), the edge 0 of the reflecting surface comes at the center
of a dark fringe, instead of a bright one as might be expected. This means that one of
the two beams has undergone a phase change of 1t. Since the direct beam could not
change phase, this experimental observation is interpreted to mean that the reflected
light has changed phase at reflection. Two photographs of the Lloyd's-mirror fringes
taken in this way are reproduced in Fig. 13M, one taken with visible light and the
other with X rays.

If the light from source Sl in Fig. 13L is allowed to enter the end of the glass
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FIGURE 13K
Geometry of Fresnel's mirrors.

plate by. moving the latter up, and to be internally reflected from the upper glass
surface, fringes will again be observed in the interval OP, with a dark fringe at O.
This shows that there is again a phase change of 1t at reflection. As will be shown in
Chap. 25, this is not a contradiction of the discussion of phase change given in Sec. 14.1.
In this instance the light is incident at an angle greater than the critical angle for total
reflection.

Lloyd's mirror is readily set up for demonstration purposes as follows. A carbon
arc, followed by a colored glass filter and a narrow slit, serves as a source. A strip
of ordinary plate glass 1 to 2 in. wide and 1 ft or more long makes an excellent mirror.
A magnifying glass focused on the far end of the mirror enables one to observe the
fringes shown in Fig. 13M. Internal fringes can be observed by polishing the ends of

c
e

FIGURE 13L
Lloyd's mirror.
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(a) (b)

FIGURE 13M
Interference fringes produced with Lloyd's mirror. (a) Taken with visible light,
).= 4358 A. (After White.) (b) Taken with X rays, ). = 8.33 A. (After Kellstrom.)

the mirror to allow the light to enter and leave the glass, and by roughening one of
the glass faces with coarse emery.

Other ways exist* for dividing the wave front into two segments and subsequently
recombining these at a small angle with each other. For example, one can cut a lens
into two halves on a plane through the lens axis and separate the parts slightly, to
form two closely adjacent real images of a slit. The images produced in this device,
known as Billet's split lens, act like the two slits in Young's experiment. A single lens
followed by a biplate (two plane-parallel plates at a slight angle) will accomplish
the same result.

13.7 COHERENT SOURCES

It will be noticed that the various methods of demonstrating interference so far dis-
cussed have one important feature in common: the two interfering beams are always
derived from the same source of light. We find by experiment that it is impossible to
obtain interference fringes from two separate sources, such as two lamp filaments
set side by side. This failure is caused by the fact that the light from anyone source
is not an infinite train of waves. On the contrary, there are sudden changes in phase
occurring in very short intervals of time (of the order of 10-8 s). This point has
already been mentioned in Sees. ILl and 12.6. Thus, although interference fringes
may exist on the screen for such a short interval, they will shift their position each
time there is a phase change, with the result that no fringes at all will be seen. In
Young's experiment and in Fresnel's mirrors and biprism, the two sources Sl and S2
always have a point-to-point correspondence of phase, since they are both derived
from the same source. If the phase of the light from a point in Sl suddenly shifts,
that of the light from the corresponding point in S2 will shift simultaneously. The
result is that the difference in phase between any pair of points in the two sources
always remains constant, and so the interference fringes are stationary. It is a charac-

• Good descriptions will be found in T. Preston, "Theory of Light," 5th ed., chap. 7,
The Macmillan Company, New York, 1928.
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teristic of any interference experiment with light that the sources must have this
point-to-point phase relation, and sources that have this relation are called coherent
sources.

While special arrangements are necessary for producing coherent sources of
light, the same is not true of microwaves, which are radio waves of a few centimeters
wavelength. These are produced by an oscillator which emits a continuous wave,
the phase of which remains constant over a time long compared with the duration
of an observation. Two independent microwave sources of the same frequency are
therefore coherent and can be used to demonstrate interference. Because of the con-
venient magnitude of their wavelength, microwaves are used to illustrate many
common optical interference and diffraction effects.*

If in Young's experiment the source slitS (Fig. 13C) is made too wide or the
angle between the rays which leave it too large, the double slit no longer represents
two coherent sources and the interference fringes disappear. This subject will be
discussed in more detail in Chap. 16.

13.8 DIVISION OF AMPLITUDE. c,

MICHELSONt INTERFEROMETER

Interference apparatus may be conveniently divided into two main classes, those
based on division of wave front and those based on division of amplitude. The previous
examples all belong to the former class, in which the wave front is divided laterally
into segments by mirrors or diaphragms. It is also possible to divide a wave by partial
reflection, the two resulting wave fronts maintaining the original width but having
reduced amplitudes. The Michelson interferometer is an important example of this
second class. Here the two beams obtained by amplitude division are sent in quite
different directions against plane mirrors, whence they are brought together again
to form interference fringes. The arrangement is shown schematically in Fig. 13N.
The main optical parts consist of two highly polished plane mirrors M1 and M2

and two plane-parallel plates of glass Gland G2• Sometimes the rear side of the plate
G1 is lightly silvered (shown by the heavy line'in the figure) so that the light coming
from the source S is divided into (1) a reflected and (2) a transmitted beam of equal
intensity. The light reflected normally from mirror M1 passes through G1 a third
time and reaches the eye as shown. The light reflected from the mirror M 2 passes
back through G2 for the second time, is reflected from the surface of G1 and into the

* The technique of such experiments is discussed by G. F. Hull, Jr., Am. J. Phys.,
17:599 (1949),

t A, A, Michelson (1852-1931). American physicist of genius, He early became
interested in the velocity of light and began experiments while an instructor in
physics and chemistry at the Naval Academy, from which he graduated in 1873.
It is related that the superintendent of the Academy asked young Michelson why he
wasted his time on such useless experiments. Years later Michelson was awarded
the Nobel prize (1907) for his work on light. Much of his work on the speed of
light (Sec. 19.3) was done during 10 years spent at the Case Institute of Technology.
During the latter part of his life he was professor of physics at the University of
Chicago, where many of his famous experiments on the interference of light were
done.
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FIGURE 13N
Diagram of the Michelson interfer-
ometer.

eye. The purpose of the plate G2, called the compensating plate, is to render the path
in glass of the two rays equal. This is not essential for producing fringes in mono-
chromatic light, but it is indispensable when white light is used (Sec. 13.11). The
mirror M 1 is mounted on a carriage C and can be moved along the well-machined
ways or tracks T. This slow and accurately controlled motion is accomplished by
means of the screw V,which is calibrated to show the exact distance the mirror has
been moved. To obtain fringes, the mirrors M 1 and M 2 are made exactly perpendicular
to each other by means of screws shown on mirror M2•

Even when the above adjustments have been made, fringes will not be seen
unless two important requirements are fulfilled. First, the light must originate from
an extended source. A point source or a slit source, as used in the methods previously
described, will not produce the desired system of fringes in this case. The reason
for this will appear when we consider the origin of the fringes. Second, the light must
in general be monochromatic, or nearly so. Especially is this true if the distances of
M1 and M2 from G1 are appreciably different.

An extended source suitable for use with a Michelson interferometer may
be obtained in anyone of several ways. A sodium flame or a mercury are, if large
enough, may be used without the ~creenL shown in Fig. 13N. If the source is small,
a ground-glass screen or a lens at L will extend the field of view. Looking at the
mirror M 1 through the plate G l' one then sees the whole mirror filled with light.
In order to obtain the fringes, the next step is to measure the distances of M1 and
M 2 to the back surface of G 1 roughly with a millimeter scale and to move M 1 until
they are the same to within a few millimeters. The mirror M2 is now adjusted to be
perpendicular to M 1 by observing the images of a common pin, or any sharp point,
placed between the source and Gl' Two pairs of images will be seen, one coming
from reflection at the front surface of G1 and the other from reflection at its back
surface. When the tilting screws on M2 are turned until one pair of images falls exactly
on the other, the interference fringes should appear. When they first appear, the
fringes will not be clear unless the eye is focused on or near the back mirror M l'

so the observer should look constantly at this mirror while searching for the fringes.
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FIGURE 130
Formation of circular fringes in the Michelson interferometer.

When they have been found, the adjusting screws should be turned in such a way as
to continually increase the width of the fringes, and finally a set of concentric circular
fringes will be obtained. M2 is then exactly perpendicular to M1 if the latter is at an
angle of 45° with Gl'

13.9 CIRCULAR FRINGES

These are produced with monochromatic light when the mirrors are in exact adjust-
ment and are the ones used in most kinds of measurement with the interferometer.
Their origin can be understood by reference to the diagram of Fig. 130. Here the
real mirror M2 has been replaced by its virtual image M~ formed by reflection in G1•

M~ is then parallel to M1• Owing to the several reflections in the real interferometer,
we may now think of the extended source as being at L, behind the observer, and as
forming two virtual images L1 and L2 in M1 and M;. These virtual sources are coher-
ent in that the phases of corresponding points in the two are exactly the same at all
instants. If d is the separation M1M;, the virtual sources will be separated by 2d.
When d is exactly an integral number of half wavelengths, i.e., the path difference
2d equal to an integral number of whole wavelengths, all rays of light reflected normal
to the mirrors will be in phase. Rays of light reflected at an angle, however, will in
general not be in phase. The path difference between the two rays coming to the eye
from corresponding points P' and P" is 2d cos e, as shown in the figure. The angle ()
is necessarily the same for the two rays when M1 is parallel to M~ so that the rays
are parallel. Hence when the eye is focused to receive parallel rays (a small telescope
is more satisfactory here, especially for large values of d) the rays will reinforce each
other to produce maxima for those angles e satisfying the relation

2d cos e = rnA. (13g)
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(a) (b) (c) (d)

(f) (g) (h) (i) (j)

FIGURE 13P
Appearance of the various types of fringes observed in the Michelson interfer-
ometer. Upper row, circular fringes. Lower row, localized fringes. Path difference
increases outward, in both directions, from the center.

Since for a given m, A.,and d the angle e is constant, the maxima will lie in the form
of circles about the foot of the perpendicular from the eye to the mirrors. By expand-
ing the cosine, it can be shown from Eq. (l3g) that the radii of the rings are proportional
to the square roots of integers, as in the case of Newton's rings (Sec. 14.5). The in-
tensity distribution across the rings follows Eq. (13b), in which the phase difference
is given by

2nlj = - 2d cos e
A

Fringes of this kind, where parallel beams are brought to interference with a
phase difference determined by the angle of inclination e, are often referred to as
fringes of equal inclination. In contrast to the type to be described in the next section,
this type may remain visible over very large path differences. The eventual limitation
on the path difference will be discussed in Sec. 13.12.

The upper part of Fig. 13P shows how the circular fringes look under different
conditions. Starting with M1 a few centimeters beyond M2, the fringe system will
have the general appearance shown in (a) with the rings very closely spaced. If M1

is now moved slowly toward M2 so that d is decreased, Eq. (13g) shows that a given
ring, characterized by a given value of the order m, must decrease its radius because
the product 2d cos e must remain constant. The rings therefore shrink and vanish at
the center, a ring disappearing each time 2d decreases by A, or d by A.j2. This follows
from the fact that at the center cos () = 1, so that Eq. (13g) becomes

2d = mA (13h)

To change m by unity, d must change by A.12. Now as M1 approaches M2 the
rings become more widely spaced, as indicated in Fig. 13P(b), until finally we reach
a critical position where the central fringe has spread out to cover the whole field
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FIGURE 13Q
The formation of fringes with inclined mirrors in the Michelson interferometer.

of view, as shown in (c). This happens when M1 and M;' are exactly coincident, for
it is clear that under these conditions the path difference is zero for all angles of inci-
dence. If the mirror is moved still farther, it effectively passes through M;', and new
widely spaced fringes appear, growing out from the center. These will gradually
become more closely spaced as the path difference increases, as indicated in (d) and (e)
of the figure.

13.10 LOCALIZED FRINGES

If the mirrors Mz and M1 are not exactly parallel, fringes will still be seen with mono-
chromatic light for path differences not exceeding a few millimeters. In this case the
space between the mirrors is wedge-shaped, as indicated in Fig. 13Q. The two rays.
reaching the eye from a point P on the source are now no longer parallel, but appear
to diverge from a point P' near the mirrors. For various positions of P on the ex-
tended source, it can be shownt that the path difference between the two rays remains
constant but that the distance of P' from the mirrors changes. If the angle between
the mirrors is not too small, however, the latter distance is never great, and hence,
in order to see these fringes clearly, the eye must be focused on or near the rear
mirror MI' The localized fringes are practically straight because the variation of the
path difference across the field of view is now due primarily to the variation of the
thickness of the "air film" between the mirrors. With a wedge-shaped film, the locus
of points of equal thickness is a straight line parallel to the edge of the wedge. The

• When the term "ray" is used, here and elsewhere in discussing interference phe-
nomena, it merely indicates the direction of the perpendicular to a wave front and
is in no way to suggest an infinitesimally narrow pencil of light.
t R. W. Ditchbum, "Light," 2d ed., paperback, 10hn Wiley and Sons, Inc., New

York,1963.
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fringes are not exactly straight, however, if d has an appreciable value, because there
is also some variation of the path difference with angle. They are in general curved
and are always convex toward the thin edge of the wedge. Thus, with a certain value
of d, wemight observe fringes shaped like those of Fig. 13P(g). M1 could then be in a
position such as g of Fig. 13Q. Ifthe separation of the mirrors is decreased, the fringes
will move to the left across the field, a new fringe crossing the center each time d
changes by A.j2. As we approach zero path difference, the fringes become straighter,
until the point is reached where M1 actually intersects M~, when they are perfectly
straight, as in (h). Beyond this point, they begin to curve in the opposite direction,
as shown in (i). The blank fields (f) and (j) indicate that this type of fringe cannot be
observed for large path differences. Because the principal variation of path difference
results from a change of the thickness d, these fringes have been termed fringes of
equal thickness.

13.11 WHITE-LIGHT FRINGES

If a source of white light is used, no fringes will be seen at all except for a path differ-
ence so small that it does not exceed a few wavelengths. In observing these fringes,
the mirrors are tilted slightly as for localized fringes, and the position of M1 is found
where it intersects M~. With white light there will then be observed a central dark
fringe, bordered on either side by 8 or 10colored fringes. This position is often rather
troublesome to find using white light only. It is best located approximately before-
hand by finding the place where the localized fringes in monochromatic light become
straight. Then a very slow motion of M1 through this region, using white light, will
bring these fringes into view.

The fact that only a few fringes are observed with white light is easily accounted
for when we remember that such light contains all wavelengths between 400 and
750 nm. The fringes for a given color are more widely spaced the greater the wave-
length. Thus the fringes in different colors will only coincide for d = 0, as indicated
in Fig. 13R. The solid curve represents the intensity distribution in the fringes for
green light, and the broken curve that for red light. Clearly, only the central fringe
will be uncolored, and the fringes of different colors will begin to separate at once
on either side, producing various impure colors which are not the saturated spectral
colors. After 8 or 10 fringes, so many colors are present at a given point that the
resultant color is essentially white. Interference is still occurring in this region, how-
ever, because a spectroscope will show a continuous spectrum with dark bands at
those wavelengths for which the condition for destructive interference is fulfilled.
White-light fringes are also observed in all the other methods of producing interference
described above, if white light is substituted for monochromatic light. They are
particularly important in the Michelson interferometer, where they may be used to
locate the position of zero path difference, as we shall see in Sec. 13.13.

An excellent reproduction in color of these white-light fringes is given in one
of Michelson's books. * The fringes in three different colors are also shown separately

• A. A. Michelson, "Light Waves and Their Uses," plate II, University of Chicago
Press, Chicago, 1906.
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FIGURE 13R
The formation of white-light fringes with a dark fringe at the center.

and a study of these in connection with the white-light fringes is instructive as showing
the origin of the various impure colors in the latter.

It was stated above that the central fringe in the white-light system, i.e., that
corresponding to zero path difference, is black when observed in the Michelson inter-
ferometer. One would ordinarily expect this fringe to be white, since the two beams
should be in phase with each other for any wavelength at this point, and in fact this is
the case in the fringes formed with the other arrangements, such as the biprism. In the
present case, however, it will be seen by referring to Fig. 13N that while ray I under-
goes an internal reflection in the plate Glo ray 2 undergoes an external reflection, with
a consequent change of phase [see Eq. (l4d)]. Hence the central fringe is black if
the back surface of G1 is unsilvered. If it is silvered, the conditions are different and
the central fringe may be white.

13.12 VISIBILITY OF THE FRINGES

There are three principal types of measurement that can be made with the inter-
ferometer: (I) width and fine structure of spectrum lines, (2) lengths or displacements
in terms of wavelengths of light, and (3) refractive indices. As explained in the pre-
ceding section, when a certain spread of wavelengths is present in the light source,
the fringes become indistinct and eventually disappear as the path difference is in-
creased. With white light they become invisible when d is only a few wavelengths,
whereas the circular fringes obtained with the light of a single spectrum line can still
be seen after the mirror has been moved several centimeters. Since no line is perfectly
sharp, however, the different component wavelengths produce fringes of slightly
different spacing, and hence there is a limit to the usable path difference even in this
case. For the measurements of length to be described below, Michelson tested the
lines from various sources and concluded that a certain red line in the spectrum of
cadmium was the most satisfactory. He measured the visibility, defined as
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FIGURE 135
Limiting path difference as determined
by the length of wave packets.

where Imn and Imln are the intensities at the maxima and minima ofthe fringe pattern.
The more slowly V decreases with increasing path difference, the sharper the line.
With the red cadmium line, it dropped to 0.5 at a path difference of some 10 em,
or at d = 5 em.

With certain lines, the visibility does not decrease uniformly but fluctuates
with more or less regularity. This behavior indicates that the line has a fine structure,
consisting of two or more lines very close together. Thus it is found that with sodium
light the fringes become alternately sharp and diffuse, as the fringes from the two D
lines get in and out of step. The number of fringes between two successive positions
of maximum visibility is about 1000, indicating that the wavelengths of the com-
ponents differ by approximately 1part in 1000. In more complicated cases, the separa-
tion and intensities of the components could be determined by a Fourier analysis
of the visibility curves.* Since this method of inferring the structure of lines has now
been superseded by more direct methods, to be described in the following chapter,
it will not be discussed in any detail here.

An alternative way of interpreting the eventual vanishing of interference at
large path differences is instructive to consider at this point. In Sec. 12.6it was indi-
cated that a finite spread of wavelengths corresponds to wave packets of limited length,
this length decreasing as the spread becomes greater. Thus, when the two beams
in the interferometer traverse distances that differ by more than the length of the
individual packets, these can no longer overlap and no interference is possible. The
situation upon complete disappearance of the fringes is shown schematically in
Fig. 13S. The original wave packet P has its amplitude divided at Gt so that two
similar packets are produced, Pt traveling to Mt and P2 to M2• When the beams are
reunited, P2 lags a distance 2d behind Pt. Evidently a measurement ofthis limiting
path difference gives a direct determination of the length of the wave packets. This

• A. A. Michelson, "Studies in Optics," chap. 4, University of Chicago Press, Chicago,
1927.
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interpretation of the cessation of interference seems at first sight to conflict with the
one given above. A consideration of the principle of Fourier analysis shows, however,
that mathematically the two are entirely equivalent and are merely alternative ways
of representing the same phenomenon.

13.13 INTERFEROMETRIC MEASUREMENTS OF LENGTH

The principal advantage of Michelson's form of interferometer over the earlier
methods of producing interference lies in the fact that the two beams are here widely
separated and the path difference can be varied at will by moving the mirror or by
introducing a refracting material in one of the beams. Corresponding to these two
ways of changing the optical path, there are two other important applications of the
interferometer. Accurate measurements of distance in terms of the wavelength of
light will be discussed in this section, while interferometric determinations of refrac-
tive indices are described in Sec. 13.15.

When the mirror MI of Fig. 13N is moved slowly from one position to another,
counting the number of fringes in monochromatic light which cross the center of the
field of view will give a measure of the distance the mirror has moved in terms of ..t,
since by Eq. (13h) we have, for the position dl corresponding to the bright fringe of
order ml'

and for d2, giving a bright fringe of order m2, ..

Subtracting these two equations, we find

Hence the distance moved equals the number of fringes counted, multiplied by a half
wavelength. Of course, the distance measured need not correspond to an integral
number of half wavelengths. Fractional parts of a whole fringe displacement can
easily be estimated to one-tenth of a fringe, and, with care, to one-fiftieth. The latter
figure then gives the distance to an accuracy of one-hundredth wavelength, or
5 x 10-7 em for green light.

A small Michelson interferometer in which a microscope is attached to the
moving carriage carrying MI is frequently used in the laboratory for measuring the
wavelength of light. The microscope is focused on a fine glass scale, and the number
of fringes, mi - m2, crossing the mirror between two readings dl and d2 on the scale
gives ..t, by Eq. (13j). The bending of a beam, or even of a brick wall, under pressure
from the hand can be made visible and measured by attaching M1 directly to the beam
or wall.

The most important measurement made with the interferometer was the com-
parison of the standard meter in Paris with the wavelengths of intense red, green,
and blue lines of cadmium by Michelson and Benoit. For reasons discussed in the
last section, it would be impossible to count directly the number of fringes for a dis-
placement of the movable mirror from one end of the standard meter to the other.
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FIGURE 13T
One of the nine etalons used by Michel-
son in accurately comparing the wave-
length of light with the standard meter.

I- d-

Instead, nine intermediate standards (etalons) were used, of the form shown in Fig. 13T,
each approximately twice the length of the other. The two shortest etalons were first
mounted in an interferometer of special design (Fig. 13U), with a field of viewcovering
the four mirrors, Mt> M2, M{, and M5.. With the aid of the white light fringes the
distances of M, MI, and Mi from the eye were made equal, as shown in the figure.
Substituting the light of one of the cadmium lines for white light, M was then moved
slowly from A to D, counting the number of fringes passing the cross hair. The count
was continued until M reached the position D, which was exactly coplanar with M2,
as judged by the appearance of the white-light fringes in the upper mirror of the shorter
etalon. The fraction of a cadmium fringe in excess of an integral number required
to reach this position was determined, giving the distance M 1M2 in terms of wave-
lengths. The shorter etalon was then moved through its own length, without counting
fringes, until the white-light fringes reappeared in MI' Finally M was moved to C,
when the white-light fringes appeared in M5. as well as in M2• The additional dis-
placement necessary to make M coplanar with M2 was measured in terms of cadmium
fringes, thus giving the exact number of wavelengths in the longer etalon. This was
in turn compared with the length of a third etalon of approximately twice the length
of the second, by the same process.

The length of the largest etalon was about 10.0 em. This was finally compared
with the prototype meter by alternately centering the white-light fringes in its upper
and lower mirrors, each time the etalon was moved through its own length. Ten
such steps brought a marker on the side of the etalon nearly into coincidence with
the second fiducial mark on the meter, and the slight difference was evaluated by
counting cadmium fringes. The 10 steps involve an accumulated error which does
not enter in the intercomparison of the etalons, but nevertheless this was smaller
than the uncertainty in setting on the end marks.

The final results were, for the three cadmium lines:

Red line
Green line
Blue line

1 m = 1,553,163.5), or
1 m = 1,966,249.7). or
1 m = 2,083,372.)). or

).= 6438.4722 A
).= 5085.8240 A
).= 4799.9107 A

Not only has the standard meter been determined in terms of what we now
believe to be an invariable unit, the wavelength of light, but we have also obtained
absolute determinations of the wavelength of three spectrum lines, the red line of



INTERFERENCE OF TWO BEAMS OF LIGHT 281

L r-d-.f C
I

~

n f'I I
I I I:

(1) M I I I I
I I I I
I I I I
U U

FIGURE 13U
Special Michelson interferometer used in accurately comparing the wavelength of
light with the standard meter.

which is at present the primary standard in spectroscopy. More recent measurements
on the orange line of the krypton spectrum have been made (see Sec. 14.11). It now
is internationally agreed that in dry atmospheric air at 15°C and a pressure of 760
mmHg the orange line of krypton has a wavelength

• AO = 6057.80211A

•

This is the wavelength the General Conference on Weights and Measures in Paris
used in adopting on Oct. 14, 1960, as the international legal standard of length, the
following definition of the standard meter:

I meter = 1,650,763.73 wavelengths
(orange light of krypton)

13.14 TWYMAN AND GREEN INTERFEROMETER

If a Michelson interferometer is illuminated with strictly parallel monochromatic
light, produced by a point source at the principal focus of a well-corrected lens, it
becomes a very powerful instrument for testing the perfection of optical parts such
as prisms and lenses. The piece to be tested is placed in one of the light beams, and
the mirror behind it is so chosen that the reflected waves, after traversing the test
piece a second time, again become plane. These waves are then brought to interference
with the plane waves from the other arm of the interferometer by another lens, at the
focus of which the eye is placed. If the prism or lens is optically perfect, so that the
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returning waves are strictly plane, the field will appear uniformly illuminated. Any
local variation of the optical path will, however, produce fringes in the corresponding
part of the field, which are essentially the contour lines of the distorted wave front.
Even though the surfaces of the test piece may be accurately made, the glass may
contain regions that are slightly more or less dense. With the Twyman and Green
interferometer these can be detected and corrected for by local polishing of the surface. '"

13.15 INDEX OF REFRACTION BY INTERFERENCE
METHODS

If a thickness t of a substance having an index of refraction n is introduced into the
path of one of the interfering beams in the interferometer, the optical path in this
beam is increased because of the fact that light travels more slowly in the substance
and consequently has a shorter wavelength. The optical path [Eq. (It)] is now nt
through the medium, whereas it was practically t through the corresponding thickness
of air (n = 1). Thus the increase in optical path due to insertion of the substance is
(n - l)t.t This will introduce (n - l)tl). extra waves in the path of one beam; so if
we call lim the number of fringes by which the fringe system is displaced when the
substance is placed in the beam, we have

(n - l)t = (lim)). (13k)

In principle a measurement of lim, t, and), thus gives a determination of n.
In practice, the insertion of a plate of glass in one of the beams produces a

discontinuous shift of the fringes so that the number lim cannot be counted. With
monochromatic fringes it is impossible to tell which fringe in the displaced set corre-
sponds to one in the original set. With white light, the displacement in the fringes of
different colors is very different because of the variation of n with wavelength, and
the fringes disappear entirely. This illustrates the necessity of the compensating plate
G2 in Michelson's interferometer if white-light fringes are to be observed. If the
plate of glass is very thin, these fringes may still be visible, and this affords a method
of measuring n for very thin films. For thicker pieces, a practicable method is to use
two plates of identical thickness, one in each beam, and to turn one gradually about
a vertical axis, counting the number of monochromatic fringes for a given angle
of rotation. This angle then corresponds to a certain known increase in effective
thickness.

For the measurement of the index of refraction of gases, which can be intro-
duced gradually into the light path by allowing the gas to flow into an evacuated
tube, the interference method is the most practicable one. Several forms of refrac-
tometers have been devised especially for this purpose, of which we shall describe
three, the Jamin, the Mach-Zehnder, and the Rayleigh refractometers.

Jamin's refractometer is shown schematically in Fig. 13V(a). Monochromatic

• For a more complete description of the use of this instrument, see F. Twyman,
"Prism and Lens Making," 2d ed., chap. 12, Hilger and Watts, London, 1952.
t In the Michelson interferometer, where the beam traverses the substance twice in
its back-and-forth path, t is twice the actual thickness.
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FIGURE l3V
(a) The Jamin and (b) the Mach-Zehnder interferometer.

light from a broad source S is broken into two parallel beams 1 and 2 by reflection
at the two parallel faces of a thick plate of glass Gl' These two rays pass through
to another identical plate of glass Gz to recombine after reflection, forming inter-
ference fringes known as Brewster's fringes (see Sec. 14.11). If now the plates are
parallel, the light paths will be identical. Suppose as an experiment we wish to measure
the index of refraction of a certain gas at different temperatures and pressures. Two
similar evacuated tubes T1 and Tz of equal length are placed in the two parallel beams.
Gas is slowly admitted to tube Tz. If the number of fringes Am crossing the field is
counted while the gas reaches the desired pressure and temperature, the value of n
can be found by applying Eq. (13k). It is found experimentally that at a given tem-
perature the value n - 1 is directly proportional to the pressure. This is a special
case of the Lorenz-Lorentz* law, according to which

nZ
- 1 n + 1

-- = (n - I) -- = const x p (131)
nZ + 2 nZ + 2

Here p is the density of the gas. When n is very nearly unity, the factor (n + I)j(nz + 2)
is nearly constant, as required by the above experimental observation.

The interferometer devised by Mach and Zehnder, and shown in Fig. 13V(b),
has a similar arrangement of light paths, but they may be much farther apart. The
role of the two glass blocks in the Jamin instrument is here taken by two pairs of
mirrors, the pair M1 and Mz functioning like G1, and the pair M3 and M4 like Gz•
The first surface of M1 and the second surface of M4 are half-silvered. Although it is

• H. A. Lorentz (1853-1928). For many years professor of mathematical physics at
the University of Leyden, Holland. Awarded the Nobel prize (1902) for his work
on the relations between light, magnetism, and matter, he also contributed notably
to other fields of physics. Gifted with a charming personality and kindly disposition,
he traveled a great deal, and was widely known and liked. By a strange coincidence
L. Lorenz of Copenhagen derived the above law from the elastic-solid theory only a
few months before Lorentz obtained it from the electromagnetic theory.
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FIGURE 13W
Rayleigh's refractometer.

more difficult to adjust, the Mach-Zehnder interferometer is suitable only for study-
ing slight changes of refractive index over a considerable area and is used, for example,
in measuring the flow patterns in wind tunnels (see also Sec. 28.14). Contrary to the
situation in the Michelson interferometer, the light traverses a region such as T in the
figure in only one direction, a fact which simplifies the study oflocal changes of optical
path in that region.

The purpose of the compensating plates Ct and Cz in Figs. 13V(a) and 13W
is to speed up the measurement of refractive index. As the two plates, of equal thick-
ness, are rotated together by the single knob attached to the dial D, one light path
is shortened and the other lengthened. The device can therefore compensate for the
path difference in the two tubes. The dial, if previously calibrated by counting fringes,
can be made to read the index of refraction directly. The sensitivity of this device
can be varied at will, a high sensitivity being obtained when the angle between the
two plates is small and a low sensitivity when the angle is large.

In Rayleigh's* refractometer (Fig. 13W) monochromatic light from a linear
source S is made parallel by a lens Lt and split into two beams by a fairly wide double
slit. After passing through two exactly similar tubes and the compensating plates,
these are brought to interfere by the lens Lz. This form of refractometer is often used
to measure slight differences in refractive index of liquids and solutions.

PROBLEMS

13.1 Young's experiment is performed with orange light from a krypton arc. If the fringes
are measured with a micrometer eyepiece at a distance 100 cm from the double slit,
it is found that 25 of them occupy a distance of 12.87 mm between centers. Find the
distance between the centers of the two slits. Ans. 1.1297 mm

13.2 A double slit with a separation of 0.250 mm between centers is illuminated with green
light from a cadmium-arc lamp. How far behind the slits must one go to measure
the fringe separation and find it to be 0.80 mm between centers?

• Lord Rayleigh (third Baron) (1842-1919). Professor of physics at Cambridge
University and the Royal Institution of Great Britain. Gifted with great mathe-
matical ability and physical insight, he made important contributions to many fields
of physics. His works on sound and on the scattering of light (Sec. 22.9) are the
best known. He was a Nobel prize winner in 1904.
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13.3 When a thin film of transparent plastic is placed over one of the slits in Young's
double-slit experiment, the central bright fringe, of the white-light fringe system, is
displaced by 4.50 fringes. The refractive index of the material is 1.480, and the
effective wavelength of the light is 5500 A. (a) By how much does the film increase
the optical path? (b) What is the thickness of the film? (c) What would probably be
observed if a piece of the material 1.0 mm thick were used? (d) Why?

13.4 L1oyd's-mirror experiment is readily demonstrated with microwaves, using as a
reflector a sheet of metal lying flat on the table. If the source has a frequency of
12,000 MHz and is located 10.0 cm above the sheet-metal surface, find the height
above the surface of the first two maxima 3.0 m from the source.

Ans. (a) 18.750 cm, (b) 56.25 cm
Note: A phase change of 7T: occurs upon reflection; see Sec. 13.6.

13.5 A Fresnel biprism is to be constructed for use on an optical bench with the slit and
the observing screen 180.0 cm apart. The biprism is to be 60.0 cm from the slit. Find
the angle between the two refracting surfaces of the biprism if the glass has a refractive
index n = 1.520, sodium yellow light is to be used, and the fringes are to be 1.0 mm
apart.

13.6 A Fresnel biprism of index 1.7320 and with apex angles of 0.850° is used to form
interference fringes. Find the fringe separation for red light of wavelength 6563 A
when the distance between the slit and the prism is 25.0 cm and that between the
prism and the screen is 75.0 cm.

13.7 What must be the angle in degrees between the two Fresnel mirrors in order to
produce sodium light fringes 1.0 mm apart if the slit is 40.0 cm from the mirror inter-
section and the screen is 150.0 cm from the slit? Assume A.= 5.893 x 10-5 cm.

Ans. 0.06331°
13.8 How far must the movable mirror of a Michelson interferometer be displaced for

2500 fringes of the red cadmium line to cross the center of the field of view?
13.9 If the mirror of a Michelson interferometer is moved 1.0 mm, how many fringes of the

blue cadmium line will be counted crossing the field of view?
13.10 Find the angular radius of the tenth bright fringe in a Michelson interferometer when

the central-path difference (2d) is (a) 1.50 mm and (b) 1.5 cm. Assume the orange
light of a krypton arc is used and that the interferometer is adjusted in each case so
that the first bright fringe forms a maximum at the center of the pattern.

Ans. (a) 4.885°, (b) 1.542°



14
INTERFERENCE INVOLVING

MULTIPLE REFLECTIONS

Some of the most beautiful effects of interference result from the multiple reflection
of light between the two surfaces of a thin film of transparent material. These effects
require no special apparatus for their production or observation and are familiar
to anyone who has noticed the colors shown by thin films of oil on water, by soap
bubbles, or by cracks in a piece of glass. We begin our investigation of this class of
interference by considering the somewhat idealized case of reflection and refraction
from the boundary separating different optical media. In Fig. 14A(a) a ray of light
in air or vacuum incident on a plane surface of a transparent medium like water is
indicated by a. The reflected and refracted rays are indicated by ar and at, respectively.

A question of particular interest from the standpoint of physical optics is that
of a possible abrupt change o/phase of waves when they are reflected from a boundary.
For a given boundary the result will differ, as we shall now show, according to whether
the waves approach from the side of higher velocity or from that of lower velocity.
Thus, let the symbol a in the left-hand part of Fig. 14A represent the amplitude (not
the intensity) of a set of waves striking the surface, let r be the fraction of the ampli-
tude reflected, and let t be the fraction transmitted. The amplitudes of the two sets
of waves will then be ar and at, as shown. Now, following a treatment given by
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(a)

FIGURE 14A
Stokes' treatment of reflection.

(b)

Stokes., imagine the two sets reversed in direction, as in part (b) of the figure. Pro-
vided there is no dissipation of energy by absorption, a wave motion is a strictly
reversible phenomenon. It must conform to the law of mechanics known as the principle
of reversibility, according to which the result of an instantaneous reversal of all the
velocities in a dynamic system is to cause the system to retrace its whole previous
motion. That the paths of light rays are in conformity with this principle has already
been stated in Sec. 1.8. The two reversed trains, of amplitude ar and at, should ac-
cordingly have as their net effect after striking the surface a wave in air equal in ampli-
tude to the incident wave in part (a) but traveling in the opposite direction. The wave
of amplitude ar gives a reflected wave of amplitude arr and a refracted wave of ampli-
tude art. If we call r' and t' the fractions of the amplitude reflected and refracted
when the reversed wave at strikes the boundary from below, this contributes ampli-
tudes aU' and atr' to the two waves, as indicated. Now, since the resultant effect
must consist only of a wave in air of amplitude a, we have

and
aU' + arr = a

art + atr' = 0
(14a)
(14b)

The second equation states that the two incident waves shall produce no net dis-
turbance on the water side of the boundary. From Eq. (14a) we obtain

u' = 1 - r2 (l4c)
and from Eq. (14b)

• r' = - r (l4d)

It might at first appear that Eq. (14c) could be carried further by using the fact
that intensities are proportional to squares of amplitudes and by writing, by con-
servation of energy, r2 + t2 = 1. This would immediately yield t = t'. The result
is not correct, however, for two reasons: (1) although the proportionality of intensity
with square of amplitude holds for light traveling in a single medium, passage into

• Sir George Stokes (1819-1903), versatile mathematician and physicist of Pembroke
College, Cambridge, and pioneer in the study of the interaction of light with matter.
He is known for his laws of fluorescence (Sec. 22.6) and of the rate of fall of spheres
in viscous fluids. The treatment referred to here was given in his "Mathematical
and Physical Papers," vol. 2, pp. 89ff., especially p. 91.
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a different medium brings in the additional factor of the index of refraction in determin-
ing the intensity; (2) it is not to the intensities that the conservation law is to be applied
but to the total energies of the beams. When there is a change in width of the beam,
as in refraction, it must also be taken into account.

The second of Stokes' relations, Eq. (14d), shows that the reflectance, or fraction
of the intensity reflected, is the same for a wave incident from either side of the bound-
ary, since the negative sign disappears upon squaring the amplitudes. It should be
noted, however, that the waves must be incident at angles such that they correspond
to angles of incidence and refraction. The difference in sign of the amplitudes in
Eq. (14d) indicates a difference of phase of 1t between the two cases, since a reversal
of sign means a displacement in the opposite sense. If there is no phase change on
reflection from above, there must be a phase change of 1t on reflection from below;
or correspondingly, if there is no change on reflection from below, there must be a
change of n on reflection from above.

The principle of reversibility as applied to light waves is often useful in optical
problems; for example, it proves at once the interchangeability of object and image.
The conclusion reached above about the change of phase is not dependent on the
applicability of the principle, i.e., on the absence of absorption, but holds for reflection
from any boundary. It is a matter of experimental observation that in the reflection
of light under the above conditions, the phase change of 1t occurs when the light
strikes the boundary from the side of higher velocity,. so that the second of the two
alternatives mentioned is the correct one in this case. A change of phase of the same
type is encountered in the reflection of simple mechanical waves, such as transverse
waves in a rope. Reflection with change of phase where the velocity decreases in
crossing the boundary corresponds to the reflection of waves from a fixed end of a
rope. Here the elastic reaction of the fixed end of the rope immediately produces
a reflected train of opposite phase traveling back along the rope. The case where
the velocity increases in crossing the boundary has its parallel in reflection from a
free end of a rope. The end of the rope undergoes a displacement of twice the amount
it would have if the rope were continuous, and it immediately starts a wave in the
reverse direction having the same phase as the incident wave.

14.1 REFLECTION FROM A PLANE-PARALLEL FILM

Let a ray of light from a source S be incident on the surface of such a film at A (Fig.
14B). Part of this will be reflected as ray 1 and part refracted in the direction AF.
Upon arrival at F, part of the latter will be reflected to B and part refracted toward
H. At B the ray FB will be again divided. A continuation of this process yields two
sets of parallel rays, one on each side of the film. In each of these sets, of course,
the intensity decreases rapidly from one ray to the next. If the set of parallel reflected
rays is now collected by a lens and focused at the point P, each ray will have traveled
a different distance, and the phase relations may be such as to produce destructive
or constructive interference at that point. It is such interference that produces the

• See the discussion in Sec. 13.6 in connection with Lloyd's mirror.
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FIGURE 14B
Multiple reflections in a plane-parallel
film.

colors of thin films when they are viewed by the naked eye. In such a case L is the
lens of the eye, and P lies on the retina.

In order to find the phase difference between these rays, we must first evaluate
the difference in the optical path traversed by a pair of successive rays, such as rays 1
and 2. In Fig. 14C let d be the thickness of the film, n its index of refraction, A the
wavelength of the light, and cP and cP' the angles of incidence and refraction. If BD
is perpendicular to ray 1, the optical paths from D and B to the focus of the lens will
be equal. Starting at A, ray 2 has the path AFB in the film and ray 1 the path AD in
air. The difference in these optical paths is given by

L\ = n(AFB) - AD

If BF is extended to intersect the perpendicular line AE at G, AF = GF because of
the equality of the angles of incidence and reflection at the lower surface. Thus we
have

L\ = n(GB) - AD = n(GC + CB) - AD

Now AC is drawn perpendicular to FB; so the broken lines AC and DB represent
two successive positions of a wave front reflected from the lower surface. The optical
paths must be the same by any ray drawn between two wave fronts; so we may write

n(CB) = AD
The path difference then reduces to

L\ = n(GC) = n(2d cos cP') (I4e)

If this path difference is a whole number of wavelengths, we might expect rays 1 and
2 to arrive at the focus of the lens in phase with each other and produce a maximum
of intensity. However, we must take account of the fact that ray 1 undergoes a phase
change of 1t at reflection, while ray 2 does not, since it is internally reflected. The
condition

• 2nd cos cP' = rnA Minima (l4f)

then becomes a condition for destructive interference as far as rays 1 and 2 are con-
cerned. As before, m = 0, 1, 2, ... is the order of interference.



290 FUNDAMENTALS OF OPTICS

FIGURE 14C
Optical-path difference between two
consecutive rays in multiple reflection
(see Fig. 14A).
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Next we examine the phases of the remaining rays, 3, 4, 5,.. .. Since the
geometry is the same, the path difference between rays 3 and 2 will also be given by
Eq. (l4e), but here there are only internal reflections involved, so that if Eq. (14f) is
fulfilled, ray 3 will be in the same phase as ray 2. The same holds for all succeeding
pairs, and so we conclude that under these conditions rays 1 and 2 will be out of phase,
but rays 2, 3,4, ... , will be in phase with each other. On the other hand, if conditions
are such that

• 2nd cos 4>' = (m + !»). Maxima (14g)

ray 2 will be in phase with 1, but 3, 5, 7, . .. will be out of phase with 2, 4, 6, ....
Since 2 is more intense than 3, 4 more intense than 5, etc., these pairs cannot cancel
each other, and since the stronger series combines with 1, the strongest of all, there
will be a maximum of intensity.

For the minima of intensity, ray 2 is out of phase with ray 1, but 1 has a con-
siderably greater amplitude than 2, so that these two will not completely annul each
other. We can now prove that the addition of 3,4,5, ... , which are all in phase with
2, will give a net amplitude just sufficient to make up the difference and to produce
complete darkness at the minima. Using a for the amplitude of the incident wave, r
for the fraction of this reflected, and t or t' for the fraction transmitted in going
from rare to dense or dense to rare, as was done in Stokes' treatment of reflection,
Fig. 14D is constructed and the amplitudes labeled as shown. In accordance with
Eq. (l4d), we have taken the fraction reflected internally and externally to be the same.
Adding the amplitudes of all the reflected rays but the first on the upper side of the
film, we obtain the resultant amplitude,

A = atrt' + atr3t' + atr5t' + atr 7t, + ...
= atrt' (1 + r2 + r4 + r6 + ... )

Since r is necessarily less than 1, the geometrical series in parentheses has a finite
sum equal to 1/(1 - r2), giving

A ' 1= atrt ---
I - r2
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FIGURE 14D
Amplitudes of successive rays in multiple
reflection.

But from Stokes' treatment, Eq. (14c), tt' = 1 - r2
; so we obtain finally

A = ar (14h)

This is just equal to the amplitude of the first reflected ray, so we conclude that under
the conditions of Eq. (14f) there will be complete destructive interference.

14.2 FRINGES OF EQUAL INCLINATION

If the image of an extended source reflected in a thin plane-parallel film is examined,
it will be found to be crossed by a system of distinct interference fringes, provided
the source emits monochromatic light and provided the film is sufficiently thin.
Each bright fringe corresponds to a particular path difference giving an integral
value of min Eq. (l4g). For any fringe, the value of <P is fixed; so the fringe will have
the form of the arc of a circle whose center is at the foot of the perpendicular drawn
from the eye to the plane of the film. Evidently we are here concerned with fringes of
equal inclination, and the equation for the path difference has the same form as for
the circular fringes in the Michelson interferometer (Sec. 13.9).

Note that if m is the order ofinterference for light incident on the film at <P = 0°,
Eq. (l4f) gives

2ndm=-
A.

which would be a dark fringe. Since the path difference for the first, second, and third,
etc., bright fringes will be at progressively larger angles of <P and <p' [Eq. (14g)], the
successive path differences, 2nd cos <p', will be successively shorter and bright-light
fringes will be at angles where 2nd cos <p' is equal (m - !)A., (m - })A., (m - t)A., etc.

The necessity of using an extended source will become clear upon consideration
of Fig. 14B. If a very distant point source S is used, the parallel rays will necessarily
reach the eye at only one angle (that required by the law of reflection) and will be
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focused to a point P. Thus only one point will be seen, either bright or dark, according
to the phase difference at this particular angle. It is true that if the source is not very
far away, its image on the retina will be slightly blurred, because the eye must be
focused for parallel rays to observe the interference. The area illuminated is small,
however, and in order to see an extended system of fringes, we must obviously have
many points S, spread out in a broad source so that the light reaches the eye from
various directions.

These fringes are seen by the eye only if the film is very thin, unless the light is
reflected practically normal to the film. At other angles, since the pupil of the eye has
a small aperture, increasing the thickness of the film will cause the reflected rays to
get so far apart that only one enters the eye at a time. Obviously no interference can
occur under these conditions. Using a telescope oflarge aperture, the lens may include
enough rays for the fringes to be visible with thick plates, but unless viewed nearly
normal to the plate, they will be so finely spaced as to be invisible. The fringes seen
with thick plates near normal incidence are often called Haidinger* fringes.

14.3 INTERFERENCE IN THE TRANSMITTED LIGHT

The rays emerging from the lower side of the film, shown in Fig. l4B and l4D, can
also be brought together with a lens and caused to interfere. Here, however, there
are no phase changes at reflection for any of the rays, and the relations are such that
Eq. (14f) now becomes the condition for maxima and Eq. (14g) the condition for
minima. For maxima, the rays u v, w, ... of Fig. l4B are all in phase, while for
minima, v, x, ... are out of phase with u, w, .... When the reflectance r2 has a low
value, as with the surfaces of unsilvered glass, the amplitude of u is much the greatest
in the series and the minima are not by any means black. Figure 14E shows quantita-
tive curves for the intensity transmitted IT and reflected IR plotted in this instance for
r = 0.2 according to Eqs. (14n) and (140), ahead. The corresponding reflectance of
4 percent is close to that of glass at normal incidence. The abscissas (j in the figure
represent the phase difference between successive rays in the transmitted set or between
all but the first pair in the reflected set, which by Eq. (14e) is

2n 4n ,
(j = k!:1 = - !:1 = - nd cos c/J (I4i)

). A

It will be noted that the curve for IR looks very much like the cos2 contour obtained
from the interference of two beams. It is not exactly the same, however, and the
resemblance holds only when the reflectance is small. Then the first two reflected
beams are so much stronger than the rest that the latter have little effect. The impor-
tant changes that come in at higher values of the reflectance will be discussed in
Sec. 14.7.

• W. K. von Haidinger (1795-1871). Austrian mineralogist and geologist, for 17 years
director of the Imperial Geological Institute in Vienna.
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FIGURE 14E
Intensity contours of the reflected and
transmitted fringes from a film having a
reflectance of 4 percent.
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14.4 FRINGES OF EQUAL THICKNESS

If the film is not plane-parallel, so that the surfaces make an appreciable angle with
each other as in Fig. 14F(a), the interfering rays do not enter the eye parallel to each
other but appear to diverge from a point near the film. The resulting fringes resemble
the localized fringes in the Michelson interferometer and appear to be formed in the
film itself. If the two surfaces are plane, so that the film is wedge-shaped, the fringes
will be practically straight, following the lines of equal thickness. In this case the
path difference for a given pair of rays is practically that given by Eq. (14e). Provided
that observations are made almost normal to the film, the factor cos 4/ may be con-
sidered equal to I, and the condition for bright fringes becomes

2nd = (m + t)A (14j)

In going from one fringe to the next m increases by I, and this requires the optical
thickness of the film nd to change by A12.

Fringes formed in thin films are easily shown in the laboratory or lecture room
by using two pieces of ordinary plate glass. If they are laid together with a thin strip
of paper along one edge, we obtain a wedge-shaped film of air between the plates.
When a sodium flame or arc is viewed as in Fig. 14F, yellow fringes are clearly seen.
If a carbon arc and filter are used, the fringes may be projected on a screen with a lens.
On viewing the reflected image of a monochromatic source, one will find it to be
crossed by more or less straight fringes, such as those in Fig. 14F(b).

This class of fringes has important practical applications in the testing of optical
surfaces for planeness. If an air film is formed between two surfaces, one of which
is perfectly plane and the other not, the fringes will be irregular in shape. Any fringe
is characterized by a particular value of m in Eq. (14j), and hence will follow those
parts of the film where d is constant. That is, the fringes form the equivalent of contour
lines for the uneven surface. The contour interval is A12, since for air n = I, and going
from one fringe to the next corresponds to increasing d by this amount. The standard
method of producing optically plane surfaces uses repeated observation of the fringes
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FIGURE 14F
Fringes of equal thickness: (a) method of visual observation; (b) photograph
taken with a camera focused on the plates.

formed between the working surface and an optical flat, the polishing being continued
until the fringes are straight. In Fig. 14F(b) it will be noticed that there is considerable
distortion of one of the plates near the bottom.

14.5 NEWTON'S RINGS

If the fringes of equal thickness are produced in the air film between a convex surface
of a long-focus lens and a plane glass surface, the contour lines will be circular.
The ring-shaped fringes thus produced were studied in detail by Newton, * although
he was not able to explain them correctly. For purposes of measurement, the observa-
tions are usually made at normal incidence by an arrangement such as that in Fig. 14G,
where the glass plate G reflects the light down on the plates. After reflection, it is
transmitted by G and observed in the low-power microscope T. Under these condi-
tions the positions of the maxima are given by Eq. (l4j), where d is the thickness of
the air film. Now if we designate by R the radius of curvature of the surface A and
assume that A and B are just touching at the center, the value of d for any ring of
radius, is the sagitta of the are, given by

•
,2

d=-
2R

(14k)

Substitution of this value in Eq. (14j) will then give a relation between the radii of the
rings and the wavelength of the light. For quantitative work, one may not assume

• Sir Isaac Newton (1642-1727). Besides laying foundations of the science of mechan-
ics, Newton devoted considerable time to the study of light and embodied the results
in his famous "Opticks." It seems strange that one of the most striking demon-
strations of the interference of hght, Newton's rings, should be credited to the chief
proponent of the corpuscular theory of light. Newton's advocacy of the corpuscular
theory was not so uncompromising as it is generally represented. This is evident to
anyone consulting his original writings. The original discovery of Newton's rings is
now attributed to Robert Hooke.
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FIGURE 14G
Experimental arrangement used in
viewing and measuring Newton's rings.

L

the plates to barely touch at the point of contact, since there will always be either
some dust particles or distortion by pressure. Such disturbances will merely add a
small constant to Eq.(l4k), however, and their effect can be eliminated by measuring
the diameters of at least two rings.

Because the ring diameters depend on wavelength, white light will produce only
a few colored rings near the point of contact. With monochromatic light, however,
an extensive fringe system such as that shown in Fig. 14H is observed. When the
contact is perfect, the central spot is black. This is direct evidence of the relative
phase change of 1t between the two types of reflection, air-to-glass and glass-to-air,
mentioned in Sec. 14.1. If there were no such phase change, the rays reflected from
the two surfaces in contact should be in the same phase and produce a bright spot
at the center. In an interesting modification of the experiment, due to Thomas
Young, the lower plate has a higher index of refraction than the lens, and the film
between is filled with an oil of intermediate index. Then both reflections are at "rare-
to-dense" surfaces, no relative phase change occurs, and the central fringe of the
reflected system is bright. The experiment does not tell us at which surface the phase
change in the ordinary arrangement occurs, but it is now definitely known (Sec. 25.4)
that it occurs at the lower (air-to-glass) surface.

A ring system is also observed in the light transmitted by the Newton's-ring
plates. These rings are exactly complementary to the reflected ring system, so that
the center spot is now bright. The contrast between bright and dark rings is small,
for reasons already discussed in Sec. 14.3.

14.6 NONREFLECTING FILMS

A simple and very important application of the principles of interference in thin
films has been the production of coated surfaces. If a film of a transparent substance
of refractive index n' is deposited on glass of a larger index n to a thickness of one-
quarter of the wavelength of light in the film, so that

A.d=-
4n'
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FIGURE 14H
Newton's rings. (By permission from Bausch & Lomb Incorporated.)

the light reflected at normal incidence is almost completely suppressed by inter-
ference. This corresponds to the condition m = 0 in Eq. (l4g), which here becomes
a condition for minima because the reflections at both surfaces are "rare-to-dense."
The waves reflected from the lower surface have an extra path of one-half wavelength
over those from the upper surface, and the two, combined with the weaker waves
from multiple reflections, therefore interfere destructively. For the destruction to
be complete, however, the fraction of the amplitude reflected at each of the two sur-
faces must be exactly the same, since this specification is made in proving the relation
of Eq. (14h). It will be true for a film in contact with a medium of higher index only
if the index of the film obeys the relation

n' = .j~

This can be proved from Eq. (25e) of Chap. 25 by substituting n' for the refractive
index of the upper surface and nfn' for that of the lower. Similar considerations
will show that such a film will give zero reflection from the glass side as well as from
the air side. Of course no light is destroyed by a nonreflecting film; there is merely
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a redistribution such that a decrease of reflection carries with it a corresponding in-
crease of transmission.

The practical importance of these films is that by their use one can greatly
reduce the loss of light by reflection at the various surfaces of a system of lenses or
prisms. Stray light reaching the image as a result of these reflections is also largely
eliminated, with a resulting increase in contrast. Almost all optical parts of high quality
are now coated to reduce reflection. The coatings were first made by depositing several
monomolecular layers of an organic substance on glass plates. More durable ones
are now made by evaporating calcium or magnesium fluoride on the surface in vacuum
or by chemical treatment with acids which leave a thin layer of silica on the surface
of the glass. Properly coated lenses have a purplish hue by reflected light. This is a
consequence of the fact that the condition for destructive interference can be fulfilled
for only one wavelength, which is usually chosen to be one near the middle of the
visible spectrum. The reflection of red and violet light is then somewhat larger.
Furthermore, coating materials of sufficient durability have too high a refractive
index to fulfill the condition stated above. Considerable improvement in these respects
can be achieved by using two or more superimposed layers, and such films are capable
of reducing the total reflected light to one-tenth of its value for the uncoated glass.
This refers, of course, to light incident perpendicularly on the surface. At other
angles, the path difference will change because of the factor cos t/J' in Eq. (l4e).
Since, however, the cosine does not change rapidly in the neighborhood of 0°, the
reflection remains low over a fairly large range of angles about the normal. The mul-
tiple films, now called multi/ayers, may also be used, with suitable thickness, to accom-
plish the opposite purpose, namely to increase the reflectance. They may be used,
for example, as beam-splitting mirrors to divide a beam of light into two parts of a
given intensity ratio. The division can thus be accomplished without the losses of
energy by absorption that are inherent in the transmission through, and reflection
from, a thin metallic film.

14.7 SHARPNESS OF THE FRINGES

As the reflectance of the surfaces is increased, either by the above method or by lightly
silvering them, the fringes due to multiple reflections become much narrower. The
striking changes that occur are shown in Fig. 141, which is plotted for r2 = 0.04,
0.50, and 0.80 according to the theoretical equations to be derived below. The curve
labeled 4% is just that for unsilvered glass which was given in Fig. 14E. Since, in the
absence of any absorption, the intensity transmitted must be just the complement
of that reflected, the same plot will represent the contour of either set. One is obtained
from the other by merely turning the figure upside down or by inverting the scale
of ordinates, as shown by the down arrow at the right in Fig. 141.

In order to understand the reason for the narrowness of the transmitted fringes
when the reflectance is high, we use the graphical method of compounding amplitudes
already discussed in Secs. 12.2 and 13.4. Referring back to Fig. 140, we notice that
the amplitudes of the transmitted rays are given by aft', aft'r2, att'r4, ••• , or in
generai for the mth ray by att'r2m• We thus have to findthe resultant of an infinite
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FIGURE 141
Intensity contours of fringes due to multiple reflections, showing how the sharp-
ness depends on reflectance.

number of amplitudes which decrease in magnitude more rapidly the smaller the
fraction r. In Fig. 14J(a) the magnitudes of the amplitudes of the first 10 transmitted
rays are drawn to scale for the 50 and 80 percent cases in Fig. 141,that is, essentially
for r = 0.7 and 0.9. Starting at any principal maximum, with 0 = 2nm, these indi-
vidual amplitudes will all be in phase with each other, so the vectors are all drawn
parallel to give a resultant that has been made equal for the two cases. If we now go
slightly to one side of the maximum, where the phase difference introduced between
successive rays is nJIO, each of the individual vectors must be drawn making an angle
of nJIO with the preceding one and the resultant found by joining the tail of the first
to the head of the last. The result is shown in diagram (b). It will be seen that in the
case r = 0.9, in which the individual amplitudes are much more nearly equal to each
other, the resultant R is already considerably less than in the other case. In diagram
(c), where the phase has changed by nJ5, this effect is much more pronounced; the

r =0.7 T: 0.9
3=21l'm. • (al ..

A ,\

'02',"'fo~
(bl LJ

"2',"'f~
(el D

FIGURE 14J
Graphical composition of amplitudes for the first 10 multiply reflected rays, with
two difference reflectances.
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resultant has fallen to a considerably smaller value in the right-hand picture. Although
a correct picture would include an infinite number of vectors, the later ones will have
vanishing amplitudes, and we would reach a result similar to that found with the
first 10.

These qualitative considerations can be made more precise by deriving an
exact equation for the intensity. To accomplish this, we must find an expression for
the resultant amplitude A, the square of which determines the intensity. Now A is
the vector sum of an infinite series of diminishing amplitudes having a certain phase
difference 0 given by Eq. (14i). Here we can apply the standard method of adding
vectors by first finding the sum of the horizontal components, then that of the vertical
components, squaring each sum, and adding to get A2• In doing this, however, the
use of trigonometric functions as in Sec. 12.1 becomes too cumbersome. Hence an
alternative way of compounding vibrations, which is mathematically simpler for
complicated cases, will be used.

14.8 METHOD OF COMPLEX AMPLITUDES

In place of using the sine or the cosine to represent a simple harmonic wave, one
may write the equation in the exponential form*

where 0 = kx and is constant at a particular point in space. The presence of i = .j~
in this equation makes the quantities complex. We can nevertheless use this represen-
tation and at the end of the problem take either the real (cosine) or the imaginary
(sine) part of the resulting expression. The time-varying factor exp (iillt) is of no im-
portance in combining waves of the same frequency, since the amplitudes and relative
phases are independent of time. The other factor, a exp (- io), is called the complex
amplitude. It is a complex number whose modulus a is the real amplitude and whose
argument 0 gives the phase relative to some standard phase. The negative sign merely
indicates that the phase is behind the standard phase. In general, the vector a is given
by

a = ae!" = x + iy = a(cos 0 + i sin 0)

Then it will be seen that

tano=~
x

Thus if a is represented as in Fig. 14K, plotting horizontally its real part and vertically
its imaginary part, it will have the magnitude a and will make the angle 0 with the
x axis, as we require for vector addition.

The advantage of using complex amplitudes lies in the fact that the algebraic

* For the mathematical background of this method, see E. T. Whittaker and G. N.
Watson, "Modern Analysis," chap. I, Cambridge University Press, New York, 1935.
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FIGURE 14K
Representation of a vector in the com-
plex plane.
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addition of two or more is equivalent to vector addition of the real amplitudes.
Thus for two such quantities

so that if

and

it will be found that our previous Eqs. (l2d) and (l2e) require that

Ytan () = -
X

(l41)

Thus, to get a vector sum, we need only obtain the algebraic sums X = rXi and
Y = rYi of the real and imaginary parts, respectively, of the complex amplitudes.
In obtaining the resultant intensity as proportional to the square of the real amplitude,
we multiply the resultant complex amplitude by its complex conjugate, which is the
same expression with i replaced by - ithroughout. The justification for this procedure
follows from the relations

(X + iY)(X - iY) = X2 + y2 = A2

Aei9 Ae-i9 = A2

14.9 DERIVATION OF THE INTENSITY FUNCTION

(14m)

For the fringe system formed by the transmitted light, the sum of the complex ampli-
tudes is (see Fig. 14D)

Aei9 = att' + att'r2ei~ + att'r4ei26 + .
= a(1 - r2)(1 + r2ei~ + r4ei26 + )

where 1 - r2 has been substituted for tt', according to Stokes' relation, Eq. (14c).
The infinite geometric series in the second parentheses has the common ratio r2
exp io, and has a finite sum because r2 < 1. Summing the series, one obtains

Aei9 = a(l - r2)
1 - r2ei~
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By Eq. (14m), the intensity is the product of this quantity by its complex conjugate,
which yields

a(1 - ,2) a(1 - ,2) a2(1 _ ,2)2
IT ~ I_,2ei6 I_,2e-i6 = I_,2(ei6 + e-16) + ,4

Since (eM + e-16)/2 = cos l>, and a2 ~ 10, the intensity of the incident beam, we
obtain the result, in terms of real quantities only, as

10

I + [4,2/(1 - ,2)2] sin2 (l>/2)
(14n)

The main features of the intensity contours in Fig. 141can be read from this equation.
Thus at the maxima, where l> = 2nm, we have sin2 (l>/2) = 0 and IT = 10, When the
reflectance,2 is large, approaching unity, the quantity 4,2f(1 - ,2)2 will also be large,
and even a small departure of l> from its value for the maximum will resuit in a rapid
drop of the intensity.

For the reflected fringes it is not necessary to carry through the summation,
since we know from the conservation of energy that if no energy is lost through
absorption,

IR + IT = I (140)

The reflected fringes are complementary to the transmitted ones, and for high re-
flectances become narrow dark fringes. These can be used to make more precise
the study of the contour of surfaces.* If there is appreciable absorption on trans-
mission through the surfaces, as will be the case if they are lightly silvered, one can
no longer assume that Stokes' relations or Eq. (140) hold. Going back to the deriva-
tion of Eq. (14n), it will be found that in this case the expression for IT must be multi-
plied by (tt')2/(1 - ,2)2. Here tt' and,2 are essentially the fractions of the intensity
transmitted and reflected, respectively, by a single surface. Where the surfaces are
metallized, there will be slight differences between t and f', as well as small phase
changes upon reflection. The transmitted fringes may still be represented by Eq. (14n),
however, with an overall reduction of intensity and a correction to l> which merely
changes slightly the effective thickness of the plate.

14.10 FABRY-PEROT INTERFEROMETER

This instrument utilizes the fringes produced in the transmitted light after multiple
reflection in the air film between two plane plates thinly silvered on the inner surfaces
(Fig. 14L). Since the separation d between the reflecting surfaces is usually fairly
large (from 0.1 to 10 em) and observations are made near the normal direction, the
fringes come under the class of fringes of equal inclination (Sec. 14.2). To observe the
fringes, the light from a broad source (SIS2) of monochromatic light is allowed to
traverse the interferometer plates E1E2• Since any ray incident on the first silvered
surface is broken by reflection into a series of pa,allel transmitted rays, it is essential
to use a lens L, which may be the lens of the eye, to bring these parallel rays together

• S. Tolansky, "Multiple-Beam Interferometry," Oxford University Press, New York,
1948.
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FIGURE 14L
Fabry-Perot interferometer E1E2 set up to show the formation of circular
interference fringes from multiple reflections.

for interference. In Fig. 14L a ray from the point Pi on the source is incident at the
angle (), producing a series of parallel rays at the same angle, which are brought
together at the point P 2 on the screen AB. It is to be noted that P 2 is not an image
of Pt. The condition for reinforcement of the transmitted rays is given by Eq. (l4f)
with n = I for air, and 4>' = (),so that

2d cos () = mA Maxima (l4p)

This condition will be fulfilled by all points on a circle through P2 with their center at
0, the intersection of the axis of the lens with the screen AB. When the angle () is
decreased, the cosine will increase until another maximum is reached for which m is
greater by 1,2, ... , so that we have for the maxima a series of concentric rings on the
screen with 0 as their center. Since Eq. (l4p) is the same as Eq. (l3g) for the Michel-
son interferometer, the spacing of the rings is the same as for the circular fringes in
that instrument and they will change in the same way with change in the distance d.
In the actual interferometer one plate is fixed, while the other may be moved toward
or away from it on a carriage riding on accurately machined ways by a slow-motion
screw.

14.11 BREWSTER'S* FRINGES

In a single Fabry-Perot interferometer it is not practicable to observe white-light
fringes, since the condition of zero path difference occurs only when the two silvered
surfaces are brought into direct contact. By the use of two interferometers in series,
however, it is possible to obtain interference in white light, and the resulting fringes
have had important applications. The two plane-parallel "air plates" are adjusted

• Sir David Brewster (1781-1868). Professor of physics at St. Andrew's, and later
principal of the University of Edinburgh. Educated for the church, he became
interested in light through repeating Newton's experiments on diffraction. He made
important discoveries in double refraction and in spectrum analysis. Oddly enough,
he opposed the wave theory of light in spite of the great advances in that theory
made during his lifetime.
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(a)

(b)

FIGURE 14M
Light paths for the formation of Brewster's fringes. (0) With two plates of equal
thickness. (b) With one plate twice as thick as the other. The inclination of the
two plates is exaggerated.

to exactly the same thickness, or else one to some exact multiple of the other, and the
two interferometers are inclined to each other at an angle of I or 2°. A ray that bisects
the angle between the normals to the two sets of plates can then be split into two,
each of which after two or more reflections emerges, having traversed the same path.
In Fig. 14M these two paths are drawn as separate for the sake of clarity, though
actually the two interfering beams are derived from the same incident ray and are
superimposed when they leave the system. The reader is referred to Fig. 13V, where
the formation of Brewster's fringes by two thick glass plates in Jamin's interferometer
is illustrated. A ray incident at any other angle than that mentioned above will give
a path difference between the two emerging ones which increases with the angle,
so that a system of straight fringes is produced.

The usefulness of Brewster's fringes lies chiefly in the fact that when they appear,
the ratio of the two interferometer spacings is very exactly a whole number. Thus,
in the redetermination of the length of the standard meter in terms of the wavelength
of the red cadmium line, a series of interferometers was made, each having twice the
length of the preceding, and these were intercompared using Brewster's fringes.
The number of wavelengths in the longest, which was approximately I m long, could
be found in a few hours by this method. It should finally be emphasized that this type
of fringe results from the interference of only two beams and therefore cannot be
made very narrow, as can the usual fringes due to multiple reflections.

14.12 CHROMATIC RESOLVING POWER

The great advantage of the Fabry-Perot interferometer over the Michelson instrument
lies in the sharpness of the fringes. Thus it is able to reveal directly those details of
fine structure and line width that previously could only be inferred from the behavior
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(a)

FIGURE 14N
Comparison of the types of fringes produced with (a) the Michelson interfer-
ometer and (b) the Fabry-Perot interferometer with surfaces of reflectance 0.8.

of the visibility curves. The difference in the appearance of the fringes for the two
instruments is illustrated in Fig. 14N, where the circular fringes produced by a single
spectral line are compared. If a second line were present, it would merely reduce
the visibility in (a) but would show as a separate set of rings in (b). As will appear
later, this fact also permits more exact intercomparisons of wavelength.

It is important to know how close together two wavelengths may be and still
be distinguished as separate rings. The ability of any type of spectroscope to dis-
criminate wavelengths is expressed as the ratio ).Itl)', where). is the mean wavelength
of a barely resolved pair and tlA is the wavelength difference between the components.
This ratio is called the chromatic resolving power of the instrument at that wavelength.
In the present case, it is convenient to say that the fringes formed by). and), + tl)' are
just resolved when the intensity contours of the two in a particular order lie in the
relative positions shown in Fig. 140(a). If the separation MJ is such as to make the
curves cross at the half-intensity point, IT = 0.510, there will be a central dip of 17
percent in the sum of the two, as shown in (b) of the figure. The eye can then easily
recognize the presence of two lines.

In order to find the tl)' corresponding to this separation, we note first that in
going from the maximum to the halfway point the phase difference in either pattern
must change by the amount necessary to make the second term in the denominator
of Eq. (14n) equal to unity. This requires that

• fJ (1 - r2)2
sln2 - = ----

2 4r2

If the fringes are reasonably sharp, the change of fJ/2 from a multiple of 7t will be
small. Then the sine may be set equal to the angle, and if we denote by M the change
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FIGURE 140
Intensity contour of two Fabry-Perot fringes that are just resolved: (a) shown
separately; (b) added, to give the observed effect.

in going from one maximum to the position of the other, we have

(14r)

(14q). (/),.{)) M 1 - ,2
(SlOt) - ~-=--

2 4 2,

Now the relation between an angular change /),,0 and a phase change /),.{)can be found
by differentiating Eq. (14i), setting 4J' = 0 and n = 1.

/),.{)= - 4nd sin 0 /),,0
A.

Furthermore, if the maximum for A. + /),.A. is to occur at this same angular separation
/),,0, Eq. (14p) requires that

(14t)

- 2d sin 0 /),,0 = m /),.A. (14s)

The combination of Eqs. (14q) to (14s) yields, for the chromatic resolving power,

A. n,-=m---
aA. 1 - ,2•

It thus depends on two quantities, the order m, which may be taken as 2dfA., and the
reflectance ,2 of the surfaces. If the latter is close to unity, very large resolving powers
are obtained. For example, with ,2 = 0.9 the second factor in Eq. (14t) becomes
30, and, with a plate separation d of only 1 em, the resolving power at A.5000 becomes
1.20 x 106• The components of a doublet only 0.0042 A wide could be seen as
separate.

14.13 COMPARISON OF WAVELENGTHS WITH THE
INTERFEROMETER

The ratio of the wavelengths of two lines which are not very close together, e.g., the
yellow mercury lines, is sometimes measured in the laboratory with the form of
interferometer in which one mirror is movable. The method is based on observation
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FIGURE 14P
Mechanical details of a Fabry-Perot etalon, showing spacer ring, adjusting
screws, and springs.

of the positions of coincidence and discordance of the fringes formed by the two wave-
lengths, a method already mentioned in Sec. 13.12. When one starts with the two
mirrors nearly in contact, the ring system due to the two wavelengths practically
coincide. As d is increased, they gradually separate and the maximum discordance
occurs when the rings of one set are halfway between those of the other set. Con-
fining our attention to the rings at the center (cos () = I), we can write from Eq. (l4p)

2d1 = mlA = (m1 + t)A' (l4u)
where, of course, A > A'. From this,

and

if the difference between A and A' is small. On displacing the mirror still farther, the
rings will presently coincide and then separate out again. At the next discordance

2d2 = m2A = (m2 + It)A' (14v)

Subtracting Eq. (14u) from Eq. (l4v), we obtain

2(d2 - d1) = (m2 - ml)A = (m2 - ml)A.' + A'

whence, assuming A approximately equal to A', we find

A - A' = A
2

(14w)
2(d2 - dt)

We can determine d2 - d1 either directly from the scale or by counting the number
of fringes of the known wavelength A between discordances.

For the most accurate work, the above method is replaced by one in which the
fringe systems of the lines are photographed simultaneously with a fixed separation d
of the plates. For this purpose the plates are held rigidly in place by quartz or invar
spacers. A pair of Fabry-Perot plates thus mounted is called an etalon (Fig. 14P).
The etalon can be used to determine accurately the relative wavelengths of several
spectral lines from a single photographic exposure. If it were mounted with a lens,
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FIGURE 14Q
Fabry-Perot etalon-and-prism arrangement for separating the ring systems
produced by different spectrum lines.

as in Fig. 14L, the light containing several wavelengths, the fringe systems of the
various wavelengths would be concentric with 0 and would be confused with each
other. However, they can be separated by inserting a prism between the etalon and
the lens L. The experimental arrangement is then similar to that shown in Fig. 14Q.
A photograph of the visible spectrum of mercury taken in this way is shown in the
upper part of Fig. 14R. It will be seen that the fringes of the green and yellow lines

4358 '-5461 5770.90

Blue Green Yellow

FIGURE 14R
Interference rings of the visible mercury spectrum taken with the Fabry-Perot
etalon shown in Fig. 14P.
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FIGURE 14S
Interference patterns of the lanthanum spectrum taken with a Fabry-Perot
etalon; d = 5 mm. (Courtesy 0[0. E. Anderson.)

still overlap. To overcome this, it is merely necessary to use an illuminated slit (MN
of Fig. 14Q) of the proper width as the source. When the interferometer is in a
collimated beam of parallel light, as it is here, each point on the extended source
corresponds to a given point in the ring system. Therefore only vertical sections of
the ring system are obtained, as shown in the lower part of Fig. 14R, and these no
longer overlap. When the spectrum is very rich in lines, as in Fig. 148, the source
slit must be made rather narrow. In this photograph only sections of the upper half
of the fringe systems appear. Measurements of the radii of the rings in a photograph
of this type permit very accurate comparisons of wavelengths. The determination
of the correct values of m in the different systems and of the exact value of d is a
rather involved process which we shall not discuss here.* By this method the wave-
lengths of several hundred lines from the iron arc have been measured relative to the
red cadmium line within an accuracy of a few ten-thousandths of an angstrom.

14.14 STUDY OF HYPERFINE STRUCTURE AND OF
LINE SHAPE

Because of its bearing on the properties of atomic nuclei, the investigation of hyperfine
structure with the Fabry-Perot interferometer has become of considerable importance
in modern research. Occasionally it will be found that a line which appears sharp
and single in an ordinary spectroscope will yield ring systems consisting of two or
more sets. Examples are found in the lines marked X in the lanthanum spectrum
(Fig. 148). Lines like the one marked C are broadened but not resolved into their
components. Those marked A are sharp to a greater or lesser extent. These multiple
ring systems arise from the fact that the line is actually a group oflines of wavelengths
very close together, differing by perhaps a few hundredths of an angstrom. If d is
sufficiently large, these will be separated, so that in each order m we obtain effectively

• SeeW. E. Williams, "Applications of Interferometry," pp. 83-88. Methuen and Co.,
Ltd., London, 1930, for a description of this method.
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a short spectrum very powerfully resolved. Any given fringe of a wavelength Al is
formed at such an angle that

2d cos (}1 = mAl (14x)

The next fringe farther out for this same wavelength has

2d cos 8z = (m - I)Al (l4y)

Suppose now that Al has a component line Az which is very near At> so that we may
write AZ = At - AA.. Suppose also that AA is such that this component, in order m,
falls on the order m - I of At. Then

2d cos 8z = m(At - AA)

Equating the right-hand members of Eqs. (14y) and (l4z) gives

At = m AA

Substituting the value of m from Eq. (14x) and solving for AA, we have

• AA = A/ '" A/
2d cos 8~ '" 2d

if 8 is nearly zero. This interval AA, called the spectral range, is defined as the change in
wavelength necessary to shift the ring system by the distance of consecutive orders.
We see that it is constant, independent of m. When d and A are known, the wavelength
difference of component lines lying in this small range can be evaluated. *

The equation for the separation of orders becomes still simpler when expressed
in terms of frequency. Since the frequencies of light are awkwardly large numbers,
spectroscopists commonly use an equivalent quantity called the wave number. This
is the number of waves per centimeter path in vacuum, and varies from roughly
15,000 to 25,000 cm-1 in going from red to violet. Denoting wave number by u, we
have

1 k
U=-=-

A 2n

To find the wave-number difference Au corresponding to the AA in Eq. (l4za), we
can differentiate the above equation to obtain

Au =

Substitution in Eq. (14za) then yields

• Au = 1
2d

(14zb)

Hence, if d is expressed in centimeters, 1/2d gives the wave-number difference, which
is seen to be ~ndependent of the order (neglecting the variation of 8) and of wave-
length as well.

The study of the width and shape of individual spectrum lines, even though
they may have no hyperfine structure, is of interest because it can give us information

• For a good account of the methods see K. W. Meissner, J. Opt. Soc. Am., 31:405
(1941).

ab-2097
Highlight
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on the conditions of temperature, pressure, etc., in the light source. If the interfero.
meter has a high resolving power, the fringes will have a contour corresponding closely
to that of the line itself. The small width which is inherent in the instrument can be
determined by observations with an extremely small etalon spacer, and appropriate
corrections made.

The difficult adjustment of the Fabry-Perot interferometer lies in the attain-
ment of accurate parallelism of the silvered surfaces. This operation is usually accom-
plished by the use of screws and springs, which hold the plates against the spacer rings
shown in Fig. 14P. A brass ring A with three quartz or invar pins constitutes the
spacer. A source of light such as a mercury arc is set up with a sheet of ground glass G
on one side of the etalon, and then viewed from the opposite side as shown at E.
With the eye focused for infinity, a system of rings will be seen with the reflected
image of the pupil of the eye at its center. As the eye is moved up and down or from
side to side, the ring system will also move along with the image of the eye. If the
rings on moving up expand in size, the plates are farther apart at the top than at the
bottom. Tightening the top screw will then depress the corresponding separator
pin enough. to produce the required change in alignment. When the plates are properly
adjusted, and if they are exactly plane, the rings will remain the same size as the eye
is moved to any point of the field of view.

Sometimes it is convenient to place the etalon in front of the slit of a spectro-
graph rather than in front of the prism. In such cases the light incident on the etalon
need not be parallel. A lens, however, must follow the etalon and must always be
set with the slit at its focal plane. This lens selects parallel rays from the etalon and
.focuses interference rings on the slit. Both these methods are used in practice.

14.15 OTHER INTERFERENCE SPECTROSCOPES

When the light is monochromatic, or nearly so, it is not necessary that the material
between the highly reflecting surfaces be air. A single accurately plane-parallel glass
plate having its surfaces lightly silvered will function as a Fabry-Perot etalon. The
use of two such plates with thicknesses in the ratio of whole numbers will result in
the suppression of several of the maxima produced by the thicker plate, since any
light getting through the system at a particular angle must satisfy Eq.(l4p) for both
plates. This arrangement, known as the compound interferometer, gives the resolving
power of the thicker plate and the free wavelength range, Eq. (l4za), of the thinner
one.

The spacing of the fringes of equal inclination becomes extremely small when
(}departs much from 0°. It opens out again, however, near grazing incidence. The
Lummer-Gehrcke plate makes use of the first few maxima near () = 90°. In order to
get an appreciable amount of light to enter the plate, it is necessary to introduce it
by a total-reflection prism cemented on one end. It then undergoes multiple internal
reflections very near the critical angle, and the beams emerging at a grazing angle
are brought to interference by a lens. High reflectance and resolving power are thus
obtained with unsilvered surfaces.
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Because of its flexibility, the Fabry-Perot interferometer has for research pur-
poses largely replaced such instruments having a fixed spacing of the surfaces. For
special purposes, however, they may be valuable. *

14.16 CHANNELED SPECTRA. INTERFERENCE FILTER

Our discussion of the Fabry-Perot interferometer was concerned primarily with the
dependence of the intensity on plate separation and on angle for a single wavelength,
or perhaps for two or more wavelengths close together. If the instrument is placed
in a parallel beam of white light, interference will also occur for all the monochromatic
components of such light, but this will not manifest itself until the transmitted beam
is dispersed by an auxiliary spectroscope. One then observes a series of bright fringes
in the spectrum, each formed by a wavelength somewhat different from the next.
The maxima will occur, according to Eq. (14p), at wavelengths given by

A. = 2d cos ()
m

where m is any whole number. If d is a separation of a few millimeters, there will be
very many narrow fringes (more than 12,000 through the visible spectrum when
d = 5 mm), and high dispersion is necessary in order to separate them. Such fringes
are referred to as a channeled spectrum or as Edser-Butler bands and have been used,
for example, in the calibration of spectroscopes for the infrared and in accurate
measurements of wavelengths of the absorption lines in the solar spectrum.

An application of these fringes having considerable practical importance uses
the situation where d is extremely small, so that only one or two maxima occur
within the visible range of wavelengths. With white light incident, only one or two
narrow bands of wavelength will then be transmitted, the rest of the light being re-
flected. The pair of semitransparent metallic films thus can act as a filter passing
nearly monochromatic light. The curves of transmitted energy against wavelength
resemble those of Fig. 141, since, according to Eq. (14i), the phase difference (j is
inversely proportional to wavelength for a given separation d.

For the maxima to be widely separated, m must be a small number. This is
attained only by having the reflecting surfaces very close together. If one wishes to
have the maximum for m = 2 occur at a given wavelength A., the metal films would
have to be a distance A. apart. The maximum m = I will then appear at a wave-
length of 2..1.. Such minute separations can be attained, however, with modern tech-
niques of evaporation in vacuum. A semitransparent metal film is first evaporated
on a plate of glass. Next, a thin layer of some dielectric material such as cryolite
(3NaF' AIF 3) is evaporated on top of this, and then the dielectric layer is in turn
coated with another similar film of metal. Finally another plate of glass is placed
over the films for mechanical protection. The completed filter then has the cross

• For a more detailed description of these and other similar instruments, see A. C.
Candler, "Modern Interferometers," Hilger and Watts, London, 1951.
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FIGURE 14T Evaporated layer
Cross section of an interference filter. of transparent material

section shown schematically in Fig. 14T, where the thickness of the films is greatly
exaggerated relative to that of the glass plates. Since the path difference is now in
the dielectric of index n, the wavelengths of maximum transmission for normal
incidence are given by

(14zd)

If there are two maxima in the visible spectrum, one of them can easily be eliminated
by using colored glass for the protecting cover plate. Interference filters are now made
which transmit a band of wavelengths of width (at half transmission) only 15A, with
the maximum lying at any desired wavelength. The transmission at the maximum
can be as high as 45 percent. It is very difficult to obtain combinations of colored
glass or gelatin filters which will accomplish this purpose. Furthermore, since the
interference filter reflects rather than absorbs the unwanted wavelengths, there is no
trouble with its overheating.

PROBLEMS

14.1 A transparent film has a thickness of 0.003250 cm, and a refractive index of 1.4000.
Find (0) the order of interference m at ()= 0° and (b) the first four angles at which red
light of wavelength 6500 A will form bright-light fringes.

Ans. (a) m = 100, (b) 5.73, 9.94, 12.84, and 15.20°
14.2 A thin film has a thickness of 0.04650 cm and a refractive mdex of 1.5230. Find the

angle l/J at which the dark fringe 122.5 will be observed if monochromatic light
6560 A is used as an extended source.

14.3 In an experiment involving Newton's rings, the diameters of the fifth and fifteenth
bright rings formed by sodium yellow light are measured to be 2.303 and 4.134 mm,
respectively. Calculate the radius of curvature of the convex glass surface.
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14.4 Three convex spherical glass surfaces have large radii of 200.0, 300.0, and 400.0 em,
respectively. When they are brought into contact in pairs and an extended source of
red light with a wavelength of 6500 A is used, find (a) the path difference d and (b) the
radii, of the twentieth bright ring for each of the three combinations. See Fig. PI4.4.
Ans. (a) d = 6.338 X 10-3 mm, (b)'1 = 3.900 mm,'2 = 4.111 mm,'3 = 4.661 mm

14.5 Three spherical glass surfaces of unknown radius are brought into contact in pairs,
and each pair used to form Newton's rings. The diameters of the twenty-fifth bright
fringe for the three possible combinations are 8.696, 9.444, and 10.2680 mm, respec-
tively. Find (a) the path difference d and (b) the radii of the three glass surfaces.
Assume the mercury green light used has a wavelength of 5461 A. See Fig. PI4.4.

FIGURE P14.4

14.6 A glass lens of index 1.5630 is to be nonreflecting on both surfaces. What should be
(a) the refractive index of a surface coating material and (b) its thickness for green
light of wavelength 5500 A, to produce 0 percent reflectance?

14.7 Using vector diagrams, find the resultant amplitude and intensity in the interference
pattern from a Fabry-Perot interferometer having a reflectance of 80.0 percent when
the phase difference between successive rays is (a) 0°, (b) 15.0°, and (c) 30.0° (see
Figs. 14D and 14J). Use the first six transmitted rays only. Assign unity to the
amplitude of the first transmitted ray. Make a drawing.

Ans. (a) A = 2.587, A2 = 6.693, (b) A = 2.403, A2 = 5.776,
(c) A = 1.948, A2 = 3.793; see Fig. PI4.7.

14.8 The plates of a Fabry-Perot interferometer have a reflectance amplitude of, = 0.90.
Calculate the minimum (a) resolving power and (b) plate separation to resolve the
two components of the Hex line of the hydrogen spectrum, which is a doublet with a
separation of 0.1360 A.

14.9 The method of coincidences of Fabry-Perot rings is used to compare two wavelengths,
one of which is 5460.740 A, and the other slightly shorter. If coincidences occur at
plate separations of 0.652, 1.827, and 3.002 mm, find (a) the wavelength difference
and (b) the wavelength of A'.
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FIGURE P14.7
Graphical addition of amplitudes for Prob. P14.7.

14.10 In making a photograph of a Fabry-Perot pattern using mercury light of wavelength
5460.740 A, the separation of the plates was 6.280 mm. If a lens with a focal length
of 120.0 cm is used, find (a) the order of interference for the central spot and (b) the
order of the sixth ring out from the center. (c) What is the wavelength separation of
orders and (d) the linear diameter of the sixth ring?

Ans. (a) 23000.5, (b) 22994.5, (c) 0.237418 A, (d) 5.5029 cm



15
FRAUNHOFER DIFFRACTION

BY A SINGLE OPENING

When a beam of light passes through a narrow slit, it spreads out to a certain extent
into the region of the geometrical shadow. This effect, already noted and illustrated
at the beginning of Chap. 13, Fig. 13B, is one of the simplest examples of diffraction,
i.e., of the failure of light to travel in straight lines. It can be satisfactorily explained
only by assuming a wave character for light, a<ndin this chapter we shall investigate
quantitatively the diffraction pattern, or distribution of intensity of the light behind
the aperture, using the principles of wave motion already discussed.

15.1 FRESNEL AND FRAUNHOFER DIFFRACTION

Diffraction phenomena are conveniently divided into two general classes, (1) those in
which the source of light and the screen on wpich the pattern is observed are effec-
tively at infinite distances from the aperture causing the diffraction and (2) those in
which either the source or the screen, or both, are at finite distances from the aperture.
The phenomena coming under class (1) are called, for historical reasons, Fraunhofer
diffraction, and those coming under class (2) Fresnel diffraction. Fraunhofer diffrac-
tion is much simpler to treat theoretically. It is easily observed in practice by rendering
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FIGURE 15A
Experimental arrangement for obtaining the diffraction pattern of a single slit;
Fraunhofer diffraction.

the light from a source parallel with a lens and focusing it on a screen with another
lens placed behind the aperture, an arrangement which effectively removes the source
and screen to infinity. In the observation of Fresnel diffraction, on the other hand,
no lenses are necessary, but here the wave fronts are divergent instead of plane, and
the theoretical treatment is consequently more complex. Only Fraunhofer diffraction
will be considered in this chapter, and Fresnel diffraction in Chap. 18.

15.2 DIFFRACTION BY A SINGLE SLIT

A slit is a rectangular aperture of length large compared to its breadth. Consider a
slit S to be set up as in Fig. 15A, with its long dimension perpendicular to the plane
of the page, and to be illuminated by parallel monochromatic light from the narrow
slit S', at the principal focus of the lens Ll• The light focused by another lens L2
on a screen or photographic plate P at its principal focus will form a diffraction pat-
tern, as indicated schematically. Figure 15B(b)and (c) shows two actual photographs,
taken with different exposure times, of such a pattern, using violet light of wavelength
4358A. The distance S'Ll was 25.0 em, and L2P was 100 em. The width of the slit
Swas 0.090 mm, and of S', 0.10 mm. If S' was widened to more than about 0.3 mm,
the details of the pattern began to be lost. On the original plate, the half width d
of the central maximum was 4.84 mm. It is important to notice that the width of the
central maximum is twice as great as that of the fainter side maxima. That this effect
comes under the heading of diffraction as previously defined is clear when we note
that the strip drawn in Fig. 15B(a) is the width of the geometical image of the slit S',
or practically that which would be obtained by removing the second slit and using
the whole aperture of the lens. This pattern can easily be observed by ruling a single
transparent line on a photographic plate and using it in front of the eye as explained
in Sec. 13.2, Fig. BE.

The explanation of the single-slit pattern lies in the interference of the Huygens
secondary wavelets which can be thought of as sent out from every point on the wave
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(a)

(b)

(c)

FIGURE 15B
Photographs of the single-slit diffraction pattern.

front at the instant that it occupies the plane of the slit. To a first approximation,
one may consider these wavelets to be uniform spherical waves, the emission of
which stops abruptly at the edges of the slit. The results obtained in this way, although
they give a fairly accurate account of the observed facts, are subject to certain modifi-
cations in the light of the more rigorous theory.

Figure 15C represents a section of a slit of width b, illuminated by parallel
light from the left. Let ds be an element of width of the wave front in the plane of
the slit, at a distance s from the center 0, which we shall call the origin. The parts
of each secondary wave which travel normal to the plane of the slit will be focused
at Po, while those which travel at any angle ()will reach P. Considering first the wave-
let emitted by the element ds situated at the origin, its amplitude will be directly
proportional to the length ds and inversely proportional to the distance x. At P it
will produce an infinitesimal displacement which, for a spherical wave, may be ex-
pressed as

dyo = a ds sin (rot - kx)
x

As the position of ds is varied, the displacement it produces will vary in phase because
of the different path length to P. When it is at a distance s below the origin, the con-
tribution will be

dy. = a ds sin [rot - k(x + L\)]
x

= a ds sin (rot - kx - ks sin ()) (l5a)
x
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FIGURE 15C
Geometrical construction for investigating the intensity in the single-slit diffrac-
tion pattern.

We now wish to sum the effects of all elements from one edge of the slit to the other.
This can be done by integrating Eq. (ISa) from s = - bj2 to bj2. The simplest way*
is to integrate the contributions from pairs of elements symmetrically placed at s
and -s, each contribution being

dy = dy-s + dys

= a ds [sin (wt _ kx - ks sin 8) + sin (wt - kx + ks sin 8)]
x

By the identity sin 0( + sin {3= 2 cos t(O( - {3)sin HO( + {3),we have

dy = ads [2 cos (ks sin 8) sin (wt - kx)]
x

which must be integrated from s = 0 to bj2. In doing so, x may be regarded as con-
stant, insofar as it affects the amplitude. Thus

2a fb/2y = - sin (wt - kx) cos (ks sin 8) ds
x 0

2a [sin (ks sin 8)]b/2 . ( k )= - ----- SIll wt - x
x k sin 9 0

ab sin (tkb sin 9) . ( k )= - ----- sm wt - x
x tkb sin 9

• The method of complex amplitudes (Sec. 14.8) starts with (ablx).r exp (iks sin () ds,
and yields the real amplitude upon multiplication of the result by its complex
conjugate. No simplification results from using the method here.
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The resultant vibration will therefore be a simple harmonic one, the amplitude of
which varies with the position of P, since the latter is determined by (). We may
represent its amplitude as

• A-A sinp
- 0--

13
(15c)

where 13= !kb sin () = (nb sin (})/X and Ao = ab/x. The quantity 13is a convenient
variable, which signifies one-half the phase difference between the contributions
coming from opposite edges of the slit. The intensity on the screen is then

• I ~ A2 = A
0
2 sin

2
13 (15d)

132

If the light, instead of being incident on the slit perpendicular to its plane, makes an
angle i, a little consideration will show that it is merely necessary to replace the above
expression for 13 by the more general expression

• 13 = nb(sin i + sin ())
A.

(15e)

IS.3 FUR THER INVESTIGATION OF THE SINGLE-SLIT
DIFFRACTION PATTERN

In Fig. 150(a) graphs are shown of Eq. (15c) for the amplitude (dotted curve) and
Eq. (l5d) for the intensity, taking the constant Ao in each case as unity. The intensity
curve will be seen to have the form required by the experimental result in Fig. 15B.
The maximum intensity of the strong central band comes at the point Po of Fig. 15C,
where evidently all the secondary wavelets will arrive in phase because the path differ-
ence A = O. For this point 13= 0, and although the quotient (sin 13)/13becomes
indeterminate for 13 = 0, it will be remembered that sin 13approaches 13 for small
angles and is equal to it when 13vanishes. Hence for 13= 0, (sin P)/fJ = 1. We now
see the significance of the constant Ao' Since for 13 = 0, A = Ao, it represents the
amplitude when all the wavelets arrive in phase. Ao 2 is then the value of the maximum
intensity, at the center of the pattern. From this principal maximum the intensity
falls to zero at 13= :!:: n, then passes through several secondary maxima, with equally
spaced points of zero intensity at 13 = :!:: n, :!:: 2n, :!:: 3n, ... , or in general 13 = mn.
The secondary maxima do not fall halfway between these points, but are displaced
toward the center of the pattern by an amount which decreases with increasing m.
The exact values of f3 for these maxima can be found by differentiating Eq. (15c) with
respect to f3 and equating to zero. This yields the condition

tanp=p

The values of 13 satisfying this relation are easily found graphically as the intersections
of the curve y = tan f3 and the straight line y = p. In Fig. 15D(b) these points of inter-
section lie directly below the corresponding secondary maxima.

The intensities of the secondary maxima can be calculated to a very close
approximation by finding the values of (sin2 P)/p2 at the halfway positions, i.e.,
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FIGURE 15D
Amplitude and intensity contours for Fraunhofer diffraction of a single slit,
showing positions of maxima and minima.

where P = 37t/2, 57t/2, 77t/2, . . .. This gives 4/9n2, 4/257t2, 4/49n2, ••• , or 1/22.2,
1/61.7,1/121, ... , of the intensity of the principal maximum. Reference to Table 15A
lhead are the exact values of the intensity for every 15° intervals for the central
maximum. These values are useful in plotting graphs. The first secondary maximum
is only 4.72 percent the intensity of the central maximum, while the second and third
secondary maxima are only 1.65 and 0.83 percent respectively.

A very clear idea of the origin of the single-slit pattern is obtained by the follow-
ing simple treatment. Consider the light from the slit of Fig. 15E coming to the
point PIon the screen, this point being just one wavelength farther from the upper

Table 15A VALUES FOR CENTRAL MAXIMUM FOR FRAUNHOFER
DIFFRACTION OF A SINGLE SLIT

P P
deg rad sin P A2 deg rad sin P A2

0 0 0 1 105 1.8326 0.9659 0.2778
15 0.2618 0.2588 0.9774 120 2.0944 0.8660 0.1710
30 0.5236 0.5000 0.9119 135 2.3562 0.7071 0.0901
45 0.7854 0.7071 0.8106 150 2.6180 0.5000 0.0365
60 1.0472 0.8660 0.6839 165 2.8798 0.2588 0.0081
75 1.3090 0.9659 0.5445 180 3.1416 0 0
90 1.5708 1.0000 0.4053 195 3.4034 0.2588 0.0058
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FIGURE 15E
Angle of the first minimum of the single-
slit diffraction pattern. -Intensity

edge of the slit than from the lower. The secondary wavelet from the point in the slit
adjacent to the upper edge will travel approximately )./2 farther than that from the
point at the center, and so these two will produce vibrations with a phase difference
of n and will give a resultant displacement of zero at Pl' Similarly the wavelet from
the next point below the upper edge will cancel that from the next point below the
center, and we can continue this pairing off to include all points in the wave front,
so that the resultant effect at PI is zero. At P3 the path difference is 2)., and if we
divide the slit into four parts, the pairing of points again gives zero resultant, since
the parts cancel in pairs. For the point P2, on the other hand, the path difference
is 3A.f2, and we divide the slit into thirds, two of which will cancel, leaving one third
to account for the intensity at this point. The resultant amplitude at P2 is, of course,
not even approximately one-third that at Po, because the phases of the wavelets from
the remaining third are Mt by any means equal.

The above method; though instructive, is not exact if the screen is at a finite
distance from the slit. As Fig. 15E is drawn, the shorter broken line is drawn to cut
off equal distances on the rays to PI' It will be seen from this that the path difference
w PI between the light coming from the upper edge and that from the center is slightly
greater than A./2 and that between the center and lower edge slightly less than A./2.
Hence the resultant intensity will not be zero at PI and P3, but it will be more nearly
so the- greater the distance between slit and screen or the narrower the slit. This
corresponds to the transition from Fresnel diffraction to Fraunhofer diffraction.
Obviously, with the relative dimensions shown in the figure, the geometrical shadow
of the slit would considerably widen the central maximum as drawn. Just as was true
with Young's experiment (Sec. 13.3), when the screen is at infinity, the relations be-
come simpler. Then the two angles ()1 and ()~ in Fig. 15E become exactly equal,
i.e., the two broken lines are perpendicular to each other, and), = b sin ()1 for the
first minimum corresponding to P = n. This gives

• . () ).sm 1 = -
b

(I5£)

In practice ()1 is usually a very small angle, so we may put the sine equal to the
angle. Then

• (l5g)
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a relation which shows at once how the dimensions of the pattern vary with A.and b.
The linear width of the pattern on a screen will be proportional to the slit-screen
distance, which is the focal length! of a lens placed close to the slit. The linear distance
d between successiveminima corresponding to the angular separation ()1 = A./b is thus

d = fA.
b

The width of the pattern increases in proportion to the wavelength, so that for red
light it is roughly twice as wide as for violet light, the slit width, etc., being the same.
If white light is used, the central maximum is white in the middle but reddish on its
outer edge, shading into a purple and other impure colors farther out.

The angular width of the pattern for a given wavelength is inversely propor-
tional to the slit width b, so that as b is made larger, the pattern shrinks rapidly to a
smaller scale. In photographing Fig. 15B,if the slit S had been 9.0 mm wide, the whole
visible pattern (of five maxima) would have been included in a width of 0.24 mm on
the original plate instead of 2.4 cm. This fact (that when the width of the aperture
is large compared to a wavelength, the diffraction is practically negligible) led the
early investigators to conclude that light travels in straight lines and that it could not
be a wave motion. Sound waves will be diffracted through large angles in passing
through an aperture of ordinary size, such as an open window.

15.4 GRAPHICAL TREATMENT OF AMPLITUDES.
THE VIBRATION CURVE

The addition of the amplitude contributions from all the secondary wavelets originat-
ing in the slit can be carried out by a graphical method based on the vector addition
of amplitudes discussed in Sec. 12.2. It will be worthwhile to consider this method
in some detail, because it may be applied to advantage in other more complicated
cases to be treated in later chapters, and because it gives a very clear physical picture
of the origin of the diffraction pattern. Let us divide the width of the slit into a fairly
large number of equal parts, say nine. The amplitude r contributed at a point on
the screen by anyone of these parts will be the same, since they are of equal width.
The phases of these contributions will differ, however, for any point except that lying
on the axis, i.e., on the normal to the slit at its center (Po, Fig. 15E). For a point off
the axis, each of the nine segments will contribute vibrations differing in phase, because
the segments are at different average distances from the point. Furthermore the
difference in phase {)between the contributions from adjacent segments will be con-
stant, since each element is on the average the same amount farther away (or nearer)
than its neighbor.

Now, using the fact that the resultant amplitude and phase may be found by
the vector addition of the individual amplitudes making angles with each other equal
to the phase difference, a vector diagram like that shown in Fig. 15F(b) may be drawn.
Each of the nine equal amplitudes a is inclined a tan angle {)with the preceding one,
and their vector sum A is the resultant amplitude required. Now suppose that instead
of dividing the slit into nine elements, we had divided it into many thousand or, in the



FRAUNHOFER DIFFRACTION BY A SINGLE OPENING 323

• • •
~=O
•••

A

~(b)

8= "/4

a a a
I •••• ".

Ao=9a
(a) I

g
""/tJI8',

/ I" (lJ)
/q I "

/ I "/ I ••./ I A •..

A ~

OOOC)@G)O
8="'/2 8=3"'/4 B=" 8=5"'/4 8=3"'/2 8=711'/4 ~=21f

(e) (d) (e) (I) (g) (h) (i)

FIGURE 15F
Graphical treatment of amplitudes in single-slit diffraction.

limit, an infinite number of equal elements. The vectors a would become shorter,
but at the same time (j would decrease in the same proportion, so that in the limit
our vector diagram would approach the arc of a circle, shown as in (h'). The resultant
amplitude A is still the same and equal to the length of the chord of this arc. Such a
continuous curve, representing the addition of infinitesimal amplitudes, we shall
refer to as a vibration curve.

To show that this method is in agreement with our previous result, we note that
the length of the arc is just the amplitude Ao obtained when all of the component
vibrations are in phase, as in (a) of the figure. Introducing a phase difference between
the components does not alter their individual amplitudes or the algebraic sum of
these. Hence the ratio of the resultant amplitude A at any point in the screen to Ao,
that on the axis, is the ratio of the chord to the arc of the circle. Since p stands for
half the phase difference from opposite edges of the slit, the angle subtended by the
arc is just 2p, because the first and last vectors a will have a phase difference of 2p.
In Fig. 15F(b'), the radius of the arc is called q, and a perpendicular has been dropped
from the center on the chord A. From the geometry of the figure, we have

A = 2q sin p

and hence

sin p =Af2
q

A chord 2q sin p sin p
-=--=---=--
Ao arc q x 2p P

in agreement with Eq. (l5c).
As we go out from the center of the diffraction pattern, the length of the arc
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remains constant and equal to Ao, but its curvature increases owing to the larger
phase difference (j introduced between the infinitesimal component vectors a. The
vibration curve thus winds up on itself as P increased. The successive diagrams (a) to
(i) in Fig. 15F are drawn for the indicated values of P at intervals of n/4, and the corre-
sponding points are similarly lettered on the intensity diagram. A study of these
figures will bring out clearly the cause of the variations in intensity occurring in the
single-slit pattern. In particular, one sees that the asymmetry of the secondary
maxima follows from the fact that the radius of the circle is shrinking with increasing
p. Thus A will reach its maximum length slightly before the condition represented
in Fig. ISF(g).

15.5 RECTANGULAR APERTURE

In the preceding sections the intensity function for a slit was derived by summing
the effects of the spherical wavelets originating from a linear section of the wave
front by a plane perpendicular to the length of the slit, i.e., by the plane of the page in
Fig. ISC. Nothing was said about the contributions from parts of the wave front
out of this plane. A more thorough mathematical investigation, involving a double
integration over both dimensions of the wave front, * shows, however, that the above
result is correct when the slit is very long compared to its width. The complete treat-
ment gives, for a slit of width b and length I, the following expression for the intensity:

. 2 a . 2
I ~ b2/2 ~ sm Y (ISh)

p2 y2

where p = (nb sin (J)/A, as before, and y = (nf sin n)j),. The angles (J and n are mea-
sured from the normal to the aperture at its center, in planes through the normal
parallel to the sides band f, respectively. The diffraction pattern given.by Eq. (ISh)
when band 1 are comparable with each other is illustrated in Fig. ISG. The dimen-
sions of the aperture are shown by the white rectangle in the lower left-hand part of
the figure. The intensity in the pattern is concentrated principally in two directions
coinciding with the sides of the aperture, and in each of these directions it corre-
sponds to the simple pattern for a slit width equal to the width of the aperture in that
direction. Owing to the inverse proportionality between the slit width and the scale
of the pattern, the fringes are more closely spaced in the direction of the longer
dimension of the aperture. In addition to these patterns there are other faint maxima,
as shown in the figure. This diffraction pattern can easily be observed by illuminating
a small rectangular aperture with monochromatic light from a source which is effec-
tively a point, the disposition of the lenses and the distance of the source and screen
being similar to those described for observation of the slit pattern (Sec. 15.2). The
cross formed by the brightest spots in the photograph is the one always observed
when a bright street light is seen through woven fabric.

Now for a slit having f very large, the factor (sin2 y)/y2 in Eq. (ISh) is zero for

• See R. W. Wood, "Physical Optics," 2d ed., pp. 195-202, The Macmillan Company,
New York, 1921; reprinted (paperback) by Dover Publications, Inc., New York,
1968.
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FIGURE 15G
Diffraction pattern from a rectangular opening.

all values of n except extremely small ones. This means that the diffraction pattern
will be limited to a line on the screen perpendicular to the slit and will resemble a
section of the central horizontal line of bright spots in Fig. 15G. We do not ordinarily
observe such a line pattern in diffraction by a slit, because its observation requires
the use of a point source. In Fig. 15A the primary source was a slit S', with its long
dimension perpendicular to the page. In this case, each point of the source slit forms
a line pattern, but these fall adjacent to each other on the screen, adding up to give
a pattern like Fig. 15B. If we were to use a slit source with the rectangular aperture
of Fig. 15G, the slit being parallel to the side I, the result would be the summation of
a number of such patterns, one above the other, and would be identical with Fig. 15B.

These considerations can easily be extended to cover the effect of widening the
primary slit. With a slit of finite width, each line element parallel to the length of
the slit forms a pattern like Fig. 15B. The resultant pattern is equivalent to a set of
such patterns displaced laterally with respect to each other. If the slit is too wide,
the single-slit pattern will therefore be lost. No great change will occur until the
patterns from the two edges of the slit are displaced about one-fourth of the distance
from the central maximum to the first minimum. This condition will hold when the
width of the primary slit subtends an angle of HAfb) at the first lens, as can be seen
by reference to Fig. 15H below.

15.6 RESOLVING POWER WITH A RECTANGULAR
APERTURE

By the resolving power of an optical instrument wemean its ability to produce separate
images of objects very close together. Using the laws of geometrical optics, one designs
a telescope or a microscope to give an image of a point source which is as small as
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FIGURE ISH
Diffraction images of two slit sources formed by a rectangular aperture.

possible. However, in the final analysis, it is the diffraction pattern that sets a theoreti-
cal upper limit to the resolving power. We have seen that whenever parallel light
passes through any aperture, it cannot be focused to a point image but instead gives a
diffraction pattern in which the central maximum has a certain finite width, inversely
proportional to the width of the aperture. The images of two objects will evidently
not be resolved if their separation is much less than the width of the central diffraction
maximum. The aperture here involved is usually that of the objective lens of the tele-
scope or microscope and is therefore circular. Diffraction by a circular aperture
will be considered below in Sec. 15.8, and here we shall treat the somewhat simpler
case of a rectangular aperture.

Figure ISH shows two plano-convex lenses (equivalent to a single double-
convex lens) limited by a rectangular aperture of vertical dimension b. Two narrow
slit sources 81 and 82 perpendicular to the plane of the figure form real images 81
and 82 on a screen. Each image consists of a single-slit diffraction pattern for which
the intensity distribution is plotted in a vertical direction. The angular separation ()(
of the central maxima is equal to the angular separation of the sources, and with the
value shown in the figure is adequate to give separate images. The condition illus-
trated is that in which each principal maximum falls exactly on the second minimum
of the adjacent pattern. This is the smallest possible value of ()(which will give zero
intensity between the two strong maxima in the resultant pattern. The angular
separation from the center to the second minimum in either pattern then corresponds
to p = 2n (see Fig. 150), or sin 0 ~ 0 =2Afb = 201, As cds made smaller than this,
and the two images move closer together, the intensity between the maxima will
rise, until finally no minimum remains at the center. Figure lSI illustrates this by
showing the resultant curve (heavy line) for four different values of ()(. In each case
the resultant pattern has been obtained by merely adding the intensities due to the
separate patterns (dotted and light curves), as was done in the case of the Fabry-Perot
fringes (Sec. 14.12).

Inspection of this figure shows that it would be impossible to resolve the two
images if the maxima were much closer than ()(= 010 corresponding to p = n. At
this separation the maximum of one pattern falls exactly on the first minimum of the
other, so that the intensities of the maxima in the resultant pattern are equal to those
of the separate maxima. The calculations are therefore simpler than for Fabry-Perot
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FIGURE 151
Diffraction images of two slit sources: (a) and (b)well resolved; (c) just resolved;
(d) not resolved.

fringes, where at no point does the intensity actually become zero. To find the in-
tensity at the center of the resultant minimum for diffraction fringes separated by°1, we note that the curves cross at p = nl2 for either pattern and

sin
2 p = ~ = 0.4053
p2 n2

the intensity of either relative to the maximum. The sum of the contributions at this
point is therefore 0.8106, which shows that the intensity of the resultant pattern drops
almost to four-fifths of its maximum value. This change of intensity is easily visible
to the eye, and in fact a considerably smaller change could be seen, or at least detected
with a sensitive intensity-measuring instrument such as a microphotometer. However,
the depth of the minimum changes very rapidly with separation in this region, and in
view of the simplicity of the relations in this particular case, it was decided by Rayleigh
to arbitrarily fix the separation a: = 01 = Alb as the criterion for resolution of two
diffraction patterns. This quite arbitrary choice is known as Rayleigh's criterion.
The angle 01 is sometimes called the resolving power of the aperture b, although the
ability to resolve increases as 01 becomes smaller. A more appropriate designation
for 01 is the minimum angle of resolution.

15.7 CHROMATIC RESOLVING POWER OF A PRISM

An example of the use of this criterion for the resolving power of a rectangular
aperture is found in the prism spectroscope, if we assume that the face of the prism
limits the refracted beam to a rectangular section. Thus, in Fig. 15J, the minimum
angle AfJ between two parallel beams which give rise to images on the limit of resolu-
tion is such that AfJ = 01 = Alb, where b is the width of the emerging beam. The
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FIGURE 15J
Resolving power of a prism.

two beams giving these images differ in wavelength by a small increment AA,which is
negative because the smaller wavelengths are deviated through greater angles. The
wavelength increment is more useful than the increment of angle, and is the quantity
that enters in the chromatic resolving power AfAA (Sec. 14.12). To evaluate this for
the prism, we first note that since any optical path between two successive positions
b' and b of the wave front must be the same, we can write

e + e' = nB (15i)

Here n is the refractive index of the prism for the wavelength A, and B the length of
the base of the prism. Now, if the wavelength is decreased by AA,the optical path
through the base of the prism becomes (n + An)B and the emergent wave front must
turn through an angle Ao = Afb for the image it forms to be just resolved. Since,
from the figure, Ao = (Ae)/b, this amount of turning increases the length of the upper
ray by Ae = A. It is immaterial whether we measure Ae along the rays Aor A+ AA,
because only a difference of the second order is involved. Then we have

e + c' + A = (n + An)B
and, subtracting Eq. (l5i),

A = BAn

The desired result is now obtained by dividing by AAand substituting the derivative
dn/dA for the ratio of small increments.

• (l5j)

It is not difficult to show that this expression also equals the product of the angular
dispersion and the width b of the emergent beam. Furthermore, we find that Eq. (l5j)
can still be applied when the beam does not fill the prism, in which case B must be
the difference in the extreme paths through the prism, and when there are two or
more prisms in tandem, when B is the sum of the bases.
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IS.8 CIRCULAR APERTURE
The diffraction pattern formed by plane waves from a point source passing through a
circular aperture is of considerable importance as applied to the resolving power of
telescopes and other optical instruments. Unfortunately it is also a problem of con-
siderable difficulty, since it requires a double integration over the surface of the aper-
ture similar to that mentioned in Sec. 15.5 for a rectangular aperture. The problem
was first solved by Airy* in 1835, and the solution is obtained in terms of Bessel
functions of order unity. These must be calculated from series expansions, and the
most convenient way to express the results for our purpose will be to quote the actual
figures obtained in this way (Table 15B).

The diffraction pattern as illustrated in Fig. 15K(a) consists of a bright central
disk, known as Airy's disk, surrounded by a number of fainter rings. Neither the disk
nor the rings are sharply limited but shade gradually off at the edges, being separated
by circles of zero intensity. The intensity distribution is very much the same as that
which would be obtained with the single-slit pattern illustrated in Fig. 15E by rotating
it about an axis in the direction of the light and passing through the principal maximum.
The dimensions of the pattern are, however, appreciably different from those in a
single-slit pattern for a slit of width equal to the diameter of the circular aperture.
For the single-slit pattern, the angular separation ()ofthe minima from the center was
found in Sec. 15.3 to be given by sin () ~ () = mA/b, where m is any whole number,
starting with unity. The dark circles separating the bright ones in the pattern from
a circular aperture can be expressed by a similar formula if () is now the angular
semidiameter of the circle, but in this case the numbers m are not integers. Their
numerical values as calculated by Lommelt are given in Table 15B, which also
includes the values ofm for the maxima of the bright rings and data on their intensities.

• Sir George Airy (1801-1892). Astronomer Royal of England from 1835 to 1881.
Also known for his work on the aberration of light (Sec. 19.11). For details of the
solution here referred to, see T. Preston, "Theory of Light," 5th ed., pp. 324-327,
Macmillan & Co., Ltd., London, 1928.
t E. V. Lommel, Abh. Bayer. Akad. Wiss., 15:531 (1886).

Table 15B

Circular aperture Single slit
Ring m Imax Ilolal m Imax

Central maximum 0 0 1
First dark 1.220 1.000
Second bright 1.635 0.01750 0.084 1.430 0.0472
Second dark 2.233 2.000
Third bright 2.679 0.00416 0.033 2.459 0.0165
Third dark 3.238 3.000
Fourth bright 3.699 0.00160 0.018 3.471 0.0083
Fourth dark 4.241 4.000
Fifth bright 4.710 0.00078 0.011 4.477 0.0050
Fifth dark 5.243 5.000
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FIGURE 15K
Photographs of diffraction images of point sources taken with a circular aperture:
(a) one source; (b) two sources just resolved; (c) two sources completely resolved.

The column headed Imax gives the relative intensities of the maxima, while that headed
Itotal is the total amount of light in the ring, relative to that of the central disk. For
comparison, the values of m and Imax for the straight bands of the single-slit pattern
are also included.

15.9 RESOLVING POWER OF A TELESCOPE

To give an idea of the linear size of the above diffraction pattern, let us calculate
the radius of the first dark ring in the image formed in the focal plane of an ordinary
field glass. The diameter of the objective is 4 em and its focal length 30.0 em. White
light has an effective wavelength of 5.6 x 10-5 em, so that the angular radius of this
ring is (}= 1.220(5.6 x 10-5)/4 = 1.71 x 10-5 rad. The linear radius is this angle
multiplied by the focal length and therefore amounts to 30 x 1.71 x 10-5 =
0.000512 em, or almost exactly 0.005 mm. The central disk for this telescope is then
0.01 mm in diameter when the object is a point source such as a star.

Extending Rayleigh's criterion for the resolution of diffraction patterns (Sec.
15.6) to the circular aperture we say that two patterns are resolved when the central
maximum of one falls on the first dark ring of the other. The resultant pattern in this
condition is shown in Fig. 15K(b). The minimum angle of resolution for a telescope
is therefore

• A.01 = 1.220-
D

(15k)
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where D is the diameter of the circular aperture which limits the beam forming
the primary image, or usually that of the objective. For the example chosen
above, the angle calculated is just this limiting angle, so that the smallest angular
separation of a double star which could be theoretically resolved by this telescope
is 1.71 x 10-5 rad, or 3.52 seconds of arc. Since the minimum angle is inversely
proportional to D, we see that the aperture necessary to resolve two sources 1 second
apart is 3.52 times as great as in the example, or that

M. . 1 f 1'.. d 9 14.1Immum ang e 0 reso utlOn In secon s 1 =D

D being the aperture of the objective in centimeters. For the largest refracting tele-
scope in existence, that at the Yerkes Observatory, D = 40 in. and 01 = 1/8 seconds.
This may be compared with the minimum angle of resolution for the eye, the pupil
of which has a diameter of about 3.0 mm. We find 91 = 47 seconds of arc.'" Actually
the eye of the average person is not able to resolve objects less than about 1 minute
apart, and the limit is therefore effectively determined by optical defects in the eye
or by the structure of the retina.

With a given objective in a telescope, the angular size of the image as seen by
the eye is determined by the magnification of the eyepiece. However, increasing the
size of the image by increasing the power of the eyepiece does not increase the amount
of detail that can be seen, since it is impossible by magnification to bring out detail
which is not originally present in the primary image. Each point in an object becomes
a small circular diffraction pattern or disk in the image, so that if an eyepiece of very
high power is used, the image appears blurred and no greater detail is seen. Thus
diffraction by the objective is the one factor that limits the resolving power of a
telescope.

The diffraction pattern of a circular aperture, as well as the resolving power of
a telescope, can be demonstrated by an experimental arrangement similar to that
shown in Fig. ISH. The point sources at 81 and 82 consist of a sodium or mercury
arc and a screen with several pinholes about 0.35 mm in diameter and spaced from 2.0
to 10.0 mm apart. These may be viewed with one of three small holes 1.0, 2.0, and 4.0
mm in diameter, mounted in front of the objective lens to show how an increasing
aperture affects the resolution. Under these circumstances the intensity will not be
sufficient to show anything but the central disks. In order to observe the subsidiary
diffraction rings, the best source to use is the concentrated-arc lamp (Sec. 21.2) or
a laser.

The theoretical resolving power of a telescope will be realized only if the lenses
are geometrically perfect and if the magnification is at least equal to the so-called
normal magnification (Sec. 10.13). To prove the latter statement, we note that two
diffraction disks which are on the limit of resolution in the focal plane of the objective

* It might at first appear that the wavelength to be used in this calculation would
be that in the vitreous humor of the eye. It is true that the dimensions of the diffrac-
tion pattern are smaller on this account, but the separation of two images is also
decreased in the same proportion by refraction of the rays as they enter the eye.
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must subtend at the eye an angle of at least () = 1.22A./de in order to be resolved by
the eye. Here de represents the diameter of the eye pupil. According to Eq. (10k),
the magnification

()' D
M=-=-() d

where D is the diameter of the entrance pupil (objective) and dthat of the exit pupil.
At the normal magnification, d is made equal to de, so that the normal magnification
becomes

D 1.22Aj de ()~
de == 1.22AjD = (}1

Hence, if the diameter d of the exit pupil is made larger than de' that of the eye pupil,
we have ()' < (); and the images will cease to be resolved by the eye even though they
are resolved in the focal plane of the objective. In other words, any magnification
that is less than the normal one corresponds to an exit pupil larger than de' and will
not afford the resolution that the instrument could give.

15.10 RESOLVING POWER OF A MICROSCOPE

In this case the same principles are applicable. The conditions are, however, different
from those for a telescope, in which we were chiefly interested in the smallest permis-
sible angular separation of two objects at a large, and usually unknown, distance.
With a microscope the object is very close to the objective, and the latter subtends
a large angle 2i at the object plane, as shown in Fig. 15L. Here we wish primarily
to know the smallest distance between two points 0 and 0' in the object which will pro-
duce images I and I' that are just resolved. Each image consists of a disk and a system
of rings, as explained above, and the angular separation of two disks when they are
on the limit of resolution is oc = (}1 = 1.22A.fD. When this condition holds, the wave
from 0' diffracted to I has zero intensity (first dark ring), and the extreme rays
0' BI and 0' AI differ in path by 1.22..1..From the insert in Fig. 15L, we see that 0' B
is longer than OB or OA by s sin i, and O'A shorter by the same amount. The path
difference of the extreme rays from 0' is thus 2s sin i, and upon equating this to
1.22A., we obtain

1.22..1.
s=--

2 sin i

In this derivation, we have assumed that the points 0 and 0' were self-luminous
objects, such that the light given out by each has no constant phase relative to that
from the other. Actually the objects used in microscopes are not self-luminous but
are illuminated with light from a condenser. In this case it is impossible to have the
light scattered by two points on the object entirely independent in phase. This greatly
complicates the problem, since the resolving power is found to depend somewhat on
the mode of illumination of the object. Abbe investigated this problem in detail and
concluded that a good working rule for calculating the resolving power was given by
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FIGURE lSL
Resolving power of a microscope.

Eq. (I5m), omitting the factor 1.22. In microscopes of high magnifying power, the
space between the object and the objective is filled with an oil. Besides decreasing the
amount of light lost by reflection at the first lens surface, this increases the resolving
power, because when refraction of the rays emerging from the cover glass is eliminated,
the objective receives a wider cone of light from the condenser. Equation (15m) must
then be further modified by substitution of 2ns sin i for the optical path difference,
where n is the refractive index of the oil. The result of making these two changes is

s=---
2n sin i

(15n)

The product n sin i is characteristic of a particular objective, and was called by Abbe
the numerical aperture. In practice the largest value of the numerical aperture ob-
tainable is about 1.6. With white light of effective wavelength 5.6 x 10-5 em,
Eq. (15n) gives s = 1.8 x 10-5 em. The use of ultraviolet light, with its smaller
value of A, has recently been applied to still further increase the resolving power.
This necessitates the use of photography in examining the image.

One of the most remarkable steps in the improvement of microscopic resolution
has been the development of the electron microscope. As will be explained in Sec.
33.4, electrons behave like waves whose wavelength depends on the voltage through
which they have been accelerated. Between 100 and 10,000V, A varies from 0.122 to
0.0122 nm; i.e., it lies in the region of a fraction of an angstrom unit. This is more
than a thousand times smaller than for visible light. It is possible by means of electric
and magnetic fields to focus the electrons emitted from, or transmitted through, the
various parts of an object, and in this way details not very much larger than the wave-
length of the electrons can be photographed. The numerical aperture of electron
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FIGURE 15M
Polar diagrams of the diffraction patterns for waves of different wavelength from
the same parabolic reflector.

microscopes is still much smaller than that of optical instruments, but further develop-
ments in this large and growing field of electron optics are to be anticipated. *

15.11 DIFFRACTION PATTERNS WITH SOUND AND
MICROWAVES

The principles of light diffraction from slits, rectangular apertures, and circular
openings apply equally well to sound waves and microwaves. A radio loudspeaker
with a circular aperture, for example, will form diffraction patterns determined by
its diameter and frequencies emitted and give rise to marked changes in sound quality
at different points in a closed room or outdoors. As another example the microwaves
from a parabolic reflector radiate outward as a single-aperture diffraction pattern,
with a central maximum in the forward direction, as shown in Fig. 15M.

It is customary with sound and microwaves to plot radiation diffraction patterns
using polar coordinates in place of the rectangular coordinates used with light waves.
Plotted as a polar diagram, the intensity radiated in different directions from a source

• See, for example, V. K. Zworykin, G. A. Morton, and others, "Electron Optics
and the Electron Microscope," John Wiley and Sons, Inc., New York, 1945; also
V. K. Zworykin, C. A. Morton, and others, "Television in Science and Industry,"
John Wiley and Sons, Inc., New York, 1958.
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FIGURE lSN
Loudspeaker array for selectivelydirect-
ing sounds to an audience by diffraction.

is called a lobe diagram. The length of any arrow at any angle 9 is drawn proportional
to the relative intensity radiated in that direction. The lobes are then the envelopes
of these arrow tips.

The shorter the wavelength and the greater the aperture of any given source
of waves, the narrower the lobe pattern. Short waves from a point source at the focus
of a given parabolic mirror may produce a very narrow central lobe, as shown in Fig.
15M(a), while longer waves will produce proportionately wider beams as shown in
diagrams (b) and (c).

It is quite common today to use loudspeaker arrays with public-address systems,
to direct sound in specified directions. An array like that shown in Fig. 15N, with
several speakers electrically connected so they vibrate in unison, acts as though the
entire rectangular opening sent out plane waves in the forward direction. The three-
dimensional diffraction pattern is such that the central lobe is narrow vertically and
wide horizontally, thereby directing the sound energy at the spread-out audience.
Compare the rectangular source and the shape of the central beam in Fig. 15G.
Parabolic reflectors for microwave patterns that are wide horizontally and narrow
vertically radiate central beams that are narrow horizontally and wide vertically,
thereby permitting reflected beams from distant objects to be located horizontally
with precision but vertically with less accuracy.

PROBLEMS

15.1 Parallel light of wavelength 6563A is incident normally on a slit 0.3850 rom wide. A
lens with a focal length of 50.0 cm is located just behind the slit bringing the diffrac-
tion pattern to focus on a white screen. Find the distance from the center of the
principle maximum to (a) the first minimum and (b) the fifth minimum.

Ans. (a) 0.852 mm, (b) 4.261 rom
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15.2 Plane waves of blue light, A.= 4340 A, fall on a single slit, then pass through a lens
with a focal length of 85.0 cm. If the central band of the diffraction pattern on the
screen has a width of 2.450 mm, find the width of the single slit. Ans. 0.3011 mm

15.3 A parallel beam of white light falls normally on a single slit 0.320 mm wide, and 1 m
behind this slit a small spectroscope is used to explore the spectrum of the diffracted
light. Predict if you can what will be seen in the spectroscope if the slit is displaced
in a direction perpendicular to the diffracting slit by a distance of 1.250 cm from the
axis.

15.4 Make an accurate plot of the intensity in the Fraunhofer diffraction pattern of a slit
in the region of the second subsidiary maximum, P = 21t to P = 31t. Determine
from your graph the figures given in Table 15A for the position and intensity of this
maximum.

15.5 Calculate the approximate intensity of (a) the first and (b) the second weak maxima
that appear along the diagonal Ply = lib in the Fraunhofer diffraction pattern of a
rectangular aperture of width b and height 1.

Ans. (a) 11100.2227%, (b) 11100.02716%
15.6 Considering the criterion for the resolution of two diffraction patterns of unequal

intensity to be that the drop in intensity between the two maxima shall be 20 percent
of the weaker one, find the angular separation required when the intensities are in
the ratio 3: 1. Express your result in terms of P, the angle required when the intensities
are equal. This problem is best solved graphically, using two plots that can be super-
imposed with a variable displacement.

15.7 From the refractive indices of borosilicate crown glass given in Table 23B, calculate
the chromatic resolving power of a 70° prism of this material if the width of the sides
is 5.0 cm. Make the calculation for wavelengths (a) 5338A and (b) 4861 A.

Ans. (a) 3.16 x 103, (b) 4.13 x 103
15.8 A spectrum line at wavelength 3034 A is known to be a close doublet. The wave-

length difference between the two components is known to be 0.0860 A. A crystalline
quartz prism spectrograph is to be used to photograph this doublet. Such a prism is
nearly always made so the refractive index is no of Table 26A. Find (a) the dispersion
of the quartz prism at A. = 3034.4 A and (b) the minimum base length for the prism
if it is just able to resolve the doublet. Determine the dispersion from a graph of n
plotted against A. in the region of 3034.4 A.

15.9 Carry through the differentiation of Eq. (15c) and prove that tan P = P is the con-
dition for maxima (see Sec. 15.3).

15./0 Find the diameter of the Airy disk in the focal plane of a refracting telescope having
an objective with a focal length of 1.0 m and a diameter of 10.0 cm. Assume the
effective wavelength is 5.50 x 10-5 cm. Ans. 0.01342 mm

15.// What is the maximum permissible width of the slit source according to the criterion
stated at the end of Sec. 15.5 under the following circumstances: source to diffraction
slit = 30.0 cm, width of diffraction slit = 0.40 mm, wavelength of light 5.0 x
10-5 cm?

15.12 The objective of a telescope has a diameter of 12.0 cm. At what distance would two
small green objects 30.0 cm apart be barely resolved by the telescope, assuming the
resolution to be limited by diffraction by the objective only? Assume I = 5.40 x
10-5 cm.

15.13 A source producing underwater sound waves for submarine detection has a circular
aperture 60.0 cm in diameter emitting waves with a frequency of 40.0 kHz. At some
distance from this source the intensity pattern will be that of a Fraunhofer pattern
from a circular aperture. (a) Find the angular spread of the central lobe pattern.
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(b) Find the angular spread if the frequency is changed to 4.0 kHz. Assume the
speed of the sound to be 1.50 km/s. Ans. (a) 8.74°, (b) 99.40

15.14 A parabolic radar reflector 6.50 m in diameter emits microwaves with a frequency of
6.0 x 1010 Hz. At some distance from this source the lobe pattern is that of Fraun-
hofer diffraction. Find the angular width 6f the central lobe if the wave velocity is
3.0 x 1010 cm/s.

15.15 The loudspeaker array in a public-address system consists of six circular speakers
each 25.0 cm in diameter and arranged as shown in Fig. 15N. The box in which they
are mounted has the inside dimensions of 25.0 cm x 150.0 cm. Assuming Fraun-
hofer diffraction, find the horizontal and vertical spread of the central lobe pattern
for sound waves offrequency (a) 5 kHz, (b) 1 kHz, and (c) 200 Hz. Assume the speed
of sound to be 300 m/s.



16
THE DOUBLE SLIT

The interference of light from two narrow slits close together, first demonstrated by
Young, has already been discussed (Sec. 13.2) as a simple example of the interference
of two beams of light. In our discussion of the experiment, the slits were assumed to
have widths not much greater than a wavelength of light, so that the central maximum
in the diffraction pattern from each slit separately was wide enough to occupy a
large angle behind the screen (Figs. 13A and 13B). It is important to understand the
modifications of the interference pattern which occur when the width of the individual
slits is made greater, until it becomes comparable with the distance between them.
This corresponds more nearly to the actual conditions under which the experiment
is usually performed. In this chapter we shall discuss the Fraunhofer diffraction by
a double slit, and some of its applications.

16.1 QUALITATIVE ASPECTS OF THE PATTERN

In Fig. 16A(b) and (c) photographs are shown of the patterns obtained from two differ-
ent double slits in which the widths of the individual slits were equal in each pair
but the two pairs were different. Figure 16Bshows the experimental arrangement for
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FIGURE 16A
Diffraction patterns from (0) a single narrow slit, (b) two narrow slits, (c) two
wider slits, (d) one wider slit.

photographing these patterns; the slit width b of each slit was greater for Fig. 16A(c)
than for Fig. 16A(b), but the distance between centers d = b + c, or the separation
of the slits, was the same in the two cases. In the central part of Fig. 16A(b) are seen
a number of interference maxima of approximately uniform intensity, resembling
the interference fringes described in Chap. 13 and shown in Fig. 130. The intensities
of these maxima are not actually constant, however, but fall off slowly to zero on
either side and then reappear with low intensity two or three times before becoming
too faint to observe without difficulty. The same cha~ges are seen to occur much more
rapidly in Fig. 16A(c), which was taken with the sli~widths b somewhat larger.

16.2 DERIVATION OF THE EQUATION FOR THE
INTENSITY

Following the same procedure as that used for the single slit in Sec. 15.2, it is merely
necessary to change the limits of integration in Eq. (15b) to include the two portions
of the wave front transmitted by the double slit.* Thus if we have, as in Fig. 16B,
two equal slits of width b, separated by an opaque space of width c, the origin may

• The result of this derivation is obviously a special case of the gen.eral formula for
N slits, which witt be obtained by the method of complex amplitudes in the following
chapter.
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Double slit Screen

FIGURE 16B
Apparatus for observing Fraunhofer diffraction from a double slit. Drawn for
2b = c, that is, d = 3b.

be chosen at the center of c, and the integration extended from s = d/2 - b/2 to
s = d/2 + b/2. This gives

y = 2~ {sin [tk(d + b) sin OJ - sin [tk(d - b) sin OJ}[sin (wt - kx)]
xksmO

The quantity in braces is of the form sin (A + B) - sin (A - B), and when it is
expanded, we obtain

2ba sin p .
y = - -- cos "I sm (wt - kx) (l6a)

x p
where, as before,

P = tkb sin 0 = !:b sin 0
A.

and where "I = tk(b + c) sin () = !:d sin 0
A.

(16b)

The intensity is proportional to the square of the amplitude of Eq. (l6a), so that,
replacing ba/x by Ao as before, we have

sin2 P• 1= 4Ao2 -- cos2 "I (l6c)p2
The factor (sin2 P){ p2 in this equation is just that derived for the single slit of width b
in the previous chapter [Eq. (l5d)]. The second factor cos2 "I is characteristic of the
interference pattern produced by two beams of equal intensity and phase difference
(j, as shown in Eq. (I3b) of Sec. 13.3. There the resultant intensity was found to be
proportional to cos2 «(j/2), so that the expressions correspond if we put "I = (j/2. The
resultant intensity will be zero when either of the two factors is zero. For the first
factor this will occur when p = n, 2n, 3n, ... , and for the second factor when
"I = n/2, 3n/2, 5n/2, . . .. That the two variables p and "I are not independent will
be seen from Fig. 16C. The difference in path from the two edges of a given slit to
the screen is, as indicated, b sin O. The corresponding phase difference is, by Eq. (15c),
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FIGURE 16C
Path differences of parallel rays leaving
a double slit.

(21t/;")b sin e, which equals 2p. The path difference from any two corresponding
points in the two slits, as illustrated for the two points at the lower edges of the slits,
is d sin e, and the phase difference is J = (27[/J..)d sin e = 2)'. Therefore, in terms of
the dimensions of the slits,

b y d- = - = - (l6d)
2p P b

16.3 COMPARISON OF THE SINGLE-SLIT AND
DOUBLE-SLIT PATTERNS

It is instructive to compare the double-slit pattern with that given by a single slit of
width equal to that of either of the two slits. This amounts to comparing the effect
obtained with the two slits in the arrangement shown in Fig. 16Bwith that obtained
when one of the slits is entirely blocked off with an opaque screen. If this is done,
the corresponding single-slit diffraction patterns are observed, and they are related
to the double-slit patterns as shown in Fig. 16A(a) and (d). It will be seen that the
intensities of the interference fringes in the double-slit pattern correspond to the
intensity of the single-slit pattern at any point. If one or other of the two slits is
covered, we obtain exactly the same single-slit pattern in the same position, while if
both slits are uncovered, the pattern, instead of being a single-slit one with twice the
intensity, breaks up into the narrow maxima and minima called interference fringes.
The intensity at the maximum of these fringes is 4 times the intensity of either single-
slit pattern at that point, while it is zero at the minima (see Sec. 13.4).

16.4 DISTINCTION BETWEEN INTERFERENCE AND
DIFFRACTION

One is quite justified in explaining the above results by saying that the light from the
two slits undergoes interference to produce fringes of the type obtained with two beams
but that the intensities of these fringes are limited by the amount of light arriving
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at the given point on the screen by virtue of the diffraction occurring at each slit.
The relative intensities in the resultant pattern as given by Eq. (16c) are just those
obtained by multiplying the intensity function for the interference pattern from two
infinitely narrow slits of separation d (Eq. (l3b)] by the intensity function for diffrac-
tion from a single slit of width b (Eq. (l5d)]. Thus, the result may be regarded as due
to the joint action of interference between the rays coming from corresponding points
in the two slits and of diffraction, which determines the amount of light emerging from
either slit at a given angle. But diffraction is merely the result of the interference of all
the secondary wavelets originating from the different elements of the wave front. Hence
it is proper to say that the whole pattern is an interference pattern. It is just as correct
to refer to it as a diffraction pattern, since, as we saw from the derivation of the
intensity function in Sec. 16.2, it is obtained by direct summing the effects of all
of the elements of the exposed part of the wave front. However, if we reserve the
term interference for those cases in which a modification of amplitude is produced by
the superposition of a finite (usually small) number of beams, and diffraction for
those in which the amplitude is determined by an integration over the infinitesimal
elements of the wave front, the double-slit pattern can be said to be due to a com-
bination of interference and diffraction. Interference of the beams from the two slits
produces the narrow maxima and minima given by the cos2 y factor, and diffraction,
represented by (sin2 P)/P2, modulates the intensities of these interference fringes.
The student should not be misled by this statement into thinking that diffraction is
anything other than a rather complicated case of interference.

16.5 POSITIONS OF THE MAXIMA AND MINIMA.
MISSING ORDERS

As shown in Sec. 16.2, the intensity will be zero wherever y = n/2, 3n/2, 5n/2, ...
and also when P = n, 2n, 3n, . . .. The first of these two sets are the minima for the
interference pattern, and since by definition y = (n/A)d sin (), they occur at angles
() such that

• . ). 3A 5Ad SID () = -, -, -, .. , = (m + 1)A
2 2 2

Minima (16e)

m being any whole number starting with zero. The second series of minima are those
for the diffraction pattern, and these, since P = (n/A)a sin (), occur where

• b sin () = A, 2A, 3A, . " = pA Minima (16f)

the smallest value of p being I. The exact positions of the maxima are not given by
any simple relation, but their approximate positions can be found by neglecting the
variation of the factor (sin2 P)/ p2, a justified assumption only when the slits are very
narrow and when the maxima near the center of the pattern are considered [Fig.
16A(b)]. The positions of the maxima will then be determined solely by the cos2 y
factor, which has maxima for y = 0, n, 2n, ... , that is, for

d sin () = 0, A, 2A, 3A, . .. = mA Maxima (16g)
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FIGURE 16D
Intensity curves for a double slit where d = 3b.
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The whole number m represents physically the number of wavelengths in the path
difference from corresponding points in the two slits (see Fig. 16C) and represents
the order of interference.

Figure 16D(a) is a plot of the factor cos2 'Y,and here the values of the order,
of half the phase difference 'Y = {)/2, and of the path difference are indicated for the
various maxima. These are all of equal intensity and equidistant on a scale of d sin (J,
or practically on a scale of (J, since when (J is small, sin (J ~ (J and the maxima occur
at angles (J = 0, AId, 2)'/d,. . .. With a finite slit width b the variation of the factor
(sin2 13)/1)2 must be taken into account. This factor alone gives just the single-slit
pattern discussed in the last chapter, and is plotted in Fig. 16D(b). The complete
double-slit pattern as given by Eq. (16c) is the product of these two factors and
therefore is obtained by multiplying the ordinates of curve (a) by those of curve (b)
and the constant 4Ao2• This pattern is shown in Fig. 16D(c). The result will depend
on the relative scale of the abscissas 13 and y, which in the figure are chosen so that for
a given abscissa y = 313. But the relation between 13 and y for a given angle (J is deter-
mined, according to Eq. (l6d), by the ratio of the slit width to the slit separation.
Hence if d = 3b, the two curves (a) and (b) are plotted to the same scale of (J. For
the particular case of two slits of width b separated by an opaque space of width
c = 2b, the curve (c), which is the product of (a) and (b), then gives the resultant
pattern. The positions of the maxima in this curve are slightly different from those in



344 FUNDAMENTALS OF OPTICS

curve (a) for all except the central maximum (m = 0), because when the ordinates
near one of the maxima of curve (a) are multiplied by a factor which is decreasing
or increasing, the ordinates on one side of the maximum are changed by a different
amount from those of the other, and this displaces the resultant maximum slightly
in the direction in which the factor is increasing. Hence the positions of the maxima
in curve (c) are not exactly those given by Eq. (16g) but in most cases will be very close
to them.

Let us now return to the explanation of the differences in the two patterns (b)
and (c) of Fig. 16A, taken with the same slit separation d but different slit widths b.
Pattern (c) was taken for the case d = 3b, and is seen to agree with the description
given above. For pattern (b), the slit separation d was the same, giving the same spac-
ing for the interference fringes, but the slit width b was smaller, such that d = 6b.
In Fig. 13D, d = 14b. This greatly increases the scale for the single-slit pattern rel-
ative to the interference pattern, so that many interference maxima now fall within
the central maximum of the diffraction pattern. Hence the effect of decreasing b,
keeping d unchanged, is merely to broaden out the single-slit pattern, which acts as
an envelope of the interference pattern as indicated by the dotted curve of Fig. 16D(c).

If the slit-width b is kept constant and the separation of the slits d is varied,
the scale of the interference pattern varies, but that of the diffraction pattern remains
the same. A series of photographs taken to illustrate this is shown in Fig. 16E.
For each pattern three different exposures are shown, to bring out the details of the
faint and the strong parts of the pattern. The maxima of the curves are labeled by the
order m, and underneath the upper one is a given scale of angular positions e. A study
of these figures shows that certain orders are missing, or at least reduced to two maxima
of very low intensity. These missing orders occur where the condition for a maximum of
the interference, Eq. (l6g), and for a minimum of the diffraction, Eq. (l6£), are both
fulfilled for the same value of e, that is for

so that

d sin e = mA. and b sin e = PA.

d m
- =-
b p

(l6h)

Since m and p are both integers, d/b must be in the ratio of two integers if we are to
have missing orders. This ratio determines the orders which are missing, in such a
way that when d/b = 2, orders 2, 4, 6, ... are missing; when d/b = 3, orders 3, 6, 9, ...
are missing; etc. When d/b = 1, the two slits exactly join, and all orders should be
missing. However, the two faint maxima into which each order is split can then be
shown to correspond exactly to the subsidiary maxima of a single-slit pattern of
width 2b.

Our physical picture of the cause of missing orders is as follows. Considering,
for example, the missing order m = +3 in Fig. 16D(c), this point on the screen is
just three wavelengths farther from the center of one slit than from the center of the
other. Hence we might expect the waves from the two slits to arrive in phase and to
produce a maximum. However, this point is at the same time one wavelength farther
from the edge of one slit than from the other edge of that slit. Addition of the second-
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Photographs and intensity curves for double-slit diffraction patterns.
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FIGURE 16F
How the intensity curve for a double slit is obtained by the graphical addition of
amplitudes.

ary wavelets from one slit gives zero intensity under these conditions. The same holds
true for either slit, so that although we may add the contributions from the two slits,
both contributions are zero and must therefore give zero resultant.

'16.6 VIBRATION CURVE

The same method as that applied in Sec. 15.4 for finding the resultant amplitude
graphically in the case of the single slit is applicable to the present problem. For
illustration we take a double slit in which the width of each slit equals that of the
opaque space between the two, so that d = 2b. A photograph of this pattern appears
in Fig. l6E at the top. A vector diagram of the amplitude contributions from one
slit gives the arc of a circle, as before, the difference between the slopes of the tangents
to the arc at the two ends being the phase difference 2p between the contributions from
the two edges of the slit. Such an arc must now be drawn for each of the two slits,
and the two arcs must be related in such a way that the phases (slopes of the tangents)
differ for corresponding points on the two slits by 2')1, or~. In the present case, since
d = 2b, we must have)l = 2p or ~ = 4p. Thus in Fig. l6F(b) showing the vibration
curve for p = ref8, both arcs subtend an angle of ref4 (= 2P), the phase difference
for the two edges of each slit, and the arcs are separated by ref4 so that corresponding
points on the two arcs differ by ref2( = ~).Now the resultant contributions from the
two slits are represented in amplitude and phase by the chords of these two arcs,
that is by Ai and Az. Diagrams (a) to (i) give the construction for the points similarly
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labeled on the intensity curve. The intensity, it will be remembered, is found as the
square of the resultant amplitude A, which is the vector sum of A1 and A2•

In the example chosen, the slits are relatively wide compared with their separa-
tion, and as the phase difference increases the curvature of the individual arcs of the
vibration curve increases rapidly, so that the vectors A1 and A2 decrease rapidly in
length. For narrower slits we obtain a greater number of interference fringes within
the central diffraction maximum, because the lengths of the arcs are smaller relative
to the radius of curvature of the circle. A 1 and A 2 then decrease in length more slowly
with increasing P, and the intensities of the maxima do not fall off so rapidly. In the
limit where the slit width a approaches zero, A1 and A2 remain constant, and the
variation of the resultant intensity is merely due to the change in phase angle between
them.

16.7 EFFECT OF FINITE WIDTH OF SOURCE SLIT

A simplification which was made in the above treatment, and which never holds
exactly in practice, is the assumption that the source slit (S' of Fig. 16B) is of negligible
width. This is necessary in order that the lens shall furnish a single train of plane
waves falling on the double slit. Otherwise there will be different sets of waves ap-
proaching at slightly different angles, these originating from different points in the
source slit. They will produce sets of fringes which are slightly shifted with respect
to each other, as illustrated in Fig. 16G(a). In the figure the interference maxima
are for simplicity drawn with uniform intensity, neglecting the effects of diffraction.
Let P and P' be two narrow lines acting as sources. These may be two narrow slits,
or, better, two lamp filaments, since we assume no coherence between them. If the
positions of the central maxima of the interference patterns produced by these are
Q and Q', the fringe displacement QQ' will subtend the same angle oc at the double
slit as the source slits do. If this angle is a small fraction of the angular separation
A/d of the successive fringes in either pattern, the resultant intensity distribution will
still resemble a true cos2 }' curve, although the intensity will not fall to zero at the
minima. The relative positions of the two patterns, and the sum of the two, in this
state are illustrated in Fig. 16G, curves (b). Curves (c) and (d) show the effect of
increasing the separation PP'. For (d) the fringes are completely out of step, and
the resultant intensity shows no fluctuations whatever. At a point such as Q the maxi-
mum of one pattern then coincides with the next minimum of the other, so that the
path difference P'AQ - PAQ = A/2. In other words, P' is just a half wavelength
farther from A than is P. If the intensity of one set of fringes is given by 4A2 cos2
(~/2) or 2A2(1 + cos ~), that of the other is

The sum is therefore constant and equal to 4A2, so that the fringes entirely disappear.
The condition for this disappearance of fringes is oc = A/2d. If PP' is still further
increased, the fringes will reappear, becoming. sharp again when oc equals the fringe
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FIGURE 16G
Effect of a double source and of a wide source on the double-slit interference
fringes.

distance A/d, disappear when the fringes are again out of register, etc. In general,
the condition for disappearance is

A 3A SA
0(=- - -

2d'2d'2d""
Disappearance of fringes with double source (16i)

where 0( is the angle subtended by the two sources at the double slit.
Next let us consider the effect when the source, instead of consisting of two

separate sources, consists of a uniformly bright strip of width PP'. Each line element
of this strip will produce its own set of interference fringes, and the resultant pattern
will be the sum of a large number of these, displaced by infinitesimal amounts with
respect to each other. Figure 16G(e) illustrates this for 0( = A/2d, that is, for a slit
of width such that the extreme points acting alone would give complete disappearance
of fringes as in (d). The resultant curve now shows strong fluctuations, and the slit
must be still further widened to make the intensity uniform. The first complete dis-
appearance will come when the range covered by the component fringes extends over
a whole fringe width, instead of one-half, as above. This case is shown in Fig. 16G(f),
for a slit of width subtending an angle ex = Ald. Widening the slit still further will
cause the fringes to reappear, although they never become perfectly distinct again,
with zero intensity between fringes. At ex = 2A/d they again disappear completely,
and the general condition is

A 2A 3),

O(="d'd'd"" Disappearance of fringes with slit source (l6j)
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It is of practical importance, in observing double-slit fringes experimentally,
to know how wide the source slit may be made in order to obtain intense fringes
without seriously impairing the definition of the fringes. The exact value will depend
on our criterion for clear fringes, but a good working rule is to permit a maximum
discordance of the fringes of about one-quarter of that for the first disappearance.
If f' is the focal length of the first lens, this corresponds to a maximum permissible
width of the source slit

PP' = f'rJ. = f'A (16k)
4d

16.8 MICHELSON'S STELLAR INTERFEROMETER

As shown in Sec. 15.9, the smallest angular separation that two point sources may
have in order to produce images which are recognizable as separate, in the focal plane
of a telescope, is rJ.= 01 = 1.22A/D. In this equation [Eq. (15k)] D is the diameter
of the objective of the telescope. Suppose that the objective is covered by a screen
pierced with two parallel slits of separation almost equal to the diameter of the ob-
jective. A separation of d = D/1.22 would be a convenient value. If the telescope
is now pointed at a double star and the slits are turned so as to be perpendicular to the
line joining the two stars, interference fringes due to the double slit will in general
be observed. However, according to Eq. (16i), if the angular separation of the two
stars happens to be rJ.= Aj2d, the condition for the first disappearance, no fringes
will be seen. Those from one star completely mask those from the other. Hence
one could infer from the nonappearance of the fringes that the star was double with
an angular separation Aj2d or some multiple of this. (The multiples could be ruled
out by direct observation without the double slit.) But this separation is only half
as great as the minimum angle of resolution of the whole objective 1.22Aj D, which
in this case equals Ajd. In this connection it is instructive to compare, as in Fig. 16H,
the dimensions of the diffraction pattern due to a rectangular aperture of width b with
the interference pattern due to two narrow slits whose separation d is equal to b. The
central maximum is only half as wide in the second case. Hence it is sometimes said
that the resolving power of a telescope can be increased twofold by placing a double
slit over the objective. This statement needs two important qualifications, however.
(I) The stars are not "resolved" in the sense of producing separate images, but their
existence is merely inferred from the behavior of the fringes. (2) A partial blurring
of the fringes, without complete disappearance, can be observed for separations
much less than Aj2d, showing the existence of two stars, and from this point of view
the minimum resolvable separation is considerably smaller than that indicated by the
above statement. In practice it is about one-tenth of this.

The actual measurement of the separation of a given close double star is made
by having the slit separation d adjustable. The separation is increased until the fringes
first disappear; then, by measuring d, the angular separation is obtained as rJ.= Aj2d.
The effective wavelength A of the starlight must, of course, be also estimated or mea-
sured. Separations of double stars are not often determined by this method, since
observations on the doppler effect (Sec. 11.10) afford an even more sensitive means
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FIGURE 16H
Fraunhofer pattern from (a) a rectangular aperture and (b) double slit of separa-
tion equal to the width of the aperture in (a). In (b) are shown the four auxiliary
mirrors used in the actual stellar interferometer.

of detection and measurement. On the other hand, the method of double-slit inter-
ference was, until recently, * the only way of measuring the diameter of the disk of a
single star, and in 1920 this method was successfully applied by Michelson for this
purpose.

From the discussion of the preceding section it will be seen that if a source such
as a star disk subtends a finite angle, disappearance of the fringes would be expected
from this cause when the separation of the double slit on a telescope is made great
enough. Michelson first demonstrated the practicability of this method by measuring
the diameters of Jupiter's moons, which subtend an angle of about 1 second. The
values of d for the first disappearance are only a few centimeters in this case, and the
measurement could be made by a double slit of variable separation over the objective
of a telescope. Because the source is a circular disk instead of a rectangle, a correction
must be applied to the equation (X = ).jd for a slit source. This correction can be
found by the"same method that is used in finding the resolving power of a circular
aperture, and gives the same factor. It is found that (X = 1.22J../d gives the first
disappearance for a disk source. Estimating the angular diameters of the nearer
fixed stars of known distance by assuming they are the same size as the sun, one
obtains angles less than 0.01 second. The separations of the double slit required to
detect a disk of this size are from 6 to 12m. Clearly no telescope in existence could
be used in the way described above for the measurement of star diameters. Another
drawback would be that the fringes would be so fine that it would be difficult to separate
them.

Since the blurring of the fringes is the result of variations of the phase difference
between the light arriving at the two slits from various points on the source, Michelson
realized that it is possible to magnify this phase difference without increasing d.
This was done by receiving the light from a star on two plane mirrors M and M'

• See R. Hanbury-Brown and R. Q. Twiss, Nature, 178: 1447 (1956).



THE DOUBLE SLIT 351

[Fig. l6H(b)] and reflecting it into the slits by these and two other mirrors. Then a
variation of ex in the angle of the incoming rays will cause a difference of path to the
two slits of Lrx, where L is the distance MM' between the outer mirrors. The fringes
will now disappear when this difference equals 1.22/", and so the sensitivity is magnified
in the ratio LId. In the actual measurements; M and M' were two 15 cm mirrors
mounted on a girder in front of the toO-in. Mt. Wilson reflector so that they could be
moved apart symmetrically. In the case of the star Arcturus, for example, the first
disappearance of fringes occurred at L = 7.2 m, indicating an angular diameter <X =
1.22A.jL of only 0.02 second. From the known distance of Arcturus, one then finds
that its actual diameter is 27 times that of the sun.*

16.9 CORRELATION INTERFEROMETER

Another approach to the determination of stellar diameters has been to measure
some parameter related to the phase of the incident light. Consider light from a
distant source incident at one aperture of the Michelson stellar interferometer.
Since the intensity at any time over a given light field is composed of a finite number
of random wave trains, or photons, one would expect fluctuations in phase, intensity,
and polarization. An abrupt change in intensity would be related to an abrupt
change in the makeup of the photon field at the slit, which in turn would likely pro-
duce an abrupt change in net phase. Similarly a momentary lull in intensity fluctuation
would correlate with a nonchanging phase. Therefore one would expect fluctuations
in phase to be correlated with fluctuations in'intensity. Moreover, the fluctuations
would occur at frequencies much lower than the frequency of the light itself.

This correlation of light field intensity with phase, called the Hanbury-Brown-
Twiss effect, was established by these scientistst through experiment in 1956. The
technique ultimately led to a stellar interferometer which far ~urpasses the Michelson
interferometer in resolving distant sources of finite angular size. Its major advantage
is that the intensity correlation is not sensitive to slight variations in displacement of
the optical components.

The crucial problem at the time of their experiment was to develop a method
of measuring the intensity-fluctuation correlation with temporal resolution small
enough to detect the fluctuations. The answer to this problem was to use two separated
parabolic reflectors focused on photomultiplier tubes (see Fig. 161). The outputs were
delivered to electronic circuitry which produces an output proportional to the product
of the two inputs. This in turn was sent through an integrating, or averaging, circuit.
The variation of this output with detector separation is called the second-order inter-
ference function and displays an interference pattern similar to the Michelson inter-
ferometer (first order interference). With this technique the separation of the detectors
can be greatly extended without having the interference pattern destroyed by slight
variations in the mirror positions.

• Details of these measurements will be found in A. A. Michelson, "Studies in Optics,"
chap. 11, University of Chicago Press, Chicago, 1927.

t R. Hanbury-Brown and R. Q. Twiss, Correlation between Photons in Two
Coherent Beams of Light, Nature. 12.7:27(1956).
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FIGURE 161
Photoelectric detectors and electronic circuitry for a long-base-line correlation
interferometer.

Using ordinary searchlight mirrors to focus starlight onto photomultiplier
tubes, Hanbury-Brown and Twiss studied the star Sirius and were able to determine
its angular diameter to be 0.0069 second of arc.

Since that time, a correlation interferometer with a base line 188m long has been
built at Narrabri, Australia, where angular diameters as small as 0.0005 second
of arc can be measured. This far surpasses the results of the Michelson stellar inter-
ferometer. *

16.10 WIDE-ANGLE INTERFERENCE

Nothing has thus far been said about any limit to the angle between the two inter-
fering beams as they leave the source. Consider, for example, the double-slit arrange-
ment shown in Fig. 16J(a). The source S could be a narrow slit, but to ensure that
there is no coherence between the light leaving various points on it, we shall assume
that it is a self-luminous object. It is found experimentally that the angle cP may be
made fairly large without spoiling the interference fringes, provided the width of the
source is made correspondingly small. Just how small it must be is seen from the
fact that the path difference from the extreme edges of the source to any given point
on the screen such as P must be less than )../4. Now if we call s the width of the source,

• For additional reading see w. Martienssen and E. Spiller, Coherence and Fluctu-
ations in Light Beams, Am. J. Phys., 32: 919 (l964); A. B. Haner and N. R.lsenor,
Intensity Correlations from Pseudothermal Light Sources, Am. J. Phys., 38: 748
(1970); and K. I. Kellermann, Intercontinental Radio Astronomy, Sci. Am., 226:
72 (l972).
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FIGURE 16J
Twomethodsof investigatingwide-angleinterference.

the discussion given in Sec. 15.10 shows that this path difference will be 2$ sin (c/J/2).
Hence, for a divergence of 60°, $ cannot exceed one-quarter of a wavelength, or
1.3 x 10-s cm for green light. If the width is made greater than this, the fringes
disappear completely when the path difference is A, reappear, and then disappear
again at 2A, etc., just as in the stellar interferometer. By using as a source an extremely
thin filament, Schrodinger could still detect some interference at an angular divergence
c/J as large as 57°.

An equivalent experiment which permitted using even larger angles of diver-
gence (up to 180°)was performed by Selenyi in 1911. The essential part of his appara-
tus, shown in Fig. 16J(b), was a film of a fluorescent liquid only one-twentieth of a
wavelength thick contained between a thin sheet of mica and a plane glass surface.
When the film is strongly illuminated, it becomes a secondary source of light having
a somewhat longer wavelength than the incident light (see Sec. 22.6). Interference
can then be observed in a given direction between the light that comes directly from
the film and that which is reflected from the outer surface of the mica. Interesting
conclusions about the characteristics of the radiating atoms, in particular whether
they radiate as dipoles, quadrupoles, etc., can be drawn from data on the variation
of the visibility of the fringes with angle.*

PROBLEMS

16.1 The two slits of a double slit each have a width of 0.140 mm and a distance between
centers of 0.840 mm. (a) What orders are missing,and (b) what is the approximate
intensityof orders m = 0 to m = 61

Ans. (a) 6, 12, 18,24, ... , (b) m = 0, 100%, m = 1,91.2%; m = 2,68.4%;
m = 3,40.5%; m = 4, 17.1%; m = 5, 3.65%; m = 6, 0%

16.2 The double slit of Prob. 16.1 is illuminated by parallel light of wavelength5000 A,
and the pattern is focusedon a screenby a lenswith a focal length of 50.0 em. Make
a plot of the intensity distribution on the screen similar to Fig. 6D(c), using as
abscissasthe distance in millimeterson the screen. Include the first 12orders on one
side of the central maximum.

• O. Halpern and F. W. Doermann, Phys. Rev., 52: 937 (1937).
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16.3 (a) Draw an appropriate vibration curve for the point in a Fraunhofer diffraction
pattern of a double slit where the phase difference b = n/3. The opaque space
between the two slits is twice the width of the slits themselves. (b) What is the value
of P for this point? (c) Obtain a value for the intensity at the point in question
relative to that at the central maximum.

16.4 A double slit has two slits of width 0.650 mm separated by a distance between centers
of 2.340 cm. With a mercury arc as a source of light, the green line at A = 5460.74A
is used to observe the Fraunhofer diffraction pattern 100 em behind the slits. (a)
Assuming the eye can resolve fringes that subtend 1minute of arc, what magnification
would be required to just resolve the fringes? (b) How many fringes could be seen
under the central maximum? (c) How many under the first side maximum?

Ans. (a) 3.1x, (b) 71 fringes, (c) 35 fringes
16.5 Two double slits are placed on an optical bench. One slit has a spacing of d1 =

0.250 mm, is illuminated by green light of a mercury arc, A = 5460.74 A, and is used
as a double source. The eye located close behind the second double slit, for which
d2 = 0.750 mm, sees clear double-slit fringes when observing from the far end of the
bench. When the second double slit is moved toward the double-slit source, the
fringes completely disappear at a certain point, then appear,-then disappear, etc.
(a) Find the largest distance at which the fringes disappear. (b) Find the next largest
distance at which they reappear and (c) then disappear.

16.6 A double slit with b = 0.150 mm, and d = 0.950 mm is located between two lenses
as shown in Fig. 160(a). The lenses have a focal length of 70 em. A single adjustable
slit is used as a light source at PP', and the green mercury line A = 5461A illuminates
it. According to the usual criterion for clear fringes, how wide should the source slit
be made to obtain the best intensity without appreciable sacrifice of clearness?

16.7 Since two equal slits with d = b form a single slit twice the width of either of the slits,
prove that Eq. (l6c) can be reduced to the equation for the intensity distribution for
a single slit of width lb.
Ans. Starting with Eq. (l6c), we make use of the trigonometric equality that

2 sin P cos P = sin 2p. Upon substitution, we obtain, I = 4Ao2 (sin2 2P>/4p2
16.8 If d = 5b for a double slit, determine for Fraunhofer diffraction exactly how much

the third-order maximum is shifted from the position given by Eq. (16g) due to
modulation by the diffraction envelope. The problem is best solved by plotting exact
intensities in the neighborhood of the expected maximum. Express the result as a
fraction of the separation of orders.

16.9 With a tungsten lamp with a straight wire filament as a source and a collimating lens
of 6.20 em focal length in front of a double slit, various separations of the double slit
are tried, increasing the distance d until the fringes disappear. If this occurs for
d = 0.350 mm, calculate the filament diameter. Assume A = 5800 A.

16.10 Derive a formula giving the number of interference maxima occurring under the
central diffraction maximum of the double-slit pattern in terms of the separation d
and the slit width b. Ans. N = 2d/b - 1



17
THE DIFFRACTION GRATING

Any arrangement which is equivalent in its action to a number of parallel equidistant
slits of the same width is called a diffraction grating. Since the grating is a very power-
ful instrument for the study of spectra, we shall treat in considerable detail the inten-
sity pattern which it produces. We shall find that the pattern is quite complex in
general but that it has a number of features in common with that of the double slit
treated in the last chapter. In fact, the latter may be considered as an elementary
grating of only two slits. It is, however, of no use as a spectroscope, since in a practical
grating many thousands of very fine slits are usually required. The reason for this
becomes apparent when we examine the difference between the pattern due to two
slits and that due to many slits.

17.1 EFFECT OF INCREASING THE NUMBER OF SLITS

When the intensity pattern due to one, two, three, and more slits of the same width
is photographed, a series of pictures like those shown in Fig. 17A(a) to (f) is obtained.
The arrangement of light source, slit, lenses, and recording plate used in taking these
pictures was similar to that described in previous chapters, and the light used was the
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(a) 1 slit

(b) 2 slits

(c) 3 slits

(d) 5 slits

(e) 6 slits

(f) 20 slits

FIGURE 17A
Fraunhofer diffraction patterns for gratings containing different numbers of slits.

blue line from a mercury arc. These patterns therefore are produced by Fraunhofer
diffraction. In fact, it was because of Fraunhofer's original investigations ofthe diffrac-
tion of parallel light by gratings in 1819 that his name became associated with this
type of diffraction. Fraunhofer's first gratings were made by winding finewires around
two parallel screws. Those used in preparing Fig. 17A were made by cutting narrow
transparent lines in the gelatin emulsion on a photographic plate, as described in
Sec. 13.2.

The most striking modification in the pattern as the number of slits is increased
consists of a narrowing of the interference maxima. For two slits these are diffuse,
having an intensity which was shown in the last chapter to vary essentially as the
square of the cosine. With more slits the sharpness of these principal maxima increases
rapidly, and in pattern (f) of the figure, with 20 slits, they have become narrow lines.
Another change, of less importance, which can be seen in patterns (c), (d), and (e)
is the appearance of weak secondary maxima between the principal maxima, their
number increasing with the number of slits. For three slits only one secondary maxi-
mum is present, its intensity being 11.1percent of the principal maximum. Figure 17B
shows an intensity curve for this case, plotted according to the theoretical equation
(l7b) given in the next section. Here the individual slits were assumed very narrow.
Actually the intensities of all maxima are governed by the pattern of a single slit of
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FIGURE 17B
Principal and secondary maxima from a
grating of three slits. Sin9-

width equal to that of anyone of the slits used. The width of the intensity envelopes
would be identical in the various patterns of Fig. 17A if the slits had been of the same
width in all cases. In fact there were slight differences in the slit widths used for some
of the patterns.

17.2 INTENSITY DISTRIBUTION FROM AN IDEAL
GRATING

The procedure used in Sees. 15.2 and 16.2 for the single and double slits could be used
here, performing the integration over the clear aperture of the slits, but it becomes
cumbersome. Instead let us apply the more powerful method of adding the complex
amplitudes (Sec. 14.8). The situation is simpler than in the case of multiple reflections,
because for the grating the amplitudes contributed by the individual slits are all of
equal magnitude. We designate this magnitude by 0 and the number of slits by N.
The phase will change by equal amounts ~ from one slit to the next; so the resultant
complex amplitude is the sum of the series

. I - e'N~
Ae,6 = 0(1 + eM + e'H + e'36 + ... + e

'
(N-l)6) = 0 --- (17a)

1 - e'6

(17c)•

To find the intensity, this expression must be multiplied by its complex conjugate,
as in Eq. (14m), giving

(I - e'N6)(1 - e-1N6) I - cos N~A2 = 02 = 02 ----
(I - e'6)(1 - e-/~) 1 - cos ~

Using the trigonometric relation I - cos a = 2 sin2 (a/2), we may then write

A2 = 02 sin2 (No/2) = 02 sin2 N"I (17b)
sin2 (~/2) sin2 "I

where, as in the double slit, "I = ~/2 = (nd sin ()/).. Now the factor 02 represents the
intensity diffracted by a single slit, and after inserting its value from Eq. (15d) we
finally obtain for the intensity in the Fraunhofer pattern of an ideal grating

• 2 P . 2 NI~ A2 = A02~S1D "I

p2 sin2 "I

Upon substitution of N = 2 in this formula, it readily reduces to Eq. (16c) for the
double slit.
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17.3 PRINCIPAL MAXIMA

The new factor (sin2 Ny)/(sin2 y) may be said to represent the interference term for
N slits. It possesses maximum values equal to N2 for y = 0, n, 2n, ... , Although
the quotient becomes indeterminate at these values, this result can be obtained by
noting that

1. sin Ny I' N cos Ny +N1m -- = 1m ---- =
y-+m" sin y y-+m" cos y -

These maxima correspond in position to those of the double slit, since for the above
values ofy

d sin () = 0, A,2A,3A,. .. = mA Principal maxima (17d)

They are more intense, however, in the ratio of the square of the number of slits.
The relative intensities of the different orders m are in all cases governed by the single-
slit diffraction envelope (sin2 P)/P2, Hence the relation between P and y in terms of
slit width and slit separation [Eq. (l6d)] remains unchanged, as does the condition
for missing orders [Eq. (16h)].

17.4 MINIMA AND SECONDARY MAXIMA

(17e)Minima

To find the minima of the function (sin2 Ny)/(sin2 y), we note that the numerator be-
comes zero more often than the denominator, and this occurs at the values Ny = 0,
n, 2n, ... or, in general, pn. In the special cases when p = 0, N, 2N, ... , y will be
0, n, 2n, ... ; so for these values the denominator will also vanish, and we have the
principal maxima described above. The other values of p give zero intensity, since for
these the denominator does not vanish at the same time. Hence the condition for a
minimum is y = pn/ N, excluding those values of p for which p = mN, m being the
order. These values of y correspond to path differences

d sin () = ~, 2..1.,3..1.,., . , (N - 1)..1.,(N + I)A
N N N N N , ...

omitting the values 0, NA/N, 2NA/N, ... , for which d sin () = mA and which according
to Eq. (l7d) represent principal maxima. Between two adjacent principal maxima
there will hence be N - I points of zero intensity. The two minima on either side of
a principal maximum are separated by twice the distance of the others.

Between the other minima the intensity rises again, but the secondary maxima
thus produced are of much smaller intensity than the principal maxima. Figure 17C
shows a plot for six slits of the quantities sin2 Ny and sin2y, and also of their quotient,
which gives the intensity distribution in the interference pattern. The intensity of the
principal maxima is N2 or 36, so that the lower figure is drawn to a smaller scale.
The intensities of the secondary maxima are also shown. These secondary maxima
are not of equal intensity but fall off as we go out on either side of each principal
maximum. Nor are they in general equally spaced, the lack of equality being due
to the fact that the maxima are not quite symmetrical. This lack of symmetry is
greatest for the secondary maxima immediately adjacent to the principal maxima,
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FIGURE 17C
Fraunhofer diffraction by a grating of six very narrow slits and details of the
intensity pattern.

and is such that the secondary maxima are slightly shifted toward the adjacent
principal maximum.

These features of the secondary maxima show a strong resemblance to those of
the secondary maxima in the single-slit pattern. Comparison of the central part of
the intensity pattern in Fig. 17C(d) with Fig. 150 for the single slit will emphasize
this resemblance. As. the number of slits is increased, the number of secondary
maxima is also increased, since it is equal to N - 2. At the same time the resemblance
of any principal maximum and its adjacent secondary maxima to the single-slit
pattern increases. In Fig. 170 is shown the interference curve for N = 20, corre-
sponding to the last photograph shown in Fig. 17A. In this case there are 18secondary
maxima between each pair of principal maxima, but only those fairly close to the
principal maxima appear with appreciable intensity, and even these are not sufficiently
strong to show in the photograph. The agreement with the single-slit pattern is here
practically complete. The physical reason for this agreement will be discussed in
Sec. 17.10, where it will be shown that the dimensions of the pattern correspond to
those from a single "slit" of width equal to that of the entire grating. Even when the
number of slits is small, the intensities of the secondary maxima can be computed
by summing a number of such single-slit patterns, one for each order.

17.5 FORMATION OF SPECTRA BY A GRATING

The secondary maxima discussed in Sec. 17.4are of little importance in the production
of spectra by a many-lined grating. The principal maxima treated in Sec. 17.3 are
called spectrum lines because when the primary source of light is a narrow slit they
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FIGURE 170
Intensity pattern for 20 narrow slits.

become sharp, bright lines on the screen. These lines will be parallel to the rulings
of the grating if the slit also has this direction. For monochromatic light of wave-
length A, the angles 0 at which these lines are formed are given by Eq. (17d), which is
the ordinary grating equation d sin 0 = rnA commonly given in elementary textbooks.
A more general equation includes the possibility of light incident on the grating at
any angle i. The equation then becomes

• d(sin i + sin 0) = rnA Grating equation (l7f)

Jm=l

Jm=2

FIGURE 17E
Positions and intensities of the principal maxima from a grating where light con-
taining two wavelengths is incident at an angle iand diffracted at various angles (J.
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FIGURE 17F
Grating spectra of two wavelengths: (a) II = 4000 A; (b) l2 = 5000 A; (c) II
and l2 together.

since, as will be seen from Fig. 17E, this is the path difference for light passing through
adjacent slits. The figure shows the path of the light forming the maxima of order
m = 0 (called the central image), and also m = 4 in light of a particular wavelength
AI' For the central image, Eq. (l7f) shows that sin () = -sin i, or () = -i. The
negative sign comes from the fact that we have chosen to call i and () positive when
measured on the same side of the normal; i.e., our convention of signs is such that
whenever the rays used cross over the line normal to the grating, ()is taken as negative.
Those intensity maxima which are shaded show the various orders of the wavelength
AI' In the case of the fourth order, for example, the path differences indicated are
such that d(sin i + sin 0) = 4Al' The intensities of the principal maxima are limited
by the diffraction pattern corresponding to a single slit (broken line) and drop to
zero at the first minimum of that pattern, which here coincides with the fifth order.
The missing orders in this illustration are therefore m = 5, 10, ... , as would be pro-
duced by having d = 5b.

Now if the source gives light of another wavelength A2 somewhat greater than
Alo the maxima of the corresponding order m for this wavelength will, according to
Eq. (l7j), occur at larger angles (). Since the spectrum lines are narrow, these maxima
will in general be entirely separate in each order from those of AI and we have two
lines forming a line spectrum in each order. These spectra are indicated by brackets
in the figure. Both the wavelengths will coincide, however, for the central image,
because for this the path difference is zero for any wavelength. A similar set of spectra
occurs on the other side of the central image, the shorter wavelength line in each
order lying on the side toward the central image. Figure 17F shows actual photo-
graphs of grating spectra corresponding to the di~gram of Fig. 17E. If the source
gives white light, the central image will be white, but for the orders each will be spread
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out into continuous spectra composed of an infinite number of adjacent images of
the slit in light of the different wavelengths present. At any given point in such a
continuous spectrum, the light will be very nearly monochromatic because of the
narrowness of the slit images formed by the grating and lens. The result is in this
respect fundamentally different from that with the double slit, where the images were
broad and the spectral colors were not separated.

17.6 DISPERSION

The separation of any two colors, such as A1 and A2 in Figs. 17E and 17F, increases
with the order number. To express this separation the quantity frequently used is
called the angular dispersion, which is defined as the rate of change of angle with
change of wavelength. An expression for this quantity is obtained by differentiating
Eq. (l7f) with respect to A, remembering that i is a constant independent of wave-
length. Substituting the ratio of finite increments for the derivative, one has

(l7g)Angular dispersion
AO m
LU = dcos 0

The equation shows in the first place that for a given small wavelength difference AA,
the angular separation AO is directly proportional to the order m. Hence the second.
order spectrum is twice as wide as the first order, the third three times as wide as the
first, etc. In the second place, AO is inversely proportional to the slit separation d,
which is usually referred to as the grating space. The smaller the grating space, the
more widely spread the spectra will be. In the third place, the occurrence of cos 0 in
the denominator means that in a given order m the dispersion will be smallest on the
normal, where () = 0, and will increase slowly as we go out on either side of this.
If ()does not become large, cos ()will not differ much from unity, and this factor will
be of little importance. If we neglect its influence, the different spectral lines in one
order will differ in angle by amounts which are directly proportional to their difference
in wavelength. Such a spectrum is called a normal spectrum, and one of the chief
advantages of gratings over prism instruments is this simple linear scale for wave-
lengths in their spectra.

The linear dispersion in the focal plane of the telescope or camera lens is AllAA,
where I is the distance along this plane. Its value is usually obtainable by multiplying
Eq. (l7g) by the focal length of the lens. In some arrangements, however, the photo-
graphic plate is turned so the light does not strike it normally, and there is a corre-
sponding increase in linear dispersion. In specifying the dispersion of a spectrograph,
it has become customary to quote the plate factor, which is the reciprocal of the above
quantity and expressed in angstroms per millimeter.

•

17.7 OVERLAPPING OF ORDERS

If the range of wavelengths is large, e.g., if we observe the whole visible spectrum
between 4000 and 7200A, considerable overlapping occurs in the higher orders. Sup-
pose, for example, that one observed in the third order a certain red line of wave-
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length 7000A. The angle of diffraction for this line is given by solving for (J the
expression

d(sin i + sin (J) = 3 x 70000

where d is in angstroms. But at the same angle 9 there may occur a green line in the
fourth order, of wavelength 5250A, since .

4 x 5250 = 3 x 7000

Similarly the violet of wavelength 4200A will occur in the fifth order at this same place.
The general condition for the various wavelengths that can occur at a given angle 0
is then

d(sin i + sin 9) = At = 2A2 = 3A) = ... (17h)

where At, A2, etc., are the wavelengths in the first, second, etc., orders. For visible
light there is no overlapping of the first and second orders, since with At = 7200A
and A2 = 4000A the red end of the first order falls just short of the violet end of the
second. When photographic observations are made, however, these orders may
extend down to 2000A in the ultraviolet, and the first two orders do overlap. This
difficulty can usually be eliminated by the use of suitable color filters to absorb from
the incident light those wavelengths which would overlap the region under study.
As an example, a piece of red glass transmitting only wavelengths longer than 6000A
could be used in the above case to avoid the interfering shorter wavelengths of higher
order that might disturb observation of A7000 and lines in that vicinity.

17.8 WIDTH OF THE PRINCIPAL MAXIMA

It was shown at the beginning of Sec. 17.4 that'the first minima on either side of any
principal maximum occur where Ny = mNn :!: n, or where y = mn :!: (n/N).
When y = mn, we have the principal maxima, owing to the fact that the phase differ-
ence {)or 2y, in the light from corresponding points of adjacent slits, is given by
2nm, or a whole number of complete vibrations. However, if we change the angle
enough to cause a change of 2n/ N in the phase difference, reinforcement no longer
occurs, but the light from the various slits now interferes to produce zero intensity.
A phase difference of 2n/N between the maximum and the first minimum means a
path difference of A./N.

To see why this path difference causes zero intensity, consider Fig. l7G(a),
in which the rays leaving the grating at the angle 9 form a principal maximum of
order m. For these, the path difference of the rays from two adjacent slits is mA,
so that all the waves arrive in phase. The path difference of the extreme rays is then
NmA, since N is always a very large number in any practical case.* Now let us change
the angle of diffraction by a small amount AO,such that the extreme path difference
increases by one wavelength and becomes NmA + A (rays shown by broken lines).
This should correspond to the condition for:zero intensity, because, as required,

• With a small number of sItts, it is necessary to use the true value (N - 1)m.t, and
the subsequent argument must be slightly modified, but it yields the same result
[Eq. (17i»).
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FIGURE 17G
Angular separation of two spectrum lines which are just resolved by a diffraction
grating.

the path difference for two adjacent slits has been increased by AjN. It will be seen
that the ray from the top of the grating is now of opposite phase from that at the
center, and the effects of these two will cancel. Similarly, the ray from the next slit
below the center will annul that from the next slit below the top, etc. The cancellation
if continued will yield zero intensity from the whole grating, in entire analogy to the
similar process considered in Sec. 15.3 for the single-slit pattern.

Thus the first zero occurs at the small angle /'i.() on each side of any principal
maximum. From the figure it is seen that

• A A
/'i.() = - = ---

B Nd cos ()
Angular half width of principal maximum (17i)

It is instructive to note that this is just l/Nth of the separation of adjacent orders,
since the latter is represented by the same expression with the path difference NA
instead of Ain the numerator.

17.9 RESOLVING POWER

When N is many thousands, as in any useful diffraction grating, the maxima are
extremely narrow. The chromatic resolving power Aj/'i.), is correspondingly high.
To evaluate it, we note first that since the intensity contour is essentially the diffraction
pattern of a rectangular aperture, the Rayleigh criterion (Sec. 15.6) can be applied.
The images formed in two wavelengths that are barely resolved must be separated
by the angle M of Eq. (l7i). Consequently the light of wavelength A + /'i.), must form
its principal maximum of order m at the same angle as that for the first minimum
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of wavelength A in that order [Fig. 17G(b)]. Hence we can equate the extreme path
differences in the two cases and obtain

mNA + A = mN(A + dA)
from which it immediately follows that

• A
-=mNdA (17j)

That the resolving power is proportional to the order m is to be understood from the
fact that the width of a principal maximum, by Eq. (17i), depends on the width B
of the emergent beam and does not change much with order, whereas the separation
of two maxima of different wavelengths increases with the dispersion, which, by
Eq. (17g), increases nearly in proportion to the order. Just as for the prism (Sec. 15.7),
we have that

Chromatic resolving power = angular dispersion x width of emergent beam since in
the present case

• A M) m
- = - x B = -- x Nd cos 8 = mN
dA dA d cos 8

In a given order the resolving power, by Eq. (l7j), is proportional to the total
number of slits N but is independent of their spacing d. However, at given angles of
incidence and diffraction it is independent of N also, as can be seen by substituting
in Eq. (17j) the value of m from Eq. (l7f):

~ = d(sin i + sin (J) N = W(sin i + sin 8) (17k)
dA A A

Here W = Ndis the total width of the grating. At a given iand 8, the resolving power
is therefore independent of the number of lines ruled in the distance W. A grating
with fewer lines gives a higher order at these given angles, however, with consequent
overlapping, and would require some auxiliary dispersion to separate these orders,
as does the Fabry-Perot interferometer. The method has nevertheless been recently
applied with success in the echelle grating to be described later. Theoretically the
maximum resolving power obtainable with any grating occurs when i = 8 = 90°,
and according to Eq. (l7k) it equals 2W/A, or the number of wavelengths in twice
the width of the grating. In practice such grazing angles are not usable, however,
because of the negligible amount of light. Experimentally one can hope to reach only
about two-thirds of the ideal maximum.

17.10 VIBRATION CURVE

Let us now apply the method of compounding the amplitudes vectorially which was
used in Sec. 16.6 for two slits and in Sec. 15.4 for one slit. The vibration curve for
the contributions from the various infinitesimal elements of a single slit again forms
an arc of a circle, but there are now several of these arcs in the curve, corresponding
to the several slits of the grating. In Fig. 17H the diagrams corresponding to the
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How the intensity curve for a grating of several slits is obtained by the graphical
addition of amplitudes.

various points (a) to (f) of the intensity plot for six slits are shown. For the central
maximum the light from all slits, and from all parts of each slit, is in phase, giving a
resultant amplitude A which is N times as great as that from one slit, as shown in
(a) of the figure. Halfway to the first minimum the condition is as shown in (b).
For this point y = n/12, so that the phase difference from corresponding points in
adjacent slits ()equals n/6 (compare Fig. 17C). This is also the angle between succes-
sive vectors in the series of six resultants A1 to A6 which are the chords of six small
equal arcs. Just as for the double slit, the final resultant A is obtained by compounding
these vectorially, and the intensity is measured by A2

• With increasing angle the
individual resultants become slightly smaller in magnitude as fJ increases, because
it is the are, not the chord, which is constant in length. Their difference is here small,
even for point (f).

The derivation of the general intensity function for the grating, Eq. (17b), can
be very simply done by a geometrical method. In Fig. 171the six amplitude vectors
of Fig. 17H are shown with a phase difference somewhat less than in part (b) of Fig.
17H. All these have the same magnitude, given by

A = sin fJ A (171)
n fJ 0
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B

FIGURE 171
Geometrical derivation of the intensity
function for a grating.

since this represents the chord of an arc of length Ao subtending the angle 2p (see
Fig. 15F). Each vector is inclined to the next by the angle ~ = 2y, and thus the six
form part of a regular polygon. In the figure broken lines are drawn from the ends
of each vector to the center 0 of this polygon. These lines also make the constant
angle 2y with each other. Therefore the total angle subtended at the center is

fjJ= N~ = N x 2y

We can now obtain a relation between the resultant amplitude A and the individual
ones All' which are given by Eq. (171). By dividing the triangle OBC into two halves
with a line from 0 perpendicular to A, it is seen that

A = 2rsinf
2

where r represents OB or OC. Similarly, from the triangle OBD as split by a line
perpendicular to AI' we obtain

Dividing the previous equation by this one, we find
A 2r sin (fjJf2) sin Ny
-=----=--
All 2r sin y sin y

When we then substitute the value of All from Eq. (171),there results, for the
amplitude,

A = A
o
sin P sin Ny
P sin y

The square ofthis, which gives the intensity, is identical with Eq. (17c).
The vibration curve as applied to different numbers of slits helps to understand

many features of the intensity patterns. For instance, there is the important question
of the narrowness of the principal maxima. The adjacent minimum on one side is
reached when the vectors first form a closed polygon, as is (c) of Fig. 17H. It is evident
that this will occur for smaller values of ~ the larger the number of slits, and this means
that the maxima will become sharper. Also one can see at once from the diagram that
for this minimum ~ = 2nfN, or y = nfN, the condition stated at the beginning of
Sec. 17.8. Furthermore, as the number of slits becomes large, the polygon of vectors
will rapidly approach the arc of a circle, and the analogy with the pattern due to a
single aperture of width equal to that of the grating is thereby seen to be justified.
Comparison of Fig. 17H with Fig. 15F for the single slit will show that for large N



, 368 FUNDAMENTALS OF OPTICS

the diagrams for the grating will become identical with those for one slit if we replace
NfJ/2 or Ny by p. Since Ny is half the phase difference from extreme slits of the grating
and p half the phase difference between extreme points in an open aperture, we see
the physical reason for the correspondence mentioned in Sec. 17.4.

Finally we note that if the diagrams in Fig. 17H are carried further, the first-
order principal maximum occurs when the arc representing each interval d forms one
complete circle. The chords under these conditions are all parallel and in the same
direction as in (a) but smaller in magnitude. The second principal maximum occurs
when each arc forms two turns of a circle when the resultant chords again line up.
These maxima have no analogue in the pattern for a single slit.

17.11 PRODUCTION OF RULED GRATINGS
Up to this point we have considered the characteristics of an idealized grating con~
sisting of identical and equally spaced slits separated by opaque strips. Actual gratings
used in the study of spectra are made by ruling fine grooves with a diamond point
either on a plane glass surface to produce a transmission grating or more often on a
polished metal mirror to produce a reflection grating. The transmission grating gives
something like our idealized picture, since the grooves scatter the light and are effec-
tively opaque, while the undisturbed parts of the surface transmit regularly and act
like slits. The same is true of the reflection grating, except that here the unruled por-
tions reflect regularly, and the grating equation (17f) holds equally well for this case
with the same convention of signs for i and ().

Figure 17J shows microphotographs of the ruled surfaces of two different
reflection gratings. The grating shown in (a) was ruled lightly, and the grooves are
too shallow to obtain maximum brightness. That shown in (b) was a high-quality
grating having 15,000 lines per inch. One or two vertical cross-rulings have been
made to show more clearly the contour of the ruled surface.

Until recently, most gratings were ruled on speculum metal, a very hard alloy
of copper and tin. Modern practice, however, is to rule on an evaporated layer of
the softer metal aluminum. Not only does this give greater reflection in the ultra-
violet, but it causes less wear on the diamond ruling point. The chief requirement for
a good grating is that the lines be as nearly equally spaced as possible over the whole
ruled surface, which in different gratings varies from I to 25 em in width. This is a
difficult requirement to fulfill, and there are very few places in the world where ruling
machines of precision adequate for the production of fine gratings have been construc-
ted. After each groove has been ruled, the machine lifts the diamond point and moves
the grating forward by a small rotation of the screw which drives the carriage carrying
it. To have the spacing of rulings constant, the screw must be of very constant pitch,
and it was not until the manufacture of a nearly perfect screw had been achieved
by Rowland,. in 1882, that the problem of successfully ruling large gratings was
accomplished.

• H. A. Rowland (1848-1901). Professor of physics at the Johns Hopkins University,
Baltimore. He is famous for his demonstration of the magnetic effect of a charge
in motion, for his measurements of the mechanical equivalent of heat, and for his
invention of the concave grating (Sec. 17.1S).
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(a) (b)

FIGURE 17J
Microphotographs of the rulings on reflection gratings: (a) light ruling and
(b) heavy ruling. (Courtesy of H. D. Babcock, Mt. Wilson Observatory, Pasadena,
California.)

If ruled gratings are used without any auxiliary apparatus to separate the differ-
ent orders, their overlapping makes it impractical to use values of m above 4 or 5.
Hence, to obtain adequate dispersion and resolving power, the grating space must
under these circumstances be made very small; and a large number of lines must be
ruled. Rowland's engine gave 14,438 perinch, corresponding to d = 1.693 X 10-4 cm,
and could produce gratings nearly 15 cm wide. This grating space is about three
wavelengths of yellow light, and thus the third order is the highest that can be observed
in this color with normal incidence. Correspondingly higher orders can be observed
for shorter wavelengths. Even in the first order, however, the dispersion given by
such a grating far exceeds that of a prism. From the grating equation one finds that
the visible spectrum is spread over an angle of 12°. If it were projected by a lens of
3.0 m focal length, the spectrum would cover alength of about 60.0 cm on the photo-
graphic plate. In the second order it would be more than 1.0 m long.

The real advantage of the grating over the prism lies not in its large dispersion,
however, but in the high resolving power it affords. One can always increase the linear
dispersion by using a camera lens of longer focal length, but beyond a certain minimum
set by the graininess of the photographic plate no more detail is revealed thereby.
With sufficient dispersion, the final limitation is the chromatic resolving power.
A 15 cm Rowland grating in the first order givesAja). = 6 x 14,438 ~ 76,600. In the
orange region two lines only 0.08 A apart would be resolved, and with the above-
mentioned dispersion each line would be only 0.015 mm wide. This separation is
only one-eightieth of that of the yellow sodium doublet. A glass prism, even though
it had the rather large dn/d)' of - 1200em-I, would by Eq. (ISh) need to have a base
64 em long to yield the same resolution.

It was first shown by Thorp that fairly good transmission gratings can be made
by taking a cast of the ruled surface with some transparent material. Such casts
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are called replica gratings, and may give satisfactory performance where the highest
resolving power is not needed. Collodion or cellulose acetate, properly diluted, is
poured on the grating surface and dried to a thin, tough film which can easily be
detached from the master grating under water. It can then be mounted on a plane
glass plate or concave mirror. Some distortion and shrinkage are involved in this
process, so that the replica seldom functions as well as the master. With modern
improvements in the techniques of plastics, however, replicas of high quality are now
being made.

17.12 GHOSTS

In an actual grating the ruled lines will always deviate to some extent from the ideal
of equal spacing. This gives rise to various effects, according to the nature of the ruling
error. Three types can be distinguished. (1)The error isperfectly random in magnitude
and direction. In this case the grating will give a continuous spread of light under-
lying the principal maxima, even when monochromatic light is used. (2) The error
continuously increases in one direction. This can be shown to give the grating "focal
properties." Parallel light after diffraction is no longer parallel but slightly divergent
or convergent. (3) The error is periodic across the surface of the grating. This is the
most common type, since it frequently arises from defects in the driving mechanism
of the ruling machine. It gives rise to "ghosts," or false lines, accompanying every
principal maximum of the ideal grating. When there is only one period involved in
the error, these lines are symmetrical in spacing and intensity about the principal
maxima. Such ghosts are called Rowland ghosts, and may easily be seen in Fig. 21H(g).
More troublesome, though of less frequent occurrence, are the Lyman. ghosts.
These appear when the error involves two periods that are incommensurate with
each other or when there is a single error of very short period. Lyman ghosts may
occur very far from the principal maximum of the same wavelength.

In recent years the ruling of more perfect gratings has been accomplished through
the work of George R. Harrison and George W. Stroke.t These men used ruling
engines with the spacings of the rulings being set by a servomechanism, controlled by
the automatic counting of interference fringes.

17.13 CONTROL OF THE INTENSITY DISTRIBUTION
AMONG ORDERS

The relative intensities of the different orders for a ruled grating do not conform
to the term (sin2 P)f/32 derived for the ideal case (Eq. (l7c)]. Obviously the light
reflected from (or refracted by) the sides of the grooves will produce important mod-
ifications. In general there will be no missing orders. The positions of the spectral

• Theodore Lyman (1874-1954). For many years director of the Physical Laboratories
at Harvard University. Pioneer in the investigation of the far-ultraviolet spectrum.
t See A. R. Ingalls, Sci. Am., 186: 45 (1952) and J. F. Verrill, Contemp. Phys., 9: 259
(1968).
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FIGURE 17K
Concentration of light in a particular direction by (a) an echelette, or echelle,
grating and (b) a reflection echelon.

lines are uninfluenced, however, and remain unchanged for any grating of the same
grating space d. In fact, the only essential requirement for a grating is that it impress
on the diffracted wave some periodic variation of either amplitude or phase. The
relative intensity of different orders is then determined by the angular distribution
of the light diffracted by a single element, of width d, on the grating surface. In the
ideal grating this corresponds to the diffraction from a single slit. In ruled gratings
it will usually be a complex factor, which in the early days of grating manufacture was
considered to be largely uncontrollable. More recently, R. W. Wood has been able
to produce gratings which concentrate as much as 90 percent of the light of a particular
wavelength in a single order on one side. Thus one of the chief disadvantages of
gratings compared with prisms-the presence of multiple spectra, none of which is
very intense-is overcome.

Wood's first experiments were done with gratings for the infrared, which have
a large grating space so that the form of the grooves could be easily governed. These
so-called eehelette gratings had grooves with one optically flat side inclined at such an
angle <p as to reflect the major portion of the infrared radiation toward the order that
was to be bright [Fig. 17K(a)]. Of course the light from anyone such face is diffracted
through an appreciable angle, measured by the ratio of the wavelength to the width
b of the face. When the ruling of gratings on aluminum was started, it was found
possible to control the shape of the finer grooves required for visible and ultraviolet
light. By proper shaping and orientation of the diamond ruling point, gratings are
now produced which show a blaze of light at any desired angle.

Historically, the first application of the principle of concentrating the light in
particular orders was made by Michelson in his eehelon grating [Fig. 17K(b)]. This
instrument consists of 20 to 30 plane-parallel plates stacked together with a constant
offset b of about 1.0 mm. The thickness t was usually 1.0 em so that the grating space
is very large and concentration occurs in an extremely high order. As used by Michel-
son, echelons were transmission instruments, but larger path differences and higher
orders are afforded by the reflection type first made by Williams.* In either case, the
light is concentrated in a direction perpendicular to the fronts of the steps. At most

• W. E. Williams, Proc. Phys. Soc. (Land.) 45: 699 (1933).
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FIGURE 17L
Echellegram of the thorium spectrum. (Courtesy of Sumner P. Davis, Department
of Physics, University of California, Berkeley, California.)

two orders of a given wavelength appear under the diffraction maximum. These have
such large values of m [about 2t/). for the reflection type and (n - l)t/). for the
transmission type] that the resolving power mN is very high, even with a relatively
small number N of plates. In this respect the instrument is like an interferometer and
in the same way requires auxiliary dispersion to separate the lines being studied.
Since it has the same defect of lack of flexibility as the Lummer-Gehrcke plate, the
echelon is little used nowadays.

A more important type of grating called the echelle,* which is intermediate be-
tween the echelette and the echelon, has a relatively coarse spacing of the grooves,
some 80 to the centimeter. These are shaped as in Fig. l7K(a), but with a rather steeper
slope. The order numbers for which concentration occurs are in the hundreds,
whereas for an echelon they are in the tens of thousands. An echelle must be used in
conjunction with another dispersing instrument, usually a prism spectrograph, to
separate the various orders. If the dispersion of the echelle is in a direction perpendic-
ular to that of the prism, an extended spectrum is displayed as a series of short strips
representing adjacent orders, as shown in Fig. l7L. t This is part of a more extens;ve

• George R. Harrison, J. Opt. Soc. Am., 39: 522 (1949); 43: 853 (1953).
t The separation of orders, in taking the echellegram of Fig. 17L, was accomplished
not by a prism but by an ordinary grating. This accounts for the weaker spectra
between the orders marked, which occur in the second order and have echelle orders
twice as great.
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spectrogram, which covers a large wavelength range with a plate factor of only
0.5 A/mm. Each order contains about 14A of the spectrum, the range that is covered
by the diffraction envelope of a single groove. This range is sufficient to produce a
certain amount of repetition from one order to the next. Thus in Fig. l7L the green
mercury line, which has been superimposed as a reference wavelength, appears in
the 405th order, and again at the extreme left in the 404th order. The resolving power
afforded by the echelle depends only on its total width [Eq. (17k)] and can be some
50 times higher than that of the auxiliary spectrograph. Here it is sufficient to resolve
the hyperfine structure of the green line. Besides its high resolution and dispersion,
the echelle has the advantages of yielding bright spectra and of registering the spectra
in very compact form.

17.14 MEASUREMENT OF WAVELENGTH WITH THE
GRATING

Small gratings 2 to 5 cm wide are usually mounted on the prism table of a small
spectrometer with collimator and telescope. By measuring the angles of incidence
and diffraction for a given spectrum line its wavelength can be calculated from the
grating formula [Eq. (17f)]. For this the grating space d must be known, and this is
usually furnished with the grating. The first accurate wavelengths were determined
by this method, the grating space being found by counting the lines in a given distance
with a traveling microscope. Once the absolute wavelength of a single line is known,
others can be measured relative to it by using the overlapping of orders. For instance,
according to Eq. (17h), a sodium line of wavelength 5890A in the third order will
coincide with another line of A. = 1- x 5890 =4417 A in the fourth order. Of course
no two lines will exactly coincide in this way, but they may fall close enough together
to permit the small difference to be accurately corrected for. This method of compar-
ing wavelengths is not accurate with the arrangement described above because the
telescope lens is never perfectly achromatic and the two lines will not be focused in
exactly the same plane. To avoid this difficulty Rowland invented the concave grating,
in which the focusing is done by a concave mirror, upon which the grating itself is
ruled.

17.15 CONCAVE GRATING

If the grating, instead of being ruled on a plane surface, is ruled on a concave spherical
mirror of metal, it will diffract and focus the light at the same time, thus doing away
with the need for lenses. Besides the fact that this eliminates the chromatic aberration
mentioned above, it has the great advantage that the grating can be used for regions
of the spectrum which are not transmitted by glass lenses, such as the ultraviolet.
A mathematical treatment of the action of the concave grating would be out of place
here, but we may mention one of the more important results. It is found that if R
is the radius of curvature of the spherical surface of the grating, a circle of diameter R,
that is, radius r = R/2, can be drawn tangent to the grating at its midpoint which
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FIGURE 17M
Paschen mounting for a concave grating.
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defines the locus of points where the spectrum is in focus, provided the source slit
also lies on this circle. This circle is called the Rowland circle, and in practically all
mountings for concave gratings use is made of this condition for focus. See Fig.
17N(a).

17.16 GRATING SPECTROGRAPHS

Figure 17M shows a diagram of a common form of mounting used for large concave
gratings, called the Paschen mounting. The slit is set up on the Rowland circle, and
the light from this strikes the grating, which diffracts it into the spectra of various
orders. These spectra will be in focus on the circle, and the photographic plates are
mounted in a plateholder which bends them to coincide with this curve. Several
orders of a spectrum can be photographed at the same time in this mounting. The
ranges covered by the visible spectrum in the first three orders are indicated in Fig.
17M for the value of the grating space mentioned above. In a given order, Eq. (l7g)
shows that the dispersion is a minimum on the normal to the grating (9 = 0), and
increases on both sides of this point. It is practically constant, however, for a con-
siderable region near the normal, because here the cosine is varying slowly. A com-
mon value for R is 21 ft, and a concave grating with this radius of curvature is called
a 21-ft grating.

Two other common mountings for concave gratings are the Rowland mounting
and the Eagle mounting, illustrated in Fig. 17N. In the Rowland mounting, which is
now mostly of historical interest, the grating G and plateholder P are fixed to opposite
ends of a rigid beam of length R. Th~ two ends of this beam rest on swivel trucks
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FIGURE 17N
(a) One of the earliest and (b) one of the commonest forms of concave grating
spectrograph. (c) Mounting for plane reflection grating.

which are free to move along two tracks at right angles to each other. The slit S
is mounted just above the intersection of the two tracks. With this arrangement,
the portion of the spectrum reaching the plate may be varied by sliding the beam one
way or the other, thus varying the angle of incidence i. It will be seen that this effec-
tively moves S around on the Rowland circle. For any setting the spectrum will be
in focus on P, and it will be nearly a normal spectrum (Sec. 17.6) because the angle
of diffraction () ~ O. The track SP is usually graduated in wavelengths since, as can
be easily shown from the grating equation, the wavelength in a given order arriving
at P is proportional to the distance SP.

The Eagle mounting, because of its compactness and flexibility, has largely
replaced the Rowland and Paschen forms. Here the part of the spectrum is observed
which is diffracted back at angles nearly equal to the angle of incidence. The slit S
is placed at one end of the plateholder, the latter being pivoted like a gate at S. To
observe different portions of the spectrum, the grating is turned about an axis per-
pendicular to the figure. It must then be moved along horizontal ways, and the plate-
holder turned, until P and S again lie on the Rowland circle. The instrument can
be mounted in a long box or room where the temperature is held constant. Variations
of temperature displace the spectrum lines owing to the change of grating space which
results from the expansion or contraction of the grating. With a grating of speculum
metal it can be shown that a change of temperature of 0.1 °C shifts a line of wave-
length 5000 A in any order by 0.013 A. The Eagle mounting is commonly used in
vacuum spectrographs for the investigation of ultraviolet spectra in the region below
2000 A. Since air absorbs these wavelengths, the air must be pumped out of the spec-
trograph and this compact mounting is convenient for the purpose. The Paschen
mounting is also frequently used in vacuum spectrographs with the light incident
on the grating at a practically grazing angle. The Littrow mounting, also shown in
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Fig. 17N, is the only common method of mounting large plane reflection gratings.
In principle it is very much like the Eagle mounting, the main difference being that a
large achromatic lens renders the incident light parallel and focuses the diffracted
light on P, so that it acts as both collimator and telescope lenses at once.

One important drawback of the concave grating as used in the mountings
described above is the presence of strong astigmatism. It is least in the Eagle mounting.
This defect of the image always occurs when a concave mirror is used off axis. Here
it has the consequence that each point on the slit is imaged as two lines, one located
on the Rowland circle perpendicular to its plane, the other in this plane and at some
distance behind the circle. If the slit is accurately perpendicular to the plane, the
sharpness of the spectrum lines is not seriously impaired by astigmatism. Because
of the increased length of the lines, however, some loss of intensity is involved.
More serious is the fact that it is impossible to study the spectrum of different parts
of a source or to separate Fabry-Perot rings by projecting an image on the slit of the
spectrograph. For this purpose, a stigmatic mounting is required. The commonest
of these is the Wadsworth mounting, in which the concave grating is illuminated
by parallel light. The light from the slit is rendered parallel by a large concave mirror,
and the spectrum is focused at a distance of about one-half the radius of curvature
of the grating.

PROBLEMS

17.1 Make a qualitative sketch for the intensity pattern for five equally spaced slits having
d/b = 4. Label several points on the x axis with the corresponding values of fJ and y.

Ans. See Fig. Pl?1.
17.2 Make a qualitative sketch for the intensity pattern for seven equally spaced slits

having d/b = 3. Label points on the x axis with the corresponding values of fJ and y.
17.3 Nine coherent sources of microwaves in phase and with a wavelength of 2.50 cm are

placed side by side in a straight line, 10.0 cm between centers. Compute (a) the
angular width of the central maximum. Find the angular separation of (b) the
principal maxima and (c) the subsidiary maxima.

17.4 Light of two wavelengths, A.= 5600 A and A.= 5650 A, fall normally on a plane
transmission grating having 2500 lines per centimeter. The emerging parallel light is
focused on a flat screen by a lens of 120 cm focal length. Find the distance on the
screen in centimeters between the two spectrum lines (a) in the first order and (b) in
the second order.

17.5 Two spectrum lines at A.= 6200 A have a separation of 0.652 A. Find the minimum
number of lines a diffraction grating must have to just resolve this doublet in the
second-order spectrum.

17.6 A diffraction grating is ruled with 100,000 lines in a distance of 8.0 cm and used
in the first order to study the structure of a spectrum line at A.= 4230 A. How does
the chromatic resolving power compare with that of a 60.0° glass prism with a base
of 8.0 cm and refractive indices 1.5608 at A.= 4010 A and 1.5462 at A.= 4450 A?

Ans. Grating resolving power = 100,000; prism resolving power = 26,550
17.7 Calculate the dispersion (a) in angstroms per degree, (b) in degrees per angstrom, and

(c) in angstroms per millimeter for a grating containing 3000 lines per centimeter
when used in the third-order spectrum focused on a screen by a lens with a focal
length of 200 cm.
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FIGURE P17.1
Intensity graph for a diffraction grating with five slits, and d/b = 4. See Prob.
17.1.

17.8 A group of spectrum lines in the region of 5200 A is to be studied using a plane
grating 15.0 cm wide containing 6000 lines per centimeter and mounted in a Littrow
system. Find (a) the highest order that can be used, (b) the angle of incidence required
to observe it, (c) the smallest wavelength interval resolved, and (d) the plate factor if
the lens has a focal length of 2.50 m.

17.9 A diffraction grating containing 5000 lines per centimeter is illuminated at various
angles of incidence by light of wavelength 4000 A. Draw a graph of the deviation of
the first-order diffraction beam from the direction of the incident light, using the
angle of incidence from 0 to 90° plotted on the x axis.

17.10 Find (a) the order number and (b) the resolving power for a reflection echelon having
35 plates each 9.0 mm thick if it is used with a cadmium arc to study A = 5085.82 A.

Ans. (a) 3.5392 x 104, (b) 1.2387 x 106

17.11 An eehelette grating has 450 lines per centimeter and is ruled for the concentration of
infrared light of wavelength 5.0 Jlm in the second order. Find (a) the angle of the
ruled faces to the plane of the grating and (b) the angular dispersion at this wave-
length, assuming normal incidence. If this grating is illuminated by red light of a
helium lamp, (c) what order or orders of A = 6678 A will be observed?

17.12 Prove that one can express the resolving power of an echelle grating as A/Ii). =
(2B/).)[r2/(1 + r2) ]1/2, where B is the width of the grating and r = t/b is the ratio of
the depth of the steps to their width. It is assumed that the light is incident and
diffracted normal to the faces of width b. Hint: Use the principle that the resolving
power equals the number of wavelengths in the path difference between the rays from
opposite edges of the grating.



18
FRESNEL DIFFRACTION

The diffraction effects obtained when either the source of light or the observing screen,
or both, are at a finite distance from the diffracting aperture or obstacle come under
the classification of Fresnel diffraction. These effects are the simplest to observe
experimentally, the only apparatus required being a small source of light, the diffrac-
ting obstacle, and a screen for observation. In the Fraunhofer effects discussed in the
preceding chapters, lenses were required to render the light parallel, and to focus it
on the screen. Now, however, we are dealing with the more general case of divergent
light which is not altered by any lenses. Since Fresnel diffraction is the easiest to
observe, it was historically the first type to be investigated, although its explanation
requires much more difficult mathematical theory than that necessary in treating
the plane waves of Fraunhofer diffraction. In this chapter we consider some of the
simpler cases of Fresnel diffraction, which are amenable to explanation by fairly
direct mathematical and graphical methods.

18.1 SHADOWS

One of the greatest difficulties in the early development of the wave theory of light
lay in the explanation of the observed fact that light appears to travel in straight lines.
Thus if we place an opaque object in the path of the light from a point source, it casts
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FIGURE 18A
Huygens' principle applied to secondary
wavelets from a narrow opening. u

B

a shadow having a fairly sharp outline of the same shape as the object. It is true,
however, that the edge of this shadow is not absolutely sharp and that when examined
closely it shows a system of dark and light bands in the immediate neighborhood of
the edge. In the days of the corpuscular theory of light, attempts were made by
Grimaldi and Newton to account for such small effects as due to the deflection of the
light corpuscles in passing close to the edge of the obstacle. The correct explanation
in terms of the wave theory we owe to the brilliant work of Fresnel. In 1815he showed
not only that the approximately rectilinear propagation of light could be interpreted
on the assumption that light is a wave motion but also that in this way the diffraction
fringes could in many cases be accounted for in detail.

To bring out the difficulty of explaining shadows by the wave picture, let us con-
sider first the passage of divergent light through an opening in a screen. In Fig. 18A
the light originates from a small pinhole H, and a certain portion MN of the divergent
wave front is allowed to pass the opening. According to Huygens' principle, we may
regard each point on the wave front as a source of secondary wavelets. The envelope
of these at a later instant gives a divergent wave with H as its center and included
between the lines HE and HF. This wave as it advances will produce strong illumin-
ation in the region EF of the screen. But also part of each wavelet will travel into the
space behind LM and NO, and hence might be expected to produce some light in the
regions of the geometrical shadow outside of E and F. Common experience shows
that there is actually no illumination on these. parts of the screen, except in the im-
mediate vicinity of E and F. According to Fresnel, this is to be explained by the fact
that in the regions well beyond the limits of the geometrical shadow the secondary
wavelets arrive with phase relations such that they interfere destructively and produce
practically complete darkness.

The secondary wavelets cannot have uniform amplitude in all directions, since
if this were so, they would produce an equally strong wave in the backward direction.
In Fig. 18A the envelope on the left side of the screen would represent a reverse wave
converging toward H. Obviously such a wave does not exist physically, and hence
one must assume that the amplitude at the back of a secondary wave is zero. The
more exact formulation of Huygens' principle justifies this assumption and also gives
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FIGURE 18B
The obliquity factor for Huygens'
secondary wavelets.

quantitatively the variation of the amplitude with direction. The so-called obliquity
factor, as is illustrated in Fig. 18B, requires an amplitude varying as 1 + cos (),where
() is the angle with the forward direction. At right angles, in the directions P and Q
of the figure, the amplitude falls to one-half and the intensity to one-quarter of its
maximum value. Another property that the wavelets must be assumed to have, in
order to give the correct results, is an advance of phase of one-quarter period ahead
of the wave that produces them. The consequences of these two rather unexpected
properties and the manner in which they are derived will be discussed later.

18.2 FRESNEL'S HALF-PERIOD ZONES

As an example of Fresnel's approach to diffraction problems, we first consider his
method of finding the effect that a slightly divergent spherical wave will produce at
a point ahead of the wave. In Fig. 18C let BCD E represent a spherical wave front of
monochromatic light traveling toward the right. Every point on this sphere may be
thought of as the origin of secondary wavelets, and we wish to find the resultant
effect of these at a point P. To do this, we divide the wave front into zones by the
following construction. Around the point 0, which is the foot of the perpendicular
from P, we describe a series of circles whose distances from 0, measured along the
are, are SI, $2' S3" •• , Sm and are such that each circle is a half wavelength farther
from P. If the distance OP = b, the circles will be at distances b + J..j2, b + 2)./2,
b + 3AI2, ... , b + mAI2 from P.

FIGURE 18C
Construction of half-period zones on a
spherical wave front.

p
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II P
FIGURE 180
Path difference Aat a distance s from the
pole of a spherical wave.

The areas Sm of the zones, Le., of the rings between successive circles, are practi-
cally equal. In proving this, we refer to Fig. 18D, where a section of the wave spread-
ing out from H is shown with radius a. If a circle of radius b is now drawn (broken
circle) with its center at P and tangent to the wave front at its "pole" 0, the path
HQP is longer than HOP by the segment indicated by L\. For the borders of the zones,
this path difference must be a whole multiple of A.f2. To evaluate it, we note first
that in all optical problems the distance s is small compared with a and b. Then s may
be considered as the vertical distance of Q above the axis, and L\ may be equated to
the sum of the sagittas of the two arcs OQ and OR. By the sagitta formula we then
have

S2 S2 2 a + b
L\ = - + - = s -- (18a)

2a 2b 2ab
The radii Sm of the Fresnel zones are such that

• A. 2a+bm- = s --
2 m lob

(I8b)

and the area of anyone zone becomes

Sm = 1t(sm2 - Sm_12) = 1t ~ 2ab = _a_ 1tb)" (I8c)
2a+b a+b

To the approximation considered, it is therefore constant and independent of m.
A more exact evaluation would show that the area increases very slowly with m.

By Huygens' principle we now regard every point on the wave as sending out
secondary wavelets in the same phase. These will reach P with different phases,
since each travels a different distance. The phases of the wavelets from a given zone
will not differ by more than 1t, and since each zone is on the average A.f2 farther from
P, it is clear that the successive zones will produce resultants at P which differ by 1t.

This statement will be examined in more detail in Sec. 18.6. The difference of half a
period in the vibrations from successive zones is the origin of the name half-period
zones. If we represent by Am the resultant amplitude of the light from the mth zone,
the successive values of Am will have alternating signs because changing the phase by
1t means reversing the direction of the amplitude vector. When the resultant amplitude
due to the whole wave is called A, it may be written as the sum of the series

Three factors determine the magnitudes of the successive terms in this series:
(1) because the area of each zone determines the number of wavelets it contributes,
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the terms should be approximately equal but should increase slowly; (2) since the
amplitude decreases inversely with the average distance from P of the zone, the magni-
tudes ofthe terms are reduced by an amount which increases with m; and (3) because
of the increasing obliquity, their magnitudes should decrease. Thus we may express
the amplitude due to the mth zone as

S
Am = const 2! (l + cos e) (l8e)

dm

where dm is the average distance to P and e the angle at which the light leaves the zone.
It appears in the form shown because of the obliquity factor assumed in the preceding
section. Now an exact calculation of the Sm's shows that the factor b in Eq. (l8c)
must be replaced by b + A, where A is the path difference for the middle of the zone.
Since at the same time dm = b + A, we find that the ratio Smldm is a constant, inde-
pendent of m. Therefore we have left only the effect of the obliquity factor I + cos e,
which causes the successive terms in Eq. (l8d) to decrease very slowly. The decrease
is least slow at first, because of the rapid change of e with m, but the amplitudes soon
become nearly equal.

With this knowledge of the variation in magnitude of the terms, wemay evaluate
the sum of the series by grouping its terms in the following two ways. Supposing
m to be odd,

A Al (AI A A3) (A3 A As) Am=2+ 2- 2+2 + 2- 4+2 +"'+2

= Al - A2 _ (A2 _ A3 + A4) _ (A4 _ As + A6) _ ••• _ Am-1 + A
22 2 2 22m

(18f)

Now since the amplitudes AI' A2, ••• do not decrease at a uniform rate, each one is
smaller than the arithmetic mean of the preceding and following ones. Therefore
the quantities in parentheses in the above equations are all positive, and the following
inequalities must hold:

Al Am A A A2 Am-1 A-+-< < 1-----+
2 2 22m

Because the amplitudes for any two adjacent zones are very nearly equal, it is possible
to equate Al to A2, and Am-1 to Am. The result is

A = Al + Am (18g)
2 2

If m is taken to be even, we find by the same method that

Hence the conclusion is that the resultant amplitude at P due to m zones is either half
the sum or half the difference of the amplitudes contributed by the first and last zones.
If we allow m to become large enough for the entire spherical wave to be divided into
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FIGURE 18E
Addition of the amplitudes from half-
period zones.

------------

zones, (J approaches 1800 for the last zone. Therefore the obliquity factor causes
Am to become negligible, and the amplitude due to the whole wave is just half that
due to the first zone acting alone.

Figure 18E shows how these results can be understood from a graphical con-
struction. The vector addition of the amplitudes At> A2, A3, ••• , which are alternately
positive and negative, would normally be performed by drawing them along the same
line, but here for clarity they are separated in a horizontal direction. The tail of each
vector is put at the same height as the head of the previous one. Then the resultant
amplitude A due to any given number of zones will be the height of the final arrowhead
above the horizontal base line. In the figure, it is shown for 12 zones and also for a
very large number of zones.

18.3 DIFFRACTION BY A CIRCULAR APERTURE

Let us examine the effect upon the intensity at P (Fig. 18C) of blocking off the wave
by a screen pierced by a small circular aperture as shown in Fig. 18F. If the radius
of the hole r = ORis made equal to the distance s1 to the outer edge of the first half-
period zone,* the amplitude will be A 1 and this is twice the amplitude due to the
unscreened wave. Thus the intensity at P is 4 times as great as if the screen were
absent. When the radius of the hole is increased until it includes the first two zones,
the amplitude is Ai - A2, or practically zero. The intensity has actually fallen to al-
most zero as a result of increasing the size of the hole. A further increase of r will
cause the intensity to pass through maxima and minima each time the number of
zones included becomes odd or even.

The same effect is produced by moving the point of observation P continuously
toward or away from the aperture along the perpendicular. This varies the size of
the zones, so that if P is originally at a position such that PR - PO of Fig. 18F is
J..f2 (one zone included), moving P toward the screen will increase this path difference
to 2A.f2 (two zones), 3A.f2 (three zones), etc. We thus have maxima and minima along
the axis of the aperture. .

The above considerations give no information about the intensity at points
off the axis. A mathematical investigation, which we shall not discuss because of its

*We are here assuming that the radius of Cl'.rvatureof the wave striking the screen is
large. so that distances measured along the chord may be taken as equal to those
measured along the arc.
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FIGURE 18F
Geometry for light passing through a
circular opening.

complexity,. shows that P is surrounded by a system of circular diffraction fringes.
Several photographs of these fringes are illustrated in Fig. 18G. These were taken by
placing a photographic plate some distance behind circular holes of various sizes,
illuminated by monochromatic light from a distant point source. Starting at the
upper left of the figures, the holes were of such sizes as to expose one, two, three,
etc., zones. The alternation ofthe center of the pattern from bright to dark illustrates
the result obtained above. The large pattern on the right was produced by an aperture
containing 11 zones.

18.4 DIFFRACTION BY A CIRCULAR OBSTACLE

When the hole is replaced by a circular disk, Fresnel's method leads to the surprising
conclusion that there should be a bright spot in the center of the shadow. For a
treatment of this case, it is convenient to start constructing the zones at the edge of
the disk. If, in Fig. 18F, PR = d, the outer edge of the first zone will be d + A/2
from P, of the second d + 2),/2, etc. The sum of the series representing the amplitudes
from all the zones in this case is, as before, half the amplitude from the first exposed
zone. In Fig. 18E it would be obtained by merely omitting the first few vectors.
Hence the intensity at P is practically equal to that produced by the unobstructed
wave. This holds only for a point on the axis, however, and off the axis the intensity
is small, showing faint concentric rings. In Fig. 18H(a) and (b), which shows photo-
graphs of the bright spot, these rings are unduly strengthened relative to the spot
by overexposure. In (c) the source, instead of being a point, was a photographic
negative of a portrait of Woodrow Wilson on a transparent plate, illuminated from
behind. The disk acts like a rather crude lens in forming an image, since for every
point in the object there is a corresponding bright spot in the image.

The complete investigation of diffraction by a circular obstacle shows that,
besides the spot and faint rings in the shadow, there are bright circular fringes border-
ing the outside of the shadow. These are similar in origin to the diffraction fringes
from a straight edge to be investigated in Sec. 18.11.

• See T. Preston, "Theory of Light," Sth cd., pp. 324-327, The Macmillan Company,
New York, 1928.
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FIGURE ISG
Diffraction of light by small circular openings. (Courtesy of Hufford.)

The bright spot in the center of the shadow of a I-cent piece can be seen by
examinirig the region of the shadow produced by an arc light several meters away,
preferably using a magnifying glass. The spot is very tiny in this case and difficult
to find. It is easier to see with a smaller object, such as a bearing ball.

18.5 ZONE PLATE
This is a special screen designed to block off the light from every other half-period
zone. The result is to remove either all the positive terms in Eq. (18d) or all the negative
terms. In either case the amplitude at P (Fig. 18C) will be increased to many times its
value in the above cases. A zone plate can easily be made in practice by drawing
concentric circles on white paper, with radii proportional to the square roots of whole
numbers (see Fig. 181). Every other zone is then blackened, and the result is photo-
graphed on a reduced scale. The negative, when held in the light from a distant point
source, produces a large intensity at a point on its axis at a distance corresponding

(a) (b) (c)

FIGURE ISH
Diffraction by a circular obstacle: (a) and (b) point source; (c) a negative of
Woodrow Wilson as a source. (Courtesy of Hufford.)
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FIGURE 181
Zone plates. lal lbl

to the size of the zones and the wavelength of the light used. The relation between
these quantities is contained in Eq. (ISb), which for the present purpose may be written

m ~ = Sm
2

(~ + !) (18h)
2 2 a b

Hence we see that, for given a, b, and A., the zones must have Sm ~ ..;;,.

The bright spot produced by a zone plate is so intense that the plate acts much like
a lens. Thus suppose that the first 10 odd zones are exposed, as in the zone plate of
Fig. 181(0). This leaves the amplitudes AlJ A3, As, ... , At9 (see Fig. 18E), the sum
of which is nearly 10 times At. The whole wave front gives -tAlJ so that, using only
10 exposed zones, we obtain an amplitude at P which is 20 times as great as when the
plate is removed. The intensity is therefore 400 times as great. If the odd zones are
covered, the amplitudes A2 A4, A6,. •• will give the same effect. The object and
image distances obey the ordinary lens formula, since, by Eq. (18h),

limA. 1-+-=-=-
a b sm2 f

the focal length f being the value of b for a = 00, namely,
2 2

• f = ~ = ~ (18i)
mA. A.

There are also fainter images corresponding to focallengthsf/3,f/5,f/7, ... , because
at these distances each zone of the plate includes 3, 5, 7, ... Fresnel zones. When it
includes three, for example, the effects of two of them cancel but that of the third
is left over.

Apparently the zone plate was invented by Lord Rayleigh as evidenced by an
entry in his notebook, dated April 11, 1871: "The experiment of blocking out the
odd Huygens zones so as to increase the light at the center succeeded very well.... "

18.6 VIBRATION CURVE FOR CIRCULAR DIVISION OF
THE WAVE FRONT

Our consideration of the vibration curve in the Fraunhofer diffraction by a single slit
(Sec. 15.4) was based upon the division of the plane wave front into infinitesimal
elements of area which were actually strips of infinitesimal width parallel to the length
of the diffracting slit. The vectors representing the contributions to the amplitude



CB

FRESNEL DIFFRACTION 387

CB

FIGURE 18J
Vibration spiral for Fresnel half-period zones of a circular opening.

from these elements were found to give an arc of a circle. This so-called strip division
of the wave front is appropriate when the source of light is a narrow slit and the
diffracting aperture rectangular. The strip division of a divergent wave front from such
a source will be discussed below (Sec. IS.S). The method of dividing the spherical
wave from a point source appropriate to any case of diffraction by circular apertures
or obstacles involves infinitesimal circular zones.

Let us consider first the amplitude diagram when the first half-period zone is
divided into eight subzones, each constructed in a manner similar to that used for
the half-period zones themselves. We make these subzones by drawing circles on the
wave front (Fig. lSC) which are distant

lA 2A A
b + '8 2' b + '8 2' ..., b + 2

from P. The light arriving at P from various points in the first subzone will not vary
in phase by more than nlS. The resultant of these may be represented by the vector
al in Fig. ISJ(a). To this is now added az, the resultant amplitude due to the second
subzone, then a3 due to the third subzone, etc. The magnitudes of these vectors will
decrease very slowly as a result of the obliquity factor. The phase difference b between
each successive one will be constant and equal to nlS. Addition of all eight subzones
yields the vector AB as the resultant amplitude from the first half-period zone. Con-
tinuing this process of subzoning to the second half-period zone, we find CD as the
resultant for this zone, and AD as that for the sum of the first two zones. These
vectors correspond to those of Fig. ISE. Succeeding half-period zones give the rest
of the figure, as shown.

The transition to the vibration curve of Fig. ISJ(b) results from increasing in-
definitely the number of subzones in a given half-period zone. The curve is now a
vibration spiral, eventually approaching Z when the half-period zones cover the whole
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FIGURE 18K
Cylindrical wave from a slit which is illuminated coherently. Half-period strips
are marked on the wave front.

spherical wave. Anyone turn is very nearly a circle but does not quite close because
of the slow decrease in the magnitudes of the individual amplitudes. The significance
of the series of decreasing amplitudes, alternating in sign, used in Sec. 18.2 for the
half-period zones, becomes clearer when we keep in mind the curve of Fig. 18J(b).
It has the additional advantage of allowing us to determine directly the resultant
amplitude due to any fractional number of zones. It should be mentioned in passing
that the resultant amplitude AZ, which is just half the amplitude due to the first half-
period zone, turns out to be, from this treatment, 90° in phase behind the light from
the center of the zone system. This cannot be true, since it is impossible to alter the
resultant phase of a wave merely by the artifice of dividing it into zones and then
recombining their effects. The discrepancy is a defect of Fresnel's theory resulting
from the approximations made therein and does not occur in the more rigorous
mathematical treatment.

18.7 APER TURES AND OBSTACLES WITH STRAIGHT
EDGES

If the configuration of the diffracting screen, instead of having circular symmetry,
involves straight edges like those of a slit or wire, it is possible to use as a source
a slit rather than a point. The slit is set parallel to these edges, so that the straight
diffraction fringes produced by each element of its length are all lined up on the observ-
ing screen. A considerable gain of intensity is achieved thereby. In the investigation
of such cases, it is possible to regard the wave front as cylindrical, as shown in Fig.
18K. It is true that to produce such a cylindrical envelope to the Huygens wavelets
emitted by various points on the slit these must emit coherently, and in practice
this will not usually be true. Nevertheless, when intensities are added, as is required
for noncoherent emission, the resulting pattern is the same as would be produced
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by a coherent cylindrical wave. In the following treatment of problems involving
straight edges, we shall therefore make the simplification of assuming the source
slit to be illuminated by a parallel monochromatic beam, so that it emits a truly
cylindrical wave.

18.8 STRIP DIVISION OF THE WAVE FRONT

The appropriate method of constructing half-period elements on a cylindrical wave
front consists in dividing the latter into strips, the edges of which are successively
one-half wavelength farther from the point P (Fig. 18K). Thus the points Mo,
Ml> M2, ••• on the circular section of the cylindrical wave are at distances b, b + ).f2,
b + 2Aj2, ... from P. Mo is on the straight line SP. The half-period strips MoMl>
M1M2, ••• now stretch along the wave front parallel to the slit. We may call this
procedure strip division of the wave front.

In the Fresnel zones obtained by circular division, the areas of the zones were
very nearly equal. With the present type of division this is by no means true. The
areas of the half-period strips are proportional to their widths, and these decrease
rapidly as we go out along the wave front from Mo. Since this effect is much more
pronounced than any variation of the obliquity factor, the latter need not be
considered.

The amplitude diagram of Fig. 18L(a) is obtained by dividing the strips into
substrips in a manner analogous to that described in Sec. 18.6 for circular zones.
Dividing the first strip above M 0 into nine parts, we find that the nine amplitude
vectors from the substrips extend from 0 to B, giving a resultant A1 = OB, for the
first half-period strip. The second half-period strip similarly gives those between B
and C, with a resultant A2 = BC. Since the amplitudes now decrease rapidly, A2 is
considerably smaller than AI' and their difference in phase is appreciably greater
than n. A repetition of this process of subdivision for the succeeding strips on the
upper half of the wave gives the more complete diagram of Fig. 18L(b). Here the
vectors are spiraling in toward Z, so that the resultant for all half-period strips above
the pole Mo becomes OZ.

18.9 VIBRATION CURVE FOR STRIP DIVISION.
CORNU'S SPIRAL

When we go over to elementary strips of infinitesimal width, we obtain the vibration
curve as a smooth spiral, part of which is shown in Fig. 18M. The complete curve
representing the whole wave front would be carried through many more turns, ending
at the points Z and Z'. Only the part from 0 to Z was considered above. The lower
half, Z'O, arises from the contributions from the half-period strips below Mo.

This curve, called Cornu's. spiral, is characterized by the fact that the angle ~

• M. A. Cornu (1841-1902). Professor of experimental physics at the Ecole Poly-
technique, Paris.
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FIGURE 18L
Amplitude diagrams for the formation of Cornu's spiral.

lbl

it makes with the x axis is proportional to the square of the distance v along the curve
from the origin. Remembering that, in a vibration curve, (j represents the phase
lag in the light from any element of the wave front, we obtain this definition of the
curve by using Eq. (18a) for the path difference, as follows:

(j = 2n Ii. = n(a + b) S2 = ~ v2 (l8j)
A abA 2

Here we have introduced a new variable for use in plotting Cornu's spiral, namely

• v = sJ2(a + b)
abA

(18k)

It is defined in such a way as to make it dimensionless, so that the same curve may be
used for any problem, regardless of the particular values of a, b, and A.

18.10 FRESNEL'S INTEGRALS

The x and y coordinates of Cornu's spiral can be expressed quantitatively by two inte-
grals, and a knowledge of them will permit accurate plotting and calculations. They
are derived most simply as follows. Since the phase difference (j is the angle determin-
ing the slope of the curve at any point (see Fig. 18M), the changes in the coordinates
for a given small displacement dv along the spiral are given by

nv2
dx = dv cos (j = cos - dv

2

2
dy = dv sin (j = sin ~ dv

2
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FIGURE IBM
Cornu's spiral drawn to include five half-period zones on either side of the pole.

where the value of lJ from Eq. (18j) has been introduced. Thus the coordinates of any
point (x,y) on Cornu's spiral become

(181)

(I 8m)

x = rv cos 1tV
2
dvJo 2

S
v • 1tV2

Y = Stn- dv
o 2

These are known as Fresnel's integrals. They cannot be integrated in closed form
but yield infinite series which may be evaluated in several ways.* Although the actual
evaluation is too complicated to be given here, we have included a table of the numer-
ical values of the integrals (fable 18A). In Sec. 18.14 the method of using them in
accurate computations of diffraction patterns is explained.

Let us first examine some features of the quantitative Cornu's spiral of Fig.
18N, which is a plot of the two Fresnel integrals. The coordinates of any point
on the curve give their values for a particular upper limit v in Eqs. (181)and (I8m).

•

• For the methods of evaluating Fresnel's integrals, see R. W. Wood, "Physical
Optics," 2d ed., p. 247, The Macmillan Company, New York, 1921; reprinted
(paperback) by Dover Publications, Inc., New York, 1968.
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The scale of v is marked directly on the curve and has equal divisions along its length.
Particularly useful to remember are the positions of the points v = I, J"2, and 2 on
the curve. They represent one-half, one, and two half-period strips, respectively, as
can be verified by computing the corresponding values of ()from Eq. (l8j). More im-
portant, however, are the coordinates of the end points Z' and Z. They are (-t,-t)
and H,t), respectively.

As with any vibration curve, the amplitude due to any given portion of the wave
front may be obtained by finding the length of the chord of the appropriate segment
of the curve. The square of this length then gives the intensity. Thus the Cornu's
spiral of Fig. I8N can be used for the graphical solution of diffraction problems, as
will be illustrated below. It is to be noted at the start, however, that the numerical
values of intensities computed in this way are relative to a value 0/2/or the unobstructed
wave. Thus, if A represents any amplitude obtained from the plot, the intensity I,
expressed as a fraction of that which would exist if no screen were present, which we
shall call 10, is

Table 18A TABLE OF FRESNEL INTEGRALS

v x y v x y v x y

0.00 0.0000 0.0000 3.00 0.6058 0.4963 5.50 0.4784 0.5537
0.10 0.1000 0.0005 3.10 0.5616 0.5818 5.55 0.4456 0.5181
0.20 0.1999 0.0042 3.20 0.4664 0.5933 5.60 0.4517 0.4700
0.30 0.2994 0.0141 3.30 0.4058 0.5192 5.65 0.4926 0.4441
0.40 0.3975 0.0334 3.40 0.4385 0.4296 5.70 0.5385 0.4595
0.50 0.4923 0.0647 3.50 0.5326 0.4152 5.75 0.5551 0.5049
0.60 0.5811 0.1105 3.60 0.5880 0.4923 5.80 0.5298 0.5461
0.70 0.6597 0.1721 3.70 0.5420 0.5750 5.85 0.4819 0.5513
0.80 0.7230 0.2493 3.80 0.4481 0.5656 5.90 0.4486 0.5163
0.90 0.7648 0.3398 3.90 0.4223 0.4752 5.95 0.4566 0.4688
1.00 0.7799 0.4383 4.00 0.4984 0.4204 6.00 0.4995 0.4470
1.10 0.7638 0.5365 4.10 0.5738 0.4758 6.05 0.5424 0.4689
1.20 0.7154 0.6234 4.20 0.5418 0.5633 6.10 0.5495 0.5165
1.30 0.6386 0.6863 4.30 0.4494 0.5540 6.15 0.5146 0.5496
1.40 0.5431 0.7135 4.40 0.4383 0.4622 6.20 0.4676 0.5398
1.50 0.4453 0.6975 4.50 0.5261 0.4342 6.25 0.4493 0.4954
1.60 0.3655 0.6389 4.60 0.5673 0.5162 6.30 0.4760 0.4555
1.70 0.3238 0.5492 4.70 0.4914 0.5672 6.35 0.5240 0.4560
1.80 0.3336 0.4508 4.80 0.4338 0.4968 6.40 0.5496 0.4965
1.90 0.3944 0.3734 4.90 0.5002 0.4350 6.45 0.5292 0.5398
2.00 0.4882 0.3434 5.00 0.5637 0.4992 6.50 0.4816 0.5454
2.10 0.5815 0.3743 5.05 0.5450 0.5442 6.55 0.4520 0.5078
2.20 0.6363 0.4557 5.10 0.4998 0.5624 6.60 0.4690 0.4631
2.30 0.6266 0.5531 5.15 0.4553 0.5427 6.65 0.5161 0.4549
2.40 0.5550 0.6197 5.20 0.4389 0.4969 6.70 0.5467 0.4915
2.50 0.4574 0.6192 5.25 0.4610 0.4536 6.75 0.5302 0.5362
2.60 0.3890 0.5500 5.30 0.5078 0.4405 6.80 0.4831 0.5436
2.70 0.3925 0.4529 5.35 0.5490 0.4662 6.85 0.4539 0.5060
2.80 0.4675 0.3915 5.40 0.5573 0.5140 6.90 0.4732 0.4624
2.90 0.5624 0.4101 5.45 0.5269 0.5519 6.95 0.5207 0.4591
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FIGURE 18N
Cornu's spiral; a plot of the Fresnel integrals.

To verify this statement, we note that according to the discussion of Sec. 18.8 a vector
drawn from 0 to Z gives the amplitude due to the upper half of the wave. Similarly,
one from Z' to 0 gives that due to the lower half. Each of these has a magnitude
1/ •.li, so that when they are added and the sum is squared to obtain the intensity
due to the whole wave, we find that 10= 2, with the conventional scale of coordinates
used in Fig. 18N.*

18.11 THE STRAIGHT EDGE

The investigation of the diffraction by a single screen with a straight edge is perhaps
the simplest application of Cornu's spiral. Figure 180(0) represents a section of such
a screen, having its edge parallel to the slit S. In this figure the half-period strips
corresponding to the point P being situated on the edge of the geometrical shadow
are marked off on the wave front. To find the intensity at P, we note that since the
upper half of the wave is effective, the amplitude is a straight line joining 0 and Z

* It will be noticed that the phase of the resultant wave is 45°, or one-eighth period
behind that of the wave coming from the center of the zone system (the Huygens'
wavelet reaching P from Mo in Fig. 18K). A similar phase discrepancy, this time of
one-quarter period, occurs in the treatment of circular zones in Sec. 18.6. For a
discussion of the phase discrepancy in Cornu's spiral, see R. W. Ditchburn, "Light,"
p. 214, Interscience Publishers, Inc., New York, 1953; 2d ed (paperback), 1963.
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FIGURE 180
Two different positions of the half-period strips relative to a straight edge N.

(Fig. 18P) oflength 1/../i The square of this is -t, so that the intensity at the edge of the
shadow is just one-fourth of that found above for the unobstructed wave.

Consider next the intensity at the point pi [Fig. 180(a)] at a distance 1above P.
To be specific, let P' lie in the direction SM 1> where M 1 is the upper edge of the first
half-period strip. For this point, the center Mo of the half-period strips lies on the
straight line joining Swith P', and the figure must be reconstructed as in Fig. 180(b).
The straight edge now lies at the point M{, so that not only all the half-period strips
above Mo are exposed but also the first one below Mo. The resultant amplitude A
is therefore represented on the spiral of Fig. 18P by a straight line joining B' and Z.
This amplitude is more than twice that at P, and the intensity A2 more than 4 times
as great.

Starting with the point of observation P at the edge of the geometrical shadow
(Fig. 180), where the amplitude is given by OZ, if we move the point steadily upward,
the tail of the amplitude vector moves to the left along the spiral, while its head re-
mains fixed at Z. The amplitude will evidently go through a maximum at b', a min-
imum at c', another maximum at d', etc., approaching finally the value Z'Z for the
unobstructed wave. If we go downward from P, into the geometrical shadow, the tail
of the vector moves to the right from 0, and the amplitude will decrease steadily,
approaching zero.

To obtain quantitative values of the intensities from Cornu's spiral, it is only
necessary to measure the length A for various values of v. The square of A gives the
intensity. Plots of the amplitude and the intensity against v are shown in Figs. 18Q(a)
and (b), respectively. It will be seen that at the point 0, which corresponds to the
edge of the geometrical shadow, the intensity has fallen to one-fourth that for large
negative values of v, where it approaches the value for the unobstructed wave. The
other letters correspond with points similarly labeled on the spiral, B I, C', D' ... ,
representing the exposure of one, two, three, etc., half-period strips below Mo. The
maxima and minima of these diffraction fringes occur a little before these points are
reached. For instance, the first maximum at b' is given when the amplitude vector A
has the position shown in Fig. 18P. Photographs of the diffraction pattern from a
straight edge are shown in Fig. 18R(a) and (b). Pattern (a) was taken with visible
light from a mercury are, and (b) with X rays, A. = 8.33A. Figure 18R(c) is a density
trace of the photograph (a), directly above, and was made with a microphotometer.
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FIGURE 18P
Cornu's spiral, showing resultants for a straight-edge diffraction pattern.

Perhaps the most common observation of the straight-edge pattern, and cer-
tainly a very striking one, occurs in viewing a distant street lamp through rain-
spattered spectacles. The edge of each drop as it stands on the glass acts like a prism,
and refracts into the pupil of the eye rays which otherwise would not enter it. Beyond
the edge the field is therefore dark, but the crude outline of the drop is seen as an
irregular bright patch bordered by intense diffraction fringes such as those shown in
Fig. 18R. The fringes are very clear, and a surprising number can be seen, presumably
because of the achromatizing effect of the refraction.

18.12 RECTILINEAR PROPAGATION OF LIGHT
When we investigate the scale of the above pattern for a particular case, the reason
for the apparently rectilinear propagation of light becomes clear. Let us suppose
that in a particular case a = b = 100 cm, and A.= 5000A. From Eq. (18k), we
then have

s = v J_a_b_A._ = 0.0354v
2(a + b)

ern
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FIGURE 18Q
(a) Amplitude and (b) intensity contours for Fresnel diffraction at a straight edge.

This is the distance along the wave front [Fig. 180(a)]. To change it to distances Ion
the screen, we note from the figure that

I = a + b s = v JbJ..(a + b) (l80)
a 2a

For the particular case chosen, therefore,
I = 2s = 0.0708v cm

Now in the graph of Fig. 18Q(b) the intensity at the point v = +2 is only 0.025 or
one-eightieth of the intensity if the straight edge were absent. This point has I =
0.142 cm, and therefore lies only 1.42 mm inside the edge of the geometrical shadow.

(a) (b)

(c)

FIGURE 18R
Straight-edge diffraction patterns photographed with (0) visible light of wave-
length 4300 A and (b) X rays of wavelength 8.33 A. (c) Microphotometer trace
of (a).
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(b)

FIGURE 18S
Division of the wave front for Frensel diffraction by a single slit.

The part of the screen below this will lie in practically complete darkness, and this
must be due to the destructive interference of the secondary wavelets arriving here
from the upper part of the wave.

18.13 SINGLE SLIT

We next consider the Fresnel diffraction of a single slit with sides parallel to a narrow
source slit S [Fig. 18S(a)]. By the use of Cornu's spiral we wish to determine the
distribution of the light on the screen PP'. With the slit located as shown, each side
acts like a straight edge to screen off the outer ends of the wave front. We have already
seen in Sec. 18.11 how to investigate the pattern from a single straight edge, and the
method used there is readily extended to the present case. With the slit in the central
position of Fig. 18S(a), the only light arriving at P is that due to the wave front in
the interval As = MN. In terms of Cornu's spiral we must now determine what
length Av corresponds to the slit width As. This is done by Eq. (18k), using Av for v
and As for s. Let a = 100 em, b = 400 em, A = 4000A = 0.00004 em, and the slit
width As = 0.02 em. Substituting in Eq. (18k), we obtain Av = 0.5. The resultant
amplitude at P is then given by a chord of the spiral, the arc of which has a length
Av = 0.5. Since the point of observation P is centrally located, this arc will start at
v = -0.25 and run to v = +0.25. This amplitude A ~ 0.5 when squared gives the
intensity at P.

If we now wish the intensity at P' [Fig. 18S(b)], the picture must be revised by
redividing the wave front as shown. With the point of observation at P', the same
length of wave front, As = 0.02 em, is exposed, and therefore the same length of the
spiral, Av = 0.5, is effective. This section on the lower half of the wave front will,
however, correspond to a new position of the arc on the lower half of the spiral.
Suppose that it is represented by the arc jk in Fig. 18T. The resultant amplitude is
proportional to the chord A, and the square of this gives the relative intensity. Thus
to get the variation of intensity along the screen of Fig. 18S, we slide a piece of the
spiral of constant length Av = 0.5 to various positions and measure the lengths of
the corresponding chords to obtain the amplitudes. In working a specific problem, the
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FIGURE 18T
Cornu's spiral, showing the chords of arcs of equal lengths .6.v.

student may make a straight scale marked off in units of v to tenths, and measure
the chords on an accurate plot such as Fig. 18N, using the scale of v on the spiral
to obtain the constant length L\v of the arc. The results should then be tabulated in
three columns, giving v, A, and A2• The value of v to be entered is that for the central
point of the arc whose chord A is being measured. For example, if the interval
from v = 0.9 to v = 1.4measured (Fig. 18T), the average value v = 1.15 is tabulated
against A = 0.43.

Photographs of a number of Fresnel diffraction patterns for single slits of differ-
ent widths are shown in Fig. 18U with the corresponding intensity curves beside
them. These curves have been plotted by the use of Cornu's spiral. It is of interest
to note in these diagrams the indicated positions of the edges of the geometrical
shadow of the slit (indicated on the v axis). Very little light falls outside these points.
For a very narrow slit like the first ofthese where L\v = 1.5, the pattern greatly resem-
bles the Fraunhofer diffraction pattern for a single slit. The essential difference be-
tween the two (compare Fig. 15D) is that here the minima do not come quite to zero
except at infinitely large v. The small single-slit pattern at the top was taken with X
rays of wavelength 8.33A, while the rest were taken with visible light of wavelength
4358A. As the slit becomes wider, the fringes go through very rapid changes, approach-
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FIGURE 18U
Fresnel diffraction of visible light by single slits of different widths. (X-ray pattern
courtesy of Kellstrom, University of Uppsa/a, Uppsa/a. Sweden.)

ing for a wide slit the general appearance of two opposed straight-edge diffraction pat-
terns. The small closely spaced fringes superimposed on the main fringes at the outer
edges of the last figure are clearly seen in the original photograph and may be
detected in the reproduction.

18.14 USE OF FRESNEL'S INTEGRALS IN SOLVING
DIFFRACTION PROBLEMS

The tabulated values of Fresnel's integrals in Table 18A can be used for higher ac-
curacy than that obtainable with the plotted spiral. For an interval f1v = 0.5. for
example, the two values of x at the ends of this interval are read from the table and
subtracted algebraically to obtain f1x, the horizontal component of the amplitude.
The corresponding two values of yare also subtracted to obtain f1y, its vertical com-
ponent. The relative intensity will then be obtained by adding the squares of these
quantities, since

The method is accurate but may be tedious, especially if good interpolations are to be
made in certain parts of Table 18A. Some problems, such as that of the straight edge,



400 FUNDAMENTALS OF OPTICS

417=0.5

-5

-5

i .........•..... '-1•.' ..1I ..". i
I !i .. j
L___ __ ...J

-5
FIGURE 18V
Fresnel diffraction by single opaque strips.

o

o +5 -11-

are simplified by the fact that the number of zones on one end of the interval is not
limited. The values of both x and y will be ! at this end. Another example of this
type will now be considered.

18.15 DIFFRACTION BY AN OPAQUE STRIP
The shadow cast by a narrow object with parallel sides, such as a wire, can also be
studied by the use of Cornu's spiral. In the case of.a single slit, treated in Sec. IS.13,
it was shown how the resultant diffraction pattern is obtained by sliding a fixed length
of the spiral, !:iv = const, along the spiral and measuring the chord between the two
end points. The rest of the spiral out to infinity, i.e., out to Z or Z' on each side of the
element in question, was absent owing to the screening by the two sides of the slit.
If now the opening of the slit in Fig. lSS(a) is replaced by an object of the same size
and the slit jaws taken away, we have two segments of the spiral to consider. Suppose
the obstacle is of such a size that it covers an interval!:iv = 0.5 on the spiral (Fig. 1ST).
For the positionjk the light arriving at the screen will be due to the parts of the spiral
from Z' to j and from k to Z. The resultant amplitude due to these two sections is
obtained by adding their respective amplitude as vectors. The lower section gives
an amplitude represented by a straight line from Z' to j, with the arrowhead at j.
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The amplitude for the upper section is represented by a straight line from k to Z
with the arrowhead at Z. The vector sum of these two gives the resultant amplitude
A, and A2 gives the intensity for a point v halfway between j and k. Photographs of
three diffraction patterns produced by small wires are shown in Fig. 18V, accompanied
by the corresponding theoretical curves.

PROBLEMS

18.1 The innermost zone of a zone plate has a diameter of 0.425 mm. (a) Find the focal
length of the plate when it is used with parallel incident light of wavelength 4471 A
from a helium lamp. (b) Find its first subsidiary focal length.

Ans. (a) 40.40 em, (b) 13.47 cm
18.2 A zone plate is to be set up on an optical bench, where it will be used as an enlarging

lens. Its innermost zone is to be 0.2250 mm in diameter, and monochromatic blue-
green light of wavelength 4800 A from a cadmium arc is to be used. If all enlarge-
ments are to be eightfold in diameter, find (a) the focal length of the zone plate,
(b) the object distance, and (c) the image distance.

18.3 A parallel beam of microwaves with a wavelength of 1.50 em passes through a circular
adjustable-iris diaphragm. A detector is placed on the axis 2.50 m behind it and the
opening gradually increased in diameter. At what diameter would the detector's
response reach (a) its first maximum, (b) its second maximum, and (c) its third
maximum? (d) At the latter radius, give an equation for the positions of the maxima
and minima along the axis.

18.4 Using Cornu's spiral, plot a diffraction pattern for a single slit having a width of
0.80 mm. Assume a == 40.0 cm, b == 50.0 em, and red light of wavelength 6400 A.
Find (a) the value of &v for use on the spiral and (b) plot the graph for intervals of
&v == +0.10 from v == -0.10 to v == 3.0.

18.5 A slit is placed at one end of an optical bench and is illuminated with green light of
wavelength 5000 A. A vertical rod 1.60 mm in diameter is mounted 50.0 em away.
Observations of the diffraction around this object are made by mounting a photo-
electric cell and narrow slit 50.0 em behind the rod. What would be (a) the value of
&v to be used on Cornu's spiral to represent this opaque object, (b) the exact intensity
relative to the unobstructed intensity at the edge of the geometrical shadow, and (c)
the relative intensity at the center of the shadow?

Ans. (a) 6.4, (b) 0.2282 /0, (c) 0.01967 /0
18.6 A slit is placed at one end of an optical bench and illuminated by green light of wave-

length 5000 A. A vertical straightedge is mounted parallel to the slit and 50.0 cm
away. Observations of the diffraction pattern produced by the straightedge are made
50.0 cm beyond. What would be the intensity (a) 0.40 mm inside the edge of the
geometrical shadow of the straightedge at the observation plane and (b) 0.40 mm
outside the edge?

/8.7 A slit is placed at one end of an optical bench and is illuminated by green light of
wavelength 5000 A. A vertical wire 0.40 mm in diameter is mounted 50 em away.
Observations of the diffraction pattern are made 50.0 cm beyond the wire. (a) What
value of &v should be used on Cornu's spiral to find the theoretical diffraction
pattern? What would be the intensity relative to the unobstructed intensity (b)
0.40 mm from the center of the pattern and (c) 0.80 mm from the center?

Ans. (a) 1.60, (b) 26.75%, (c) 2.609%
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18.8 For the diffraction of light by an opaque strip, investigate by the use of Cornu's
spiral (a) whether a maximum must necessarily occur at the center of the pattern, as
it does in the three cases of Fig. 18V. (b) What is the explanation ofthe beats observed
outside the geometrical shadow in the case v = 0.50 of Fig. 18V?

18.9 Using Cornu's spiral, investigate the Fresnel diffraction pattern of a double slit.
Assume a = 40.0 cm, b = 50.0 cm, A. = 5625 A, and slits 0.1250 cm wide with the
opaque interval between them 0.50 mm. Calculate!:l.v for (a) the slit widths and (b)
the opaque interval. (c) Using the values given in Table 18A, calculate the resultant
intensity A2 for intervals!:l.v = 0.20 from the center of the pattern to v = 1.80. Plot
a graph of A2 against v out to v = 1.80 on both sides of the center. From your graph
find the value of v for (d) the first minimum, (e) the first maximum, (I) the second
minimum, and (g) the second maximum.

18.10 From the table of Fresnel integrals, calculate the exact intensity at the points (a)
v = + 1.50, (b) v = -1.70, and (c) v = -1.30 in the diffraction pattern of a
straight edge. Ans. (a) 0.0210 10' (b) 0.890 10, (c) 1.35210



19
THE SPEED OF LIGHT*

In Chap. 1we observed that light has a finite speed or velocity. There we found that
in a vacuum light has its greatest speed and that the generally accepted value is

c = 299,792.5 km/s = 2.997925 x 108 mls

We now return to the subject of the speed of light, giving a brief history of the subject
and seeing what bearing the later experiments have on the theory of relativity.

19.1 ROMER'S METHOD
Because of the very great speed of light, it is natural that the first successful measure-
ment of its value was an astronomical one, because here very large distances are
involved. In 1676 Romert studied the times of the eclipses of the satellites of the
planet Jupiter. Figure 19A(a) shows the orbits of the earth and of Jupiter around the
sun S and that of one of the satellites M around Jupiter. The inner satellite has an

• Speed (a scalar) is the magnitude of velocity (a vector).
t Olaf Rllmer (1644-1710). Danish astronomer. His work on 1upiter's satellites was
done in Paris, and later he was made Astronomer Royal of Denmark.
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(b)

FIGURE 19A
Principle of Romer's astronomical determination of the speed of light from
observations on Jupiter's moons.

average period of revolution To = 42 h 28 min 16 s, as determined from the average
time between two passages into the shadow of the planet. Actually Romer measured
the times of emergence from the shadow, while the times of transit of the small black
spot representing the shadow of the satellite on Jupiter's surface across the median
line of the disk can be still more accurately measured.

A long series of observations on the eclipses of the first satellite permitted an
accurate evaluation of the average period To' Romer found that if an eclipse is ob-
served when the earth is at such a position as E1 [Fig. 19A(a)] with respect to Jupiter
J1 and the time of a later eclipse is predicted by using the average period, it does not
in general occur at exactly the predicted time. Specifically, if the predicted eclipse
occurred about 3 months later, when the earth and Jupiter were at E2 and J2, he
found a delay of somewhat more than 10min. To explain this, he assumed that light
travels with a finite velocity from Jupiter to the earth and that since the earth at E2 is
farther away from Jupiter, the observed delay represents the time required for light
to travel the additional distance. His measurements gave II min as the time for light
to go a distance equal to the radius of the earth's orbit. We now know that 8 min 18s
is a more nearly correct figure, and combining this with the average distance to the
sun 1.48 x 106 km, we find a speed of about 3.0 x lOs km/s.

It is instructive to inquire how the apparent period of the satellite, i.e, the time
between two successive eclipses, is expected to vary throughout a year. If this tiMe
could be observed with sufficient accuracy, one would obtain the curve of Fig. 19A(b).
We may regard the successive eclipses as light signals sent out at regular time intervals
of 42 h 28 min 16 s from Jupiter. At all points in its orbit except E1 and E3 the earth
is changing its distance from Jupiter more or less rapidly. If the distance is increasing,
as at E2, anyone signal travels a greater distance than the preceding one and the
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observed time between them will be increased.. Similarly at E4 it will be decreased.
The maximum variation from the average period, about 15 s, is the time for light to
cover the distance moved by the earth between two eclipses, which amounts to 4.48
km. At any given position, the total time delay;of the eclipse, as observed by Romer,
will be obtained by adding the amounts T - To [Fig. 19A(b)], by which each apparent
period is longer than the average. For instance, the delay of an eclipse at E2, predicted
from one at E1 using the average period, will be the sum of T - To for all eclipses
between E1 and E2•

19.2 BRADLEY'S* METHOD. THE ABERRATION OF LIGHT

Romer's interpretation of the variations in the times of eclipses of Jupiter's satellites
was not accepted until an entirely independent determination of the speed of light
was made by the English astronomer Bradley in 1727. Bradley discovered an apparent
motion of the stars which he explained as due to the motion of the earth in its orbit.
This effect, known as aberration, is quite distinct from the well-known displacements
of the nearer stars known as parallax. Because of parallax, these stars appear to
shift slightly relative to the background of distant stars when they are viewed from
different points in the earth's orbit, and from these shifts the distances of the stars
are computed. Since the apparent displacement of the star is 90° ahead of that of the
earth, the effect of parallax is to cause the star which is observed in a direction perpen-
dicular to the plane of the earth's orbit to movein a small circle with a phase differing
by n/2 from the earth's motion. The angular diameters of these circles are very small,
being not much over 1 second of arc for the nearest stars. Aberration, which depends
on the earth's velocity, also causes the stars observed in this direction to appear to
move in circles. Here, however, the circles have an angular diameter of about 41
seconds, and they are the same for all stars, whether near or distant. Furthermore, the
displacements are always in the direction of the earth's velocity [Fig. 19B(a)].

Bradley's explanation of this effect was that the apparent direction of the light
reaching the earth from a star is altered by the motion of the earth in its orbit. The
observer and his telescope are being carried along with the earth at a velocity of about
29.6 km/s, and ifthis motion is perpendicular to the direction of the star, the telescope
must be tilted slightly toward the direction of motion from the position it would have
if the earth were at rest. The reason for this is much the same as that involved when
a person walking in the rain must tilt his umbrella forward to keep the rain off his
feet. In Fig. 19B(b), let the vector v represent the velocity of the telescope relative
to a system of coordinates fixed in the solar system, and c that of the light relative
to the solar system. We have represented these motions as perpendicular to each
other, as would be the case if the star lay in the direction shown in Fig. 19B(a).
Then the velocity of the light relative to the earth has the direction of c',which is the
vector difference between c and v. This is the direction in which the telescope must

• James Bradley (1693-1762). Professor of astronomy at Oxford. He got his ideas
about aberration by a chance observation of the changes in the apparent direction
of the wind while sailing on the Thames.
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FIGURE 19B
Origin of astronomical aberration when
the star is observed perpendicular to the
plane of the earth's orbit.

Light

be pointed to observe the star image on the axis of the instrument. We thus see that
when the earth is at £1 the star S has the apparent position Sl, when it is at £2' the
apparent position is S2, etc. If S were not in a direction perpendicular to the plane
of the earth's orbit, the apparent motion would be an ellipse rather than a circle,
but the major axis of the ellipse would be equal to the diameter of the circle in the
above case.

It will be seen from the figure that the angle IX,which is the angular radius of the
apparent circular motion, or the major axis of the elliptical one, is given by

• tanlX=~
c

(l9a)

Recent measurements of this angle of aberration give a mean value IX= 20.479"
:!: 0.008 as the angular radius of the apparent circular orbit. Combining this with
the known velocity v of the earth in its orbit, we obtain 299,714 km/s. This value
agrees to within its experimental error with the more accurate results obtained by the
latest measurements of the speed of light by direct methods, the principles of which
we shall now describe.

19.3 MICHELSON'S EXPERIMENTS

The first successful attempts to determine the speed of light, confined to the earth
proper, were performed by Fizeau and Foucault in 1849. Their methods and appara-
tus, described in Sec. 1.2, were improved upon over a period of 80 years by Cornu,
Young, Forbes, and Michelson. Of these the latest work by Michelson and his
coworkers is considered to be by far the most accurate. Although it now appears
that the accuracy of even the best values obtained by Michelson have been surpassed
by that of newer methods based on radio-frequency techniques, it will be instructive
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FIGURE 19C
Michelson's arrangement used for determining the speed of light (1926).

to consider, if only briefly, a classical series of measurements he made at the Mt.
Wilson Observatory beginning in 1926.

The form ofthe apparatus Michelson adopted is shown in Fig. 19C. Light from
a Sperry arc S passes through a narrow slit and is reflected from one face of the octag-
onal rotating mirror R. Thence it is reflected from the small fixed mirrors band c
to the large concave mirror MI (IO-m focus, 60-cm aperture). This gives a parallel
beam of light, which travels 35 km from the observing station on Mt. Wilson to a
mirror M2, similar to MI, on the summit of Mt. San Antonio. M2 focuses the light
on a small plane mirror f, whence it returns to MI and, by reflection from c', b', a',
and p, to the observing eyepiece L.

Various rotating mirrors, having 8, 12, and 16 sides, were used, and in each case
the mirror was driven by an air blast at such a speed that during the time of transit
to M2 and back (0.00023 s) the mirror turned through such an angle that the next
face was presented at a'. For an octagonal mirror, the required speed of rotation
was about 528 rev/so The speed was adjusted by a small counterblast of air until the
image of the slit was in the same position as when R was at rest. The exact speed of
rotation was then found by a stroboscopic comparison with a standard electrically
driven tuning fork, which in turn was calibrated with an invar pendulum furnished
by the U.S. Coast and Geodetic Survey. This Survey also measured the distance be-
tween the mirrors M I and M 2 with remarkable accuracy by triangulation from a
40-km base line, the length of which was determined to an estimated error of I part
in 11 million, or about 3 mm.*

The results of the measurements published in 1926 comprised eight values of
the speed of light, each the average of some 200 individual determinations with a given
rotating mirror. These varied between the extreme values of 299,756 and 299,803
km/s and yielded the average value of 299,796 :t 4 km/s. Michelson also made some
later measurements with the distant mirror on the summit of a mountain 130 km
away, but because of bad atmospheric conditions, they were not considered reliable
enough for publication.

• W. Bowie, Astrophys. J., 65:14 (1927).



408 FUNDAMENTALS OF OPTICS

19.4 MEASUREMENTS IN A VACUUM

In the preceding discussion we have assumed that the measured velocity in air is
equal to that in a vacuum. That is not exactly true, since the index of refraction
n = clv is slightly greater than unity. With white light the effective value of n for air
under the conditions existing in Michelson's experiments was 1.000225. Hence the
velocity in vacuum c = nv was 67 km/s greater than v, the measured value in air.
This correction has been applied in the final results quoted above. A difficulty which
becomes important where measurements as accurate as those of Michelson are
concerned is the uncertainty of the exact conditions of temperature and pressure of the
air in the light path. Since n depends on these conditions, the value of the correction
to vacuum also becomes somewhat uncertain.

To eliminate this source of error, Michelson in 1929 undertook a measurement
of the velocity in a long evacuated pipe. The optical arrangement was similar to that
described above, with suitable modifications for containing the light path in the pipe.
The latter was 1.6 km long, and by successive reflections from mirrors mounted at
either end the total distance the light traversed before returning to the rotating mirror
was about 16 km. A vacuum as low as t mmHg could be maintained. This difficult
experiment was not completed until after Michelson's death in 1931, but preliminary
results were published a year later by his collaborators. * The mean of almost 3000
individual measurements was 299,774km/s. Because of certain unexplained variations,
the accuracy of this result is difficult to assess. It is certainly not as great as that
indicated by the computed probable error, and has recently been estimated as ::t II
km/s.

19.5 KERR-CELL METHOD

Determinations by this method have equaled if not surpassed the accuracy of those
by the rotating mirror. In 1925 Gaviola devised what amounts to an improvement
on Fizeau's toothed-wheel apparatus. It is based on the use of the so-called electro-
optic shutter. This device is capable of chopping a beam of light several hundred
times more rapidly than can be done by a cogwheel. Hence a much shorter base
line can be used, and the entire apparatus can be contained in one building so that the
atmospheric conditions are accurately known. Figure 19D(a) illustrates the electro-
optic shutter, which consists of a Kerr cell K between two crossed nicol prisms Nt
and N2• K is a small glass container fitted with sealed-in metal electrodes and filled
with pure nitrobenzene. Although the operation of this shutter depends on certain
properties of polarized light to be discussed later (Chap. 32), all that need be known
here in order to understand the method is that no light is transmitted by the system
until a high voltage is applied to the electrodes of K. Thus by using an electrical
oscillator which delivers a radio-frequency voltage, a light beam can be interrupted
at the rate of many millions of times per second.

The first measurements based on this principle used two shutters, one for the

• The final report will be found in A. A. Michelson, F. G. Pease, and F. Pearson,
Astrophys. J., 82:26 (1935).
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FIGURE 19D
Anderson's method of measuring the speed of light: (a) electro-optic shutter and
(b) the light paths.

outgoing and one for the returning light. Except for the shorter distances, the method
closely resembled Fizeau's. Subsequent improvements have led to the apparatus
shown in Fig. 19D(b), which was used by W. C. Anderson in 1941.* To avoid the
difficulty of matching the characteristics of two Kerr cells, he used only one and divided
the transmitted light pulses into two beams by means of the half-silvered mirror
M l' One beam traversed the shorter path to M 2 and back through M 1 to the detector
P. The other traveled a longer path to M6 by reflections at M3, M4, and Ms, then
retraced its course to M 1 which reflected it to P as well. This detector P was a photo-
multiplier tube, which responded to the sinusoidal modulation of the light waves.
One may think of the light wave as the carrier wave, which is amplitude-modulated
at the frequency of the oscillator driving the Kerr cell.t The quotient of the wave-
length I of the modulation by the period T of the oscillator thus gives the velocity of
light.

The accurate measurement of I is based on the following principle. If the
longer path exceeds the shorter one by a half-integral multiple of I, the sum of the
two modulated waves reaching P will give a constant intensity. The amplifier con-
nected to the photocell was arranged to give zero response under this conqition.
The adjustment is made by slight motions &y of the mirror M2• The extra path beyond
M4 could then be cut out by substituting another mirror M~which returned the light
directly to M3• If this extra path (M4 to M6 and back) were exactly a whole number

• J. Opt. Soc. Am., 31: 187 (1941).
t Since the shutter transmits at each voltage peak, whether positive or negative, one
would expect to use 1/2T here. Actually Anderson applied a dc bias to the cell so
that each cycle gave a single voltage maximum.
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times 1,no change in the photocell response would be observed upon cutting it out.
As the apparatus was arranged, this was very nearly so, the extra path being about
111. By measuring the displacement Ay necessary to reestablish zero response and
applying a correction As involved in the substitution of M4, the difference from 111
of the measured distance could be exactly determined. Typical results are:

Total path difference = 171.8642m
Refractive index, air = 1.0002868
As = 2.4770 cm n = 11.0
f = 19.20 X 106Hz
C = 299,778 kmfs

The reader will see the resemblance of Anderson's apparatus to a Michelson
interferometer for radio waves, since the light pulses have a length essentially equal
to the wavelength of the radio waves given by the Kerr-cell oscillator. It is not
exactly equal, however, because the speed involved in the experiment is the group
velocity of light in air and not the velocity of radio waves. In his final investigation,
Anderson made a total of 2895 observations, and the resulting speeds 1fT, after correc-
tion to vacuum, yielded an average of 299,776 :t 6 kmfs. The chief source of error
was in the difficulty of ensuring that both beams used the same portion of the photo-
electric surface. A change in the position of the light spot affects the time of transit
of the electrons between the electrodes of the photomultiplier tube. The uncertainty
involved here was larger than any errors in the length measurements, and if the
frequency of the oscillator were known more accurately than it was, the uncertainty
in the final result would be better than 1 part in 1 million.

In the 1951 Kerr-cell determination by Bergstrand (see Table 19A) the last-
mentioned difficulty is avoided by using only one beam, and locating the maxima
and minima through modulation of the detector in synchronism with the source.
The result is indicated to be more than 10 times as accurate as any previous one by
optical methods. It disagrees with the concordant values of Anderson and of Michel-
son, Pease, and Pearson, seeming to show that Michelson's 1926value was the more
nearly correct. It is difficult to understand how the very thorough work in the period
1930--1940could have been so far in error, but other recent results, to be described
below, certainly put the weight of the evidence in favor of the higher value of c.

19.6 SPEED OF RADIO WAVES

The development of modern radar techniques, and especially the interest in their
practical application as navigational aids, has led to renewed attempts to improve
our knowledge of the speed of light. This speed is of course the same as that for
radio waves when both are reduced to vacuum. There are three methods for using
microwaves for an accurate measurement of their speed, one of which may easily be
performed in vacuum. This is to find the length and resonant frequency of a hollow
metal cylinder, or cavity resonator. It is analogous to the common laboratory method
for the speed of sound. Measurements of this type were made independently in Eng-
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land, by Essen and Gordon-Smith, and in America, by Bol.* As will be seen from
Table 19A, the results agree with each other and with Bergstrand's precise optical
value.

The other methods involving radio waves are responsible for the last two entries
in our table, and have been developed to a comparable accuracy. The radar method
consists in the direct measurement of the time of transit of a signal over a known
distance in the open air. The microwave interferometer is the Michelson instrument
adapted to radio waves. The speed is found by measuring the wavelength from the
motion of a mirror. The details of all the radio m.ethodsare interesting and important
but must be omitted here as not falling strictly within the scope of optics.

19.7RATIO OF THE ELECTRICALUNITS
As we shall find in our consideration of the electromagnetic theory (Chap. 20), c can
be found from the ratio of the magnitude of certain units in the electromagnetic
and electrostatic systems. Two careful measurements of the ratio have been made
and have given results more or less intermediate between the higher and lower values
discussed above. Since the accuracy thus far attained is considerably lower than for
other methods, these experiments, although they have served to verify the theoretical
prediction, have not improved our knowledge of the speed of light.t

19.8 THE SPEED OF LIGHT IN STATIONARY MATTER
A brief description of the early experiments by Foucault in 1850 on the speed of light
in stationary matter was given in Chap. 1 (see Fig. ID).

Much more accurate measurements were made by Michelson in 1885. Using
white light, he found for the ratio of the speed in air to that in water a value of 1.330.

• Valuable summaries of the determinations of c, and many original references not
given here, wil1 be found in L. Essen, Nature, 165:583 (1950 and K. D. Froome,
Proc. Roy. Soc. (Lond.), AZ13: 123 (1952).

t The indirect measurements. all antedate the determinations in Table 19A. They
have been critically reviewed by R.T. Birge, Nature, 134:771 (1934).

Table 19A RESULTS OF ACCURATE MEASUREMENT OF THE SPEED
OF LIGHT

Date Investigators Method Result, ms

1926 Michelson Rotating mirror 299,796:t 4
1935 Michelson, Pease, and . Rotating mirror in vacuum 299,774 :t 11

Pearson
1940 Hlittel Kerr cell 299,768 :t 10
1941 Anderson Kerr cell 299,776:t 6
1950 Bol Cavity resonator 299,789.3 :t 0.4
1950 Essen Cavity resonator 299,792.5 :t 3.0
1951 Bergstrand Kerr cell 299,793.1 ::!: 0.2
1951 Alakson Radar (shoran) 299,794.2 :t 1.9
1951 Froome Microwave interferometer 299,792.6 :t 0.7
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A denser medium, carbon disulfide, gave 1.758. In the latter case he noticed that the
final image of the slit was spread out into a short spectrum, which could be explained
by the fact that red light travels faster than blue light in the medium. The difference
in speed between greenish-blue and reddish-orange light was observed to be 1 or 2
percent.

According to the wave theory of light, the index of refraction of a medium is
equal to the ratio of the speed of light in vacuum to that in the medium. If we com-
pare the above figures with the corresponding indices of refraction for white light
(water 1.334, carbon disulfide 1.635), we find that while the agreement is within the
experimental error for water, the directly measured value is considerably higher than
the index of refraction for carbon disulfide.

This discrepancy is readily explained by the fact that the index of refraction
represents the ratio of the wave velocities in vacuum and in the medium (n = c/v),
while the direct measurements give the group velocities. In a vacuum the two speeds
become identical (Sec. 12.7) and equal to c, so that if we call the group velocity in the
medium u, the ratios determined by Michelson were values of c/u, rather than c/v.
The two velocities u and v are related by the general equation (12p)

dv• U=V-A-
dA

The variation of vwith A can be found by studying the change of the index of refraction
with color (Sec. 23.2); v is greater for longer wavelengths, so that dv/dJ.. is positive.
Therefore u should be less than v, and this is precisely the result obtained above.
Using reasonable values for J.. and dv/dJ.. for white light, the difference between the
two values for carbon disulfide is in agreement with the theory to within the accuracy
of the experiments. For water dv/d)" is considerably smaller but nevertheless requires
the measured value of c/u to be 1.5percent higher than c/v. That this is not so indicates
an appreciable error in Michelson's work. The latest work* on the speed of light in
water has given agreement not only on the magnitude of the group velocity but also
on its variation with wavelength.

At this point it should be emphasized that all the direct methods for measuring
the speed of light that we have described give the group velocity u and not the wave
velocity v. Even though it is not evident in the aberration experiment that the wave is
divided into groups, it should be obvious that since all natural light consists of wave
packets of finite length, any further chopping or modulation is immaterial. In air
the difference between u and v is small but nevertheless amounts to 2.2 km/s. Michel-
son apparently did not apply this correction to his 1926value, which should therefore
have been quoted as 299,798 + 4 km/s.

19.9 SPEED OF LIGHT IN MOVING MATTER

In 1859 Fizeau performed an important experiment to determine whether the speed
of light in a material medium is affected by motion of the medium relative to the
source and observer. In Fig. 19E the light from S is split into two beams, in much

• R. A. Houstoun, Proc. R. Soc. £dinb., A62:58 (IC)44).
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FIGURE 19E
Fizeau's experiment for measuring the speed of light in a moving medium.

the same way as in the Rayleigh refractometer (Sec. 13.15). The beams then pass
through the tubes A and B containing water flowing rapidly in opposite directions.
On reflection from M, the beams interchange so that when they reach L1 one has
traversed both B and A in the same direction as the flowing water while the other has
traversed A and B in the opposite direction to the flow. The lens L1 then brings the
beams together to form interference fringes at S'.

If the light travels more slowly by one route than by the other, its optical path
has effectively increased and a displacement of the fringes should occur. Using tubes
150 em long and a water speed of 700 cm/s, Fizeau found a shift of 0.46 fringe
when the direction of flow was reversed. This corresponds to an increase in the
speed of light in one tube, and a decrease in the other, of about half of the speed of
the water.

This experiment was later repeated by Michelson with improved apparatus
consisting essentially of an adaptation of his interferometer to this type of measure-
ment. He observed a shift corresponding to an alteration of the speed of light by
0.434 times the speed of the water.

19.10 FRESNEL DRAGGING COEFFICIENT

The above results were compared with a formula derived by Fresnel in 1818, using
the elastic-solid theory of the ether. On the assumption that the density of the ether
in the medium is greater than that in vacuum in the ratio n2, he showed that the ether
is effectively dragged along with a moving medium with a speed

• (19b)

where v is the speed of the medium and n its index of refraction. For water, which
has n = 1.333 for sodium light, this gives V' = 0.437v, in reasonable agreement
with Michelson's value for white light quoted in the previous paragraph. The fraction
1 - 1/n2 will be referred to as Fresnel's dragging coefficient.
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FIGURE 19F
Angle of aberration with a water-filled
telescope.

I
I
I

19.11 AIRY'S EXPERIMENT

An entirely different piece of experimental evidence shows that Fresnel's equation
must be very nearly correct. In 1872Airy remeasured the angle of aberration of light
(Sec. 19.2), using a telescope filled with water. Upon referring to Fig. 19B(b), it will
be seen that if the velocity of the light with respect to the solar system is made less
by entering water, one would expect the angle of aberration to be increased. Actually
the most careful measurements gave the same angle of aberration for a telescope
filled with water as for one filled with air.

This negative result can be explained by assuming that the light is carried along
by the water in the telescope with the velocity given by Eq. (19b). In Fig. 19F, where
the angles are of course greatly exaggerated, the velocity now becomes cjn and is
slightly changed in direction by refraction. If one is to observe the ordinary angle
of aberration a, it is necessary to add to this velocity the extra component v', represent-
ing the velocity with which the light is dragged by the water. From the geometry
of this figure it is possible to prove that V' must obey Eq.(19b). The proof will not
be given here, however, since a different and simpler explanation is now accepted,
based on the theory of relativity (see Sec. 19.15).

19.12 EFFECT OF MOTION OF THE OBSERVER

We have seen that in the phenomenon of aberration the apparent direction of the
light reaching the observer is altered when he is in motion. One might therefore
expect to be able to find an effect of such motion on the magnitude of the observed
velocity of light. Referring back to Fig. 19B(b), we see that the apparent velocity
c/ = vf(sin a) is slightly greater than the true velocity c = vj(tan a). However, a is a
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FIGURE 19G
Velocity of light emitted by a moving
source.

very small angle, so that the difference between the sine and the tangent is much smaller
than the error of measurement of ex. A somewhat different experiment embodying
the same principle has been devised, which should be sensitive enough to detect
this slight change in the apparent velocity if it exists. Before describing this experi-
ment, however, we consider in more detail the effect of motion of the observer on
the apparent velocity of light. '

In Fig. 19G, let the observer at 0 be moving toward Bwith a velocity v. Let an
instantaneous flash of light be sent out at O. The wave will spread out in a circle
with its center at 0, and after 1 s the radius of this circle will be numerically equal to
the speed of light c. But during this time the observer will have moved a distance v
from 0 to 0'. Hence if the observer were in. some way able to follow the progress
of the wave, he would find an apparent velocity which would vary with the direction
of observation. In the forward direction 0' B it would be c - v and in the backward
direction 0' A it would be c + v. At right angles, in the direction 0' P, he would observe
a velocity .Jc2 - v2• '

.1

It is important to notice that in drawing Fig. 19G we have assumed that the
velocity of the light is not affected by the fact that the source was in motion as it
emitted the wave. This is to be expected for a wave which is set up in a stationary
medium, e.g., a sound wave in the air. The hypothetical medium carrying light
waves is the ether, and if v is the velocity with respect to the ether, the same result is
expected. For an experiment performed in air, the Fresnel dragging coefficient
1 - 1/n2 is so nearly zero that it may be neglected. Thus if the observer were moving
with the velocity v of the earth in its orbit, these considerations lead us to expect the
changes in the apparent velocity of light described above. Effectively the ether should
be moving past the earth with a velocity v, and if any effects on the velocity of light
were found, they could be said to be due to an ether wind or ether drift. It would not
be surprising if this drift did not correspond to the velocity of the earth in its orbit,
since we know that the solar system as a whole is moving toward the constellation
Hercules with a velocity of 19 km/s and it is more reasonable to expect the ether to be
at rest with respect to the system of fixed stars than Withrespect to our solar system.
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FIGURE 19H
The Michelson interferometer as a test
for ether drift.

19.13 THE MICHELSON-MORLEY EXPERIMENT

This experiment, perhaps the most famous of any experiment with light, was under-
taken in 1881 to investigate the possible existence of ether drift. In principle it con-
sisted merely of observing whether there was any shift of the fringes in the Michelson
interferometer when the instrument was turned through an angle of 90°. Thus in
Fig. 19H let us assume that the interferometer is being carried along by the earth in
the direction OM2 with a velocity v with respect to the ether. Let the mirrors MI and
M2 be adjusted for parallel light, and let aMI = OM2 = d. The light leaving a
in the forward direction will be reflected when the mirror is at M~ and will return
when the half-silvered mirror G has moved to 0". Using the expressions for the
velocity derived in the previous section, the time required to travel the path OM~O"
will be

d d 2edTI = -- + -- = ---
e+v e-v e2_v2

and the time to travel OMIO" will be
2d

T2 = I 2 . 2ve - v

Each of these expressions can be expanded into series, giving

2ed 2d ( v2 v4 ) 2d (T1 = -- = - 1 + - + - + ... ~ - 1
e2 - v2 e e2 e4 e

and

T2 = 2d = 2d(1 + ..!C. + 3v
4 + ...) ~ 2d(1 + ..!C.).Je2 - v2 e 2e2 4e4 e 2e2

Thus the result of the motion of the interferometer is to increase both paths by a
slight amount, the increase being twice as large in the direction of motion. The
difference in time, which would be zero for a stationary interferometer, now becomes

Tt - T2 = 2d (1 + v
2
) _ 2d (1 + ..!C.) = d v

2

C c2 c 2e2 e3
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FIGURE 191
Miller's arrangement of the Michelson-Morley experiment to detect ether drift.

To change this to path difference we multiply by c, obtaining
v2A = d- (19c)
c2

If now the interferometer is turned through 90°, the direction of v is unchanged but
the two paths in the interferometer will be interchanged. This would introduce a path
difference A in the opposite sense to that obtained before. Hence we expect a shift
corresponding to a change of path of 2dv2/C2•

Michelson and Morely made the distance d large by reflecting the light back
and forth between 16 mirrors as illustrated in Fig. 191. To avoid distortion of the
instrument by strains, it was mounted on a large concrete block floating in mercury,
and observations were made as it was rotated slowly and continuously about a vertical
axis. In one experiment d was 11m, so that if we take v = 29.9 km/s and c = 300,000
km/s, we find a change in path of2.2 x 10-scm. For light of wavelength 6 x lO-s,
this corresponds to a change of four-tenths of a wavelength, so that the fringes should
be displaced by two-fifths of a fringe. Careful observations showed that no shift
occurred as great as 10 percent of this predicted value.

This negative result, indicating the absence of an ether drift, was so surprising
that the experiment has since been repeated with certain modifications by a number
of different investigators. All have confirmed Michelson and Morley in showing that
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if a real displacement of the fringes exists, it is at most but a small fraction of the
expected value. The most extensive series of measurements has been made by D. C.
Miller. His apparatus was essentially that of Michelson and Morley (Fig. 191)but
on a larger scale. With a light path of 64 m, Miller thought he had obtained evidence
for a small shift of about one-thirtieth of a fringe, varying periodically with sidereal
time. The latest analysis of Miller's data, however, makes it probable that the result
is not significant, having been caused by slight thermal gradients across the interfero-
meter .•

19.14 PRINCIPLE OF RELATIVITY

The negative result obtained by Michelson and Morley, and by most of those who
have repeated their experiment, forms part of the background for the restricted
theory o/relativity, put forward by Einsteint in 1905. The two fundamental postulates
on which this theory is based are

1 Principle of relativity of uniform motion The laws of physics are the same
for all systems having a uniform motion of translation with respect to one
another. As a consequence of this, an observer in anyone system cannot detect
the motion of that system by any observations confined to the system.
2 Principle of the constancy of the velocity of light The velocity of light in
any given frame of reference is independent of the velocity of the source. Com-
bined with principle 1, this means that the velocity of light is independent of the
relative velocity of the source and observer.

Returning to our illustration (Fig. 19G) of an observer who sends out a flash
of light at 0 while moving with a velocity v, the above postulates would require that
any measurements made by the observer at 0' would show that he is the center of the
spherical wave. But an observer at rest at 0 would find that he too is at the center
of the wave. The reconciliation of these apparently contradictory statements lies
in the fact that the space and time scales for the moving system are different from those
for a fixed system. Events separated in space which are simultaneous to an observer
at rest do not appear so to one moving with the system.

The first explanation given for the null result of the Michelson-Morley experi-
ment was that the arm of the interferometer that was oriented parallel to the earth's
motion was decreased in length because of this motion. The so-called Fitzgerald-
Lorentz contraction required that, if 10is the length of an object at rest, motion parallel
to 10with a velocity v gives a new length
• 1= 10J(I - V

2
/C

2
) (19d)

This law would satisfy the condition that the difference in path due to ether drift
would be just canceled out. Naturally the change in length could not be detected

• R. S. Shankland, S. W. McCuskey, F. C. Leone, and G. Kuerti, Rev. Mod. Phys.,
27: 167 (1955).

t Albert Einstein (1879-1955). Formerly director of the Kaiser Wilhelm Institute in
Berlin, Einstein in 1935 came to the Institute for Advanced Study at Princeton.
Gifted with one of the most brilliant minds of our times, he contributed to many
fields of physics besides relativity. Of prime importance was his famous law of the
photoelectric effect. He received the Nobel prize in 1921.
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by a measuring stick, since the latter would shrink in the same proportion. A con-
traction of this kind, however, should bring about changes in other physical properties.
Many attempts have been made to find evidence for these, but to no avail. According
to the first postulate of relativity, they must fail. The ether drift does not exist, nor is
there any contraction for an observer moving along with the interferometer.

Starting from the fundamental postulates of the restricted theory, it is possible
to show that in a frame of reference that is moving with respect to the observer there
should actually be changes in the observed values of length, mass, and time. The mass
of a particle becomes

• m = mo (1 - ::)-! (1ge)

in which mo represents the mass when it is at rest with respect to the observer. If
light, which has v = c, were regarded as consisting of particles (see Chap. 32), they
would have to have zero rest mass since otherwise m becomes infinite. Experimental
measurements have been made, mostly with high-speed electrons, which quantitatively
verify Eq. (1ge). Other observable consequences of relativity theory exist, the most
striking ones being obtained when it is extended to cover accelerated systems as well
as systems in uniform motion.* From this general theory of relativity, predictions
are made with regard to the deflection of light rays passing close to the sun, and to
a decrease in frequency of light emitted by atoms in a strong gravitational field. Ac-
curate measurements of the apparent positions of stars during a total solar eclipse
and of the spectra of very dense (white dwarf) stars, have verified these two optical
effects.

These experimental proofs of the theory have been sufficiently convincing to
lead to the general acceptance of the correctness of the general theory of relativity.
While the theory does not directly deny the existence of the ether postulated by Fresnel,
it says very definitely that no experiment we can ever perform will prove its existence.
For if it were possible to find the motion of a body with respect to the ether, we could
regard the ether as a fixed coordinate system with respect to which all motions are
to be referred. But it is one of the fundamental consequences of relativity that any
coordinate system is equivalent to any other, and no one has any particular claim
to finality. Thus, since a fixed ether is apparently not observable, there is no reason
for retaining the concept. It cannot be denied, however, that it is historically im-
portant and that some of the most important advances in the study of light have
come through the assumption of a material ether.

19.15 THE THREE FIRST-ORDER RELATIVITY EFFECTS

There are three optical effects the magnitude of which depends on the first power of
vIc. They are

1 The doppler effect

• For a general account of the theory and its consequences, see R. C. Tolman,
"Relativity, Thermodynamics and Cosmology," Oxford University Press, New
York, 1949. See also Harvey E. White. "Modem College Physics," 6th ed., D. Van
Nostrand Co., New York, 1973.
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2 The aberration of light
3 The Fresnel dragging coefficient

Equations for these effects have been derived on the basis of classical theory in Sees.
11.10,19.2, and 19.10. It is characteristic of the theory of relativity that it yields the
same results for first-order effects as does the classical theory. Only in second-order
effects, which depend on v21e2, do the predictions of the two theories differ. The
Michelson-Morley experiment belongs to this class. Even for the first-order effects
listed above, the results from the two theories differ in the small terms of the second
and higher power of vic. In the relativity theory, these equations are derived by apply-
ing the Lorentz transformation. This is a process of translating the description of a
motion in terms of one system of coordinates into a description of the same motion
in terms of another system which is in uniform motion with respect to the first.
Although it is not practicable to give the mathematics of this process here, we shall
state the chief results and discuss them briefly.

When the equation for a periodic wave offrequency v is rewritten in the coordin-
ates of the observer's frame of reference, the frequency assumes a new value given by

(19f)

This is the doppler effect for the source and observer approaching each other with a
velocity v along the line joining them. Comparison of the series expansion with our
previous Eq. (lIz) shows that the prediction from relativity differs from that of the
classical theory only in the terms of second and higher orders. Theoretically these
arise from the fact that the rate of a moving clock is slower than that of a stationary
one. Ives. has given an elegant demonstration of this fact by comparing the frequency
of the radiation emitted by hydrogen atoms in a high-speed beam moving first to-
ward the spectroscope, then away from it. In addition to the large first-order shifts
of the line toward higher and lower frequencies respectively in these two cases, he
observed and measured a small additional shift which was toward higher frequencies
in both cases. Since the term in question contains the square of the velocity, it will be
the same for either sign of v. This experiment constitutes another verification of the
theory of relativity by observation of a second-order effect which does not exist
according to the classical theory. It might also be mentioned that relativity predicts
a second-order doppler shift even when the source is moving at right angles to the
line of sight.

The interpretation of the aberration of light and of Airy's experiment is simpler
from the relativistic point of view. According to the second fundamental postulate,
the speed of light must always be e to any observer, regardless of his motion. Hence,
referring to Fig. 19B(b), the observed velocity labeled e' must now be labeled e.
The formula for the angle of aberration, instead of being tan lX = vic, then becomes

• . v
sm lX = -

e
(19g)

• H. E. Ives and A. R. Stilwell, J. Opt. Soc. Am., 28:215 (1938); 31:369 (1941).
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(19h)V=

It is well known that the sine and the tangent differ only in respect to terms of the
third and higher orders. Here the angle is so small that in all likelihood the difference
will never be detected. In Airy's experiment, the expectation of observing an increase
of the angle when the telescope was filled with water arose from the assumption that
the water would decrease the velocity of the light with respect to the solar system, in
which the ether was regarded as fixed. But according to the point of view of relativity
the only "true" speed of light is its velocity in the coordinate system of the observer,
and this is inclined at the angle <X given by Eq. (19g). Hence reducing the magnitude
of this speed by allowing the light to enter water will obviously make no change in
its direction.

A positive effect corresponding to Fresnel's ether drag can be observed when
the medium is in motion with respect to the observer (Sec. 19.10), but its interpretation
by the theory of relativity is entirely different. One result of the Lorentz transforma-
tion is that two velocities in coordinate systems that are in relative motion do not
add according the methods used in classical mechanics. For example, the resultant
of two velocities in the same line is not their arithmetic sum. Let us call Vo the velocity
oflight in the coordinate system of a moving medium and v the velocity of this medium
in the observer's coordinate system. Then the resultant velocity V of the light with
respect to the observer, instead of being merely Vo + v, must be taken as

Vo + v
I + (Vo/c)(v/c)

The student can easily verify the fact that this equation gives the same velocity V
for any observer in motion with the velocity v, in the case that Vo = c, that is, in a
vacuum. The expression for the Fresnel dragging coefficient follows at once from
Eq. (l9h) if one neglects second-order terms. Thus the binomial expansion gives

(
v: v) v: 2V v2 v:V = (Vo + v) I - .-.Q - - ••• = Vo + v __ 0 0 - •••

c C c2 c2

The last term is again a quantity of the second order and is to be neglected. Then
we obtain, by substituting n for c/Vo,

• (19i)

The velocity as seen by the observer is changed by the fraction I - l/n2, which is just
the value required by Eq. (19b). No assumption of any "dragging" is involved in the
relativity arguments, nor is the existence of an ether even postulated.

PROBLEMS

19.1 Assuming the speed of light to be 299,793 km/s and the average radius of the earth's
orbit around the sun to be 1.49670 x 108 km, calculate (a) the circumference of the
earth's orbit and (b) the earth's period in seconds. Calculate (c) the earth's average
orbital speed in kilometers per second and the maximum angle of aberration of a
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star in (d) degrees and (e) seconds of arc. Assume the earth's period to be 365.241
mean solar days.

Ans. (a) 9.40404 x 108 lan, (b) 3.155682 x 107 s, (c) 29.80034 km/s,
(d) 0.00569538°, (e) 20.34 seconds of arc

19.2 At the present time it is probably more correct to regard the measurements of
astronomical aberration as the determination of the earth's speed than it is the speed
of light. Using the value of the angle of aberration given in Sec. 19.2 and Michelson's
1926 value of c, compute the orbital speed of the earth to five figures, (a) in kilometers
per second and (b) in meters per second.

19.3 When Michelson used a 12-sided mirror in his experiment on the speed of light, the
image was reflected to its initial position from adjacent faces. Find the distance
between the two markers on the two mountain tops, Mt. Wilson and Mt. San
Antonio, if the speed of revolution was exactly 352 rev/so Assume the most probable
value of the speed of light to be 299,792.5 lan/so

19.4 In the speed-of-light experiments Michelson, Pease, and Pearson used a long vacuum
pipe and a rotating mirror prism with 32 sides. Assuming that the total path the
light had to travel was 13.2870 km and that the speed of light is 299,793 km/s, find
the speed of rotation of the mirror prism to obtain the first undisplaced image.

Ans. 705.090 rev/s
19.5 If Anderson's Kerr-cell apparatus was arranged so that the total path difference was

171.6985 m and contained 11 wave groups, find (a) the length I of one wave group.
If the calculated speed is given by If, find (b) the speed Cairo (c) the speed of light in a
vacuum c, and (d) the correction from calr to c in kilometers per second. Assume the
refractive index of air at the particular time to be 1.0002868 and the frequency of the
oscillator to be 19.20 MHz.

19.6 Verify the statement given in Sec. 19.9 that a fringe shift of 0.460 in Fizeau's experi-
ment corresponds to a change in the speed of light by about half the speed of the
water flow. Assuming that the effective wavelength of light is 5500 A and that the
refractive index of water is 1.3330, find what fraction it actually gives.

19.7 Carbon disulfide has a refractive index of nD = 1.62950 and a dispersion dn/d)" =
-1820 cm-1 at this wavelength. Find (a) the ratio of the speed of light in a vacuum
to the group velocity in carbon disulfide and (b) the exact value of the Fresnel drag-
ging coefficient for this substance. Equation (19b) needs a small correction arising
from the fact that for the molecules of moving water the effective frequency is slightly
altered by the doppler effect. Prove (c) that this can be taken into account by adding
a term - (dn/d).)(),jn) to the expression for the dragging coefficient. Here). is the
wavelength in a vacuum. Hint: Take the refractive index to vary linearly with fre-
quency and insert the new index, as altered by the doppler effect, in the equation for
the velocity of light in the moving medium. Ans. (a) 1.7367, (b) 0.6892

19.8 Suppose a meterstick is moving lengthwise past an observer at 30 percent the speed
of light. Find its apparent length in centimeters.

19.9 Find the apparent mass of an electron moving past an observer at one-third the speed
of light. Assume the rest mass of the electron to be 9.1096 x 10-31 kg.

19.10 A spaceship with a mass of 6.250 x 106 kg and length of 35.20 m passes the earth
with a velocity of 25 percent the speed of light. Find (a) its apparent mass and (b) its
apparent length. Ans. (a) 6.455 x 106 kg, (b) 34.082 m



20
THE ELECTROMAGNETIC CHARACTER OF LIGHT

Our study of the properties of light has thus far led us to the conclusion that light is
a wave motion, propagated with an extremely high speed. In the explanation of
interference and diffraction it was not necessary to make any assumption about the
nature of the displacement y that appears in our wave equations because in these
subjects we were concerned only with the interaction of light waves with each other.
In the succeeding chapters we are to consider subjects in which the interaction of
light with matter plays a part, and here it becomes necessary to specify the physical
nature of the quantity y, which is usually termed the light vector. Fresnel, who in 1814
first gave the satisfactory explanation of interference and diffraction by the wave
theory, imagined the light vector to represent an actual displacement of a material
ether, which was conceived as an all-pervading substance of very small density and
of high rigidity. This "elastic-solid" theory had considerable success in interpreting
optical phenomena and was strongly supported by many leading investigators in the
field, such as Lord Kelvin, as late as 1880.
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20.1 TRANSVERSE NATURE OF LIGHT VIBRATIONS

The principal objection to the elastic-solid theory lay in the fact that light had been
proved to be exclusively a transverse wave motion, i.e., the vibrations are always
perpendicular to the direction of motion of the waves. No longitudinal waves of
light have ever been detected. The experimental evidence for this comes from the
study of the polarization of light (Chap. 24) and is perfectly definite, so that we may
here take the fact as established. Now all elastic solids with which we are familiar
are capable of transmitting longitudinal as well as transverse waves; in fact, under
some circumstances it is impossible to set up a transverse wave without at the same
time starting a longitudinal one. Many suggestions were made to overcome this
difficulty, but all were highly artificial. Furthermore, the idea of a material ether
itself seemed rather forced, inasmuch as its remarkable properties could not be detected
by ordinary mechanical experiments.

Thus the time was ripe when Maxwell* proposed a theory which not only
required the vibrations of light to be strictly transverse but also gave a definite con-
nection between light and electricity. In a paper read before the Royal Society in
1864, entitled A Dynamical Theory of the Electromagnetic Field, Maxwell expressed
the results of his theoretical investigations in the form of four fundamental equations
which have since become famous as Maxwell's equations. They were based on the
earlier experimental researches of Oersted, Faraday, and Joseph Henry concerning
the relations between electricity and magnetism. They summarize these relations
in concise mathematical form, and constitute a starting point for the investigation
of all electromagnetic phenomena. We shall show in the following sections how they
accounted for the transverse waves of light.

20.2 MAXWELL'S EQUATIONS FOR A VACUUM

The derivation of these equations will not be given here, since it would involve a rather
extensive review of the principles of electricity and magnetism.t Instead we shall
in this chapter merely state the equations in their simplest form, applicable to empty
space, and then prove that they predict the existence of waves having the properties
of light waves. The modifications that must be introduced in dealing with different
kinds of material media will be considered at the appropriate places in the following
chapters.

Maxwell's equations may be written as four vector equations, but for those

* James Clerk Maxwell (1831-1879). Professor of experimental physics at Cambridge
University, England. Contributed a paper to the Royal Society at the age of fifteen.
Much of his work on the electromagnetic theory was accomplished while an under-
graduate at Cambridge. His investigations in many fields of physics bear the stamp
of genius. The kinetic theory of gases was given a solid mathematical foundation by
Maxwell, whose name is associated with the well-known law of distribution of
molecular velocities.

t For a derivation of Maxwell's equations in mks units, see E. Hecht and A. Zajac,
"Optics," pp. 29-37, 509, Addison-Wesley Publishing Company, Inc., Reading,
Mass.
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unfamiliar with vector notation we shall express them by differential equations.
In this form the first two equations must be expressed by two sets of three equations
each. For a vacuum these become, using a right-handed set of coordinates,

!aE" = aHz _ aHy

c at ay az
1 aEy aH" aHz--=---
c at az ax
!aEz = aHy _ aH"
c at ax ay

(20a)

1 aH" aEz aEy---=---
c at ay az
1 aHy aE" aEz---=---c at az ax

_!aHz = ?.S. _ aE"
c at ax ay

(20b)

The other two equations may be written

(2Oc) (20d)

These partial differential equations give the relations in space and time between the
vector quantities E, the electric field strength, and H, the magnetic field strength.
Thus E", Ey, and Ez are the components of E along the three rectangular axes, and
H", Hy, and Hz those of H. The electric field is measured in electrostatic units and
the magnetic field in electromagnetic units. The system which uses electrostatic
units for all electrical quantities and electromagnetic units for all magnetic ones
is known as the gaussian system of units. Although not the most convenient one for
practical calculations, it is suitable here, and will always be used in what follows.
The presence of the important constant c in Eqs. (20a) and (20b) is of course dependent
on our choice of units. It represents the ratio of the magnitudes of the electromagnetic
and electrostatic units of current.

Equation (20c) merely expresses the fact that no free electric charges exist in
a vacuum. The assumption of no free magnetic pole gives rise to Eq. (20d). Equations
(20b) express Faraday's law of induced electromotive force. Thus the quantities
occurring on the left side of these equations represent the time rate of change of the
magnetic field, and the spatial distribution of the resulting electric fields occurs on
the right side. These equations do not give directly the magnitude of the emf but
only the rates of change of the electric field along the three axes. In particular prob-
lems the equations must be integrated to obtain the emf itself.

20.3 DISPLACEMENT CURRENT

Maxwell's principal new contribution in giving these equations was the statement of
Eqs. (20a). These come from an extension of Ampere's law for the magnetic field
due to an electric current. The right-hand members give the distribution of the mag-
netic field H in space, but the quantities on the left side do not at first sight seem to
have anything to do with electric current. They represent the time rate of change of
the electric field. But Maxwell regarded this as the equivalent of a current, the dis-
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FIGURE lOA
The concept of displacement current.

placement current, which flows as long as the electric field is changing and which
produces the same magnetic effects as an ordinary conduction current.

One way of illustrating the equivalence of aEjat to an electric current is shown
in Fig. 20A. Imagine an electric capacitor C to be connected to a battery B by con-
ducting wires, the whole apparatus being in a vacuum with a vacuum between the
capacitor plates. As the current i flows for an instant, electric charge accumulates
on the plates until the capacitor is fully charged to the voltage ofthe battery. Through
the closed surface S, a certain current has been flowing in during this instant, but none
has apparently been flowing out. By considerations of continuity, Maxwell was led
to assume that as much current should flow out of such a surface as flows in. But no
current of the ordinary sort is flowing between the plates of the capacitor. The con-
dition of continuity can be satisfied only by regarding the change of the electric field
in this space as the equivalent of a displacement current, the current density j of which
is proportional to aEjat. In our system of units this current is given by j = Ij4n
times aEjat. It will be noticed that the displacement current "flows" in a vacuum
but stops as soon as E becomes constant.

One sees at once the analogy between Eqs. (20b) and (20a). By Eqs. (20b) a
changing magnetic field produces an emf. This was observed by Faraday and is
very simple to verify experimentally. By Eqs. (20a) a changing electric field should
produce a magnetic field (magnetomotive force). This is a much less familiar idea
and cannot be demonstrated by any simple experiment. The reason for the difference
is that no substance conducts magnetism as a wire conducts electricity. The peculiarity
that some substances possess of being conductors for electricity is the only reason
why Eqs. (20b) were discovered before Eqs. (20a). The proof of the correctness of
Eqs. (20a) lies in the remarkable success of Maxwell's equations in accounting for
phenomena of nature. It should be noted that Maxwell's equations (20a) and (20b)
can be written in terms of the displacement current j by replacing the x component
(ljc)(aE"jat) by 4nj" and the other components by similar expressions.
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20.4 THE EQUATIONS FOR PLANE ELECTROMAGNETIC
WAVES

Consider the case of plane waves traveling in the x direction, so that the wave fronts
are planes parallel to the yz plane. If the vibrations are to be represented by variations
of E and H, we see that in anyone wave front they must be constant over the whole
plane at any instant, and their partial derivatives with respect to y and z must be
zero. Therefore Eqs. (20a) to (20d) take the form

(20g)

!aEx = 0
c at
!oEy = _oHz

c at ox
!oEz = oHy

c at ox

(20e)

oEx = 0
ox

_! oHx = 0
c at
10H, aEz-;at = - ox
_! oHz = oE,
c at ox

aHx = 0
ax

(20f)

(20h)

Considering the first equation of (20e) and Eq. (20g) together, it appears that the
longitudinal component E" is constant in both space and time. Similarly from the
top line of Eqs. (20f) and from Eq. (20h), Hx is also constant. These components
can therefore have nothing to do with the wave motion but must represent constant
fields superimposed on the system of waves. For the waves themselves, we may
therefore write

Ex = 0 H" = 0

This means, of course, that the waves are transverse, as stated above.
Of the four remaining equations, we see that the second equation (20e) and the

third equation (20f) involve E, and Hz, while the third equation (20e) and the second
equation (20f) involve Ez and H,. Let us assume, for example, that E, represents the
light vector, so that we are dealing with a plane-polarized wave with vibrations in the
y direction. We should then have to put Ez = Hy = 0, and consider the two remain-
ing equations

!aE, = _ oHz

c at ox
_! oHz = aE,

c at ox (20i)

We now differentiate the first equation with respect to t and the second with respect
to x. This gives

Eliminating the derivatives of Hz, we find

1 02H 02E____ z = __ '
c at ax ax2
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In a similar way, by differentiation of the first equation (20i) with respect to x and
the second with respect to t, we find

a2H. = c2 a2H. (20k)
at2 ax2

Now Eqs. (20j) and (20k) have just the form of the wave equation for plane
waves, with Ey and H., respectively, playing the part of the displacement y in the two
cases. For both, comparison with the wave equation shows that the velocity

v = c (201)

Thus we see that two of the four equations in Eqs. (20e) and (20f) predict the existence
of a wave of the electric vector, plane-polarized in the xy plane, and an accompanying
wave of the magnetic vector, plane-polarized in the xz plane. In the form of Eq. (lla)
they would be represented by

Ey = j(x ::!: ct) Hz = j(x ::!: ct) (20m)

The two waves are interdependent; neither can exist without the other. Both are
transverse waves, and are propagated in a vacuum with the velocity c, the ratio of
the electrical units (Sec. 20.2).

If we had started with the other two equations in Eqs. (20e) and (20f), we would
have obtained another pair of waves, plane-polarized with the electric vector in the
xz plane. This pair is quite independent of the other and can exist separately from the
other pair. A mixture of the two pairs vibrating at right angles to each other and with
no constant phase relation between Ey and Ez represents unpolarized light.

20.5 PICTORIAL REPRESENTATION OF AN
ELECTROMAGNETIC WAVE

The simplest type of electromagnetic wave is one in which the functionjin Eq. (10m)
is a sine or cosine. This is a plane-polarized monochromatic plane wave. The three
components of E and the three of H may for such a wave be written

E" = 0
H" = 0

Ey = A sin (wt - kx)
Hy = 0

E. = 0
H. = A sin (rot - kx)

(20n)

By substituting the derivatives of these quantities in Eqs. (lOa) to (lOd), it is easily
verified that they represent a solution of Maxwell's equations.

Figure 20B shows a plot of the values of Ey and Hz along the x axis, according
to Eq. (20n). In a set of plane waves the values of Ey and Hz at any particular value
of x are the same all over the plane x = const; so this figure merely represents the
conditions for one particular value of y and z.

Two important points are to be noticed about Fig. 20B. In the first place, the
electric and magnetic components of the wave are in phase with each other; i.e., when
Ey has its maximum value, Hz is also a maximum. The relative directions of these
two vectors, as indicated in the figure, agree with Eqs. (20n). The second point to be
noted is that the amplitudes of the electric and magnetic vectors are equal. That these
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FIGURE 20B
Distribution of the electric and magnetic x
vectors in a plane-polarized monochro-
matic wave.

two are numerically equal in the system of units used here is shown by the fact that,
in Eqs. (20n), A is the amplitude of each wave.

20.6 LIGHT VECTOR IN AN ELECTROMAGNETIC WAVE

The dual character of the electromagnetic wave raises the question whether it is the
electric vector or the magnetic vector which is to be the light vector. This question
has little meaning, since we could assume either one to represent the "displacements"
we have been using in previous chapters. In every interference or diffraction phe-
nomenon, the electric waves will mutually influence each other in exactly the same
way as the magnetic waves. In one respect, however, the electric component plays
a dominant part. It will be proved in Sec. 25.12 that it is the electric vector that affects
the photographic plate and causes fluorescent effects. Presumably also the electric
vector is the one that affects the retina of the eye. In this sense, therefore, the electric
wave is the part that really constitutes "light," and the magnetic wave, though no
less real, is less important.

20.7 ENERGY AND INTENSITY OF AN
ELECTROMAGNETIC WAVE

The intensity of mechanical waves was shown in Sec. 11.3 to be proportional to the
square of the amplitude. The same result follows from the electromagnetic equations.
It can be shown* that in vacuum the electromagnetic field has an energy density
given by

. E2 + H2 E2

Energy per umt volume = ---- = -
81t 41t

(200)

where E and H are the instantaneous values of the fields, which here are equal.
Half the energy is associated with the electric vector and half with the magnetic vector.
The magnitudes of these vectors vary from point to point in any wave; so, in order
to obtain the energy in any finite volume, it is necessary to evaluate the average value
of E2 (or H2). For the plane wave of Eq. (20n), one finds that E2 = tA2

, the factor
t being the average of the square of the sine over all angles. Hence an electromagnetic
wave has an energy density A 2/8n, where A is the amplitude of either the electric or
the magnetic component.

* M. V. Klein, "Optics," p. 532, John Wiley and Sons, Inc., New York, 1970.



430 FUNDAMENTALS OF OPTICS

The intensity of the wave will merely be the product of the above expression
by the velocity c, since this represents the volume of the wave that will stream through
unit area per second. We therefore have

I = .!- A2 (20p)
8n

The reader should be reminded that the above statements are applicable only to a
wave traveling in vacuum. In matter, not only will the velocity be different, but also
the magnitudes of E and H will no longer be equal. Aside from factors of proportion-
ality, however, the intensity is still given by the square of the amplitude of either
wave (Sec. 23.9).

20.8 RADIATION FROM AN ACCELERATED CHARGE

A convenient method of representing an electric or magnetic field is by the use of
lines of force. These are familiar to anyone who has studied elementary electricity
and magnetism. Each line of force indicates the direction of the field at every point
along the line, and this is such that a tangent to the line of force at any point gives
the direction of the force on a small charge or pole placed at that point. That is, this
tangent gives the direction of the electric or magnetic field at that point.

Consider a small positive electric charge at rest at the point A [Fig. 20C(a)].
The lines of force are straight lines diverging in every direction from the charge and
are uniformly distributed in space. The same picture would hold if the charge were
moving in the direction AB with constant velocity, assuming this velocity to be not
too large. In these two cases-charge at rest and charge in uniform motion-there
is no radiation of electromagnetic waves.

In order to produce electromagnetic radiation, it is necessary to have accelera-
tion of the charge. A particularly simple case is represented in Fig. 20C(b). Let the
charge, originally at rest at A, be accelerated in the direction AC. The acceleration a
lasts only until the charge reaches the point B, and from that point on the charge
moves with a constant velocity. In this case we can obtain some information about the
form of the lines of force radiating from the charge at some later time. Let the time
of the acceleration from A to B be M, and let the time of the uniform motion from
B to C be t. When the charge has reached C, at a time t + M after it starts, the parts
of the original lines of force lying beyond the arc RR', drawn about A with the radius
c(t + M), cannot have been disturbed in any way. This follows from the fact that
any electromagnetic disturbance is propagated with the velocity c. At the point C
the velocity is uniform, and the lines of force as far as the arc QQ', drawn about B
with the radius ct, must be uniform and straight, since the charge has had a uniform
velocity during the time t. Consequently we see that in order to have continuous
lines of force they must be connected through the region between RR' and QQ'
somewhat as shown in the figure. This gives a pronounced "kink" in each line. The
exact form of the kink will depend upon the type of acceleration existing between
A and B, that is, whether it is uniform or some type of nonuniform acceleration.

What is the significance of such a kink in a line of force? If we select some point
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FIGURE 20C
Emission of an electromagnetic pulse from an accelerated charge.

P lying on the kink [Fig. 20C(c)], the vector E drawn tangent to the line at P gives
the actual direction of the field at that point. This may be regarded as the resultant
of the field Eo, which would be produced by the charge at rest, and a transverse field
Et• It is the vector Et which represents the electric vector of the electromagnetic
wave, referred to in the foregoing sections. Ifwe carry out this construction for various
points along the kink, we obtain the variations indicated in Fig. 20C(d). This is
obviously not a periodic wave form but merely a pulse. There will be a similar pulse
of the H vector at right angles to Et•

Several important features about the production of electromagnetic radiation
are illustrated by this example. Most important is the fact that Et exists only when
the charge is accelerated. No radiation is produced if there is no acceleration of
charge, and, conversely, an accelerated charge will always radiate to a greater or less
extent. Also, the example shows how the electric field of the radiation can be trans-
verse to the direction of propagation. The magnitude of the vector Et obtained by
the construction of Fig. 20C(d), i.e., the amplitude of the wave, obviously depends
on the steepness of the kink, and this is determined by how rapidly the charge was
accelerated from A to B. It can be shown theoretically that the rate of radiation of
energy from an accelerated charge is proportional to the square of the acceleration.
Finally, we also find that the amplitude of the radiation varies with angle in such a
way that it is a maximum in directions perpendicular to the line AC and falls to zero
in both directions along AC. The amplitude is easily shown to be proportional to
the sine of the angle between AC and the direction considered.
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FIGURE 20D
Emission of electromagnetic waves from a charge in periodic motion.

20.9 RADIATION FROM A CHARGE IN PERIODIC
MOTION

If the charge in Fig. 20C, instead of undergoing a single acceleration, is caused to
execute a periodic motion, the radiation will be in the form of continuous waves
instead of a single isolated pulse. Any periodic motion involves accelerations and
hence will cause the charge to radiate. We shall here consider only two especially
simple cases, that of linear simple periodic motion and that of uniform circular
motion. If the positive charge of Fig. 20D(a) is moved with simple harmonic motion
between the limits A and B, any line of force will be bent into the form of a sine curve.
Let the upper curve of Fig. 20D(a) represent one such line, say the one running out
perpendicular to AB. At the particular instant shown, the electric force E at various
points along the line has the direction of the tangent at those points. Resolving it
into the undisturbed field Eo and the transverse component Et, we find the various
values Et shown just below. These also take the form of a sine curve and represent
the variation of the electric vector along the wave sent out. This is a plane-polarized
wave.

In part (b) of the figure, the positive charge is revolving counterclockwise in a
circle, in the yz plane shown in perspective. The same construction now gives values
of Et which are constant in magnitude but vary in direction along the wave. The heads
of the arrows lie on a helix similar to that of the line of force, but displaced one-
quarter of a wavelength along the direction of propagation, which here is the x axis.
This screwlike arrangement of the vectors is characteristic of a circularly polarized
wave. It is worth pointing out here that if the radiation along the y or z axes were
examined, it would be found to be plane-polarized in the yz plane. Actual observation
of these two cases is possible in the Zeeman effect (Sec. 32.1).

20.10 HERTZ'S VERIFICATION OF THE EXISTENCE OF
ELECTROMAGNETIC WAVES

We have seen that, starting with a set of equations governing the phenomena of
electromagnetism, Maxwell was able to show the possibility of electromagnetic waves
and to make definite statements about the production and properties of the waves.
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FIGURE 20E
Source and detector of electromagnetic
waves used by Hertz.

Defector

o
Thus he could say that they are generated by any accelerated charge, that they are
transverse waves, and that they travel with the velocity c in free space. The experi-
mental production and detection of the waves predicted by Maxwell were achieved
by Hertz. In 1887 he began a remarkable series of experiments which constitute the
first important experiments on radio waves, i.e., electromagnetic waves of long wave-
length. The essential features of Hertz's method are illustrated in Fig. 20E. Two
plane brass plates are connected to a spark gap and sparks are caused to jump
across the gap by charging the plates to high voltage with an induction coil. It is
known that the discharge of the plates by the spark is an oscillatory one. Each time
the potential difference between the knobs of the gap reaches the point where the
air in the gap becomes conducting, a spark passes. This represents a sudden surge
of electrons across the gap, and the signs of the charges on the two plates become
reversed. But since the air is still conducting, this will produce a return surge, another
reversal of sign, and the process repeats until the energy is dissipated as heat by the
resistance of the gap. The frequency of these oscillations depends on the inductance
and capacity of the circuit. These were very small for Hertz's oscillator, and the
frequency correspondingly high. In some of his experiments it reached 109 Hz. Thus
we have an electric charge undergoing very rapid accelerations, and electromagnetic
waves should be radiated.

In Hertz's experiment the presence of electromagnetic waves was detected at
some distance from the oscillator by a resonating circuit consisting of a circular wire
broken by a very narrow spark gap of adjustable length. The changing magnetic
field in the wave induced an alternating emf in the circular wire, whose dimensions
were such that the natural frequency of its oscillations was the same as that of the
source. Thus the induced oscillations built up by resonance in the detector until
they were sufficient to cause sparks to jump the gap.

It was a simple matter to show that the waves were plane-polarized with E
in the y direction and H in the z direction. If the loop was turned through 90° so
that it lay in the xz plane, the sparks ceased. Hertz performed many other experiments
with these waves, showing among other things that the waves could be reflected and
focused by curved metal reflectors and that they could be refracted in passing through
a large 30° prism of pitch. In these respects they therefore showed the same behavior
as light waves.
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20.11 SPEED OF ELECTROMAGNETIC WAVES IN FREE SPACE

The most convincing proof of the reality of Hertz's electromagnetic waves lay in
the demonstration that their speed was that predicted by the theoretical equation
(201). The velocity was measured not directly but indirectly by measuring the wave-
length. Then from the known frequency of the oscillations the velocity could be
found by the relation v = vA.. To measure the wavelength, standing waves were
produced by interference of the direct waves with those reflected from a plane metal
reflector. The positions of the nodes could be located by the fact that the detector
ceased to spark at these points. With a frequency of 5.5 x 107 Hz, A. was found to be
about 5.4 m, which gives v very close to 3 x 108 m/s. The determination could not
be made accurately because the oscillations were highly damped, only three or four
occurring after each spark, and the wavelength was therefore not accurately defined.
Later work by Mercier with undamped waves produced by a vacuum-tube oscillator
gave the result 2.9978 x 108 m/s. We have already seen, in Sec. 19.6, how the
increased precision obtainable with cavity resonators has added another significant
figure to the speed of light.

According to Eq. (201),this observed speed should equal c, the ratio of the emu
to the esu of current. As has been mentioned (Sec. 19.7), this ratio has been accurately
measured by different methods, the most recent value being 2.99781 x 108 m/s.
But this is just the measured speed of electromagnetic waves and also agrees exactly
with the latest measurements of the speed of light by Michelson and others (see Table
19A). For air or other gases at atmospheric pressure, a slight modification in the
equations is necessary (Chap. 23), but the predicted speed differs only slightly
from that in vacuum.

Hence we are forced to conclude that light consists of electromagnetic waves
of extremely short wavelength. Beside the evidence of polarization, which proves
that light waves are transverse waves, there is much other evidence of this identity.
Spectroscopy has shown that the atoms contain electrons and that by assuming the
acceleration of these electrons as they move in orbits around the nucleus one can
account for the polarization and intensity of the spectrum lines. Furthermore, as
shown in Fig. lIN radio waves, which are obviously electromagnetic in character,
join continuously onto the region of infrared light waves. Thus the explanation of
light waves as an electromagnetic phenomenon, which in the hands of Maxwell was
merely a very elegant theory, has since proved to be a reality, and we accept the electro-
magnetic character of light as an established fact. In treating the interactions of light
with matter we shall therefore use the fact that light consists of oscillations of an
electric field at right angles to the direction of propagation of the waves, accompanied
by oscillations of the magnetic field, also at right angles to this ,direction and to the
direction of the electric field.

v

20.12 CERENKOV RADIATION

It was stated in Sec. 20.8 that an electric charge moving with uniform velocity radiates
no energy, but merely carries its electromagnetic field along with it. This is true as
long as the charge is traveling in vacuum. If on the other hand, it moves through a
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FIGURE 20F
Cross section of the conical wave pro-
duced in Cerenkov radiation.

(20q)

material medium, e.g. as when a high-speed electron or proton enters a piece of glass,
it may radiate a small amount of energy even though its velocity is constant. The
required condition is that the speed of the charged particle be greater than the wave
velocity cfn of light in the medium. It then sets up an impulsive wave similar to the
shock wave produced by a projectile traveling at a speed greater than that of sound.
It is of the same character as the bow wave of a boat, which forms when the boat moves
faster than the water waves.

The production of this wave is an excellent illustration of the application of
Huygens' principle (Sec. 18.1). In Fig. 20F let e represent an electron moving through
glass of index 1.50 with a velocity which is nine-tenths of the velocity of light. (To
produce such an electron one would have to accelerate it through a potential difference
of some 661 kV.) The disturbances produced when the electron occupied successively
the positions 0, 0', and 0" are represented as secondary wavelets which have radii
OA, O'A', and O"A", proportional to the elapsed time and to their velocity cfn. The
resulting wave front is the common tangent to these and takes the form of a cone of
half angle e. Since OA is normal to the wave front, it will be seen from the figure that
e is given by

. eelsIn =-=-
nv n/3

where v is the velocity of the charged particle and /3 = vfc. If /3 = 0.9, as in our
example, e is about 48°. A substantial part of the radiation is in visible light and is
detectable by the eye or the photographic plate. Because of dispersion, the variation
of n with color, Eq. (20q) is not perfectly exact.* Furthermore, when n is largest
(blue light), the cone is narrower and the outer edge of the conical fan of light rays
will therefore be blue, while its inner edge will be red.

This type of radiation is now commonly observed with the high-speed particles
used in nuclear physics. By measuring the angle of the cone, the velocities and
energies of the particles can be determined. The light resulting from the passage of

• For the exact equations, see H. Motz and L. 1. Schiff, Am. J. Phys.,11: 258 (1953).
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a single particle can be made to register a count with a photomultiplier tube. This is
the principle of the Cerenkov counter employed by nuclear physicists.

PROBLEMS

20.1 The waves from a radio transmitter has a frequency of 32.56 MHz and are incident
normally on a flat surface of a sheet of metal. The reflected and incident beams set up
standing waves that are measured to have nodes 460.3 cm apart. Neglecting the
refractive index of air, what does this give for the speed of the waves?

Ans. 299,747 kmls
20.2 Show that Maxwell's equations are satisfied by the solution

E" =A sin (wt + ky)
H,,=O H.=O

E. =0 Ez =0
Hz = A sin (wt + ky)

(a) In which plane is the wave polarized, and (b) in which direction does it travel?
(c) Write down the equations.

20.3 Modify Eqs. (20n) so that they represent (a) a plane-polarized wave with the E
oscillations in the xy plane but at 30° with the x axis and (b) a wave whose oscillations
are ellipses in the xy plane (elliptically polarized wave).

20.4 Starting with the following equations, (a) make a list of all the partial derivatives
occurring in Eqs. (20a) to (20d):

Ex = A sin (wt - ky) Hx = 0
E,,=O H,,=O
Ez = 0 Hz = A sin (wt - ky)

(b) Show by direct substitution that these derivatives satisfy
1 oEx 1 oE,= - wA cos (Wl- ky) 7 = -kA cos (Wl- ky)
c ot c oy

10Hz I- - - = - - wA cos (wt - ky)
c 01 c

oHz- = -kA cos (Wl- ky)oy
20.5 (a) Prove that the segment of the line of force between Q and R in Fig. 20C(b) is a

straight line when the acceleration of the charge has been uniform. (b) From the slope
of this segment show that the ratio EolEr falls off as l/r and hence that at any appre-
ciable distance the transverse component will predominate. Hint: Remember that
Eo is given by Coulomb's law.

20.6 The total force F exerted on a charge e that moves in electric and magnetic fields in
vacuum is given by

evH
F= eE+-

c

where it is assumed that the velocity v is perpendicular to the field H. Find the ratio
of an electric force to the magnetic force exerted on an electron in the first Bohr or :'>it
of the hydrogen atom by sunlight which has E = H = 0.0242 (gaussian units).

20.7 Calculate the amplitude of the electric field strength of a beam of sunlight, which
may be taken as having an intensity of 1.20 kW1m2•

20.8 (a) Show that the amplitude of the electromagnetic wave from an accelerated charge
varies as sin 8, where () is the angle between the direction of observation and the
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direction of the acceleration. (b) Make a polar plot of the intensity of the radiation
versus angle.

20.9 Show that the ratio of a charge measured in esu to the same charge measured in emu
has the dimensions of a velocity. Hint: Start with Coulomb's law in each case.

20.10 Poynting's theorem states that the energy flow in an electromagnetic wave is given by

e
S=-(ExH)

4n

S is called the Poynting vector, and the expression in parentheses represents the
vector product. Show that the conclusions of Sees. 20.5 and 20.7 with regard to the
direction and magnitude of the flow relative to the directions and magnitudes of
E and H are in agreement with Poynting's theorem.

20.11 By assuming Einstein's relation between ,mass and energy and taking the mass
equivalent to an electromagnetic wave to move with the velocity e, derive an expres-
sion for the pressure that radiation exerts on a perfectly absorbing surface by virtue
of its momentum. Ans. p = l/e = A2/8n

20.12 A beam of protons with an energy of 560 MeV is passed through a sheet of extra
dense flint glass, where n = 1.750. (0) Find the angle between the Cerenkov radiation
and the direction of the proton beam inside the glass. (b) What is the indicated value
of pfor these protons? (For MeV seeH. E. White, "Modern College Physics," 6thed.,
sec. 49.1, D. Van Nostrand Co., New York, 1972.)



21
SOURCES OF LIGHT AND THEIR SPECTRA

Since light is an electromagnetic radiation, we should expect that the emission of
light from any source results from the acceleration of electric charges. It is now certain
that the electric charges involved in the emission of visible and ultraviolet light are
the negative electrons in the outer part of the atom. By assuming that vibratory or
orbital motions of these electrons cause radiation, many of the characteristics of
different light sources can be explained. It should be emphasized, however, that
this concept must not be carried too far. In the interpretation of spectra it fails in
several important respects. These all involve the discrete or corpuscular nature of
light, which is to be discussed later (Chap. 29). For the present, we shall emphasize
only those features which can be explained by the assumption that light consists of
electromagnetic waves.

21.1 CLASSIFICATION OF SOURCES

Sources of light which are important for optical and spectroscopic experiments may
be divided into two main classes: (1) thermal sources, in which the radiation is the
result of high temperature, and (2) sources depending on the electrical discharge
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through gases. The sun, with its surface temperature of 5000 to 60oo°C, is an important
example of the first class, but here must also be included such important sources
as tungsten-filament lamps, the various electric arcs at atmospheric pressure, and the
flame. Under the second class come high-voltage sparks, the glow discharge in vacuum
tubes at low pressure, and certain low-pressure arcs like the mercury arc. The dis-
tinction between the two classes is not sharp, and we can go continuously from one
to the other, for instance by pumping away the air around an electric arc.

21.2 SOLIDS AT HIGH TEMPERATURE

The majority of practical sources for illuminating purposes use the radiation from a
hot solid. In the tungsten lamp, the filament is heated to about 2100°C by the dissi.
pation of electric energy due to its resistance. The filament can be run at temperatures
as high as 2300°C but will last for only a short period owing to the rapid vaporization
of tungsten. In the carbon arc in air, the temperature of the positive pole is about
40OO°Cand that of the negative pole, 3000°C. The positive pole vaporizes and burns
away rather rapidly, but it constitutes the brightest thermal source of light available
in the laboratory. The heating results chiefly from the bombardment of the positive
pole by electrons drawn from the gaseous part of the arc. Relatively little light comes
from the gas itself. An interesting type of are, useful when a very small source of light
is needed, is the so-called concentrated-arc lamp. A simplified diagram of this device
is shown in Fig. 21A(a). The cathode consists of a small metal tube packed with
zirconium oxide, and the anode consists of a metal plate containing a hole slightly
larger than the end of the cathode. Tungsten, tantalum, or molybdenum, because
of their high melting points, are used for the metal parts. These are sealed into a glass
bulb which is filled with an inert gas like argon to a pressure of nearly I atm. The arc
runs between the (fused) surface of the zirconium oxide and the surrounding anode,
as indicated in part (b) ofthe figure. The tip of the cathode is heated by ion bombard-
ment to 2700°C or higher, giving it a surface brightness almost equal to that in the
carbon arc. The light is observed through the hole in the anode, in the direction shown
by the arrow in Fig. 2IA(a). Lamps of this type can be made in which the source is as
small as 0,007 cm in diameter. A cheaper way of achieving a source of small dimen-
sions is to use a tungsten lamp with a small spiral filament (automobile headlight
bulb), run at a voltage somewhat higher than jts rated value. This source does not,

r
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FIGURE 21A
The concentrated arc, a close approximation to a point source.
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however, have the smallness and brightness of the concentrated-arc lamp. Other
sources of continuous spectra will be considered in Sec. 21.9.

21.3 METALLIC ARCS*

When two metal rods connected to a source of direct current are touched together
and drawn apart, a brilliant arc forms between them. A resistance of high current
capacity must be connected in series with the circuit and adjusted so that the steady
current through the arc is from 3 to 5 A. Higher currents than this will cause excessive
heating and melting of the electrodes. A large self-inductance in the circuit will
stabilize the are, and a voltage of 220 is preferable to 110 in this respect. The two
poles are held vertically, in line with each other, by clamps with a screw adjustment
to vary their separation. In the iron are, the positive pole should be the lower, since
then a bead of molten iron oxide collects in the small cavity which soon forms, and
this helps the steadiness of the arc. The radiation from an iron, copper, or aluminum
arc comes mostly from the gas traversed by the are, this gas consisting almost entirely
of the vapor of the metal. It has been shown that the gas is at a temperature of from
4000 to 7OOO°C,and it may in cases of very high currents run up to 12,000°C. The
equivalent of a metallic arc can be obtained with a carbon arc in which the positive
pole has been bored with an axial hole and packed with the salt of a metal, such as
calcium fluoride. It is sometimes desirable to run a metallic arc in an atmosphere
other than air by enclosing it in an airtight chamber. The arc may then be run at low
pressures as well, but this is a difficult procedure.

With the metals of low melting point, the arc may be permanently enclosed
in a glass envelope. Of this type are the mercury arc and the sodium are, both commonly
used in optical laboratories. In the older form of mercury are, liquid mercury is
sealed in a highly evacuated glass container of such a shape that the mercury forms
two separate pools. These make electrical connection with two wires sealed through
the glass. To start the are, it is tipped until a thread of mercury connects the two pools
for an instant and breaks again. As the arc warms up, the pressure of the mercury
vapor increases, and unless a fairly large space is available for cooling and condensa-
tion, the arc will go out. With sufficient self-inductance in the circuit, the arc may be
run at fairly high temperature and pressure, giving a very intense source. For this
purpose the container is made of fused quartz to withstand the higher temperature.
Quartz has the advantage that it transmits the ultraviolet light (Sec. 22.3), and quartz
arcs are frequently used in spectroscopy and for therapeutic purposes. In using them,
great care should be taken not to look at the arc too frequently unless glasses are being
worn, as a painful inflammation of the eyes may result. The same is true for the ex-
posed metallic arcs mentioned above.

As shown in Fig. 2IB(a), it is possible to arrange a mercury arc to be self-
starting. The type illustrated provides an intense, narrow vertical source of mercury
light suitable for illuminating a slit. The arc is formed in a capillary tube of inside
diameter 2.0 mm, and starts a minute or so after connecting the terminals to the 110-V

• These and other sources for use in spectroscopy are well described in G. R. Harrison,
R. C. Lord, and J. R. Loofbourow, "Practical Spectroscopy," chap. 8, Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1948.
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FIGURE 21B
(a) Small, self-starting mercury arc. (b) Sodium arc.
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dc mains. Before this time, the current is limited to about 1.5 A by the resIstances
R. and R2 of 80 and 7 n, respectively. R2 is wound on the lower part of the capillary
and encased in cement so that it heats the mercury at that point until a bubble of
vapor is formed and the mercury thread breaks. The resulting arc then generates
enough pressure to push the mercury above it up to the point A. The arc is then con-
fined to the capillary from A to R2• The current has now fallen to about 1.0 A, owing
to the additional resistance of the arc itself.

The sodium arc [Fig. 2IB(b)] is always contained in a double-walled envelope
made of a special glass that is resistant to blackening by hot sodium vapor. The inner
envelope contains argon or neon at low pressure and a small amount of metallic
sodium. The discharge is initiated in the rare gas by electrons emitted from the coiled
filament F and is sustained by a relatively small positive potential applied to the anode.
Since the space between the double walls is highly evacuated to prevent heat loss, the
interior temperature rises rapidly to the point where the sodium melts and vaporizes
into the arc. The rare-gas spectrum then fades out, being replaced by radiation from
the more easily ionized atoms of sodium. This is nearly all in the yellow sodium
doublet, so that the arc yields essentially monochromatic light without the use of
filters. The doublet is so narrow (separation 5.97A) that for spectroscopy under low
dispersion and for interference measurements with small path difference it may be
assumed to be a single line with the average wavelength 5892A.

Although they are satisfactory sources for use with small gratings and prism
spectroscopes, neither of the above arcs yields spectral lines of sufficient sharpness
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for investigations with very high dispersion. The relatively high pressure, temperature,
and current density cause a broadening of the lines. The simplest way to produce
sharper lines is to use a discharge through a rare gas with a small admixture of the
metal vapor and to limit lhe current to a few milliamperes. The discharge may be
either a low-voltage arc of the type described above or a glow discharge in a vacuum
tube (Sec. 21.6). Very convenient sources of this type, not only for mercury and
sodium but also for cadmium, zinc, and other low-melting metals, can now be pur-
chased commercially. In fact, the ordinary mercury fluorescent lamp is of the kind
required to give sharp lines and would be satisfactory were it not for the coating of
fluorescent salt on the inside of the walls.

21.4 BUNSEN FLAME

When sufficient air is admitted at the base of a bunsen burner, the flame is practically
colorless, except for a bluish-green cone bounding the inner dark cone of unburnt gas.
The temperature above the cone is in the neighborhood of 1800°C, high enough to
cause the emission of light from the salts of certain metals when they are introduced
into the flame. The color of the flame and its spectrum are characteristic of the metal
and do not depend on which salt is used. The chloride is usually most volatile and
gives the most intense coloration. The color of the sodium flame is yellow; of stron-
tium, red; of thallium, green; etc. For introducing the salt into the flame, a common
method is to use a loop on the end of a platinum wire, which is first dipped in hydro-
chloric acid and heated until the sodium yellow disappears. Then, while red-hot, it is
touched to the powdered salt, melting a small amount which adheres to the wire.
When this is again held in the flame, the color is strong but lasts only a short time.
A better method is to mix a fine spray of the chloride solution with the gas before it
enters the burner. This is best done with the apparatus shown in Fig. 21C, in case
air under pressure is available. Air is forced through the atomizer S, filling the bottle
with a fine spray which is carried into the gas at the base of the burner. This gives
a very constant light source, and is convenient for the laboratory study of flame
spectra. Unfortunately, it can be used for only a limited number of metals, the suitable
ones including lithium, sodium, potassium, rubidium, caesium, magnesium, calcium,
strontium, barium, zinc, cadmium, indium, and thallium. Other elements may be
used in the hotter oxygas flame or oxyhydrogen flame, but these flames are not as
convenient to operate.

21.5 SPARK

By connecting a pair of metal electrodes to the secondary of an induction coil or high-
voltage transformer, a series of sparks can be made to jump an air gap of several
millimeters. If there is no capacitance in the circuit, the spark is quiet and not very in-
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FIGURE 21C
Experimental arrangement for produc-
ing spectra by introducing salts of metals
into the flame of a bunsen burner.

-Gas

tense, the radiation coming chiefly from the air in the gap. The spark may be made
much more violent and brighter by connecting a capacitor (such as a Leyden jar)
in parallel across the gap. We then obtain a condensed spark. This is an extremely
bright source, the spectrum of which is very rich in lines characteristic of the metal
of the electrodes. The condensed spark has the drawbacks not only of noisiness and
hazard of electric shock, but also of the considerable breadth of the lines it emits.
Nevertheless, it furnishes the most intense excitation available, and is the most
efficient source we have for the lines of ionized atoms which have lost one or more
electrons. Such lines are usually called high-temperature, or spark, lines.

21.6 VACUUM TUBE

This common source is familiar because of its application to advertising signs. Neon
signs contain pure neon gas at a pressure of about 2 cmHg. Metal electrodes are sealed
through the ends of the tube, and an electric current is caused to traverse the gas by
connecting the electrodes to a transformer giving a potential of 5000 to 15,000 V.
Other colors are produced by introducing a small amount of mercury into a neon or
argon tube. The heat of the discharge vaporizes the mercury, and we obtain the charac-
teristic color and spectrum of mercury vapor. If the tube is made of colored glass,
certain colors of the mercury light are absorbed and various shades of blue and green
may be produced.

In the laboratory, this principle can be used on a smaller scale to excite the
characteristic radiations of any gas or vapor. Two common forms of vacuum tube
are illustrated in Fig. 21D. Type (a) is useful where maximum intensity is not required,
e.g., if the tube is to be operated with a small induction coil. The electrodes E, E are
short pieces of aluminum rod, welded to the ends of tungsten wires, the latter being
sealed through the glass. The light is most intense in the capillary tube C, where the
current density is greatest, and it is observed laterally, in the direction indicated by
the arrow. Considerably greater intensity can be obtained with the end-on type shown
in (b). Here the electrodes are of sheet aluminum, rolled up and slipped inside two
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(a) (b)

IV

FIGURE 210
Discharge tubes for obtaining the spectra of gases at low pressure.

loosely fitting inner glass tubes, G, G. They are fastened to the tungsten leads by
wrapping a small strip of aluminum at one end around the wire and pinching it on
tightly. The larger area of the electrodes permits the use of greater currents, usually
furnished by a transformer, without overheating of the electrodes. The light is ob-
served through a plane glass window W, which may be fused directly to the tube.
The inner glass tubes serve to prevent the deposition of aluminum on the outer walls
of the main tube, which occurs rather rapidly when a tube is used at a low pressure.

The exact pressure at which a vacuum tube should be sealed off varies between
about 0.5 and 10mmHg, according to the gas and to the particular spectrum desired.
Only a limited number of gases are suitable for long-continued use in a sealed tube
of the above type. Of these, the rare gases neon, helium, and argon are the most
satisfactory. Hydrogen, nitrogen, and carbon dioxide tubes will last only a limited
time; the gas gradually disappears from the tube, or "cleans up," until a discharge
can no longer be maintained. Two processes may be responsible for this. The gas
may be decomposed by the discharge and the products deposited on the walls or
removed by chemical combination with the metal electrodes. Or, even with a chem-
ically inert gas, a decrease of pressure may be caused by absorption in the above-
mentioned metal layers that are "sputtered" on the walls from the electrodes.
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21.7 CLASSIFICATION OF SPECTRA
There are two principal classes of spectra, known as emission spectra and absorption
spectra.

Continuous emission spectra Continuous absorption spectra
Line emission spectra Line absorption spectra
Band emission spectra Band absorption spectra

Emission spectra are obtained when the light coming directly from a source is ex-
amined with a spectroscope. Absorption spectra are obtained when the light from a
source showing a continuous emission spectrum is passed through an absorbing
material and thence into the spectroscope. Figures 21G, 21H, and 211 show reproduc-
tions of photographed spectra illustrating the three types, both in emission and in
absorption. Solids and liquids, with a few rare exceptions, * give only continuous
emission and absorption spectra, in which a wide range of wavelengths, without
any sharp discontinuities, is covered. Discontinuous spectra (line and band) are
obtained with gases. Gases may also, in certain cases, emit or absorb a true contin-
uous spectrum (Sec. 21.9). The three types of emission spectra can easily be observed
with a carbon arc. If the spectroscope is pointed at the white-hot pole of the are,
the spectrum is perfectly continuous. If it is pointed at the violet discharge in the
gas between the poles, bands in the green and violet are seen and there are always a
few lines, like the sodium lines, owing to impurities in the carbons.

21.8 EMITTANCE AND ABSORPTANCE
Although in this chapter we are primarily concerned with various sources of light,
and hence with emission, it will be well to state here a very important relation which
exists between the emissive and absorptive powers of any surface. A solid, when
heated, gives a continuous emission spectrum.' The amount of radiation in this spec-
trum and its distribution in different wavelengths are governed by Kirchhoff'st law
of radiation. This states that the ratio of the radiant emittance to the absorptance
is the same for all bodies at a given temperature. As an equation, this law may be
written.

• W
- = const = WB
a

(21a)

The quantity W is the total energy radiated per square meter of surface per second,
while a represents the fraction of the incident radiation which is not reflected or trans-
mitted by the surface. For the constant representing this ratio, we have used the

• Compounds of some of the rare-earth metals give line spectra superposed on a
continuous spectrum when heated to high temperatures. Their absorption spectra,
e.g., that of didymium glass, shoW very narrow regions of absorption, which at
liquid-air temperature become sharp absorption lines.

t Gustav Kirchhoff (1824-1887). Professor of physics at Heidelberg and Berlin.
Besides discovering some fundamental laws of electricity, he founded (with Bunsen)
the science of chemical analysis by spectra.
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(a) (b)
FIGURE 21E
Photographs of an electric iron, illustrating Kirchoff's law of radiation. (a) Taken
with infrared-sensitive photo plates, with the iron hot but emitting no visible
radiation. (b) Taken with ordinary plates and illumination, with the iron at room
temperature. For the justification of applying the law at different wavelengths,
see text. (Photographs courtesy 0/ H. D. Babcock.)

symbol WB, because it represents the emittance of a blackbody. This term specifies
a body which is perfectly black, Le., one which absorbs all the radiation falling on
its surface. Hence for such an ideal body, aB = 1, and WB equals the constant ratio
Wfa for other bodies.

Kirchhoff's law expresses a very general relation between the emission and
absorption of radiation by the surface of different bodies. If the absorptance is high,
the emittance must also be high. Here it is essential to realize the difference between
the term absorptance, which measures the amount of light disappearing at a single
reflection, and the absorption within the body of the material, as measured by the
absorption coefficient IX. The latter determines the loss of light upon transmission
through the material and has no simple connection with the absorptance of the sur-
face. In the case of metals, for example, a very high absorption coefficient is correlated
with a high reflectance. But a high reflectance also means a low absorptance. Thus
for metals, and in general for smooth surfaces of pure substances, a high absorption
coefficient IX necessarily means a low absorptance a.

A blackbody, which is approximated, for example, by a piece of carbon, gives
the greatest amount of radiation at a given temperature. Transparent or highly
reflecting substances are very poor emitters of visible light, even when raised to high
temperatures. Figure 2lE shows a practical illustration of the working of Kirchhoff's
law. The right-hand picture is a photograph of an ordinary electric iron at room tem-
perature. A few spots of india ink have been made on the surface, and these appear
dark since they are regions of high absorptance. The rest of the surface is highly
reflecting and hence a poor absorber. The left-hand photograph was taken by the
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radiation .emitted from the iron when heated. The temperature was less than 400°C,
so that no visible radiation was emitted. However, with infrared-sensitive photographic
plates a successful photograph was obtained, even though the iron was invisible
to the eye in the dark. In this picture, it will be seen that the spots which were pre-
viously dark (good absorbers) have now become brighter than the surroundings,
even though they have the same temperature. Hence they also emit radiation most
copiously, as Kirchhoff's law requires. Here we are assuming that the ink spots,
because they are black by visible light, are also good absorbers for infrared light.
It is in fact essential that Wand a refer to the same wavelength or range of wavelengths.
For the radiation within a small wavelength interval we may write

W;. = WB;. (2Ib)
a;.

indicating by the subscript the emittance and absorptance at a particular wavelength.
This form has important applications to discontinuous spectra (Sec. 21.10).

21.9 CONTINUOUS SPECTRA

The most common sources of continuous emission spectra are solids at high tem-
perature, * and some of these sources were described in Sec. 21.2. Nothing was said
there concerning the distribution in different wavelengths of the energy in the con-
tinuous spectrum. According to Kirchhoff's law, this depends on the ability of the
surface to absorb light of different wavelengths. Thus in a piece of china with a red
design glazed upon it, the red parts absorb blue and violet light more strongly than
red. When the piece is heated to a high temperature in a furnace and withdrawn,
the design will appear bluish by the emitted light, since these portions are the best
absorbers and emitters for blue. In general, therefore, the reflectance spectrum of
such a solid gives a clue to its emission spectrum.

A blackbody, which absorbs all wavelengths completely, is commonly taken as
the standard because it constitutes a particularly simple case with which the radiation
from other substances may be compared. Figure 2lF shows the energy distribution
in the radiation from a blackbody at seven different temperatures, and Fig. 2IG(a)
shows photographs of the actual spectra corresponding to these curves.t The curve
for 2000 K represents fairly well that for a tungsten filament, while that for 6000 K
is close to that of the sun (neglecting the narrow regions of absorption due to the
Fraunhofer lines). The area under the curve represents the total energy emitted in all

• A good discussion of the experimental methods employed in this field will be found
in W. E. Forsythe (ed.), "The Measurement of Radiant Energy," McGraw-Hili
Book Company, New York, 1937.
t In comparing the spectra of Fig. 21G(a) with the curves of Fig. 21F it should be
borne in mind that photographed spectra do not reproduce the true distribution of
intensity in different wavelengths for three reasons: (1) The dispersion of the prism
compresses the spectrum at the long-wavelength end. (2) The photographic plate
is not equally sensitive to all wavelengths. In particular, the plate used here does not
respond at all beyond .t6600. (3) The blackening of the plate is not proportional to
the intensity.
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FIGURE 21F
Blackbody radiation curves plotted to scale. Ordinates give the energy in calories
per square centimeter per second in a wavelength interval d).. of 1A. For numer-
ical values, see "Smithsonian Physical Tables," 8th ed., p. 314.

wavelen~hs, and increases rapidly with the absolute temperature. Calling WB the
total energy emitted from the surface of a blackbody per square meter per second and
T the absolute temperature in kelvins, the Stefan-Boltzmann* law states that

• (21c)

The constant q has the value 1.3567 x 10-11 kcal/m2 s K4 or 5.670 x 10-8 J/m2 s K4•
The wavelength of the maximum of each curve Amax depends on the temperature
according to Wien'st displacement law, which states that

A.maxT = const = 2.8970 x 10-3 m K (21d)

where Amax is in meters. The shape of the curve itself is given by Planck'st law,which

• Ludwig Boltzmann (1844-1906). From 1895 to his death by suicide in 1906,
professor of physics at Vienna. The law was originally stated by Josef Stefan (1835-
1893) and was independently demonstrated theoretically by Boltzmann. The latter
is chiefly known for his contributions to the kinetic theory and the second law of
thermodynamics.
t Wilhelm Wien (1864-1928). German physicist, awarded the Nobel prize in 1911
for his work in optics and radiation. He also made important discoveries about
cathode rays and canal rays.

~ Max Planck (1858-1947). Professor at the University of Berlin. He was awarded
the Nobel prize in 1918 for his derivation of the law of blackbody radiation and
other work in thermodynamics.
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FIGURE 21G
Continuous spectra. (a) Continuous emission spectra of a solid at the three
temperatures indicated, taken with a quartz spectrograph. The spectra for 1000
and 2OOO.C were obtained from a tungsten filament. That for 4OOO.C is from the
positive pole of a carbon arc. The wavelength scale is marked in hundreds of
angstroms. (b) Continuous absorption spectra. The upper spectrum is that of
the source alone, extending roughly from 4000 to 6500 A. The others show the
effect on this spectrum of interposing three kinds of colored glass.

hc3 .1A.
• WBA .1A. = A.S(ffC/J.kT _ I) (21e)

where WBA is the energy in the wavelength band between A. and A. + .1A. in joules per
second per square meter of surface, c is the velocity of light, A. is the wavelength,
T is the absolute temperature, e is the base of the naperian log&rithms, k is the Boltz-
mann constant determined from the general gas laws, and h is Planck's constant:

h = 6.6262 X 10-34 J s
k = 1.3805 X 10-23 J/K
c = 2.9979 X 108 mls
e = 2.7183

These constants are of course connected with those in the Stefan-Boltzmann
and Wien laws, because Eq. (21c) can be obtained from Eq. (21e) by integrating
it from A. = 0 to A. = 00, while Eq. (21d) is obtained if we differentiate Eq. (21e)with
respect to A. and equate to zero to obtain the maximum value. These equations apply,
of course, only to the radiation from an ideal blackbody. This can never be strictly
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realized experimentally, but it is approximated by a black surface or a hollow cavity
with a small opening. The quantity WBA d)' denotes the emission of unpolarized
radiation per square meter per second in all directions in a range d),.

A source of a continuous spectrum in the ultraviolet region is sometimes desired
for the study of absorption spectra in this region. Hot solids are unsuitable for this
purpose, because of the relatively small amount of ultraviolet light they emit, even at
the highest temperatures available. It has been found that for this purpose a vacuum-
tube discharge through hydrogen gas at 5 to 10 mm pressure is very satisfactory.
If a current of a few tenths of an ampere is passed through a tube with a rather wide
capillary (5 mm diameter) at 2000 V, a very intense continuous spectrum is obtained.
The maximum intensity of this continuum lies in the violet, but it extends far down
into the ultraviolet, to about 1700A.

21.10 LINE SPECTRA

When the slit of a prism or grating spectroscope is illuminated with the light from a
mercury are, several lines of different color are seen in the eyepiece. Photographs of
common line spectra are shown in Fig. 21H(a) to (j). Each of these lines is an image
of the slit formed by the telescope lens by light of a particular wavelength. The differ-
ent wavelengths are deviated through different angles by the prism or grating; hence
the line images are separated. It is important to realize that line spectra derive their
name from the fact that a slit is customarily used, whose image constitutes the line.
If a point, a disk, or any other form of aperture were used in the collimator, the spec-
trum lines would become points, disks, etc., as the case may be. Frequently, in photo-
graphing the spectra from astronomical sources, the collimator is dispensed with
entirely, and a prism or grating placed in front of the telescope lens converts the tele-
scope into a spectroscope. In this case, each "line" in the spectrum has the shape of
the source. For example, Fig. 2IH(h) shows the spectrum of the sun at the instant
preceding a total eclipse, when the usual dark-line absorption spectrum is replaced
by an emission spectrum from the gases of the solar atmosphere, giving the so-called
flash spectrum. The chief use of a slit is to produce narrow images, so that the images
in different wavelengths do not overlap.

The most intense sources of line spectra are metallic arcs and sparks, although
vacuum tubes containing hydrogen or one of the rare gases are very suitable. Flames
are often used, because the spectra they give are in general simpler, being not so rich
in lines. All common sources of line emission or line absorption spectra are gases.
Furthermore, it is now known that only the individual atoms give true line spectra.
That is, when a molecular compound is used in the source, such as methane gas
(CH4) in a discharge tube, or sodium chloride in a "cored" carbon are, the lines
observed are due to the elements and not to the molecules. For example, methane
gives a strong spectrum due to hydrogen, and it is well known that sodium chloride
gives the yellow sodium lines. Lines due to carbon and chlorine do not appear with
appreciable intensity because these elements are more difficult to excite to emission
and their strongest lines lie in the ultraviolet and not in the visible part of the spectrum.
In Table 2lA are given the wavelengths of the lines in certain commonly used emis-
sion spectra.



25 30

Argon

35 40 45 50

(a)

(b)

(e)

(d)

(e)

(f)

, , I I \ I I . I (g)

"3600' Hydrogen "3970'
. "... ~ ~. ,

.. :....:..... .
" .. i 01. I •

, . ,I

(h)

(j)

(i)
;\4861 '.. ..._-,_.

:.\25931

i~<.; "'ri:. l •.n.QD
1.60001

Sun

• aiii.: ~.
Sodium

I
Sun

t ••i:
'-2400'.-:---1-----0
.A 5850 I 5890' '5896

FIGURE 2lH
Line spectra. (a) Spectrum of the iron arc. The emission spectra (a) to (f) were
all taken with the same quartz spectrograph. Mercury spectrum from an arc
enclosed in (b)quartz and (e) glass. (d) Helium in a glass discharge tube. (e) Neon
in a glass discharge tube. (f) Argon in a glass discharge tube. (g) Balmer series of
hydrogen in the ultraviolet, .t = 3600 to 4000 A. This is a grating spectrum.
The faint lines on either side of the stronger members are false lines called ghosts
(Sec. 17.12). (h) Flash spectrum, showing the emission spectrum from the
gaseous chromosphere of the sun. This is a grating spectrum taken without a slit
at the instant immediately preceding a total eclipse, when the rest of the sun is
covered by the moon's disk. The two strongest images, the Hand K lines of
calcium, show marked prominences, or clouds, of calcium vapor. Other strong
lines are due to hydrogen and helium. (i) Line absorption spectrum of sodium in
the ultraviolet, taken with a grating. The bright lines in the background arise in
the source, which here was a carbon arc. Note the slight continuous absorption
beyond the series limit. U) Solar spectrum in the neighborhood of the D lines.
The two strong lines are absorbed by sodium vapor in the chromosphere and
together constitute the first member of the series at 5892 A shown in (i).
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Line absorption spectra are obtained only with gases ordinarily composed of
individual atoms (monatomic gases). The absorption lines in the solar spectrum are
due to atoms which exist as such, rather than combined as molecules, only because
of the high temperature and low pressure in the "reversing layer" of the sun's atmos-
phere [Fig. 2IH(h) and (j)]. In the early days of the study of these lines by Fraunhofer,
the more prominent ones were designated by letters. The Fraunhofer lines are very
useful bench marks in the spectrum, for instance in the measurement and specification
of refractive indices. Hence we give here, in Table 2IB, their wavelengths and the
chemical atoms or molecules to which they are due. The "lines" A, B, and IX are
really bands, absorbed by the oxygen in the earth's atmosphere. It will be seen
that b4 and G are blends of two lines which are not ordinarily resolved but are due
to different elements.

In the laboratory, there are only a few substances which are suitable for observ-
ing line absorption spectra, because the absorption lines of most monatomic gases
lie far in the ultraviolet. The alkali metals are one exception, and if sodium is heated
in an evacuated steel or heatproof glass tube with glass windows at the ends, the spec-
trum of light from a tungsten source viewed through the tube will show the sodium
lines in absorption [Fig. 21H(i)]. They appear as dark lines against the ordinary
continuous emission spectrum.

21.11 SERIES OF SPECTRAL LINES

In the spectra of some elements, lines are observed which obviously belong together
to form a series in which the spacing and intensities of the lines change in a regular
manner. For example, in the Balmer series of hydrogen [Fig. 21H(g)] the spacing
of the lines decreases steadily as they proceed into the ultraviolet toward shorter
wavelengths, and their intensities fall off rapidly. Although only the first four lines
lie in the visible region, the Balmer series has been traced by photography to 31
members in the spectra of hot stars, where it appears as a series of absorption lines.

Table 21A WAVELENGTHS, IN ANGSTROMS, OF SOME USEFUL
SPECTRAL LINES.

Sodium Mercury Helium Cadmium Hydrogen

5.889.95 s 4046.56 m 4387.93 w 4678.16 m 6562.82 s
5895.92 m 4077.81 m 4437.55 w 4799.92 s 4861.33 m

4358.35 s 4471.48 s 5085.82 s 4340.46 w
4916.04 w 4713.14 m 6438.47 s 4101.74 w
5460.74 s 4921.93 m
5769.59 s 5015.67 s
5790.65 s 5047.74 w

5875.62 s
6678.15 m

• s = strong, m = medium, and w = weak.
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The absorption spectrum of sodium vapor shows a remarkably long series of lines,
each of which is a close doublet [not resolved in Fig. 21H(i)], known as the principal
series. This series also appears in emission from the arc or flame, and the well.
known D lines constitute the first doublet of the series. In the sodium spectrum from
a flame, about 97 percent of the intensity in this series is in the first member. The
emission spectra of the alkalis also show two other series of doublets in the visible
region, known as the sharp and diffuse series. A fourth weak series in the infrared is
called the fundamental series. The alkaline-earth metals, such as calcium, show two
such sets of series-one of single lines, the other of triplets.

A characteristic of any particular series is the approach of the higher series
members to a certain limiting wavelength, known as the limit or convergence of the
series. In approaching this limit, the lines crowd closer and closer together, so that
there is theoretically an infinite number of lines before the limit is actually reached.
Beyond the limit a rather faint continuous spectrum is sometimes observed in emission;
in absorption a region of continuous absorption can always be observed if the absorp-
ing vapor is sufficiently dense [Fig. 21H(i)]. The series limits furnish the clue to the
identification of the type to which the series belongs. Thus the sharp and diffuse
series approach the same limit, while the principal series approaches another limit
which for the alkalis lies at shorter wavelengths.

21.12 BAND SPECTRA

The most convenient sources of band spectra for laboratory observation are the carbon
arc cored with a metallic salt, the vacuum tube, and the flame. Calcium or barium
salts are suitable in the arc or flame, and carbon dioxide or nitrogen in a vacuum tube.
As observed with a spectroscope of small dispersion, these spectra present a typical
appearance which distinguishes them at once from line spectra [Fig. 211(a) to (d)].
Many bands are usually observed, each with a sharp edge on one side called the head.

Table 21B THE MOST INTENSE FRAUNHOFER LINES

Wavelength, Wavelength,
Designation Origin A Designation Origin A
A O2 7594-7621* b4 Mg 5167.343
B O2 6867-6884* c Fe 4957.609
C H 6562.816 F H 4861.327
II' O2 6276-6287* d Fe 4668.140
Dt Na 5895.923 e Fe 4383.547
D2 Na 5889.953 G' H 4340.465
D3 He 5875.618 G Fe 4307.906
E2 Fe 5269.541 G Ca 4307.741
bt Mg 5183.618 g Ca 4226.728
b2 Mg 5172.699 h H 4101.735
b3 Fe 5168.901 H Ca+ 3968.468
b4 Fe 5167.491 K Ca+ 3933.666

* Band.
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From the head, the band shades off gradually on the other side. In some band spectra
several closely adjacent bands, overlapping to form sequences, will be seen [Fig.
211(b)and (d)], while in others the bands are spaced fairly widely, as in Fig. 2II(c).
When the high dispersion and resolving power of a large grating are used, each band
is found to be actually composed of many fine lines, arranged with obvious regularity
into series called branches ofthe band. In Fig. 2II(e), two branches will be seen start-
ing in opposite directions from a pronounced gap, where no line appears. In (J) the
band is double, and the two branches of the left-hand member can be seen running
side by side.

Various sorts of evidence point to the conclusion that band spectra arise from
molecules, i.e., combinations of two or more atoms. Thus it is found that while the
atomic or line spectrum of calcium is independent of which salt we put in the arc,
we obtain different bands by using calcium fluoride, calcium chloride, or calcium
bromide. Also, the bands appear in those types of sources where the gas receives
less violent treatment. Nitrogen in a vacuum tube subjected to an ordinary uncon-
densed discharge shows only the band spectrum, whereas if a condensed discharge
is used, the line spectrum appears. The most conclusive evidence lies in the fact
that the absorption spectrum ofa gas which is known to be molecular (02, N2) shows
bands but no lines, owing to the absence of any dissociation into atoms. Furthermore,
it is found that any simple band spectrum, like those described and illustrated above,
is due to a diatomic molecule. When calcium fluoride (CaF2) is put into the arc, the
bands observed are due to CaF. The violet bands in the uncored carbon arc are due
to CN, the nitrogen coming from the air [Fig. 2II(e)]. Carbon dioxide in a vacuum
tube gives the spectrum of CO, and there are many other examples of this type of
dissociation of the more complex molecules into diatomic ones.

The attempt to interpret the various definite frequencies emitted by the atoms of
a gas in producing a line spectrum occupied the best minds in physics during the early
part of the twentieth century and eventually had most important consequences.
Just as the frequencies of vibration of a violin string give sound waves whose fre-
quencies bear the simple ratio of whole numbers to the fundamental note, it was first
supposed that the frequencies of the light in the various spectral lines should bear
some definite relation to each other, which would furnish the clue to the modes of
vibration of the atom and to its structure. This has proved to be the case, though in a
very different way than was at first anticipated. The definite relation of frequencies
is actually found in spectral series. However, it will be seen at once that the atomic
frequencies do not behave like those of a violin string. In the latter the overtones
increase steadily toward an infinite frequency (zero wavelength), while the frequencies
in a spectral series approach a definite limiting value. The complete explanation
of line spectra has now been obtained by developing an entirely new theory, called
the quantum theory. * Although this theory is in many respects in direct contradiction
to the electromagnetic theory, the latter proved an invaluable guide in attacking such
problems as the intensity and polarization of spectral lines. It also gave the first clue

• For an elementary treatment of atomic spectra see H. E. White, "Introduction to
Atomic Spectra," McGraw-Hili Book Company, New York, 1934. For a discussion
of band spectra, see G. Herzberg, "Molecular Spectra and Molecular Structure,"
vol. 1, "Diatomic Molecules," D. Van Nostrand Company, Inc., New York, 1950.
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Band spectra. (a) Spectrum of a discharge tube containing air at low pressure.
Four band systems are present: the l' bands of NO (1 2300 to 2700 A), negative
nitrogen bands (N: +, 12900 to 3500 A), second positive nitrogen bands (N:,
12900 to 5000 A), and first positive nitrogen bands (N:, 15500 to 7000 A).
(b) Spectrum of a high-frequency discharge in lead fluoride vapor. These bands,
due to PbF, fall in prominent sequences. (c) Spectrum showing part of one band
system of SbF, obtained by vaporizing antimony fluoride into active nitrogen.
(b) and (c) were taken with a large quartz spectrograph. (d) Emission and absorp-
tion band spectra of BaF: emission from a carbon arc cored with BaF:; absorp-
tion of BaF vapor in an evacuated steel furnace. The bands are closely grouped
in sequences. Second order of 21-ft grating. (e) eN band at 13883 from an argon
discharge tube containing carbon and nitrogen impurities. Second order of
grating. (f) Band in the ultraviolet spectrum of NO, obtained from glowing
active nitrogen containing a small amount of oxygen. Second order of grating.
[(b) and (c) courtesy 0/ G. D. Rochester.]
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to the behavior of the lines when the source was placed in a magnetic field (Chap. 31).
For the complete explanation of line spectra, however, the quantum theory is abso-
lutelyessential. We shall return to this subject in Chap. 29.

PROBLEMS

21.1 A carbon filament is run at a temperature of 2500°C. Assuming carbon radiates at this
temperature as though it were a blackbody, find the wavelength at which maximum
energy is radiated from such a filament.

21.2 Find the total power in watts radiated from a metal sphere 3.0 mm in diameter, the
sphere being maintained at a temperature of 2200°C. Assume the absorptance of the
surface to be 0.70 and independent of wavelength. Ans. 41.97 W

21.3 A carbon arc is used as the source of light in a searchlight. If the tip of the positive
carbon reaches a temperature of 4500°C, calculate (a) the total power radiated per
square millimeter of surface and (b) the wavelength at which the maximum radiation
occurs. Assume blackbody radiation.

21.4 A small bead of metal is placed in the hollow tip of an iron arc. The bead rises to a
temperature of 3027°C where its overall absorptance is 75.0 percent. Find the total
heat energy radiated in calories per square millimeter per second.

Ans. 1.207 calfs mm2

21.5 Copper is melted in a furnace; the molten metal surface has an overall absorptance of
82 percent. Calculate the total power radiated per square centimeter in (a) joules per
second and (b) calories per second.

21.6 Consider two bodies in an enclosure at a uniform temperature. The nature and area
of their surfaces need not necessarily be the same, and they may be semitransparent.
From the experimental fact that they come to the same temperature as the surround.
ings, show by the energy emitted, absorbed, reflected, and transmitted by each that
Kirchhoff's law of radiation must hold.



22
ABSORPTION AND SCATTERING.

When a beam of light is passed through matter in the solid, liquid, or gaseous state,
its propagation is affected in two important ways: (l) the intensity will always decrease
to a greater or lesser extent as the light penetrates farther into the medium, and
(2) the velocity will be less in the medium than in free space. The loss of intensity is
chiefly due to absorption, although under some circumstances scattering may play
an important part. In this chapter we shall discuss the consequences of absorption
and scattering, while the effect of the medium on the velocity, which comes under
dispersion, we shall consider in the following chapter. The term absorption as used in
this chapter refers to the decrease of ~ntensityof light as it passes through a substance
(Sec. I1.9). It is important to distinguish this definition from that of absorptance,
which is given in Sec. 21.8. The two terms refer to different physical quantities, but
there are certain relations between them, as we shall now see.

22.1 GENERAL AND SELECTIVE ABSORPTION

A substance is said to show general absorption if it reduces the intensity of all wave-
lengths of light by nearly the same amount. For visible light this means that the trans-
mitted light, as seen by the eye, shows no marked color. There is merely a reduction
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of the total intensity of the white light, and such substances therefore appear to be
gray. No substance is known which absorbs all wavelengths equally, but some,
such as suspensions of lamp black or thin semitransparent films of platinum, approach
this condition over a fairly wide range of wavelengths.

By selective absorption is meant the absorption of certain wavelengths of light
in preference to others. Practically all colored substances owe their color to the ex-
istence of selective absorption in some part or parts of the visible spectrum. Thus a
piece of green glass absorbs completely the red and blue ends of the spectrum, the
remaining portion in the transmitted light giving a resultant sensation of green to the
eye. The colors of most natural objects such as paints, flowers, etc., are due to
selective absorption. These objects are said to show pigment or body c%r, as dis-
tinguished from surface color, since their color is produced by light which penetrates
a certain distance into the substance. Then, by scattering or reflection, it is deviated
and escapes from the surface, but only after it has traversed a certain thickness of the
medium and has been robbed of the colors which are selectively absorbed. In all
such cases the absorptance of the body will be proportional to its true absorption
and will depend in the same way upon wavelength. Surface color, on the other hand,
has its origin in the process of reflection at the surface itself (Sec. 22.7).. Some sub.
stances, particularly metals like gold or copper, have a higher reflecting power for
some colors than for others and therefore show color by reflected light. The trans-
mitted light here has the complementary color, whereas in body color the color is the
same for the transmitted and reflected light. A thin gold foil, for example, looks
yellow by reflection and blue-green by transmission. As mentioned in Sec. 21.8,
the body absorption of these materials is very high. This causes a high reflectance
and a correspondingly low absorptance.

22.2 DISTINCTION BETWEEN ABSORPTION AND
SCATTERING

In Fig. 22A let light of intensity /0 enter a long glass cylinder filled with smoke. The
intensity / of the beam emerging from the other end will be less than /0' For a given
density of smoke, experiment shows that I depends on the length d of the column
according to the exponential law stated in Sec. 11.9:

• (22a)

Here ex is usually called the absorption coefficient, since it is a measure of the rate of
loss of light from the direct beam. However, most of the decrease of intensity of I is
in this case not due to a real disappearance of the light but results from the fact that
some light is scattered to one side by the smoke particles and thus removed from the
direct beam. Even with a very dilute smoke, a considerable intensity Is of scattered
light may easily be detected by observing the tube from the side in a darkened room.
Rays of sunlight seen to cross a room from a window are made visible by the fine
dust particles suspended in the air.

True absorption represents the actual disappearance of the light, the energy of
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FIGURE 22A
Scattering of light by finely divided
particles as in smoke.
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which is converted into heat motion of the molecules of the absorbing material. This
will occur to only a small extent in the above experiment, so that the name "absorption
coefficient" for lX is not appropriate in this case. In general, we can regard lX as being
made up of two parts, lXII due to true absorption and lX. due to scattering. Equation
(22a) then becomes
• I = loe-(«a+<<.)d (22b)

In many cases either lXII or lX. may be negligib'te with respect to the other, but it is
important to realize the existence of these two different processes and the fact that in
many cases both may be operating.

22.3 ABSORPTION BY SOLIDS AND LIQUIDS
;

If monochromatic light is passed through a certain thickness of a solid or of a liquid
enclosed in a transparent cell, the intensity of the transmitted light may be much
smaller than that of the incident light, owing to absorption. If the wavelength of the
incident light is changed, the amount of absorption will also change to a greater or
less extent. A simple way of investigating the amount of absorption for a wide range
of wavelengths simultaneously is illustrated in Fig. 22B. 81 is a source which emits
a continuous range of wavelengths, such as an ordinary tungsten-filament lamp.
The light from this source is rendered parallel by the lens L1 and traverses a certain
thickness of the absorbing medium M. It is then focused by L2 on the slit 82 of a
prism spectrograph, and the spectrum photographed on the plate P. If M is a "trans-
parent" substance like glass or water, the part of the spectrum on P representing
visible wavelengths will be perfectly continuous, as if M were not present. If M is
colored, part of the spectrum will be blotted out, corresponding.to the wavelengths
removed by M, and we call this an absorption band. For solids and liquids, these bands
are almost always continuous in character, fading off gradually at the ends. Examples
of such absorption bands were shown in Fig. 2IG(b).

Even a substance which is transparent to the visible region will show such selec-
tive absorption if the observations are extended far enough into the infrared or the
ultraviolet region. Such an extension involves considerable experimental difficulty
when a prism spectrograph is used, because the material of the prism and lenses
(usually glass) may itself have strong selective absorption in these regions. Thus
flint glass cannot be used much beyond 25,000A (or 2.5 p,m) in the infrared or beyond
about 3800A in the ultraviolet. Quartz will transmit somewhat farther in the infra-
red and much farther in the ultraviolet. Table 22A shows the limits of the regions
over which various transparent substances used for prisms will transmit an appreciable
amount of light.
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FIGURE 22B
Experimental arrangement for observing the absorption of light by solids,
liquids, or gases.

Prisms for infrared investigations are usually of rock salt, while for the ultra-
violet quartz is most common. In an ultraviolet spectrograph, there is no advantage
in using fluorite unless air is completely removed from the light path, because air
begins to absorb strongly below 1850A. Also, specially prepared photographic
plates must be used below this wavelength, since the gelatin of the emulsion by its
absorption renders ordinary plates insensitive below about 2300 A. In the infrared,
photography can now be used as far as 13,000A, thanks to innovative methods of
sensitizing plates. Beyond this, an instrument based upon measurement of the heat
produced, such as a thermopile, is usually used, although as far as 6 p.m the photo-
conductive cell, utilizing the change of electrical resistance upon illumination, gives
greater sensitivity.

When absorption measurements are extended over the whole electromagnetic
spectrum, it is found that no substance exists which does not show strong absorption
for some wavelengths. The metals exhibit general absorption, with a very minor
dependence on wavelength in most cases. There are exceptions to this, however,
as in the case of silver, which has a pronounced "transmission band" near 3160A
(see Fig. 25N). A film of silver which is opaque to visible light may be almost entirely
transparent to ultraviolet light of this wavelength. Dielectric materials, which are
poor conductors of electricity, exhibit pronounced selective absorption which is

Table 22A

Limit of transmission, A
Ultraviolet InfraredSubstance

Crown glass
Flint glass
Quartz (Si02)
Fluorite (CaF2)
Rock salt (NaCl)
Sylvin (KCI)
Lithium fluoride

3500
3800
1800
1250
1750
1800
1100

20,000
25,000
40,000
95,000
145,000
230,000
70,000



ABSORPTION AND SCA1TERING 461

most easily studied when scattering is avoided by having them in a homogeneous
condition such as that of a single crystal, a liquid, or an amorphous solid. In a general
way, it may be said that such substances are more or less transparent to X rays and
y rays, i.e., light waves of wavelength below about loA. Proceeding toward longer
wavelengths, we encounter a region of very strong absorption in the extreme ultra-
violet, which in some cases may extend to the visible region, or beyond, and in others
may stop somewhere in the near ultraviolet (see Table 22A). In the infrared, further
absorption bands are encountered, but these eventually give way to almost complete
transparency in the region of radio waves. Thus for dialectrics we may usually expect
three large regions of transparency, one at the shortest wavelengths, one at interme-
diate wavelengths (perhaps including the visible), and one at very long wavelengths.
The limits of these regions vary a great deal in different substances, and one substance,
such as water, may be transparent to the visible but opaque to the near infrared,
while another, such as rubber, may be opaque to the visible but transparent to the
infrared.

22.4 ABSORPTION BY GASES

The absorption spectra of all gases at ordinary pressures show narrow, dark lines.
In certain cases it is also possible to find regions of continuous absorption (Sec. 21.12),
but the outstanding characteristic of gaseous spectra is the presence of these sharp
lines. If the gas is monatomic like helium or mercury vapor, the spectrum will be a true
line spectrum, frequently showing clearly defined series. The number of lines in the
absorption spectrum is invariably less than in the emission spectrum. For instance,
in the case of the vapors of the alkali metals, only the lines of the principal series are
observed under ordinary circumstances [Fig. 2IH(i)]. The absorption spectrum is
therefore simpler than the emission spectrum. If the gas consists of diatomic or poly-
atomic molecules, the sharp lines form the rotational structure of the absorption
bands characteristic of molecules. Here again the absorption spectrum is the simpler,
and fewer bands are observed in absorption than in emission from the same gas
[Fig. 211(d)].

22.S RESONANCE AND FLUORESCENCE OF GASES*

Let us consider what happens to the energy of incident light which has been removed
by the gas. If true absorption exists, according to the definition of Sec. 22.2, this
energy will all be changed into heat and the gas will be somewhat warmed. Unless the
pressure is very low, this is generally the case. After an atom or molecule has taken
up energy from the light beam, it may collide with another particle, and an increase
in the average velocity of the particles is brought about in such collisions. The length

• A comprehensive discussion of the various aspects of this subject is given in
A. C. G. Mitchell and M. W. Zemansky. "Resonance Radiation and Excited Atoms,"
The Macmillan Company. New York, 1934.
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FIGURE 22C
Experimental arrangement for observing the fluorescence of iodine vapor with
excitation by monochromatic light.

of time that an energized atom can exist as such before a collision is only about
10-7 or 10-8 s, and unless a collision occurs before this time, the atom will get rid
of its energy as radiation. At low pressures, where the time between the collisions
is relatively long, the gas will become a secondary source of radiation, and we do not
have true absorption. The reemitted light in such cases usually has the same wave~
length as the incident light, and is then termed resonance radiation. This radiation
was discovered and extensively investigated by R. W. Wood.* The origin of its name
is clear, since as has been mentioned the phenomenon is analogous to the resonance
of a tuning fork. Under some circumstances the reemitted light may have a longer
wavelength than the incident light. This effect is called fluorescence. In either res-
onance or fluorescence, some of the light is removed from the direct beam and dark
lines will be produced in the spectrum of the transmitted light. Resonance and
fluorescence are not to be classed as scattering. This distinction will be made clear
in Sec. 22.12.

Resonance radiation from a gas can readily be demonstrated by the use of a
sodium-arc lamp. A small lump of metallic sodium is placed in a glass bulb connected
to a vacuum pump. The sodium is distilled from one part of the bulb to another by
heating with a bunsen burner, thus liberating the large quantities of hydrogen always
contained in this metal. After a high vacuum is attained, the bulb is sealed off and
the light of the arc is focused by a lens on the bulb. The bulb must of course be ob-
served from the side in a dark room. On gently warming the sodium with the flame,
a cone of yellow light defining the path of the incident light will be seen. At higher

• R. W. Wood (1868-1955). Professor of experimental physics at the Johns Hopkins
University. He pioneered in many fields of physical optics and also became one of
the most colorful figures in American physics. His discoveries in optics are contained
in his excellent text "Physical Optics," 3rd ed., The Macmillan Company, New York,
1934; reprinted (paperback) Dover Publications, Inc., New York, 1968.
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FIGURE 22D
Photographs of (a) mercury-arc spectrum; (b) fluorescence spectrum of iodine;
(c) enlarged section of (b); (d) Raman spectrum of hydrogen (courtesy of
Rasetti); (e) Raman spectrum of liquid carbon tetrachloride (courtesy of
M. Jeppeson); (I) mercury arc.

temperatures, the glowing cone becomes shorter, and eventually is seen merely as a
thin bright skin on the inner surface of the glass.

Fluorescence of a gas is most easily shown with iodine vapor, which consists
of diatomic molecules, 12, White light from a carbon arc will produce a greenish
cone of light when focused in a bulb containing iodine vapor in vacuum at room
temperature. A still more interesting experiment can be performed by using mono-
chromatic light from a mercury are, as shown in Fig. 22C. The source oflight is a long
horizontal arc A, which is enclosed in a box with a long slot cut in the top parallel
to the arc. Immediately above this is a glass tube B filled with water. This acts as
a cylindrical lens to concentrate the light along the axis of tube C, containing the
iodine vapor in vacuum. The fluorescent light from the vapor is observed with a
spectroscope pointed at the plane window on the end of tube C. The other end is
tapered and painted black to prevent reflected light from entering the spectroscope,
and a screen with a circular hole placed close to the window helps in this respect.
A polished reflector R laid over C increases the intensity of illumination. If B con-
tains a solution of potassium dichromate and neodymium sulfate, only the green
line of mercury, A,5461, is transmitted. Figure 22D{b) and (c) were reproduced from
a spectrogram taken in this way, though with water in the tube B. Beside the lines
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of the ordinary mercury spectrum (marked by dots in the figure) which are present
as a result of ordinary reflection or Rayleigh scattering (Sec. 22.10), one observes
a series of almost equally spaced lines extending toward the red from the green line.
These represent the fluorescent light of modified wavelength.

22.6 FLUORESCENCE OF SOLIDS AND LIQUIDS

If a solid or a liquid is strongly illuminated by light which it is capable of absorbing,
it may reemit fluorescent light. According to Stokes' law, the wavelength of the fluores-
cent light is always longer than that of the absorbed light. A solution of fluorescein
in water will absorb the blue portion of white light and will fluoresce with light of a
greenish hue. Thus a beam of white light traversing the solution becomes visible
through emission of green light when observed from the side but is reddish when
looked at from the end. Certain solids show a persistence of the reemitted light,
so that it lasts several seconds or even minutes after the incident light is turned off.
This is called phosphorescence.

Very striking fluorescent effects may be produced by illuminating various
objects with ultraviolet light from a mercury arc. A special nickel oxide glass can
be obtained which is almost entirely opaque to visible light but transmits freely the
strong group of mercury lines near A3650. If only this light from the arc comes through
the glass, many organic as well as inorganic substances are rendered visible almost
exclusively by their fluorescent light. Teeth illuminated by ultraviolet light appear
unnaturally bright, but artificial teeth look perfectly black. The brilliant red of the
ruby gemstone, as another example, is attributed to fluorescence. See Chap. 30.

22.7 SELECTIVE REFLECTION. RESIDUAL RAYS

Substances are said to show selective reflection when certain wavelengths are reflected
much more strongly than others. This usually occurs at those wavelengths for which
the medium possesses very strong absorption. We are speaking now of dielectric
substances, i.e., those which are nonconductors of electricity. The case of metals is
rather different and will be considered in Chap. 25. That there is an intimate connec-
tion between selective reflection, absorption, and resonance radiation can be seen
from an interesting observation made by R. W. Wood with mercury vapor. At a
pressure of a small fraction of a millimeter, mercury vapor shows the phenomenon
of resonance radiation when illuminated by A2536 from a mercury arc. As the pres-
sure of the vapor is increased, the resonance radiation becomes more and more
concentrated toward the surface of the vapor where the incident radiation enters,
i.e., o~ the inner wall of the enclosing vessel. Finally, at a sufficiently high pressure,
the secondary radiation ceases to be visible except when viewed at an angle corre-
sponding to the law of reflection. At this angle fully 25 percent of the incident light
is reflected in the ordinary way, the remainder having been absorbed and trans-
formed into heat by atomic collisions. However, this high reflection, which is com-
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parable to that of metals in this region, exists only for the particular wavelength
.12536. Other wavelengths are freely transmitted. In this experiment we evidently
have a continuous transition from resonance radiation to selective reflection.

A few solids which have strong absorption bands in the visible region also show
selective reflection. The dye fuchsine is an example. Such substances have a peculiar
metallic sheen by reflected light and are strongly colored. Their color is due to the
very high reflection of a certain band of wavelengths-so high that it is frequently
termed "metallic" reflection. It is this type of reflection that is responsible for surface
color (Sec. 22.1).

The most important application of selective reflection has been its use in locating
absorption bands which lie far in the infrared. For example, quartz is found to reflect
80 to 90 percent of radiation having a wavelength of about 8.5 p.m, or 85,000A.
The method of residual rays for isolating a narrow band of wavelengths is based upon
this fact. * In Fig. 22E, S is a thermal source of radiation, giving a continuous spec-
trum. After reflection from the four quartz plates Ql to Q4, the radiation is analyzed
by means of a wire grating G and thermopile T. It is found to consist almost entirely
of the wavelength 8.5 p.m. Supposing this wavelength to be 90 percent reflected at
each quartz surface and other wavelengths 4 percent reflected, we have, after four
reflections, (0.9)4 = 0.66 of the former remaining, but only (0.04)4 = 0.0000026 of
the latter. The wavelengths of the residual rays of many substances have been mea-
sured in this way. Among the longest wavelengths measured are those from sodium
chloride, potassium chloride, and rubidium chloride at 52, 63, and 74 p.m, respectively.

22.8 THEORY OF THE CONNECTION BETWEEN
ABSORPTION AND REFLECTION

In the electromagnetic theory for the production of resonance radiation it is assumed
that light waves are incident upon matter which contains bound charges capable of
vibrating with a natural frequency equal to that of the impressed wave. Thus a
charge e is acted upon by the electric field Ewith a force eE, and if E varies with a
frequency exactly matching that with which the charged particle would normally
vibrate, a large amplitude may be produced. As a result, the charged particle will
reradiate an electromagnetic wave of the same frequency. In a gas at low pressure,
where the atoms are relatively far apart, the frequency which can be absorbed will
be sharply defined and there will be no systematic relation between the phases of the
light reemitted from different particles. The observed intensity from N particles
will then be just N times that due to one particle (Sec. 12.4). This is the case with
resonance radiation.

If, on the other hand, the particles are close together and interacting strongly
with each other, as in a liquid or solid, the absorption will not be limited to a sharply
defined frequency but will spread over a considerable range. The result is that the

• For more extensive material on this subject, see R. W. Wood, "Physical Optics,"
3d ed., pp. 516-519, The Macmillan Company, New York, 1934; reprinted (paper-
back) Dover Publications, Inc., New York, 1968.



466 FUNDAMENTALS OF OPTICS

FIGURE 22E
Experimental arrangement for observing residual rays by selective reflection.

phases of the reemitted light from adjacent particles will agree. This will give rise to
regular reflection, since the various secondary waves from the atoms in the surface
will cooperate to produce a reflected wave front traveling off at an angle equal to
the angle of incidence. In fact, this is just the conception used in applying Huygens'
principle to prove the law of reflection. Hence selective reflection is also a phenom-
enon of resonance, and occurs strongly near those wavelengths corresponding to
natural frequencies of the bound charges in the substance. The substance will not
transmit light of these wavelengths; instead it reflects strongly. True absorption,
or the conversion of the light energy into heat, may also occur to a greater or less
extent because of the large amplitudes of the vibrating charges which are here involved.
If absorption were entirely absent, the reflecting power would be 100 percent at the
wavelengths in question.

22.9 SCATTERING BY SMALL PARTICLES

The lateral scattering of a beam of light as it traverses a cloud of fine suspended
matter was mentioned in Sec. 22.2. That this phenomenon is closely connected both
with reflection and with diffraction can be seen by consideration of Fig. 22F. In (a)
is shown a parallel beam consisting of plane waves advancing toward the right and
striking a small plane reflecting surface. The successive wave fronts drawn are one
wavelength apart, so that here the size of the reflector is somewhat greater than a
wavelength. The light coming off from the surface of the reflector is produced by the
vibration of the electric charges in the surface with a definite phase relation, and the
spherical wavelets produced by these vibrations cooperate to produce short segments
of plane wave fronts. These are not sharply bounded at their edges by the reflected
rays from the edges of the mirror (dotted lines) but spread out somewhat, owing to
diffraction. In fact, the distribution of the intensity of the reflected light with angle
is just that derived in Sec. 15.2 for the light transmitted by a single slit. The width
of the reflector here takes the place of the slit width, so that we shall have greater
spreading the smaller the width of the reflector relative to the wavelength.
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FIGURE 22F
The reflection and diffraction of light by small objects comparable in size with
the wavelength of light.

In (b) of the figure, the reflector is much smaller than a wavelength, and here
the spreading is so great that the reflected waves differ very little from uniform
spherical waves. In this case the light taken from the primary beam is said to be
scattered, rather than reflected, since the law of reflection has ceased to be applicable.
Scattering is therefore a special case of diffraction. The wave scattered from an object
much smaller than a wavelength of light will be spherical, regardless of whether
or not the object has the plane form assumed in Fig. 22F(b). This follows from the
fact that there can be no interference between the wavelets emitted by the several
points on the surface of the scattering particle, inasmuch as the extreme points are
separated by a distance much less than the wavelength.

The first quantitative study of the laws of scattering by small particles was made
in 1871 by Rayleigh,* and such scattering is frequently called Rayleigh scattering.
The mathematical investigation of the problem gave a general law for the intensity
of the scattered light, applicable to any particles of index of refraction different from
that of the surrounding medium. The only restriction is that the linear dimensions
of the particles be considerably smaller than the wavelength. As we might expect,
the scattered intensity is found to be proportional to the incident intensity and to
the square of the volume of the scattering particle. The most interesting result, how-
ever, is the dependence of scattering on wavelength. With a given size of the particles,
long waves would be expected to be less effectively scattered than short ones, because
the particles present obstructions to the waves which are smaller compared with the
wavelength for long waves than for short ones. In fact, as will be proved in Sec.
22.13, the intensity is proportional to 1/).4:

1
1 = k-
• ,l,4

• Several interesting papers laying the foundation of the theory will be found in "The
Scientific Papers of Lord Rayleigh," vols. I and 4, Cambridge University Press,
New York, 1912.
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FIGURE 22G
Intensity of scattering versus wavelength according to Rayleigh's law.

Since red light, A,7200, has a wavelength 1.8 times as great as violet light, A,4000,
the law predicts (1.8)4 or 10 times greater scattering for the violet light from particles
much smaller than the wavelength of either color. Figure 22G gives a quantitative
plot of this relation.

If white light is scattered from sufficiently fine particles, such as those in tobacco
smoke, the scattered light always has a bluish color. If the size of the particles is
increased until they are no longer small compared with the wavelength, the light
becomes white, as a result of ordinary diffuse reflection from the surface of the particles.
The blue color seen with very small particles and its dependence on the size of the
particles were first studied experimentally by Tyndall, * and his name is often associated
with the phenomenon. Chalk dust from an eraser, falling across a beam of light
from a carbon are, will illustrate very effectively the white light scattered by large
particles.

22.10 MOLECULAR SCATTERING

If a strong beam of sunlight is caused to traverse a pure liquid which has been care-
fully prepared to be as free as possible of all suspended particles of dust, etc., observa-
tion in a dark room will show that there is a small amount of bluish light scattered

* John Tyndall (1820-1893). British physicist, after 1867 superintendent of the Royal
Institution and colleague of Faraday. Tyndall was outstanding for his ability to
popularize and clarify physical discoveries.
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laterally from the beam. Although some of this light is still due to microscopic particles
in suspension, which seem to be almost impossible to eliminate entirely, a certain
amount appears to be attributable to the scattering by individual molecules of the
liquid. At first sight it is surprising to find that the scattering from liquids is so feeble,
in view of the large concentration of molecules present. It is, in fact, much weaker
than the scattering from the same number of molecules of a gas. In the latter, the
molecules are randomly distributed in space, and in any direction except the forward
one the waves.scattered by different molecules have perfectly random phases. Thus
for Nmolecules the resultant intensity is just N times that scattered from any individual
one (see Sec. 12.4). In a liquid, and even more so in a solid, the spatial distribution
has a certain degree of regularity. Furthermore, the forces between molecules act
to destroy the independence of phases (Sec. 22.8). The result is that the scattering
from liquids and solids in directions other than forward is very weak indeed. The
forward-scattered waves are strong and play an essential part in determining the
velocity of light in the medium, as we shall see in the following chapter.

Lateral scattering from gases is also weak, but here the weakness is due to the
relatively smaller number of scattering centers. When a great thickness of gas is
available, however, as in our atmosphere, the scattered light is easily observed. It
has been shown by Rayleigh that practically all the light that we see in a clear sky
is due to scattering by the molecules of air. If it were not for our atmosphere, the
sky would look perfectly black. Actually, molecular scattering causes a considerable
amount of light to reach the observer in directions making an angle with that of the
direct sunlight, and thus the sky appears bright. Its blue color is the result of the greater
scattering of short waves. Rayleigh measured the relative amount of light of different
wavelengths in sky light and found rather close agreement with the 1/).,4 law. The
same phenomenon is responsible for the red color of the sun and surrounding sky
at sunset. In this case, the scattering removes the blue rays from the direct beam
more effectively than the red, and the very great thickness of the atmosphere traversed
gives the transmitted light its intense red hue. An experiment demonstrating both
the blue of the sky and the red of the sun at sunset is described in Sec. 24.15 and 24.16.

22.11 RAMAN* EFFECT

This is a scattering with change of wavelength somewhat similar to fluorescence.
It differs from fluorescence, however, in two important respects. In the first place,
the light which is incident on the scattering material must have a wavelength that
does not correspond to one of the absorption lines or bands of the material. Other-
wise we obtain fluorescence, as in the experiment of Sec. 22.5, where the green line
of mercury is absorbed by the iodine vapor. In the second place, the intensity of the
light scattered in the Raman effect is much less intense than most fluorescent light.
For this reason the Raman effect is rather difficult to detect, and observations must
usually be made by photography.

• c.V. Raman (1888-1971). Professor at the University of Calcutta. He was awarded
the Nobel prize in 1930for his work on scattering and for the discovery of the effect
that bears his name.
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The apparatus illustrated in Fig. 22C is well adapted to observations of the
Raman effect.* For this purpose, a liquid or gas which is transparent to the incident
light must be used in the tube C. It is convenient to fill tube B with a saturated solu-
tion of sodium nitrite, since this absorbs the ultraviolet lines of the mercury arc but
transmits the blue-violet line A,4358 with great intensity. Figure 22D(e) shows the
Raman spectrum of CCI4• It will be seen that the same pattern of Raman lines is
excited by each of the strong mercury lines. Figure 22D(d) illustrates the Raman
spectrum of gaseous hydrogen, showing two sets of lines on the side toward the red
of the exciting line, which in this case was A,2536. Occasionally still fainter lines are
seen on the violet side, two of which are visible in (d) and three in (e). This is also
sometimes observed in the case of fluorescence. Since the modified light in these lines
has a shorter wavelength than the incident light, they represent a violation of Stokes'
law (Sec. 22.6) and are called anti-Stokes lines.

22.12 THEORY OF SCATTERING

When an electromagnetic wave passes over a small elastically bound charged particle,
the particle will be set into motion by the electric field E. In Sec. 22.8 we considered
the case where the frequency of the wave was equal to the natural frequency of free
vibration of the particle. We then obtain resonance and fluorescence under certain
conditions, and selective reflection under others. In both cases there may exist a
considerable amount of absorption. Scattering, on the other hand, takes place for
frequencies not corresponding to the natural frequencies of the particles. The resulting
motion of the particles is then one of forced vibration. If the particle is bound by a
force obeying Hooke's law, this vibration will have the same frequency and direction
as that of the electric force in the wave. Its amplitude, however, will be very much
smaller than that which would be produced by resonance. Hence the amplitude
of the scattered wave will be much less, and this accounts for the relative faintness
of molecular scattering. The phase of the forced vibration will differ from that of
the incident wave, and this fact is responsible for the difference of the velocity of light
in the medium from that in free space. Thus scattering forms the basis of dispersion,
which is to be discussed in the following chapter.

The electromagnetic theory is also capable of giving a qualitative picture of the
changes of wavelength which occur in the Raman effect and in fluorescence. If the
charged oscillator is bound by a force which does not obey Hooke's law, but some
more complicated law, it will be capable of reradiating not only the impressed fre-
quency but also various combinations of this frequency with the fundamental and
overtone frequencies of the oscillator. For the complete explanation of these phe-
nomena, however, the electromagnetic theory alone is not adequate. It cannot ex-
plain the actual magnitudes of the changes in frequency nor the fact that these are
predominantly toward lower frequencies. For this, the quantum theory is required.

Rayleigh scattering yields a characteristic distribution of intensity in different

• For a description of the most efficient ways of observing Raman spectra, see G. R.
Harrison, R. C. Lord, and J. R. Loofbourow, "Practical Spectroscopy," Prentice-
Hall, Inc., Englewood Cliffs, N.J., 1948.
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FIGURE 22H
Geometry of scattering by a thin lamina.

directions with respect to that of the primary beam. The scattered light is also strongly
polarized. These features are in general agreement with the predictions of the electro-
magnetic theory. We shall not discuss them, however, until we have taken up the
subject of polarization (see Sec. 24.17).

22.13 SCATTERING AND REFRACTIVE INDEX

The fact that the velocity of light in matter differs from that in vacuum is a consequence
of scattering. The individual molecules scatter a certain part of the light falling on
them, and the resulting scattered waves interfere with the primary wave, bringing
about a change of phase which is equivalent to an alteration of the wave velocity.
This process will be discussed in more detail in the chapter which follows, but here
some simplified considerations may be used to show the connection between scatter-
ing and refractive index.

In Fig. 22H plane waves are shown striking an infinitely wide sheet of a trans-
parent material, the thickness of which is small compared to the wavelength. Let the
electric vector in this incident wave have unit amplitude, so that in the exponential
notation (Sec. 14.8) it may be represented at a particular time by E = elk>:. If the
fraction of the wave that is scattered is small, the disturbance reaching some point P
will be essentially the original wave, plus a small contribution due to the light scattered
by all the atoms in the thin lamina. To evaluate the latter, we note that its intensity
is proportional to the coefficient IX. ofEq. (22b). This measures the fractional decrease
of intensity by scattering in traversing the small thickness t, to which the scattered
intensity must be proportional. We therefore have

dI
--=lXt~l (22c)
I • •

The intensity scattered by a single atom, since there are Nt atoms per unit area of the
lamina, becomes

I ...,lXi _ IX.
1 ...,---

Nt N
and the amplitude
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These relations hold if the scattered waves from the different centers are non-
coherent, as is true for the smoke particles discussed in Sec. 22.2. The present case
of Rayleigh scattering in the forward direction must be taken as coherent, however,
so that all waves leave the scatterer in phase with each other. Then we must add
amplitudes instead of intensities, and the total scattered amplitude

Es ~ Nt J~= tJrt.sN

The complex amplitude at P is obtained by integrating this quantity over the surface
of the lamina, and adding it to the amplitude of the primary wave. The resultant
then becomes

E + E = elkRo + tJ!X N roo 2nr dr e1kR
s s Jo R

where the factor IfR enters because of the inverse-square law. Now since R2 =
R02 + r2, we have r dr = R dR, and the integral may be written

roo 2n e1kRr dr = 2n fOO e1kRdR = ~n [e1kR]R'oJo R Ro Ik

Since the wave trains always have a finite length, the scattering as R --. 00 can con-
tribute nothing to the coherent wave. Substituting the lower limit of the integral,
we find

(22d)and finally

E + E = elkRo - t Jrt. N ~ elkRos s •
I

= elkRo + t"; rt.sN iAelkRo

= e1kR0(l + iAt ..; !XsN)
By our original assumption, the second term in parentheses is small compared with
the first. These will be recognized as the first two terms in the expansion of eW.;;;N,
and may here be equated to it, giving

E + Es = exp ikRo exp (iAtJ !XsN) = exp [i(kRo + AtJ !XsN)]

Thus the phase of the wave at P has been altered by the amount At"; !XsN. But
we know (Sec. 13.15) that the presence of a lamina of thickness 1 and refractive
index n gives a phase retardation of (2nfA)(n - 1)1. Hence

r-;; 2n
At"!XsN = - (n - I)t

A
A2..;-n-I=- !XN2n s

This important relation contains Rayleigh's law of scattering (Sec. 22.9). Since,
by Eq. (22c), Is is proportional to !XS' this scattered intensity varies as IfA\ assuming
n to be independent of wavelength. In our derivation no absorption has been con-
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sidered, so that the equation is valid only for wavelengths well away from any absorp-
tion bands. In the next chapter we shall see how the refractive index behaves as the
wavelength approaches that of an absorption band.

PROBLEMS
22.1 A glass tube 3.50 m long contains a gas at normal atmospheric pressure. If the gas

under these conditions has an absorption coefficient of 0.1650 m-t, find the relative
intensity of transmitted light. Ans. 0.561, or 56.1%

22.2 A hollow glass tube 35.0 cm long with end windows contains tiny smoke particles that
produce Rayleigh scattering. Under these conditions it transmits 65.0 percent of the
light. After precipitation of the smoke particles it transmits 88.0 percent of the light.
Calculate the value of (a) the scattering coefficient and (b) the absorption coefficient.

22.3 A solid plastic rod 60.0 cm long transmits 85.0 percent of the light entering it at one
end. When it is subjected to a strong beam of radiation, tiny particles are produced
in it that give rise to Rayleigh scattering. Under these modified conditions the rod
transmits 55.0 percent of the light. Calculate (a) the absorption coefficient and (b) the
scattering coefficient.

22.4 A certain plastic rod 40.0 cm long has an absorption coefficient of 0.00429 cm-1• If
50.0 percent of the light entering the end of this tube is transmitted, find (a) the scatter-
ing coefficient and (b) the total coefficient.

Ans. (a) 0.01304 cm-1, (b) 0.01733 cm-1
22.5 According to the data given in this chapter, are the residual rays of (a) rubidium

chloride transmitted by rock salt (NaCI) and (b) sodium chloride transmitted by
quartz?

22.6 The residual rays after five reflections from a certain type of crystal are 4.25 x 106
times more intense than radiation of adjacent wavelengths. Assuming the reflectance
at the latter wavelengths to be 4.250 percent, what must be the reflectance at the center
of the absorption band?

22.7 Calculate the ratio of the intensities of Rayleigh scattering for the two mercury lines,
A = 2536 A in the ultraviolet region of the spectrum and A = 4916 A in the blue-green
of the visible region. Ans. 14.123

22.8 Photographers know that an orange filter will cut out the bluish haze of scattered light
and give better contrast in a landscape photograph. Assuming the spectral composition
shown in Fig. 220, what fraction of the scattered light is removed by a filter that
absorbs the light below 5500 A? The transmission of the camera lens and the film
sensitivity limit the normal spectral range of the camera from 3900 from 6200 A.
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DISPERSION

The subject of dispersion concerns the speed of light in material substances and its
variation with wavelength. Since the speed is c/n, any change in refractive index n
entails a corresponding change of speed. We have seen in Sec. 1.4 that the disper-
sion of color which occurs upon refraction at a boundary between two different
substances is direct evidence of the dependence of the n's on wavelength. In fact,
measurements of the deviations of several spectral lines by a prism furnish the most
accurate means of determining the refractive index, and hence the speed, as a function
of wavelength.

23.1 DISPERSION OF A PRISM

When a ray traverses a prism, as shown in Fig. 23A, we can measure with a spectrom-
eter the angles of emergence (J of the various wavelengths. The rate of change,
dO/d)" is called the angular dispersion of the prism. It can be conveniently represented
as the product of two factors, by writing

dO dO dn
- = -- (23a)
d)" tin d)"
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FIGURE 23A
Refraction by a prism at minimum
deviation.

The first factor can be evaluated by geometrical considerations alone, while the second
is a characteristic property of the prism material, usually referred to simply as its
dispersion. Before considering the latter quantity, let us evaluate the geometrical
factor d()/dn for a prism, in the special case of minimum deviation.

For a given angle of incidence on the second face of the prism, we differentiate
Snell's law of refraction n = sin ()/sin 4J, regarding sin 4J as a constant, and obtain

d() sin 4J-=--
dn cos ()

This is not, however, the value to be used in Eq. (23a), which requires the rate of
change of ()for a fixed direction of the rays incident on the first face. Because of the
symmetry in the case of minimum deviation, it is obvious that equal deviations occur
at the two faces, so that the total rate of change will be just twice the above value.
We then have

d() 2 sin 4J 2 sin (a./2)-=---=----
dn cos () cos ()

where IX is the refracting angle of the prism. The result becomes still simpler when
expressed in terms of lengths rather than angles. Designating by s, B, and b the
lengths shown in Fig. 23A, we write

d() = 2s sin (a./2) = .~ (23b)
dn scos() b

Hence the required geometrical factor is just the ratio of the base of the prism to the
linear aperture of the emergent beam, a quantity not far different from unity. The
angular dispersion becomes

• d() B dn-=--
dl b dl

(23c)

In connection with this equation, it is to be noted that the equation for the chromatic
resolving power [Eq. (lSj)] follows very simply from it upon the substitution of
lfb for d().

23.2 NORMAL DISPERSION

In considering the second factor in Eq. (23a), let us start by reviewing some of the
known facts about the variation of n with l. Measurements for some typical kinds
of glass give the results shown in Tables 23A and 23B. If any set of values of n is
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plotted against wavelength, a curve like one of those in Fig. 23B is obtained. The
curves found for prisms of different optical materials will differ in detail but will all
have the same general shape. These curves are representative of normal dispersion,
for which the following important facts are to be noted:

1 The index of refraction increases as the wavelength decreases.
2 The rate of increase becomes greater at shorter wavelengths.
3 For different substances the curve at a given wavelength is usually steeper the

larger the index of refraction.
4 The curve for one substance cannot in general be obtained from that for another

substance by a mere change in the scale of the ordinates.

The first of these facts agrees with the common observation that in refraction
by a transparent substance the violet is more deviated than the red. The second fact
can also be expressed by saying that the dispersion increases with decreasing wave-
length. This follows because the dispersion dnJd)"is the slope of the curve (its negative

Table 23A REFRACTIVE INDEX FOR SEVERAL TRANSPARENT SOLIDS

Color wavelength .t, A
Violet Blue Green Yel10w Orange Red

Substance 4100 4700 5500 5800 6100 6600
Crown glass 1.5380 1.5310 1.5260 1.5225 1.5216 1.5200
Light flint 1.6040 1.5960 1.5910 1.5875 1.5867 1.5850
Dense flint 1.6980 1.6836 1.6738 1.6670 1.6650 1.6620
Quartz 1.5570 1.5510 1.5468 1.5438 1.5432 1.5420
Diamond 2.4580 2.4439 2.4260 2.4172 2.4150 2.4100
Ice 1.3170 1.3136 1.3110 1.3087 1.3080 1.3060
Strontium titanate (SrTi03) 2.6310 2.5106 2.4360 2.4170 2.3977 2.3740
Rutile (Ti02), E ray 3.3408 3.1031 2.9529 2.9180 2.8894 2.8535

Table 23B REFRACTIVE INDICES AND DISPERSIONS FOR SEVERAL COMMON
TYPES OF OPTICAL GLASS
Unit of dispersion ItA x 10-5

Telescope crown Borosilicate crown Barium flint Vitreous quartz
Wavelength dn dn dn dn
.t,A n - d.t n - d.t n - d.t n - d.t

C 6563 1.52441 0.35 1.50883 0.31 1.58848 0.38 1.45640 0.27
6439 1.52490 0.36 1.50917 0.32 1.58896 0.39 1.45674 0.28

D 5890 1.52704 0.43 1.51124 0.41 1.59144 0.50 1.45845 0.35
5338 1.52989 0.58 1.51386 0.55 1.59463 0.68 1.46067 0.45
5086 1.53146 0.66 1.51534 0.63 1.59644 0.78 1.46191 0.52

F 4861 1.53303 0.78 1.51690 0.72 1.59825 0.89 1.46318 0.60
G' 4340 1.53790 1.12 1.52136 1.00 1.60367 1.23 1.46690 0.84
H 3988 1.54245 1.39 1.52546 1.26 1.60870 1.72 1.47030 1.12
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FIGURE 23B
Dispersion curves for several different materials commonly used for lenses and
prisms.

sign is usually disregarded), which increases regularly toward smaller A,. An important
consequence of this behavior of the dispersion is that in the spectrum formed by a
prism the violet end of the spectrum is spread out on a much larger scale than the red
end. The spectrum is therefore far from being a normal spectrum (Sec. 17.6). This
will be clear from Fig. 23C, in which the spectrum of helium is shown diagrammatically
as given by flint- and crown-glass prisms and by a grating used under the proper
conditions to give a normal spectrum. In the prism spectra the wavelength scale is
compressed toward the red end, as can be seen by comparison with the uniform scale
of the normal spectrum.'

The third fact stated above requires that for a substance of higher index of
refraction, the dispersion dnfdA, shall also be greater. Thus, comparing (a) and (b)
in Fig. 23C, the flint glass has the higher index of refraction and gives a longer spec-
trum because of its greater dispersion. To compare the relative spacing of the lines
in (b) with those in (a), the spectrum from crown glass has been enlarged, in (c),
to have the same overall length between the two lines A,3888 and A,6678. When this is
done, it is seen that there is not complete agreement with the lines of (a). In fact,
the spectra from prisms of different substances will never agree exactly in the relative
spacing of their spectrum lines. This is a consequence of the fourth of the above facts,
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FIGURE 23C
Comparison of the helium spectrum produced by flint-glass and crown-glass
prism spectrographs with a normal spectrum.

according to which the shape of the dispersion curve is different for every substance.
The curve for flint glass in Fig. 23B has a greater slope at the violet end, relative to
that in the red, than does the curve for crown glass. Consequently, the dispersion of
different substances is said to be irrational, since there is no simple relation between
the different curves.

All transparent substances which are not colored show normal dispersion in the
visible region. The magnitude of the index of refraction may be quite different in
various substances, but its change with wavelength always shows the characteristics
described above. In general, the greater the density of the substance the higher its
index of refraction and its dispersion. For example, flint glass has a density around
2.8, considerably higher than 2.4 for ordinary crown glass. Water has a smaller n
and dn/dA., while in a very light substance like air n is practically unity and dn/dA
very nearly zero. For air n = 1.000276 for red light (Fraunhofer's C line), rising
to only 1.000279 for blue light (F line). This rule relating density to index of refrac-
tion is only a qualitative one, and many exceptions are known. For instance, ether
has a higher index than water (1.36 as compared with 1.33), yet it is less dense, as is
shown by the fact that ether floats on the surface of water. Similarly, the correlation
of high dispersion with high index is only rough, and there are exceptions to the third
rule listed above. Diamond has a density of 3.52 and one of the highest known indices
of refraction, varying from 2.4100 for the C line to 2.4354for the F line. The difference
in these values, which is a measure of the dispersion, is only 0.0254, whereas a dense
flint glass may give as much as 0.05 for the same quantity.
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23.3 CAUCHY'S EQUATION

The first successful attempt to represent the curve of normal dispersion by an equation
was made by Cauchy in 1836. His equation may be written

B Cn=A+-+-
A.2 A.4

where A, B, and C are constants which are characteristic of anyone substance. This
equation represents the curves in the visible region, such as those shown in Fig. 23B,
with considerable accuracy. To find the values of the three constants, it is necessary
to know values of n for three different A.'s. Then three equations may be set up which,
when solved as simultaneous equations, give A, B, and C. For some purposes it is
sufficiently accurate to include only the first two terms and the two constants can
be found from values of n at only two A.'s. The two-constant Cauchy equation is,
then,

• Bn=A+-
A.2

(23d)

from which the dispersion becomes, by differentiation

• dn
-=
dA.

2B
- A.3 (23e)

This shows that the dispersion varies approximately as the inverse cube of the wave-
length. At 4000A it will be about 8 times as large as at 8oooA. The minus sign corres-
ponds to the usual negative slope of the dispersion curve.

The theoretical reasoning on which Cauchy based his equation was later shown
to be false, so that it is to be considered essentially as an empirical equation. Never-
theless it holds very satisfactorily for cases of normal dispersion and is a useful
equation from a practical standpoint. We shall show later that it is a special case
of a more complete equation which does have a sound theoretical foundation.

23.4 ANOMALOUS DISPERSION

If measurements of the index of refraction of a transparent substance like quartz
are extended into the infrared region of the spectrum, the dispersion curve begins
to show marked deviations from the Cauchy equation. The deviation is always of the
type illustrated in Fig. 23D, where, starting at the point R, the index of refraction is
seen to fall off more rapidly than required by a Cauchy equation that represents
the values of n for visible light (between P and Q) quite accurately. This equation
predicts a very gradual decrease of n for large values of A. (broken curve), the index
approaching the limiting value A as A. approaches infinity [Eq. (23d)]. In contrast
to this, the measured value of n first decreases more and more rapidly as it approaches
a region in the infrared where light ceases to be transmitted at all. This is an absorp-
tion band (Sec. 22.3), i.e., a region of selective absorption, the position of which is
characteristic of the material. Within the absorption band, n cannot usually be meas-
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FIGURE 230
Anomalous dispersion of a transparent substance like quartz in the infrared.

ured because the substance will not transmit radiation of this wavelength. On the
long-wavelength side of the absorption band the index is found to be very high,
decreasing at first rapidly and then more slowly as we go farther beyond the absorption
band. Over the range from S to T, the Cauchy equation will again represent the data,
but with different constants. In particular, the constant A will be larger.

The existence of a large discontinuity in the dispersion curve as it crosses an
absorption band gives rise to anomalous dispersion. The dispersion is anomalous
because in this neighborhood the longer wavelengths have a higher value of nand
are more refracted than the shorter ones. The phenomenon was discovered with
certain substances, such as the dye fuchsin and iodine vapor, whose absorption bands
fall in the visible region. A prism formed of such a substance will deviate the red
rays more than the violet, giving a spectrum which is very different from that formed
by a substance having normal dispersion. When it was later discovered that trans-
parent substances like glass and quartz possess regions of selective absorption in the
infrared and ultraviolet, and therefore show anomalous dispersion in these regions,
the term "anomalous" was seen to be inappropriate. No substance exists which does
not have selective absorption at some wavelengths, and hence the phenomenon,
far from being anomalous, is perfectly general. The so-called normal dispersion is
found only when we observe those wavelengths which lie between two absorption
bands, and fairly far removed from them. Nevertheless, the term "anomalous dis-
persion" has been retained, although it has little more than historical significance.

A very striking experiment showing the anomalous dispersion of sodium vapor
in the neighborhood of the yellow D lines was devised by R. W. Wood in 1904.
White light when passed through sodium vapor undergoes strong selective absorption
at these lines, which form a close doublet of wavelengths 5890 and 5896A. At wave-
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FIGURE 23E
Experimental arrangement for observing the anomalous dispersion of sodium
vapor.

lengths far removed from these values, the index of refraction is only very slightly
greater than unity, as we expect for a gas. With sodium vapor of appreciable density,
the index of refraction in the neighborhood of the D lines passes through a region of
anomalous dispersion (strictly speaking, two regions very close together) of the type
shown in Fig. 23D. As the D lines are approached from the side of shorter wave-
lengths, n begins to decrease rapidly, becoming much less than unity as we get very
close to them. On the other side, it is at first very high, dropping off rapidly toward
unity as A. increases further.

To show this in a direct way, Wood made use of the fact that we can produce
the equivalent of a prism of sodium vapor by vaporizing the metal in a partially
evacuated tube if the tube is heated from the bottom. The arrangement is shown in
Fig. 23E. A number of lumps of metallic sodium are placed along the bottom of a
steel tube provided with water-cooled glass windows at the ends and an outlet for
pumping. White light from a narrow horizontal slit SI is rendered parallel by the
lens L1 and after passing through the tube, forms a horizontal image Sf on the vertical
slit S3 of an ordinary prism spectroscope. When the sodium tube is cold, SI will be
a sharp, white image, illuminating one point of the spectroscope slit, and this will be
spread out into a narrow horizontal continuous spectrum in the focal plane of the
spectroscope camera. If the tube is evacuated to about 2 cm pressure and the sodium
is heated by the row of gas burners, it will vaporize slowly, the vapor diffusing up-
ward through the residual gas in the tube. A density gradient is set up, the vapor
being densest at the bottom and rarest at the top of the tube. This is equivalent to a
prism of vapor, the refracting edge of the prism being perpendicular to the plane of the
figure and its thickness increasing downward. This prism will form an anomalous
spectrum on S3, in which the wavelengths shorter than the yellow, i.e., on the green
side, are deviated upward ,since their n is less than 1, and the longer ones (on the orange
side) will be deviated downward. As a result, we might expect to observe in the spec-
troscope that the spectrum is deviated upward on the green side of the D lines and
downward on the red side. (The directions are actually reversed because the spectro-)
scope inverts the image of the slit.) Three actual photographs of the resulting spectra
with different densities of the vapor are shown in Fig. 23F. As a consequence of the
inversion mentioned above, the photographs form qualitatively a plot of n against
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FIGURE 23F
Anomalous dispersion of sodium vapor
at three different gas densities. (Courtesy
o/Corio.)

A., as in Fig. 230. In the practical performance of this experiment, several refinements
are desirable, of which an important one is the introduction of an auxiliary dia-
phragm S2 to select that portion of the vapor where the density gradient is most
uniform .•

23.S SELLMEIER'S EQUATION

We have seen that the Cauchy equation is not capable of representing the dispersion
curve in a region of anomalous dispersion. The first success in deriving a formula
of more general applicability was obtained by postulating a mechanism by which the
medium could affect the velocity of the light wave. It was assumed that the medium
contains particles bound by elastic forces, so that they are capable of vibrating with
a certain definite frequency vo. This is the so-called natural frequency, i.e., one with
which the particles will vibrate in the absence of any periodic force, and is identical
with the natural frequency mentioned in Sec. 22.8 in connection with absorption and
selective reflection. Passage of the light waves through the medium is then assumed
to exert a periodic force on the particles, which causes them to vibrate. If the fre-
quency v of the light wave does not agree with vo, the vibrations will be forced vibra-
tions of relatively small amplitude and of frequency v. As the frequency of the light

* Further details of the experimental procedure will be found in R. W. Wood,
"Physical Optics," 3d ed., pp. 492-496, The Macmillan Company, New York, 1934;
reprinted (paperback) Dover Publications, Inc., New York, 1968.
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approaches vo, the response of the particles will be greater and a very large amplitude
will be built up by resonance when v = Vo exactly. These vibrations will in tum
react upon the light wave and alter its velocity. A mathematical investigation of this
mechanism was made in 1871 by Sellmeier, who obtained the equation

AA,z
• nZ = 1 + --- (23f)

A,z - AoZ

This equation contains two constants, A and AO' the latter being related to the natural
frequency of the particles by the equation voAo = c. Hence Ao is the wavelength in
vacuum corresponding to Vo' To allow for the possibility of the existence of several
different natural frequencies, the equation can be written with a series of terms,

Z Z ,Z
Z AoA AlA LAlli.n =1+ Z z+ Z 'z+ ... =I+ Z Z

A - AO A - Al I A - AI

in which AO, All •• , correspond to the possIble natural frequencies. The constants
A I are proportional to the number of oscillators capable of vibrating with these
frequencies.

Figure 23G is a plot of n against A according to Eq. (23g), asuming two natural
frequencies. As A approaches Ao or All n goes to - 00 or + 00 on the short-wave-
length or long-wavelength side, since the denominator of one of the terms in Eq. (23g)
goes to zero. Other important characteristics of the curve to be noted are that n
approaches unity as A approaches zero, and that at A = 00, nZ takes the value 1+ ~AI'

I

Sellmeier's equation represents a great improvement over that of Cauchy and
is in fact identical with that derived from the electromagnetic theory with certain
simplifying assumptions [see Eq. (23i)]. Not only does it take account of anomalous
dispersion, but it also gives a more accurate representation of n in regions far from
absorption bands than a Cauchy equation with the same number of constants. That
Cauchy's equation is an approximation to Sellmeier's can be seen by writing Eq. (23f)
in the form

On expanding by the binomial theorem, we find

Z (AO
Z

A0
4

)n =1+A 1+~+}:4+'"

For that part of the dispersion curve where A. is considerably greater than A.o, the higher
powers of Ao/ A will be small and may be neglected. This gives

A ZnZ = 1 + A + A ;z
Writing M for 1 + A and N for AA.oz, we have

Expanding again gives
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FIGURE 23G
Theoretical dispersion curves given by Sellmeier's equation for a medium having
two natural frequencies.

and neglecting higher powers of 1/)..leads to
Q Rn=P+-+-
)..2 )..4

This is Cauchy's equation as given in Sec. 23.3.
An instructive experiment to illustrate the origin of dispersion can be performed

with a simple pendulum, to the bob of which is attached a light rubber band. If the
end of the rubber band is held in the hand and moved to and fro, a periodic force is
exerted on the pendulum similar to the action of the light wave on one of the oscil-
lators in the medium. If the frequency motion of the hand is very high compared
to the natural frequency of the pendulum, the bob will remain practically motionless.
This corresponds to a wave of high frequency and short wavelength, the velocity of
which is practically uninfluenced by the presence of the oscillators. In Fig. 23G
it will be seen that n approaches unity as )..approaches zero, so the velocity becomes
the same as in free space.

If, now, the hand is moved with a frequency only slightly greater than that of
the pendulum, it will be found that the pendulum swings 1800 out of phase with the
motion of the hand. Under these conditions, the rubber band is considerably stretched
when the displacements of the hand and bob are in opposite directions and so exerts
its maximum force on the hand, tending to pull it back to the central position. This
corresponds to an increased restoring force on the "ether" which propagates the wave,
and hence to an increase in the velocity of the wave. Thus in Fig. 23G, n becomes
considerably less than 1 at a wavelength slightly less than .10' Finally when the fre-
quency of motion of the hand is made less than the natural frequency, the pendulum
will follow the hand, practically in phase with it. In this case the rubber band exerts
only small forces on the hand, since the displacements of the pendulum are in the
same direction. The forces are less than if the pendulum were at rest, so this corre-
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sponds to a decreased restoring force on the ether. The velocity of the wave is therefore
decreased and n is greater than 1 on the long-wavelength side of Ao.

The large discontinuity in the dispersion curve at Ao is thus seento be a con-
sequence of the abrupt change of phase by 1800 of the oscillator relative to the im-
pressed vibration as the latter passes through resonance frequency. This effect can
be demonstrated directly by hanging three pendulums side by side from a horizontal
rod clamped at one end. The center pendulum is a heavy one and corresponds to the
ether wave while the other two are very light, one being slightly longer and the other
slightly shorter than the heavy pendulum. When the center pendulum is set swinging,
the two light ones will swing in opposite phases, the shorter one nearly agreeing in
phase with the impressed vibration.

23.6 EFFECT OF ABSORPTION ON DISPERSION
<"

Although Sellmeier's equation represents the dispersion curve very successfully in
regions not too close to absorption bands, it fails completely at those wavelengths
where the medium has appreciable absorption, This can be seen directly from the
fact that the curve of Fig. 23G goes to infinity:on either side of each AI' Not only is
this physically impossible, but the form of the curve near AI does not agree with ex-
periment. It has been possible to measure the dispersion curve right through an
absorption band, although this is a difficult matter because practically all the light is
absorbed. By using prisms of very small refracting angle, or thin films of the material
with a Michelson interferometer (Sec. 13.15), the indices of refraction of a few dyes,
such as cyanine, which have an absorption band in the visible, have been carefully
measured. The resulting curve resembles one of those shown by a heavy solid line
in Fig. 23H. The true form of the curve in the neighborhood of AI is seen to be very
different from that required by Sellmeier's equation.

This discrepancy was first shown by Helmholtz* to be due to the fact that
Sellmeier's equation takes no account of the absorption of energy of the wave. In
the above discussion, and in the suggested mechanical analogy, it was assumed that
the oscillator does not experience any frictional resistance to its vibration. Such a
resistance is necessary if energy is to be taken continuously from the wave by the
oscillator. Helmholtz assumed a frictional force directly proportional to the velocity
of the oscillator, and he therefore derived an equation for the index of refraction which
takes account of absorption. As a measure df the strength of the absorption, we
could use the absorption coefficient IX defined in Eq. (llzd), but the equations are sim-
pler when expressed in terms of a constant "0' which is related to IX as follows:

IXA"0 = - (23h)
41l

Here A is the wavelength measured in vacuum. The physical significance of "0 is
best expressed by the fact that the intensity falls to 1/e4,"co of its initial value in going

• H. L. F. von Helmholtz (1821-1894). German physicist who contributed in almost
every field of science. His work in physiological optics alone, or in sound, would
have made him famous. He is regarded as one of the discoverers of the law of
conservation of energy.
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FIGURE 23H
Ideal dispersion curves for an oscillator with different amounts of friction and
absorption: (0) strong absorption, strong friction; (b) strong absorption, weak
friction; (c) weak absorption, strong friction; (d) weak absorption, weak
friction.

(23i)

the distance A through the medium. The dispersion equations resulting from this
purely mechanical theory of Helmholtz may be written

2 2 1 '" AIA
2

n - Ko = + ~ (A2 _ Ai2) + giA2/(A2 _ Ai2)

2 L AIJ"i. A3
nK - -------o - (A2 _ A/)2 + glA2

The constant 91 is a measure of the strength of the frictional force. These equations
should now hold for all wavelengths, including those within an absorption band.
In regions far from absorption bands, Ko and 9, are both essentially zero, and the first
of the equations reduces to Sellmeier's equation (23g). Figure 23H(a) is a plot of n
and of nKo, the latter of which by Eq. (23h) is a measure of the absorption coefficient
ex, for a case of large friction (9 = 1.96 x 10- 3). It shows quantitatively the course of
dispersion and absorption curves through a region of absorption with a maximum
at Ai = 0.1732 p.m. It will be seen that n no longer goes to infinity, as in Fig. 23G,
but remains finite at A = A.I' The other curves of Fig. 23H are drawn to show the
effects of changing both the strength of the absorption and the frictional damping.
The former is determined by the total number of oscillators causing the absorption,
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while the latter depends on the magnitude of the various effects responsible for the
breadth of spectral lines. It should be noted in (b) and (cl) that the maxima and minima
of the refractive-index curves corne exactly at the points where the absorption is
half its maximum value.

The pendulum experiments described above may be modified to include the
effect of frictional damping and to give some insight into the physical reason for the
resulting change in the form of the dispersion curve. Thus if the smaller pendulum,
which represents the oscillator, has a wire attached to it which dips in water or oil,
we have the desired condition. Two important changes in the response of the pendulum
to the impressed vibrations will now be apparent. In the first place, the amplitude
will not become nearly as large when the impressed frequency is exactly equal to the
natural frequency of the penduium. With no friction, the amplitude produced by
resonance is theoretically infinite (in the final equilibrium state), and the corresponding
value of n goes to infinity also. The effect of friction, however, limits this maximum
amplitude, and this accounts for the fact that only moderate variations of n are
actually observed. In the second place, the change of relative phase between the
pendulum and the impressed vibrations when the latter pass through the natural
frequency is no longer abrupt but takes place more or less gradually. This accounts
for the fact that there is no longer a sharp discontinuity in the dispersion curve,
which is rounded off into a continuous curve. The phase change becomes more and
more gradual as the friction is made greater, for instance by dipping the wire farther
into the water or by using a more viscous liquid.

23.7 WAVE AND GROUP VELOCITY IN THE MEDIUM

In the curves of Figs. 23G and 23H, the abscissas are wavelengths in vacuum A = cfv
and the ordinates are the ordinary indices of refraction n = cfv, where v is the wave
velocity in the medium. For those part of the curve where n < 1, the wave velocity
is greater than the velocity c of light in vacuum. This is at first sight a contradiction
to one of the fundamental results of the theory of relativity, according to which c is
the highest attainable velocity. There is actually no contradiction here, however, since
relativity applies to the velocity with which energy (a light signal) is transmitted, and
this is always less than c. Remembering that the energy travels with the group velocity
u, we require that it is cfu that shall be greater than unity, rather than cfv. Now u
and v are related by Eq. (l2p), which may be transformed (see Prob. 23.8) to read

c dn• - = n - A - (23j)
u dA

where A is the wavelength in vacuum. Thus the geometrical construction of Sec.
12.8 may also be applied to refractive indices.. If in Fig. 23H(a) we draw a tangent
to the dispersion curve, it will intersect the axis of n at a point Q whose ordinate is
cfu. That is, while the ordinate of P is n, or cfv, for that wavelength, the ordinate of
Q is the corresponding value of cfu for the same wavelength.

This geometrical construction shows, then, that for any point on the curve
where it is descending toward the right, the corresponding cfu is greater than unity,
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even though n itself may be less than unity. Therefore the group velocity is less than c,
and there is no violation of the principle of relativity. An exception to this statement
appears to occur in the region within the absorption band, where the curve slopes
up steeply to the right. However, in this region we have strong absorption, so that
the amplitude of the wave drops practically to zero in a fraction of a wavelength.
In this event, the wave velocity and group velocity no longer have any meaning, but
other considerations show that in this case also the relativity requirement is fulfilled.

23.8 THE COMPLETE DISPERSION CURVE OF A
SUBSTANCE

Although the curve of the refractive index against wavelength is different for every
different substance, the curves for all optical media, i.e., substances more or less
transparent in the visible region, possess certain general features in common. To
illustrate these, let us consider the schematic curve of Fig. 231, which represents the
variation of n from A = 0 to several kilometers for an ideal substance. Starting at
A = 0, the index of refraction is unity, as stated in Sec. 23.5. For the very short
waves (y rays and hard X rays), the index is slightly less than 1. Siegbahn* proved this
fact experimentally by refracting X rays through a prism. It was found that the beam
was deflected very slightly away from the base of the prism, as would be the case if
the waves travel faster in the prism than in air. It has also been demonstrated that
X rays can be totally reflected from a solid substance by using grazing incidence so
that the X rays strike the surface at an angle greater than the critical angle. This
property of X rays has been used by A. H. Comptont and others to measure the wave-
lengths of X rays by diffracting them from an ordinary ruled grating used at grazing
incidence.

The first absorption is encountered in the X-ray region at a wavelength depend-
ing upon the atomic weight of the heaviest element in the material. For silicon it
reaches its maximum at 6.731A, and for uranium at 0.1075A. This absorption rises
rapidly to a maximum, and then falls off sharply at the K-absorption limit of the ele-
ment. It gives rise to a relatively narrow region of strong anomalous dispersion,
marked K in Fig. 231. Beyond this will lie other absorption discontinuities of this
element, called L, M, . " limits, as well as the K, L, M, . .. limits of other elements
present. Therefore for any actual optical medium there will be many of these sharp
discontinuities. For simplicity only three are indicated in the figure.

From the X-ray region the curve descends more rapidly toward longer wave-
lengths, eventually reaching the broad region Ai of strong absorption and anomalous
dispersion in the ultraviolet (Sec. 22.3). For most substances this completely covers
the region between the soft X rays and the near ultraviolet. The descending course of

• Karl Manne Georg Siegbahn (1886-1965). Director of the Nobel Institute in
Stockholm, Sweden, and winner of the Nobel prize in 1924. He is noted for his fine
experimental techniques in the measurement of wavelengths of X rays.
t Arthur H. Compton (1892-1962). Professor of physics at the University of Chicago,
and afterward president of Washington University, St. Louis. He received the
Nobel prize in 1927, largely for his discovery of the Compton effect in X rays
(Sec. 33.2).
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FIGURE 231
Schematic diagram of a complete dispersion curve for a substance transparent to
the visible spectrum.

the curve in the visible region, characteristic" of normal dispersion, is seen to be
connected with the existence of this ultraviolet absorption. In general the curve will
have a steeper slope in the visible region, so that the dispersion dnld)" is greater, the
nearer this absorption band lies to the visible. Thus fluorite has a very small disper-
sion for visible light, quartz somewhat greater, and glass still greater (see Fig. 23B
and Table 22A). Dense flint glass, which gives the highest dispersion, frequently
has a yellowish color, owing to the fact that the absorption band encroaches slightly
on the violet end of the visible spectrum.

Somewhere in the near infrared, the curve begins to descend more steeply, and
runs into another absorption band at ),,2' The center of this band is at 8.5 p.m for
quartz, but the absorption begins to become strong at 4 or 5 p.m. Beyond this first
absorption band there usually exist one or more others. In passing each of these
bands, the index of refraction increases. Thus the index will be higher for certain
infrared wavelengths than for any part ofthe visible. For example, Rubens measured
values of n for quartz varying from 2.40 to 2.14 in the region)" = 51 to 63 p.m. An
interesting method of isolating radiation of very long wavelengths, called the method
of focal isolation, is based on this fact. Owing to the high value of n, a convex lens
will have a much smaller focal length for these long waves than for the shorter waves,
and the latter can be screened off with suitable diaphragms. In this way the longest
infrared rays ever measured were isolated by Nichols and Tear (Sec. 11.10).

At wavelengths beyond all the infrared bands, the index decreases slowly and
more or less uniformly through the region of radio waves, approaching a certain
limiting value for infinitely long waves. There are a few narrow regions of absorption
in the radio frequencies, but these are always weak. The limiting value will be shown
in the following section to be the square root of e, the ordinary dielectric constant of
the medium. .

23.9 THE ELECTROMAGNETIC EQUATIONS FOR
TRANSPARENT MEDIA

In Chap. 20 we stated Maxwell's equations as they apply to empty space, and we
showed how they predict electromagnetic waves of velocity c. It is now of interest
to investigate the characteristics and velocity of such waves in a material substance.
For the present we shall consider only nonconducting media, and the more difficult
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case of conductors will be taken up later in Chap. 25. When a steady electric field
acts upon a nonconducting dielectric, there is a small displacement of the bound
charges in the atoms, and we say they become polarized. The charges do not move
continuously along, as in a conductor, but are merely displaced through minute
distances and come to rest again in a fashion analogous to the stretching of a spring.
As a measure of this electric displacement we use the vector quantity D,* and since
in an isotropic medium it is proportional to the impressed electric field E, we may
write

D = 6E (23k)

(230)

(23m)

_!aHx = aEz _ aEy
c at ay az

_!aHy = aEx _ aEz

c at az ax
_!aHz = aEy _ aEx

c at ax ay

(231)

(23n)

~ aEz = aHy _ aHx

c at ax ay

6 (aEx + aEy + aEz) = 0
ax ay az

Here 6 is the dielectric constant. To apply Maxwell's equations to such a medium
it now becomes necessary to replace E by D wherever it occurs in the equations for
empty space [Eqs. (20a) to (20d)]. Hence Maxwell's equations for a nonconducting
isotropic medium are written:

~ aEx = aHz _ aHy
c at ay az

~ aEy = aHx _ aHz

c at az az

a2E c2 a2Ey
--y =---
at2 6 ax2

and

If we derive the equations for plane waves as done in Sec. 20.4, starting now with
Eqs. (231)and (23m), we find

a2B c2 a2B__ % = z

at2 6 ax2

Comparison with the general wave equation (II b) shows the new velocity to be
cj..fe. The index of refraction becomes

c rn = - = '0/6
V

(23p)

The solution of Eqs. (231)to (230) for monochromatic plane waves, analogous to
Eqs. (20n), is now to be written

Ey = A sin (wt - kx) Hz = .j; A sin (wt - kx)

and the magnitude of the electric and magnetic vectors at any instant is such that

Hz = .j; Ey

Therefore in the usual case 6 > 1 the amplitude of the magnetic wave is greater than
that of the electric wave in a ratio equal to the index of refraction [Eq. (23p)].

• Strictly speaking, D itself is not a direct measure of the displacement of the bound
charges. The polarization of the medium is usually written P, and D depends on P
by the relation D = E + 4nP.
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(23q)J = -.:....8£/ = ~ E 2= en A 2J~4n 4n y 8n

As before, the Ey in this equation represents the root-mean-square (rms) value of the
electric vector, since the flow of energy is averaged over a time long compared with
the period. The result may also be written eEyHz/4n. In this form it represents the
expression of a general law of electromagnetism known as Poynting's. theorem,
according to which the direction and magnitude of the energy flow are given by the
Poynting vector (e/4n) [E x H], the quantity in brackets being the vector product.

Equation (23p) gives very nearly correct values of n for gases, but when we at-
tempt to apply it to denser media, large deviations are found. Thus the dielectric
constant for water, measured by placing it between the plates of a condenser charged
to a steady potential, is 81, indicating a value of 9 for the index of refraction. For
sodium light, the measured index of water is 1.33. For various kinds of glass, e varies
from 4 to 9, which would require n to vary from 2 to 3. This again is higher than the
observed values for visible light.

We do not have to look far for the cause of this discrepancy. It lies in the fact
that the electric field of a light wave is not a steady field but a rapidly alternating one.
For yellow light the frequency is 5 x 1014S-I. If the dielectric constant of a substance
is measured using an alternating potential on the plates in place of a steady one, the
result is found to vary with the frequency. From this we see that the index of re-
fraction must also vary with frequency, or wavelength. As the wavelength becomes
very large and approaches infinity, the frequency approaches zero. The limiting
case of a steady field thus corresponds to zero frequency, and we are led to expect the
index of refraction to approach the square root of the dielectric constant for steady
fields. That this is in fact the case is shown by the measurements of the index of refrac-
tion of water for electromagnetic waves quoted in Table 23C. The value of ,J~
measured for a steady field is shown for comparison. Clearly the value of n approaches
exactly the predicted value for infinitely long waves.

The energy carried by electromagnetic waves in dielectric substances may be
found by applying the principles of Sec. 20.7, the only change being the replacement
of E by D. The instantaneous energy densities of the above electric and magnetic
waves becomes eEy2/8n and Hz 2/8n, and are therefore again equal. Their sum may
be written as.J; EyHz/4n, and when this is multiplied by v from Eq. (23p) to obtain
the intensity, one finds

23.10 THEOR Y OF DISPERSION
In order to explain the variation of n (and hence of ,J~)with A. by the electromagnetic
theory, one must take account of the molecular structure of matter. When an electro-
magnetic wave is incident on an atom or molecule, the periodic electric force of the
wave sets the bound charges into a vibratory motion having the frequency of the wave.

• 1. H. Poynting (1852-1914). Professor of physics at the University of Birmingham,
England. He is also known for his accurate work on the measurement of the
gravitational constant.
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The phase of this motion relative to that of the impressed electric force will depend
upon the impressed frequency, and will vary with the difference between the impressed
frequency and the natural frequency of the bound charges in the way discussed in
Sees. 23.5 and 23.6. As the wave traverses the empty space between molecules, it
will, of course, have the velocity c, and we must now inquire how it is possible that
the presence of the oscillating charges in the molecules produces an effective alteration
in the rate at which the wave progresses through the medium.

The clue to the explanation of dispersion lies in the secondary waves which are
generated by the induced oscillations of the bound charges. These secondary waves
are identical with those which give rise to molecular scattering (Sec. 22.10), as in the
explanation of the blue color of the sky. When a light beam traverses a transparent
liquid or solid, the amount of light scattered laterally is extremely small, even though
the concentration of scattering centers is much greater than that in the air which gives
the sky light. This is due to the fact that the scattered wavelets traveling out laterally
from the beam have their phases so arranged that there is practically complete destruc-
tive interference. But the secondary waves traveling in the same direction as the orig-
inal beam do not cancel out but combine to form sets of waves moving parallel to
the original waves. Now the secondary waves must be added to the primary ones
according to the principle of superposition, and the results will depend on the phase
difference between the two sets. This interference will modify the phase of the primary
waves and thus is equivalent to a change in their wave velocity. That is, since the wave
velocity is merely the rate at which a condition of equal phase is propagated, an alter-
ation of the phase by interference changes the velocity. We have seen that the phase
of the oscillators, and hence of the secondary waves, depends on the impressed
frequency, so it becomes clear that the velocity in the medium varies with the fre-
quency of light. This is the physical interpretation of dispersion, expressed in briefest
outline.

The foundations for the mathematical treatment of the above mechanism were
laid by Rayleigh, who considered the case of mechanical waves, and the theory was
later extended to cover the case of electromagnetic waves by Planck, Schuster, and

Table 23C VARIATION OF n WITH ). FOR
WATER

Wavelength, cm Frequency, Hz n

5.89 x 10-5
12.56 x 10-5

258 x 10-5
800 x 10-5

0.40
1.75
8.1
65
00

5.1 X 1014
2.9 X 1014
0.116 X 1014
0.0375 X 1014

750 X 10"
171 X 10"
37 X 10"
4.6 X 108
o X 10"

1.333
1.3210
1.41
1.41
5.3
7.82
8.10
8.88
(9.03 = -Ii)
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FIGURE 23J
The interpretation of dispersion as the result of interference of the secondary
wave with the direct wave.

others. We shall not attempt to give this development here. It leads to dispersion
formulas similar to that of Helmhotz [Eq. (23i)]. In fact, there is a close analogy
throughout between the electromagnetic and mechanical pictures of the phenomenon.
The oscillations of the bound charges must be regarded as damped by a frictional
force, just as the particles were in Helmholtz's theory. The nature of the damping
forces postulated in electromagnetic theory will be briefly discussed in Sec. 23.11.

To show the relative amplitudes and phases of the incident wave, oscillator,
and secondary wave, we consider the schematic diagrams of Fig. 23J. The first curve
in (a) shows the response of a damped oscillator of natural frequency Vo to an im-
pressed vibration of frequency v, the amplitude becoming a maximum when v = vo'
The broken curve shows the amplitude radiated by the oscillator, Le., of the scattered
wave. As a consequence of Rayleigh's law that the shorter waves are scattered more
effectively, this curve is higher on the sides of higher v but drops to zero at low fre-
quencies. The third curve gives the amplitude of the secondary waves built up from the
scattered wavelets. Curve (b), in conjunction with the left-hand scale of ordinates,
gives the phase difference between the oscillator and the impressed wave. As pointed
out in Sec. 23.6, this changes from 0 to 180°in passing through the natural frequency,
but not abruptly because of the damping. At Vo it is 90° behind that of the impressed
wave. Theory shows, furthermore, that the phase of the scattered waves, and there-
fore of the secondary waves as well, lags 90° behind that of the oscillators. * This is
because electromagnetic radiation is proportional to the rate of change of current,
or to the acceleration of a charge [see Sec. 20,8 and Fig. 20D(a)]. The current itself,

• See, for example, G. P. Harnwell, "Principles of Electricity and Magnetism,"
2d ed" pp, 601-602, McGraw-Hili Book Company, 1949,
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or the velocity of the charge, has the phase that we attribute to the oscillator. There-
fore, since in a simple harmonic motion the acceleration is one-quarter period behind
the velocity, the phase of the radiated waves is retarded this much behind that of the
oscillating source. Taking account of this additional retardation, it will be seen
that the right-hand scale of ordinates in Fig. 23J(b) applies to the phase lag of the
secondary waves behind the impressed waves.

We now proceed in (c) to compound vectorially the amplitudes of the direct
and secondary waves. For the frequency v, the amplitude of the secondary waves is
small [curve (a)] and lags in phase behind the direct waves by nearly 270° [curve
(b)]. The vector diagram at the top in (c) shows that the resultant amplitude is
nearly the same but that the phase is slightly advanced, corresponding to a rotation
of the vector in a clockwise sense. An advance of phase means an increase in velocity,
since it will be remembered that the phase increases as we move backward along a
wave. Thus in the dispersion curve (d), the index of refraction at v is slightly less than
1. The second vector diagram, for v', gives a greater advance of phase, and a consider-
ably smaller resultant amplitude. At v = Vo there is no change of phase or velocity
produced, but merely a reduction of intensity. The energy removed from the resultant
forward wave appears in other directions as resonance radiation. Beyond Vo there is
a retardation instead of an advance of phase, and the velocity of the wave is decreased.
Thus it may be seen in a qualitative way how the curve (d), having the form for anom-
alous dispersion, can result from the mechanism described.

23.11 NATURE OF THE VIBRATING PARTICLES AND
FRICTIONAL FORCES

In conclusion, we may consider briefly what types of charged particles and damping
forces are involved in the various discontinuities of the typical dispersion curve of
Fig. 231. The X-ray absorptions are attributed to the innermost electrons in the atoms,
which are assigned to the "shells" K, L, M, etc., of decreasing energy and increasing
distance from the nucleus. Because they are deep in the atom, these electrons are
shielded from the effects of collisions and electric fields due to neighboring atoms.
These two causes of line breadth in spectrum lines are not important for X rays,
and the absorption discontinuities are sharp, even in solids. It is only in this region
that radiation damping makes any appreciable contribution to the line widths.

The very broad absorption in the far ultraviolet is due to the outer electrons
in the atoms and molecules of the material. These are not shielded, and consequently
in solids and liquids an extensive region of continuous absorption is produced. For
molecular gases the bands may consist of individual rotational lines that are quite
sharp, but these are so numerous that they are usually unresolved. In this region
the damping due to collisions begins to become more important than that due to
radiation, and at still longer wavelengths it usually predominates. The near-infrared
absorption bands represent the various natural frequencies of the atoms as a whole,
or even of molecules. Since these vibrators are much heavier than electrons, it is
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clear why they possess lower vibration frequencies. In the far infrared, other molec-
ular vibrations of lower frequency may be involved. Here the frequencies of rotation
of molecules as a whole may also playa part, especially in gases.

PROBLEMS
23.1 The refractive indices of a piece of optical glass for the blue and green lines of the

mercury spectrum, A = 4358 A and A = 5461 A, are 1.65250 and 1.62450, respec-
tively. Using the two-constant Cauchy equation, calculate values for (a) the constants
A and B, (b) the refractive index for the sodium yellow lines at A = 5893 A, and (c)
the dispersion at this same wavelength.

Ans. (0) A = 1.57540 and B = 1.46431 X 106 A2, (b) II = 1.61757,
(c) -1.43104 x 10-5 A-I

23.2 Using the refractive indices given in Table 23B for borosilicate crown glass, (a) find
the values of the constants in the three-constant Cauchy equation that fits exactly
for wavelengths 4340,5338, and 6439 A. (b) Using these constants, calculate indices
for the other five wavelengths given in the table. (c) Compare the observed with the
calculated values.

23.3 Using the measured refractive indices for telescopic crown glass given in Table 23B,
calculate the values of the constants in the three-term Cauchy equation that fits
exactly at wavelengths 6563, 5086, and 3988 A. (b) Compare your calculated values
with the measured values at the other five wavelengths given in Table 23B.

23.4 A 50° prism is made of glass for which the constants in the two-term Cauchy equation
are A = 1.53974 and B = 4.6528 x lOS A2. Find the angular dispersion in radians
per angstrom when the prism is set for minimum deviation for a wavelength of 5500A.

AilS. dn/dl = - 5.5932 X 10-6 A-', dO/dn = 1.12145,
dO/dl = -6.2725 x 10-6 rad/A

23.5 Hartmann worked out an empirical dispersion formula, according to which n =
no + b/(A - Ao)' (a) Find the values of the three constants no, b, and Ao that fit
exactly at wavelengths 6563, 5086, and 3988 A for telescopic crown glass as given in
Table 23B. (b) Compare the calculated with the observed values at the five other
wavelengths given in the table. (c) Compare these values with those calculated using
the three-term Cauchy equation. (d) Which equation best represents the measured
data (see Prob. 23.3)?

23.6 Compare the spectrum formed by a prism having anomalous dispersion in the green
part of the spectrum with the spectrum formed by an ordinary piece of glass in the
form of a similar prism. Indicate the relative positions of all the colors compared
with those produced by normal dispersion.

23.7 Determine from the values of refractive index given in Table 23B a value for (a) group
velocity and (b) wave velocity of violet light A = 3988 A in borosilicate crown glass.

Ans. (a) 190,259 km/s, (b) 196,526 km/s
23.8 Starting with Eq. (12p) for the relation between group velocity and wave velocity,

derive the expression for the group index given by Eq. (23j).
23.9 From the second of Helmholtz's equations (23i) find the relation between the width

of the absorption peak at half maximum /lKO and the frictional constant U/.
23.10 For a particular piece of glass the refractive index for X rays of wavelength 0.70 A is

1.600 X 10-6 less than unity. At what maximum angle, measured to the surface,
must a beam of X rays strike the glass to undergo total reflection? AilS. 0.1025°
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23.11 According to the electromagnetic theory, the value of A, is given by

A
_ .liN,e,2,----

nc2m,

where N, represents the number of oscillators per cubic centimeter and e, and m, are
the charge and mass of one oscillator whose frequency is cIA, or v. Taking the refrac-
tive index of air as 1.000279, and assuming only one absorption band in the ultra-
violet, calculate the value of e,{m, for air. Compare with elm for the electron.

23.12 (a) Use the two-term Cauchy equation which fits the refractive indices of borosilicate
crown glass, as given in Table 23B for wavelengths 6563 and 4861 A, to predict the
index for the sodium lines at A = 5893 A. (b) Calculate also a value for the dispersion
in radians per angstrom for a 60° prism at A = 5892 A.



24
THE POLARIZATION OF LIGHT

From the properties of interference and diffraction we are led to conclude that light
is a wave phenomenon, and we utilize these properties to measure. the wavelength.
These effects tell us nothing about the types of waves with which we are dealing-
whether they are longitudinal or transverse, or whether the vibrations are linear,
circular, or torsional. The electromagnetic theory, however, specifically requires
that the vibrations be traverse, being therefore entirely confined to the plane of the
wave front. The most general type of vibration is elliptical, of which linear and cir-
cular vibrations are extreme cases. Experiments which bring out these characteristics
are those dealing with the polarization of light. Although a longitudinal wave like
a sound wave must necessarily be symmetrical about the direction of its propagation,
transverse waves may show dissymmetries, and if any beam of light shows such a
dissymmetry, we say it is polarized.

The present chapter, by way of introduction to the subject of polarization,
gives a brief account of the principal ways of producing plane-polarized light from
ordinary unpolarized light. Most of the phenomena to be discussed here will be
covered in more detail in later chapters. It will be helpful, however, to have a pre-
liminary acquaintance with the experimental methods and a mental picture of how
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FIGURE 24A
Polarization by reflection from glass
surfaces.

the various polarizing devices act to separate ordinary light into its polarized compon-
ents. The common methods used in producing and demonstrating the polarization
of light may be grouped under the following heads: (1) reflection, (2) transmission
through a pile of plates, (3) dichroism, (4) double refraction, and (5) scattering.

24.1 POLARIZATION BY REFLECTION

Perhaps the simplest method of polarizing light is the one discovered by Malus in
1808. If a beam of white light is incident at one certain angle on the polished surface
of a plate of ordinary glass, it is found upon reflection to be plane-polarized. By plane-
polarized is meant that all the light is vibrating parallel to a plane through the axis
of the beam (Sec. 11.6). Although this light appears to the eye to be no different from
the incident light, its polarization or asymmetry is easily shown by reflection from a
second plate of glass as follows. A beam of unpolarized light, AB in Fig. 24A, is
incident at an angle of about 57° on the first glass surface at B. This light is again
reflected at 57° by a second glass plate C placed parallel to the first as shown at the
left. If now the upper plate is rotated about BC as an axis, the intensity of the re-
flected beam is found to decrease, reaching zero for a rotation of 90°. Rotation about
BC keeps the angle of incidence constant. The experiment is best performed with the
back surfaces of the glass painted black. The first reflected beam BC' then appears
to be cut off and to vanish at C'. As the upper mirror is rotated further about BC
the reflected beam CD reappears, increasing in intensity to reach a maximum at
180°. Continued rotation produces zero intensity again at 270°, and a maximum
again at 360°, the starting point.

If the angle of incidence on either the lower or upper mirror is not 57°, the twice-
reflected beam will go through maxima and minima as before, but the minima will
not have zero intensity. In other words there will always be a reflected beam from C.
Calling the angle of incidence ljJ in general, the critical value (f) which produces a zero
minimum for the second reflection is called the polarizing angle and varies with the
kind of glass used. Before undertaking the explanation of this experiment, it will be
worthwhile to consider briefly the accepted ideas concerning the nature of the vibra-
tions in ordinary and polarized light.



THE POLAlUZATION OP LIGHT 499

(a) .(b)

y

A -...•..
/ A. ". "/ \

I \
I \

x
\ J
\ I
\ /

" /
...•..-

FIGURE 24B
Vibrations in unpolarized light viewed end-on. (0) All planes are equally prob-
able. (b) Each vibration can be resolved into two components in the x and y
directions.

24.2 REPRESENTATION OF THE VIBRATIONS IN LIGHT

According to the electromagnetic theory, any type of light consists of transverse
waves, in which the oscillating magnitudes are the electric and magnetic vectors.
The question as to which of these is to be chosen as constituting the "vibrations"
will be deferred until later (Sec. 25.12), but it is immaterial for our present purpose.
Let us assume that in a beam of light traveling toward the observer, along the +z
axis in Fig. 24B, the electric vector at some instant is executing a linear vibration with
the direction and amplitude indicated. If this vibration continues unchanged, we say
that the light isplane-polarized, since its vibrations are confined to the plane containing
the z axis and oriented at the angle (). If, on the other hand, the light is unpolarized,
like most natural light, one may imagine that there are sudden, random changes in (),
occurring in time intervals of the order of 10-8 s. Every orientation of A is to be re-
garded as equally probable, so that, as indicated by the solid circle in Fig. 24B(a)
the average effect is completely symmetrical about the direction of propagation.

This picture of unpolarized light, although a legitimate one, is oversimplified
because if there are fluctuations in orientation, there should be fluctuations in ampli-
tude as well. Furthermore, linear vibrations are a special case of elliptical ones,
and there is no reason for this special type to be preferred. Hence a truer picture is one
of elliptical vibrations changing frequently in size, eccentricity, and orientation,
but confined to the xy plane. This complexity presents little difficulty, however, since
because all azimuths are equivalent, the. simpler representation in terms of linear
vibrations of constant amplitude and rapidly shifting orientation completely describes
the facts. Also, since motion in an ellipse can be regarded as made up of two linear
motions at right angles (Sec. 12.9), the two descriptions are in fact mathematically
the same.

Still another representation of unpolarized light is perhaps the most useful.
If we resolve the vibration of Fig. 24B(b) into linear components Ax = A cos () and
A, = A sin (), they will in general be unequal [see Sec. 24.5 and Eq. (24d)]. But
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FIGURE 24C
Pictorial representations of side and end
views of plane-polarized and ordinary
light beams.
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when () is allowed to assume all values at random, the net result is as though we had
two vibrations at right angles with equal amplitudes but no coherence of phase.
Each is the resultant of a large number of individual vibrations with random phases
(Sec. 12.4) and because of this randomness a complete incoherence is produced.
Figure 24C shows a common way of picturing these vibrations, parts (a) and (b)
representing the two plane-polarized components, and part (c) the two together in
an unpolarized beam. Dots represent the end-on view of linear vibrations, and double-
pointed arrows represent vibrations confined to the plane of the paper. Thus (d),
(e), and (f) of the figure show how the vibrations in (a), (b), and (c) would appear
if one were looking along the direction of the rays.

24.3 POLARIZING ANGLE AND BREWSTER'S LAW

Consider unpolarized light to be incident at an angle cP on a dielectric like glass, as
shown in Fig. 24D(a). There will always be a reflected ray OR and a refracted ray
OT. An experiment like the one described in Sec. 24.1 and shown in Fig. 24A shows
that the reflected ray OR is partially plane-polarized and that only at a certain definite
angle, about 57° for ordinary glass, is it plane-polarized. It was Brewster who first
discovered that at this polarizing angle iP the reflected and refracted rays are just
90° apart. This remarkable discovery enables one to correlate polarization with the
refractive index

sin cP = n (24a)
sin cPt

Since at iP the angle ROT = 90°, we have sin iPt = cos iP, giving
sin iP sin iP
--=--=n
sin iP' cos iP

• n = tan iP (24b)
This is Brewster's law, which shows that the angle of incidence for maximum polari2'a-
tion depends only on the refractive index. It therefore varies somewhat with wave-
length, but for ordinary glass the dispersion is such that the polarizing angle iP does
not change much over the whole visible spectrum. This fact is readily verified by
calculating iP for several wavelengths, using the values of n from Table 23B, as sug-
gested in Prob. 24.1 at the end of this chapter.
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FIGURE 240
(a)Polarization by reflection and refraction. (b) Brewster's law for the polarizing
angle.

It is not difficult to understand the physical reason why the light vibrating in
the place of incidence is not reflected at Brewster's angle. The incident light sets the
electrons in the atoms of the material into oscillation, and it is the reradiation from
these that generates the reflected beam. When the latter is observed at 90° to the
refracted beam, only the vibrations that are perpendicular to the plane of incidence
can contribute. Those in the plane of incidence have no component traverse to the
90° direction and hence cannot radiate in that direction. The reason is the same as
that which causes the radiation from a horizontal radio-transmitter antenna to drop
to zero along the direction of the wires. If the student keeps this picture in mind and
remembers that light waves are strictly transverse, he will have no trouble remembering
which of the two components is reflected at the polarizing angle.

24.4 POLARIZATION BY A PILE OF PLATES

Upon examining the refracted light in Fig. 24D(a) for polarization, it is found to be
partially polarized for all angles of incidence, there being no angle at which the light
is completely plane-polarized. The action of the reflecting surface may be described
somewhat as follows. Let the ordinary incident light be thought of as being made
up of two mutually perpendicular plane-polarized beams of light as shown in Sec.
24.2. Of those waves vibrating in the plane of incidence, i.e., in the plane of the page,
part are reflected and part refracted for all angles with the single exception of the
polarizing angle ;P, for which all of the light is refracted. Of the waves vibrating per-
pendicular to the plane of incidence, some of the energy is reflected and the rest
refracted for any angle of incidence. Thus the refracted ray always contains some of
both planes of polarization. For a single surface of glass with n = 1.50, it wiIl be
shown later [Sec. 25.1 and Fig. 25B(a)] that at the polarizing angle 100percent of the
light vibrating parallel to the plane of incidence is transmitted, whereas for the per-
pendicular vibrations only 85 percent is transmitted, the other 15 percent being re-
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FIGURE 24E
Polarization of light by a pile of glass plates.

fleeted. Obviously the degree of polarization of the transmitted beam is small for
a single surface.

If a beam of ordinary light is incident at the polarizing angle on a pile of plates,
as shown in Fig. 24£, some of the vibrations perpendicular to the plane of incidence
are reflected at each surface and all those parallel to it are refracted. The net result
is that the reflected beams are all plane-polarized in the same plane, and the refracted
beam, having lost more and more of its perpendicular vibrations, is partially plane-
polarized. The larger the number of surfaces, the more nearly plane-polarized this
transmitted beam is. This is illustrated by the vibration figures at the left in Fig.
24£. In a more detailed treatment of polarization by reflection and refraction (see
Chap. 25), the polarizing angle for internal reflection is shown to correspond exactly
to the angle of refraction (fi' in Fig. 24D(b). This means that light internally reflected
at the angle (fi' will also be plane-polarized.

The degree of polarization P of the transmitted light can be calculated by sum-
ming the intensities of the parallel and perpendicular components. If these intensities
are called Ip and Is, respectively, it has been shown* that

(24c)P = Ip - Is = m
Ip + Is m + [2n2/(1 - n2)]

where m is the number of plates, that is, 2m surfaces, and n their refractive index.
This equation shows that by the use of enough plates the degree of polarization can
be made to approach unity, or ~ 100 percent. Better methods of producing a wide

•

• F. Provostaye and P. Desains, Ann. Chim. Phys., 30:159 (1850). The calculation
takes into account not only the ray going directly through but also those internally
reflected two or more times (see Fig. 24E). It does not, however, include any effects
of absorption, which would increase P somewhat above the value given by Eq. (24c).
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beam of polarized light now available will be described below. The pile of plates may
be used, however, to illustrate a common arrangement in the production and analysis
of polarized light.

Figure 24F shows two such piles, the polarizer (a) and the analyzer (b), with
their planes of incidence parallel. The light emerging at N is nearly plane-polarized
and will be transmitted freely by the analyzer. Rotation of the latter by 90° about the
line NM as an axis will cause the transmitted light to be nearly extinguished, since
the vibrations are now perpendicular to the plane of incidence of the analyzer and
will be reflected to the side. A further rotation of 90° will restore the light, and in a
complete revolution there will be two maxima and two minima. Any arrangement
of polarizer and analyzer in tandem is called a polariscope and has numerous uses.

24.S LAW OF MALUS*

This law tells us how the intensity transmitted by the analyzer varies with the angle
that its plane of transmission makes with that of the polarizer. In the case of two piles
of plates, the plane of transmission is the plane of incidence, and for the law of Malus
to hold we must assume that the transmitted light is completely plane-polarized.
A better illustration would be the double reflection experiment of Sec. 24.1, or a
combination of two polaroids or nicol prisms (see below), for which the polarization
is complete. Then the law of Malus states that the transmitted intensity varies as the
square of the cosine of the angle between the two planes of transmission.

The proof of the law rests on the simple fact that any plane-polarized vibration-
let us say the one produced by our polarizer-can be resolved into two components,
one parallel to the transmission plane of the analyzer and the other at right angles
to it. Only the first of these gets through. In Fig. 24G, let A represent the amplitude
transmitted by the polarizer for which the plane of transmission intersects the plane
of the figure in the vertical dashed line. When this light strikes the analyzer, set at
the angle 9, one can resolve the incident amplitude into components Al and A2, the
latter of which is eliminated in the analyzer. In the pile of plates, it is reflected to one
side. The amplitude of the light that passes through the analyzer is therefore

• At = A cos () (24d)

• Etienne Louis Malus (1775-1812). French army engineer. His discovery of polariza-
tion by reflection was made by accident when looking through a calcite crystal at
the light reflected from the windows of the Luxembourg Palace.
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11= A/ = A2 cos2 e = 10cos2 e (24e)

Here 10signifies the intensity of the incident polarized light. This is, of course, one-
half of the intensity of the unpolarized light striking the polarizer, provided one neglects
losses of light by absorption in traversing it. There will also be losses in the analyzer.
For Polaroids or nicols some light will be removed from the beam by reflection at
the surfaces. Although these effects are neglected in deriving Eq. (24e), it will be
noticed that they change only the constant in the equation and do not spoil the depend-
ence of the relative intensity on cos2 e. Thus Malus' law is rigorously true and applies,
for example, to the intensity of the twice-reflected light in the experiment of Sec. 24.1
even though its maximum value is only a small fraction of the original intensity.
In such cases, the /0 in Eq. (24e) is merely the intensity when the analyzer is parallel
to the polarizer.

24.6 POLARIZATION BY DICHROIC CRYSTALS

These crystals have the property of selectivity absorbing one of the two rectangular
components of ordinary light. Dichroism is exhibited by a number of minerals and
by some organic compounds. Perhaps the best known of the mineral crystals is
tourmaline. When a pencil of ordinary light is sent through a thin slab of tourmaline
like TlJ shown in Fig. 24H, the transmitted light is polarized. This can be verified
by a second crystal T2• With T1 and T2 parallel to each other the light transmitted
by the first crystal is also transmitted by the second. When the second crystal is
rotated through 90°, no light gets through. The observed effect is due to a selective
absorption by tourmaline of all light rays vibrating in one particular plane (called,
for reasons explained below, the 0 vibrations) but not those vibrating in a plane at
right angles (called the E vibrations). Thus in the figures shown, only the E vibrations
parallel to the long edges of the crystals are transmitted, so that no light will emerge
from the crossed crystals. Since tourmaline crystals are somewhat colored, they are
not used in optical instruments as polarizing or analyzing devices.
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Tourmaline Polaroid films

FIGURE 24H
Dichroic crystals and polarizing films in the parallel and crossed positions.

Attempts to produce polarizing crystals of large aperture were made by Hera-
path* in 1852. He was successful in producing good but small crystals of the organic
compound quinine iodosulfate (now known as herapathite), which completely absorbs
one component of polarization and transmits the other with little loss. One variety of
Polaroid contains crystals of this substance. Polaroid was invented in 1932by Land,t
and has found uses in many different kinds of optical instruments. These films
consist of thin sheets of nitrocellulose packed with ultramicroscopic polarizing crystals
with their optic axes all parallel. In more recent developments the lining-up process
is accomplished somewhat as follows. Polyvinyl alcohol films are stretched to line up
the complex molecules and then are impregnated with iodine. From X-ray diffraction
studies of these dichroic films, it can be seen that the iodine is present in polymeric
form, i.e., as independent long strings of iodine atoms all lying parallel to the fiber
axis, with a periodicity in this direction of about 3.loA. Films prepared in this way
are called H-Polaroid. Land and Rogers found further that when an oriented trans-
parent film of polyvinyl alcohol is heated in the presence of an active dehydrating
catalyst such as hydrogen chloride, the film darkens slightly and becomes strongly
dichroic. Such a film becomes very stable and, having no dyestuffs, is not bleached
by strong sunlight. This so-called K.Polaroid is very suitable for polarizing uses such
as automobile headlights and visors. Polarizing films are usually mounted between
two thin plates of optical glass.

24.7 DOUBLE REFRACTION
The production and study of polarized light over a wider range of wavelengths than
is afforded by Polaroid use the phenomenon of double refraction in crystals of calcite
and quartz. Both these crystals are transparent to visible as well as ultraviolet light.

• W. B. Herapath, Phil. Mag., 3: 161 (1852).
t A good summary of the development of sheet polarizers is given by E. H. Land,
J. Opt. Soc. Am., 41 :957 (1951).
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FIGURE 241
Calcite and quartz crystal forms. The
direction of the optic axis is indicated by
broken lines.
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Calcite, which chemically is calcium carbonate (CaC03), occurs in nature in a great
variety of crystal forms (in the rhombohedral class of the hexagonal system), but it
breaks readily into simple cleavage rhombohedrons of the form shown at the left in
Fig. 241. Each face of the crystal is a parallelogram whose angles are 78°5' and
101°55'. If struck a blow with a sharp instrument, each crystal can be made to cleave
or break along cleavage planes into two or more si;laller crystals which always have
faces that are parallelograms with angles shown in Fig. 241.

Quartz crystals, on the other hand, are found in their natural state to have
many different forms, one of the more complicated of which is shown at the right in
Fig. 241. Unlike calcite, quartz crystals will not cleave along crystal planes but will
break into irregular pieces when given a sharp blow. Quartz is pure silica (Si02).
Further details concerning these crystals will be given in this and the following chap-
ters.

When a beam of ordinary unpolarized light is incident on a calcite or quartz
crystal, there will be, in addition to the reflected beam, two refracted beams in place
of the usual single one observed, for example, in glass. This phenomenon, shown in
Fig. 24J for calcite, is called double refraction, or birefringence. Upon measuring the
angles of refraction cP' for different angles of incidence cP, one finds that Snell's law of
refraction

sin cP = n (24f)
sin if/

holds for one ray but not for the other. The ray for which the law holds is called the
ordinary or 0 ray, and the other is called the extraordinary or E ray.

Since the two opposite faces of a calcite crystal are always parallel, the two
refracted rays emerge parallel to the incident beam and therefore parallel to each
other. Inside the crystal the ordinary ray is always to be found in the plane of inci-
dence. Only for special directions through the crystal is this true for the extraordinary
ray. If the incident light is normal to the surface, the extraordinary ray will be re-
fracted at some angle that is not zero and will come out parallel to, but displaced
from, the incident beam; the ordinary ray will pass straight through without deviation.
A rotation of the crystal about the 0 ray will in this case cause the E ray to rotate
around the fixed 0 ray.
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FIGURE 24J
Side and end views of the double refraction of light by a calcite crystal.
(a) Cross-section of a principal plane. (b) End view.

24.8 OPTIC AXIS

Calcite and quartz are examples of anisotropic crystals, or ones in which the physical
properties vary with direction. All crystals except those belonging to the cubic system
are anisotropic to a greater or less degree. Furthermore, the two examples chosen
show the simple type of anisotropy which characterizes uniaxial crystals. In these
there is a single direction called the optic axis, which is an axis of symmetry with
respect to both the crystal form and the arrangement of atoms. If any property, such
as the heat conductivity, is measured for different directions, it is found to be the
same along any line perpendicular to the optic axis. At other angles it changes,
reaching a maximum or a minimum along the axis. The directions of the optic axes
in calcite and quartz are shown in Fig. 241.

The double refraction in uniaxial crystals disappears when the light is made
to enter the crystal so that it travels along the optic axis. That is, there is no separa-
tion of the 0 and E rays in this case. This is also true in directions at right angles
to the axis, but here the 0 and E rays behave differently in a less obvious respect,
namely they differ in velocity. The consequences of the latter difference will be ex-
amined in Chap. 27.

The direction of the optic axis in calcite is determined by drawing a line like
xx' through a blunt corner of the crystal, so that it makes equal angles with all faces.
A blunt corner is one where three obtuse face angles come together, and there are
only two such corners more or less opposite each other. In quartz the optic axis yy'
runs lengthwise of the crystal, its direction being parallel to the six side faces, as shown.
It should be emphasized that the optic axis is not a particular line through the crystal
but a direction. That is, for any given point in the crystal an cptic axis may be drawn
which will be parallel to that for any other point.

24.9 PRINCIPAL SECTIONS AND PRINCIPAL PLANES

In specifying the positions of crystals, and also the directions of rays and vibrations,
it is convenient to use the principal section, made by a plane containing the optic
axis and normal to any cleavage face. For a point in calcite, there are therefore three
principal sections, one for each pair of opposite crystal faces. A principal section al-
ways cuts the surfaces of a calcite crystal in a parallelogram with angles of 71° and
109°, as shown at the left in Fig. 24J. An end view of a principal section cuts the



508 FUNDAMENTALS OF OPTICS

A[9 E[3C.~.:::._.~-o

B D

FIGURE 24K
Double refraction and polarization in two calcite crystals with their principal
sections making different angles.

surface in a line parallel to AB, shown as a dotted line in the right-hand figure. All
other planes through the crystal parallel to the plane represented by AB are also
principal sections. These are represented by the other dotted lines.

The principal section, as so defined, does not always suffice in describing the
directions of vibrations. Here we make use of the two other planes, the principal plane
of the ordinary ray, a plane containing the optic axis and the ordinary ray, and the
principal plane of the extraordinary ray, one containing the optic axis and the extra-
ordinary ray. The ordinary ray always lies in the plane of incidence. This is not gener-
ally true for the extraordinary ray. The principal planes of the two refracted rays do
not coincide except in special cases. The special cases are those for which the plane
of incidence is a principal section as shown in Fig. 24J. Under these conditions the
plane of incidence, the principal section, and the principal planes of the 0 and E
rays all coincide.

24.10 POLARIZATION BY DOUBLE REFRACTION

The polarization of light by double refraction in calcite was discovered by Huygens
in 1678. He sent a beam of light through two crystals as shown at the top of Fig.
24K. If the principal sections are parallel, the two rays 0' and E' are separated by
a distance equal to the sum of the two displacements found in each crystal if used
separately. Upon rotation of the second crystal each of the two rays 0 and E is re-
fracted into two parts, making four as shown by an end-on view in (b). At the 90°
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FIGURE 24L
Resolution of polarized light into com-
ponents by double refraction.

position (c) the original 0' and E' rays have faded and vanished and the new rays
0" and E" have reached a maximum of intensity. Further rotation finds the original
rays appearing, and eventually, if the crystals are of equal thickness, these rays come
together into a single beam in the center for the 1800 position shown at the bottom,
the rays 0" and E" having now vanished.

Thus, merely by using two natural crystals of calcite, Huygens was able to
demonstrate the polarization of light. The explanation of the movement of the light
rays is one simply of deviation by refraction and easily understood. The varying
intensity of the spots, however, involves the polarization of the two light beams
leaving the first crystal. In brief the explanation is somewhat as follows. Ordinary
light upon entering the first calcite crystal is broken up into two plane-polarized
rays, one, the 0 ray, vibrating perpendicular to the principal plane, which is here the
same as the principal section, and the other, the E ray, vibrating in the principal sec.
tion. In other words, the crystal resolves the light into two components by causing
one type of vibration to travel one path and the other vibration to travel another path.

Consider more in detail now what happens to one of the plane-polarized beams
from the first crystal when it passes through the second crystal oriented at some
arbitrary angle e. Let A in Fig. 24L represent the amplitude of the E ray vibrating
parallel to the principal section of the first crystal just as it strikes the face of the second
crystal. This second crystal, like the first, transmits light vibrating in its principal
section along one path and light vibrating at right angles along another path. The E
ray is therefore split up into two components E' with an amplitude A cos e and 0"
with an amplitude A sin e. These emerge from the second crystal with relative in.
tensities given by A2 cos2 e and A2 sin2 e. At e = 900 E' vanishes and 0" reaches a
maximum intensity of A2• At all positions the sum of the two components, A2 sin2 e +
A2 cos2 e, is just equal to A2, the intensity of the incident beam.

The same treatment holds for the splitting up of the 0 beam from the first
crystal into two plane-polarized beams 0' and E".
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FIGURE 24M
Detailed diagram of a nicol prism, showing how it is made from a calcite crystal.

24.11 NICOL PRISM

This very useful polarizing device is made from a calcite crystal, and derives its name
from its inventor. * The nicol prism is made in such a way that it removes one of the
two refracted rays by total reflection, as is illustrated in Fig. 24M. There are several
different forms of nicol prism,t but we shall describe here one of the commonest
ones. First a crystal about 3 times as long as it is wide is taken and the ends cut
down from 71° in the principal section to a more acute angle of 68°. The crystal
is then cut apart along the plane A'D' perpendicular to both the principal section
and the end faces. The two cut surfaces are ground and polished optically flat and
then cemented together with canada balsam. Canada balsam is used because it is a clear
transparent substance with an index of refraction about midway between the index
of the 0 and E rays. For sodium light,

Index of 0 ray
Index of canada balsam
Index of E ray

no = 1.65836
nB = 1.55
nE = 1.48641

Optically the balsam is denser than the calcite for the E ray and less dense for
the 0 ray. The E ray therefore will be refracted into the balsam and on through the
calcite crystal, whereas the 0 ray for large angles of incidence will be totally reflected.
The critical angle for total reflection of the 0 ray at the first calcite to balsam surface
is about 69° and corresponds to a limiting angle SMSo in Fig. 24M of about 14°.
At greater angles than this, some of the 0 ray will be transmitted. This means that
a nicol should not be used in light which is highly convergent or divergent.

The E ray in a nicol also has an angular limit, beyond which it will be totally

• William Nicol (1768-1851). Scotch physicist, who became very skillful in cutting
and polishing gems and crystals. He devised his prism in 1828 and reportedly
did not himself completely understand how it worked.

t Complete descriptions of polarizing prisms will be found in A. Johannsen, "Manual
of Petrographic Methods," 2d ed., pp. 158-164, McGraw-Hill Book Company,
New York, 1918.
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reflected by the balsam. This is due to the fact that the index of refraction of calcite
is different for different directions through the crystal. In the next chapter it will be
seen that the index nE = 1.486, as it is usually given, applies only in the special case
of light traveling at right angles to the optic axis. Along the optic axis the E ray travels
with the same speed as the 0 ray, and it therefore has the same index of 1.658. For
intermediate angles the effective index lies between these two limits 1.486 and 1.658.
There will therefore be a maximum angle SMSE beyond which the balsam will be
optically less dense than the calcite, and there will be total reflection of the E vibra-
tions. The prism is so cut that this angle likewise is in the neighborhood of 14°. The
direction of the incident light on a nicol therefore is limited on the one side to avoid
having the 0 ray transmitted and on the other side to avoid having the E ray totally
reflected. In practice, it is important to keep this limitation in mind.

Polarizing prisms are sometimes made with end faces cut perpendicular to the
sides so that the light enters and leaves normal to the surface. The most popular
one of this type, the Glan-Thompson prism, has an angular tolerance or aperture
approaching 40°, hence much larger than that of the nicol. But this prism must be
cut with the optic axis parallel to the end faces and is wasteful of calcite, large crystals
of which are expensive and difficult to obtain. In another type the halves are held
together so that there is a film of air between them instead of balsam. This device,
called the Foucault prism, will transmit ultraviolet light. It has an angular aperture
of only about 8°, however, and some difficulty is experienced with interference
occurring in the air film.

24.12 PARALLEL AND CROSSED POLARIZERS

When two nicol prisms are lined up one behind the other, as shown in Fig. 24N, they
form a good polariscope (Sec. 24.4). Positions (a) and (c) are referred to as parallel
polarizers, and for them the E ray is transmitted. A loss of some 10 percent of the
incident light is caused by reflection at the prism faces and absorption in the balsam
layer, so that the overall transmission of a nicol for incident unpolarized light is about
40 percent. Position (b) in the figure represents one of the two positions called
crossed polarizers. Here the E ray from the first nicol becomes an 0 ray in the second,
and is totally reflected to the side. For intermediate angles, the incident E vibrations
from the first nicol are broken up into components as shown by the vector diagram
in Fig. 24L, where () is the angle between the principal sections of the two nicols.
The E' component is transmitted by the second nicol with the intensity A2 cos2 (J and
the 0" component is totally reflected. Parallel and crossed Polaroid filters are shown
in Fig. 24H.

24.13 REFRACTION BY CALCITE PRISMS

Calcite prisms are sometimes cut from crystals for the purpose of illustrating double
refraction and dispersion simultaneously as well as single refraction along the optic
axis. Two regular prisms of calcite are shown in Fig. 240, the first cut with the optic
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FIGURE 24N
Two nicol prisms mounted as polarizer and analyzer.

axis parallel to the refracting edge A, and the other with the axis also parallel to the
base and perpendicular to the refracting edge. In the first prism there is double re-
fraction for all wavelengths and hence two complete spectra of plane-polarized light,
one with the electric vector parallel to the plane of incidence and the other with the
electric vector perpendicular to it. An interesting demonstration of this polarization
is accomplished by inserting a polarizer. into the incident or refracted beams. Upon
rotation of the polarizer, first one spectrum is extinguished and then the other.

In the second prism, Fig. 240(b), only one spectrum is observed, as with glass
prisms. Here the light travels along the optic axis, or very nearly so, so that the two
spectra are superposed. In this case a polarizer, when rotated, will not affect the

• Although nicol prisms give the most complete polarization of any of the devices
commonly found in laboratories, polaroid films or a pile of glass plates mounted as
in Fig. 24F are quite suitable for nearly all experimental demonstrations.

A (a)

---~j
FIGURE 240
Double and single refraction of white light by prisms cut at different angles from
calcite crystals.
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FIGURE 24P
Diagrams of (a) Rochon and (b) Wollaston prisms made from quartz.

intensity as it does with the first prism. The more detailed treatment of double re-
fraction in Chap. 26 will clarify these experimental observations.

24.14 ROCHON AND WOLLASTON PRISMS

It is often desirable to split a light beam into two plane-polarized components,
retaining both of them for a later comparison of their intensities. For this purpose
other types of prisms have been designed, the most satisfactory of which are the
Rochon and Wollaston prisms. These optical devices, sometimes called double.
image prisms, are made of quartz or calcite cut at certain definite angles and cemented
together with glycerin or castor oil.

In the Rochon prism [Fig. 24P(a)] the light, entering normal to the surface,
travels along the optic axis of the first prism and then undergoes double refraction
at the boundary of the second prism. The optic axis of the second prism is perpendic-
ular to the plane of the page, as is indicated by the dots. In the Wollaston prism
[Fig. 24P(b)] the light enters normal to the surface and travels perpendicular to
the optic axis until it strikes the second prism, where double refraction takes place. The
essential difference between the two is shown in the figures by the directions of the
two refracted rays. The Rochon prism transmits the 0 vibrations without deviation,
the beam being achromatic. This is frequently desired in optical instruments where
only one plane-polarized beam is desired. The E beam, which is chromatic, is readily
screened off at a sufficiently large distance from the prism.

The Wollaston prism deviates both rays and consequently yields greater separa-
tion of the two slightly chromatic beams. It is commonly used where a comparison
of intensities is desired. These intensities will of course be equal for unpolarized
light but will differ if the light is polarized in any way. It should be noted that in the
Rochon prism the light should always enter from the left, in order for it to travel
first along the optic axis, as shown in the figure. If it is sent in the other direction, the
different wavelengths will emerge vibrating in different planes because of a phenom-
enon known as rotatory dispersion (see Sec. 28.2). This phenomenon, as well as the
directions taken by the doubly refracted beams in quartz, will be treated in detail
in the following chapters.
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FIGURE 24Q
Light waves scattered by air molecules.
(From H. E. White, "Modern College
Physics," 6th ed., D. Van Nostrand Co.,
New York, 1972. By permission of
the publisher.)
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24.15 THE SCATTERING OF LIGHT AND THE BLUE SKY

The scattering of light by small particles of matter is responsible for some of nature's
most beautiful phenomena. The blue sky and red sunset are attributed to scattering.
As sunlight passes through our atmosphere, a large part of it is absorbed by the air
molecules and immediately given out in some new direction (see Sec. 22.9).

The phenomenon of scattering is similar to the action of water waves on floating
bodies. When a small stone is dropped into a pond of still water, a small cork floating
nearby will bob up and down with the frequency of the passing waves. Light waves
are visualized as acting in a similar manner on air molecules, as well as on fine dust
and smoke particles. Once a passing light wave sets a molecule or particle into vibra-
tion, the wave can be emitted again in some random direction. This is shown schemati-
cally in Fig. 24Q. Light waves are shown being scattered in all directions.

It has long been known that short light waves are scattered much more than
longer waves. Specifically, scattering is found by experiment to be proportional to
the fourth power of the frequency or (what is the same thing) is inversely proportional
to the fourth power of the wavelength:

• Scattering oc v4 S . I
cattenng oc ""4

A.

This is usually referred to as the fourth-power law or the inverse fourth-power law.
According to these relations, violet light at the short-wavelength end of the spectrum
is scattered about 10 times as much as red light at the long-wavelength end. For all
six of the spectral colors, violet and blue light are scattered the most, followed by
green, yellow, orange, and red. For every red wave (A. = 700 nm) scattered by sun-
light, there are 10 violet waves (A. = 400 nm):

Red
1

Violet
10
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FIGURE 24R
Schematic diagram showing the scatter-
ing of light by the air molecules of the
earth's atmosphere. (From H. E. White,
"Modern College Physics," 6th ed.,
D. Van Nostrand Co., New York, 1972.
By permission of the publisher.)

When the sun is brightly shining on a clear day, the whole sky appears to be
light blue (see Fig. 24R). This color is a mixture of spectral colors scattered almost
entirely by air molecules. It can be demonstrated that spectral colors, mixed in the
proportions given by the row of numbers above, will produce the light blue color
of the sky. This is most beautifully demonstrated by the sunset experiment in the
next section.

24,16 THE RED SUNSET

The sunset on a clear day is never highly colored. To see a highly colored sunset we
must have tiny dust and smoke particles in the air. Why this is necessary is shown in
Fig. 24S, where a moderate layer of dust and smoke I or 2 km thick is spread out
over a large area of the earth's surface. Looking straight upward on such a smoky
day, an observer will see only a blue sky. The sunlight has traveled the relatively
short path of 1 or 2 km through the smoke layer. Since very little if any of the color
is scattered, the sun's disk will appear white and the surrounding sky blue.

As the afternoon wears on and we approach sunset, the direct rays from the
sun must travel through an increasing path of dust and smoke. An hour or so before
sundown the observer sees rays from the direction of C, and the light path makes a
sizeable angle with the horizon. Passing through a longer path than at noon, the blue
and violet are scattered out, and the colors coming through to the observer, red,
orange, yellow, and green, appear to be light yellow.

Just before sunset, when the observer sees light from the direction D, the rays
pass through 10 to 100 km of dust and smoke particles, and all but the red waves
of direct sunlight are scattered out. The sun's disk appears red, and much of the
immediate surroundings are orange and red. The. sky higher up and directly over-
head is still light blue. If the dust and smoke layer is very dense, even the red will be
scattered in all directions and the deepening red sun will disappear from view before
it reaches the horizon.

One of the finest demonstrations in all of science is the scattering of light by
fine sulfur particles suspended in water (see Fig. 24T). A parallel beam of white
light from a carbon arc and lens L1 is allowed to pass through a fish tank with all
glass sides. The beam then passes through an iris diaphragm, which is imaged on a
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FIGURE 248
The scattering of light by a layer of dust near the earth's surface causes the sun to
turn from white at (A) to yellow at (B), then orange at (C), and finally at (D) to
red at sunset. (From H. E. White, "Modern College Physics," 6th ed., D. Van
Nostrand Co., New York, 1972. By permission o/the publisher.)

large screen by a lens L2• To produce the fine sulfur particles for scattering, about
40 g of photographic fixing powder (sodium hyposulfite) is first dissolved in about
7.5 liters of clear distilled water. When one is ready to perform the demonstration
for a large or small audience, I to 2 ml of concentrated sulfuric acid (previously
dissolved in about 100 ml of distilled water) is poured into the tank, and thoroughly
stirred. *

The microscopic sulfur particles will begin to form in about 2 min and will be
noticed by the pale-blue scattered light from the beam; 2 to 3 min later the beam
boundaries should no longer be seen, and the entire tank will be filled with blue light.
Light scattered from the central beam is scattered again and again before emerging
from the tank. This is called multiple scattering.

When scattering first begins to show in the tank, the sun, simulated by the cir-
cular image on the large screen, will turn yellow. Later, as more and more scattering
takes place, the violet, blue, green, and finally orange will disappear from the direct
beam, and the sun will turn from yellow to orange to a beautiful red.

24.17 POLARIZATION BY SCATTERING

If a polarizing plate, like Polaroid, is used to test the blue sky, the light is partially
plane-polarized. A little exploration will show that maximum polarization occurs at
an angle of 900 with the direction of the incoming sunlight and drops to zero at 1800
just after the sun goes down. At dusk on a clear day, when the sun has just disappeared
over the horizon, one can locate the direction of zero polarization and from it determine
the sun's position.

• If more water is needed, use the same proportions of sodium hyposulfite and water
as given above. The correct amount of acid to produce the best results is determined
by trial.
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FIGURE 24T
The sunset experiment: demonstration of the scattering and polarization of light
by small particles. (From H. E. White, "Modern College Physics," 6th ed., D. Van
Nostrand Co., New York, 1972. By permission 0/ the publisher.)

The polarization of scattered light can be observed using the fish-tank experi-
ment described in Sec. 24.16. In the early stages of the formation of sulfur particles,
one can hol~ a polarizing plate in front of one eye, and looking at the beam from a
90° angle, rotate the plate and find the scattered light to be nearly 100 percent plane-
polarized. Or by placing a polarizing plate in the incident beam, as shown in the
figure, and rotating it, observe the beam in the mirror as well as in the tank. It will
disappear in the tank, then in the mirror, then in the tank, etc. These experiments
are considered proof that light is a transverse wave. Sound waves have a longitudinal
character and exhibit none of the above effects.

Consider the scattering of light from a single air molecule P, as shown in Fig.
24U. Suppose ordinary unpolarized light is incident from the left. We assume it is
composed of two plane-polarized components, as shown in the diagram. If the inci-
dent component is vibrating in the xy plane and is absorbed, it sets the particle vibrat-
ing in the y direction. In giving up this energy the same wave can be emitted in any
direction except along the y axis. To emit the light in the y direction the wave would
have to be longitudinal, and this is forbidden.



518 FUNDAMENTALS OF OPTICS

--------

y

y
Observer
o

x

FIGURE 24U
The polarization of light by scattering from fine particles. (From H. E. White,
"Modern College Physics," 6th ed., D. Van Nostrand Co., New York, 1972.
By permission 0/ the publisher.)

Assume the incident light component is vibrating in the xz plane. The particle
at P will be set vibrating along the z axis. Reemission is now allowed in all directions
except along the z axis. It can be seen from the diagram (a), therefore, why an ob-
server at 0 looking at the blue sky in a direction making 90° with the sun's rays, will
find the blue light plane-polarized with its direction of vibration parallel to the z axis.
No particle at P can be set vibrating along the x axis, since this would violate the
principle that light has no longitudinal component.

Light waves are also well known to be electromagnetic in character and as such
to have two different components. A single wave has an electrical component vibrating
in one plane and a magnetic component vibrating in a plane at 90° (see Fig. 20B). A
number of laboratory experiments on interference show that the electric component is
responsible for all the known optical effects (see Sec. 25.12).

24.18 THE OPTICAL PROPERTIES OF GEMSTONES

From the earliest times of the ancient emperors of China and India, the czars of Russia,
the shahs of Persia, the sheiks of Arabia, and the kings and queens of Europe, gem-
stones have held a great fascination. Emeralds, rubies, sapphires, and diamonds are
the most precious of stones, and have served as fine gifts from one wealthy person
to another.

Numerous attempts have been made over the centuries to produce synthetic
gemstones. Only in recent years have these dreams come true. Not only have our
laboratories reproduced nature's products, they have produced many new gems and
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crystals not found in the earth's crust. Synthetic stones have exactly the same chemi-
cal and physical properties of the natural stones and in most instances are more
nearly perfect in their crystal formation than their natural counterparts. The principal
attraction of well-cut gems is first, their size, then their freedom from flaws, and finally
their fire and luster.

The first important gemstones to be synthesized in the laboratory belong to
the corundum family. Corundum is the hexagonal crystal form of ex alumina (AI203).
Those of high purity are transparent and water-white, and are called white sapphires.
If a few percent of chromic oxide (Cr203) is added to the growing crystal, one obtains
the ruby, a pink or red crystal of great beauty. If other metal oxides, such as iron
or titanium, are added, sapphires of many colors are produced.

Some of the most treasured of gems are the natural star sapphire and star ruby.
These natural stones have exactly the same composition as ordinary sapphires and
rubies, but they also contain small amounts of titanium oxide (Ti02). These micro-
scopic needles are scattered through the body of the crystal in a symmetrical, three-
dimensional array. These stones are usually cut en cabochon (dome shaped with a
flat base). White light from a point source is reflected by the needles and gives rise
to a six-rayed star.

Industrial laboratories have succeeded in duplicating nature's gemstones and
have synthesized star rubies and star sapphires. Their synthetic crystals have the same
needlelike impurities that produce the six-rayed star effect and have the identical
optical properties. The tiger's eye and the cat's eye are similar stones, with all the
tiny needles, or hollow tubes, lined up parallel in one direction only.

Emeralds have been synthesized by several laboratories since 1930 and diamonds
of small size since 1961. The latter are now produced in sizable quantities and are
used in highly specialized machine tools of various kinds.

Pure white, pale blue, and pale yellow diamonds, up to 1 carat in size, have more
recently been produced by the General Electric Research Laboratories (see Fig. 24V).
These stones are formed from graphite under extremely high temperatures and pres-
sures. The dispersion of the diamond and the fire and luster of properly cut stones
are surpassed by at least two synthetic crystals of large size. These are strontium
titanate and rutile. Refractive indices of diamond and these clear crystals are given
in Table 24A. Refractive indices for other wavelengths for rutile (Ti02) can be
calculated from the constants given in the Cauchy equations, Eqs. (26f).

Table 24A REFRACI1VE INDICES FOR THREE
GEMSTONES

Wavelengths ..t, A
Gemstones 4100 4700 5500 5800 6100 6600

Diamond 2.458 2.444 2.426 2.417 2.415 2.410
SrTi03 2.613 2.524 2.440 2.417 2.398 2.371
Rutile, 0 2.975 2.765 2.650 2.621 2.597 2.569
Rutile, E 3.330 3.095 2.953 2.917 2.889 2.530
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FIGURE 24V
Four of General Electric's famous gem-quality diamonds created in the laboratory
from graphite, the soft black substance used in "lead" pencils. The four crystals
originalIy were about 1 carat in weight. After cutting and polishing, each weighs
about 1carat. One is clear, another is light blue, and another is canary yellow.
The dark crystal at the bottom is a deep blue in color. (Courtesy of Herbert M.
Strong, General Electric Company, Schenectady, N. Y.)

(0) (b)

FIGURE 24W
Wire wound around clear plastic sheets for observing the star patterns seen in the
gemstones (a) star sapphires and star rubies and (b) tiger's-eyes and cat's-eyes.
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A demonstration of the optical properties of asteriated, or star, ruby can be
made by winding fine wire around a hexagonal piece of sheet plastic (see Fig. 24W).
By observing a point source of white light through the wire mesh one can see the star
pattern. Wire wound in one direction around a square plastic sheet will produce the
two-rayed star of the tiger's eye and the cat's eye. The overlapping of wires has little
effect on the observed pattern.

Gemstone crystals 10 to 20 cm in diameter and over 4000 carats in size are
being synthesized by American and foreign laboratories today. These crystals are
grown by the ton and are used in various ways. Pink rubies are grown in rods I or
2 cm in diameter and are used in lasers for high-quality instruments of many kinds.

PROBLEMS

24.1 Find the variation of the polarization angle throughout the visible spectrum, 4000 to
7200 A, for the barium flint glass listed in Table 23B. First use the two-term Cauchy
equation and the ind.icesfor A. = 6563A and A. = 3988A to find the values of A and B,
and give the angles for the extreme limits only. Give also the difference between the
two angles.

Ans. A = 1.57664, B = 5.0983 X 105 A2, i/Jl = 57.7757°,
i/J2 = 58.1310°, Ai/J= 0.3553° = 21'19'"

24.2 Light is reflected from the smooth surface of water at the polarizing angle. Assume
n = 1.3330. Find (a) the angle of incidence and (b) the angle of refraction. (c) Describe
what would be seen if the reflected light were viewed through a calcite crystal which is
rotated about the direction of the reflected beam.

24.3 The effective intensity of a source of light is controlled by the use of a polarizer and
analyzer by changing the angle () between their principal sections. To what accuracy
in degrees must ()be known to obtain an accuracy of 2 percent in the intensity of the
transmitted light at a setting which reduces the maximum intensity to 10 percent?

24.4 A beam of white light is partially polarized by passing it through a single glass plate
at the polarizing angle. Assuming 15 percent reflection of the intensity of the s vibra-
tions at each surface, find the degree of polarization (a) if multiple reflections within the
plate are neglected and (b) if internal reflections are taken into account. (c) Find the
degree of polarization if there are 12 plates. Assume n = 1.5000.

Ans. (a) 16.11%, (b) 14.79%, (c) 67.57%
24.5 An ordinary beam oflight is sent through three dichroic polarizers, the second of which

is oriented at 25° with the first and the third at 50° with the first in the same direction.
What intensity gets through the system, relative to that of the incident unpolarized
light, (a) neglecting light reflected from the six surfaces and (b) assuming 4.0 percent
of the light reflected at each surface?

24.6 Calculate the relative intensities of the images (a) 0' and E', and (b) 0'" and E'" ob-
tained in the two-crystal experiment shown in Fig. 24K when the angle between the
principal sections is 60°.

24.7 A crystal is placed in a polariscope, the polarizer and analyzer being parallel. The
principal section of the crystal makes an angle of 35° with the planes of transmission
of the polarizer and analyzer. Find the ratio of the intensities of the E and 0 beams
(a) as they leave the crystal and (b) after they leave the analyzer.

Ans. (a) 2.040, (b) 4.160
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24.8 (a) Calculate the degree of polarization of the light due to Rayleigh scattering at 70°
with the direction of the primary beam. (b) Calculate the intensity of this light relative
to that scattered straight backward.

24.9 In a Wollaston prism of quartz having refractive angles of 30°, (a) what will be the
separation of the colors on each side of center? Use the Fraunhofer C to F lines.
(b) What is the separation of the D light in the two polarized beams? (c) What is the
ratio of (b) to (a)? See Table 26A for indices.



25
REFLECTION

Among the subjects touched upon in the last chapter the first to be discussed in
greater detail will be related to the sections on polarization by reflection and trans-
mission. There we considered the effects at the particular angle of incidence called
the polarizing angle. Going beyond this special case, we shall now investigate the
characteristics of the reflected and transmitted light as they depend on wavelength,
polarization, and angle of incidence. It will be assumed that the surfaces are optically
smooth, which means that any irregularities are small compared with the wavelength.
The properties of the reflecting substance play an essential role, and among these
absorption is an important one. Metals are in general the best reflectors, a fact which
will be found to be related to their ability to conduct electricity, and consequent
high absorption. We begin, however, with the simpler case of nonconducting dielec-
tric materials like glass.

25.1 REFLECTION FROM DIELECTRICS

The essential features of reflection from a single glass surface are briefly described as
follows. At normal incidence about 4 percent of the intensity of a beam of unpolarized
visible light is reflected, and the other 96 percent is transmitted. At other angles of
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FIGURE 25A
Analysis of the reflected light into its
two plane-polarized components.

incidence the reflecting power increases with angle, at first slowly and then more rapidly
until at 90°, that is, grazing incidence, all the light is reflected.

It was shown at the beginning of the last chapter that there is one angle of
incidence for which the reflected light is completely plane-polarized with its electric
vector perpendicular to the plane of incidence. At angles different from this the re-
flected light is only partially polarized. The relations in this case are most easily
described in terms of the reflection of the two plane-polarized components of the
incident unpolarized light, the vibrations of which are, respectively, parallel and per-
pendicular to the plane of incidence. In the laboratory this is usually done by exam-
ining the reflected light that passes through a nicol or other polarizer (see Fig. 25A).
If the polarizer is oriented with its principal section parallel to the plane of incidence,
the p vibrations, i.e., the vibrations parallel to the plane of incidence, can be measured.
Rotation of the polarizer through 90° then allows the s vibrations perpendicular to
the plane of incidence (s stands for the German senkrecht, meaning perpendicular)
to be measured. The results of such an experiment when plotted against the angle of
incidence c/J are represented by the two solid curves shown in Fig. 25B(a). The ordina-
tes are R;/E;, the fraction of the incident p light reflected, and R;/E;, the corres-
ponding fraction for the s light. These fractions are called the reflectances for p and s
light. Part (b) of the figure refers to the amplitudes and will be discussed below.

The curves of Fig. 25B are represented very accurately by theoretical equations
which were first derived by Fresnel from the elastic-solid theory and are known as
Fresnel's laws of reflection. For the present we shall merely state them and show their
application to the main features from dielectrics. The laws may be written

Rs sin (c/J - (1/) Rp= tan (c/J - c/J')
£s = - sin (c/J + c/J') £p tan (c/J + c/J') (25a)

• £' 2 sin c/J' cos c/J £' 2 sin c/J' cos c/J-!= -.!!= (25b)E. sin (c/J + c/J') Ep sin (c/J + c/J') cos (c/J - c/J')

Here the symbols E, R, and E' mean the amplitudes of the electric vectors in the
incident, reflected, and refracted light, respectively, the subscripts denoting the two
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FIGURE 25B
Reftectances and the corresponding amplitudes for a dielectric having n = 1.50.

planes of vibration. The angles c/J and c/J', following our usual notation, are the angles
of incidence and refraction.

The fractional amplitudes given by Eqs (25a) and (25b) are plotted against
the angle of incidence in Fig. 25B(b), the values of c/J and c/J' used in the equations
corresponding to the index of refraction 1.50. Solid curves represent the amplitudes,
both positive and negative, as they are given by the equations, while the absolute
magnitudes of the reflected components are shown by broken curves. The negative
signs indicate phase changes of n, which will be discussed below. These, however,
are immaterial for the intensities since the latter are dependent on the squares of
the amplitudes.

The reflectances are given by
R2 R 2sand ::J!.... (25c)
E2 E2s p

and these are the curves in part (a) of the figure. At normal incidence, where c/J = 0,
the parallel and perpendicular components must be equally reflected because here the
plane of incidence is undefined and the two components are not distinguishable.
With increasing c/J R//E/ drops and R//E/ rises until at the polarizing angle their
values are zero and IS percent, respectively. At grazing incidence both components are
totally reflected. Even an unsilvered glass surface becomes a nearly perfect mirror
when the light source is viewed very close to the reflecting plane. It is easily verified
that the glaze on a page of this book becomes highly reflecting at a grazing angle.

The value of the reflectance at normal incidence does not follow immediately
from Eqs. (25a) by setting c/J = 0, since this substitution gives an indeterminate result.
It can be evaluated, however, as follows. Since both c/J and c/J' become small as we
approach perpendicular incidence, wemay set the tangents equal to the sines, obtaining

Rs sin (c/J - c/J') sin c/J cos c/J' - cos c/J sin c/J'
- - = ---'-'----'-....;.= -~---------
Es sin (c/J + c/J') sin c/J cos c/J' + cos c/J sin c/J'
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(25d)

Dividing numerator and denominator of the last expression by sin rjJ' and replacing
sin rjJj(sinrjJ') by n, we find that it reduces to

R n cos rjJ' - cos rjJ n - 1
E = n cos rjJ' + cos rjJ ~ n + 1

The approximate equality becomes exact in the limit when the angles become zero.
Hence the reflectance at normal incidence is

(25e)• R2 = (~)2
E2 n + I

This very useful equation gives the reflectance at rjJ = 0 for any single clean surface
of a dielectric. Thus a glass having n = 1.50 has R2jE2 = 0.04, or exactly 4 percent
as indicated in Fig. 25B(a).

25.2 INTENSITIES OF THE TRANSMITTED LIGHT

One might expect that the transmitted intensities would be complementary to the
reflected ones, so that the two would add to give the incident intensity, but this is
not so. The intensity is defined as the energy crossing unit area per second, and the
cross-sectional area of the refracted beam is different from that of the incident and
reflected beams except at normal incidence. It is the total energy in these beams that
is complementary. There are, however, simple relations between the incident, re-
flected, and transmitted amplitudes, which follow, as we shall show later, from the
boundary conditions of electromagnetic theory. These are

E; _ Rs = 1 and n ~ - ~ = I (25f)
E. E. Ep Ep

In Fig. 25B(b) it will be seen that the curves for E; and R. run parallel to each other.
Those for E; and Rp are not parallel but become so if the ordinates of the former
curve are multiplied by n. Since Eqs. (25f) are simpler than the Fresnel equations
(25b), it is sufficient to remember only the former in addition to Eqs. (25a) in order
to solve problems involving transmitted amplitudes and intensities.

The fraction of the incident intensity that is transmitted, or the transmittance,
when light enters a dielectric of refractive index n is not given directly by the square
of the relative amplitude. The intensity in the medium according to Eq. (23g) also
contains a factor n, so that the transmittance becomes n(E'jE)2. Now, as stated
above, the sum of this and the reflectance (RjE)2 does not equal unity, as can easily
be verified from Eqs. (25a) and (25b). The total energy flux in the refracted beam is
its intensity times its area, and the latter differs from that of the incident or reflected
beams in the ratio (cos rjJ')j(cos rjJ). Conservation of energy is then expressed by the
relation

which applies to either s or plight.
(
R)2 (E')2 cos rjJ' _- +n- ---1
E E cos rjJ
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FIGURE 25C
Intensity and amplitude curves for internal reflection at a dielectric boundary,
n = 1.54.

25.3 INTERNAL REFLECTION

In the above discussion it was assumed that the light strikes the boundary from the
side of the optically less dense medium (usually air) so that we were dealing with the
so-called rare-to-dense, or external, reflection. Fresnel's laws apply equally well
to the case of dense-to-rare, or internal, reflection. If the same value of n is to be re-
tained for the dense medium, the latter case merely involves the exchange of <P and <P'
in the equations. The resulting curves are plotted in Fig. 25C, the reflectances in
(a) and the amplitudes in (b). Up to the critical angle <Pc = 41° these resemble the
curves for external reflection, starting with R21E2 = 4 percent at normal incidence
and diverging until the polarizing angle if) is reached. This angle, 33°, corresponds
to the angle of refraction at the polarizing angle in the external case, since the angle
in the rarer medium (57°) must be such as to render the refracted and reflected rays
perpendicular to each other.

At the critical angle the refracted ray leaves at a grazing angle, and the internal
reflectance becomes 100 percent just as for external reflection at grazing incidence.
When <p exceeds the critical angle, Fresnel's equations contain imaginary quantities
but as we shall see may still be used. It will be found that the reflection remains total
but that there is a continually changing phase shift.

25.4 PHASE CHANGES ON REFLECTION

Returning for the moment to external reflection, where <p > <P' through the whole
range, we find from Eqs. (25a) that the sign of R.IE. is always negative. This means
that there is an abrupt change of phase of 180°in the process of reflection. We express
it by writing ~. = n. For the p light the sign is positive for small <P, indicating no
phase change, but when the condition <p + <P' = 90° is reached, the tangent in the
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FIGURE 250
Phase change of the electric vector of plane-polarized light externally reflected
from a dielectric.

denominator goes to infinity and changes sign. Thus bp changes abruptly from zero
to 11: at the polarizing angle. No real discontinuity is involved, however, because at
this angle the amplitude of the p light goes through zero [Fig. 25B(b)]. Plots of bp
and b, for the entire range of c/J are given in Fig. 250.

The directions in space of the electric vector before and after reflection are
shown in Fig. 25E. It is seen that in case (a), where bp is taken as zero, the incident
and reflected vectors are in nearly opposite directions. This apparent contradiction
comes from our convention of regarding a displacement as positive or negative
according as it is seen looking against the light in all cases. If the observer turns from
viewing the incident beam to viewing the reflected beam, the rotation occurring in
the plane of incidence, he finds that the two arrows maintain the same orientation
relative to him. It is unfortunate that this convention gives a phase change for the s
light but none for the p light at normal incidence, because at c/J = 0 the distinction
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FIGURE 25E
Positions in space of the electric vector just before and just after external reflection
from a dielectric.
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Phase changes of the electric vector for internal reflection from a dielectric,
n = 1.51.

(25g)t ~n .../n2 sin2 4J - 1an...t:; = n ------
2 cos 4J

between sand p vanishes. Using the opposite convention for p would, however, lead
to an equally bad inconsistency in case (c) of the figure.

The phase changes that occur in internal reflection are, up to the critical angle,
exactly the reverse of those at the corresponding angles for external reflection. This
is a necessary consequence of Stokes' relations [Eq. (14d)J, according to which there
must be a relative difference of 1t between the two cases. Beyond 4Jc' in the region
of total reflection, Eqs. (25a) lead* to the following expressions for the tangent of
half the phase change:

t b, .../n2 sin2 4J - 1
an-=------

2 n cos 4J
In Fig. 25F are shown separate curves for ~l' and~" and for their difference b = ~l' - b,.
The ~l' curve rises more steeply than ~, and at 4J = 45°, according to Eqs. (25g), is
exactly twice as large. Since the curves come together again at 4J = 90°, their differ-
ence ~ passes through a maximum and decreases to zero. The principle of the Fresnel
rhomb (Sec. 25.6) is based on this fact.

25.5 REFLECTION OF PLANE-POLARIZED LIGHT FROM
DIELECTRICS

.We are now prepared to predict the nature of the reflected light when plane-polarized
light is incident on the surface at any angle. Let the light fall on a plate of glass as
in Fig. 250 with the plane of vibration making an angle'" = 45° with the perpendic-
ular to the plane of incidence.t This angle we shall call the azimuth angle, whether
it refers to the light vibrations in the incident, reflected, or refracted beam. The
incident light, of amplitude E, can here be resolved into two equal components E"
and E, and each of these treated separately.

• See, for example, M. Born, "Optik," p. 43, J. Springer, Berlin, 1933.
t It is customary to measure I/J this way because the plane of polarization was originally
defined to be at right angles to what we now call the plane of vibration.
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FIGURE 2SG
Azimuths and amplitudes of plane-polarized light externally reflected from a
glass surface at different angles of incidence.

Consider first the case where the angle of incidence </J is small, as in diagram
(0) of the figure. Referring to Fig. 25B(b), the amplitudes of the two reflected compon-
ents are found to be small and very nearly equal in magnitude. They are also out of
phase by 180°. Ifthe angle </J is about 10°, the component R. is just a little larger than
Rp' Taking the vector sum of the reflected components, one finds R in the direction
shown. In case (b) the azimuth of the incident light is again 45°, but the angle of
incidence is about 50°. Rp is now quite small and in phase with Ep, whereas R. is
larger than before and still 180°out of phase with E•. The reflected ray remains plane-
polarized, but the plane of vibration has turned farther away from the plane of
incidence. When </J = iii, as in (c), Rp = 0, while R. is still larger and maintains the
same phase. The resultant amplitude has continued to grow and now stands at right
angles to the plane of incidence. In diagram (d), where the angle </J approaches 90°
(grazing incidence), the reflected components have increased markedly, approaching
in magnitude those of the corresponding components in the incident light. Both
these components have now undergone a phase change of 180°, so that the reflected
light approaches 100 percent in intensity and the plane of vibration approaches the
plane of the incident light.

An equation giving the variation of the plane of vibration of the reflected light
with the angle of incidence is readily obtained by dividing the two equations (25a).

This is the tangent of the angle l/J, that is,

~ = _ Ep cos (</J + </J')
R. E.cos (</J - </J')

(25h)

R
-.J! = tan l/J (2Si)
R.
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FIGURE 25H
The azimuth angle for plane-polarized light reflected from a dielectric.

since the azimuth t/J is the angle between Rand Rs' This angle is plotted in Fig. 25H
for the case where the incident light has an azimuth of 45°, making Ep = E•. The
heavily drawn curves are for external reflection, while the lighter curves, to be dis-
cussed in the following section, are for internal reflection.

25.6 ELLIPTICALLY POLARIZED LIGHT BY INTERNAL
REFLECTION

Reference to Fig. 25F(b), which gives the phase change for light internally reflected
from a glass surface, will show that at an angle of incidence near 50° there is a phase
difference of slightly more than 45° between the two components. More exactly, the
phase difference for n = 1.51 reaches a maximum of 45°56' at <P = 51°20' and is
just 45° at the two angles <p = 48°37' and 54°37'. This behavior of the phase difference
was first tested and confirmed by Fresnel, who constructed a glass rhomb of the form
illustrated in Fig. 251. Plane-polarized light falls normally on the shorter surface
of the rhomb with its plane of vibration oriented at 45° to the plane of the paper.
It then strikes the first diagonal surface at an (internal) angle of incidence of 54°37'.
Here it is totally reflected with a phase difference of 45° between the two components.
Now we have seen in Sec. 12.9 that the result of combining two linear vibrations at
right angles is in general an elliptical one, the shape of the ellipse depending on the
two amplitudes and on their phase difference (j. Only when (j is some integral multiple
of 1t is the resultant linear, and the light plane-polarized. This situation exists in all
cases of external reflection, and in internal reflection up to the critical angle. But in
total reflection one obtains elliptically polarized light as the result of a single internal
reflection at <P > <Pc' The systematic study of elliptical and circular polarization will
be taken up in Sec. 27.5.
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FIGURE 251
Fresnel rhomb. The angle shown is for
glass having n = 1.51.

Circularly polarized light will occur only if the two amplitudes are equal and the
phase difference is 90°. In the Fresnel rhomb an additional phase difference of 45°
is produced by a second internal reflection, so that on emergence the p component
is 90° ahead in phase. The device is therefore useful in producing and analyzing
circularly polarized light, and, as we shall see later, there are other somewhat more
common methods of doing this.

The polarization of the reflected beam when plane-polarized light undergoes
a single internal reflection at various angles of incidence is shown in Fig. 25J. The
amplitude of the electric vector in the incident and reflected light, and their compon-
ents, are designated as in Fig. 25G for external reflection. Here, however, they are
shown as they would appear to an observer looking against the direction of each beam,
with the plane of incidence cutting the plane of the page in a horizontal line. If these
diagrams are studied in connection with Figs. 25C, F, and H, their main features should
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FIGURE 25J
Modes of light vibrations internally reflected in glass at various angles of
incidence.
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be clear. From c/J = 0° to c/J = c/Jc the reflected light remains plane-polarized but
changes its atimuth steadily and increases in intensity. Beyond c/Jc the vibration opens
out into an ellipse having its maximum width at c/J = 510, then narrows again to a
linear vibration at 90°.

25.7 PENETRATION INTO THE RARE MEDIUM

One might conclude from the fact that internal reflection beyond the critical angle is
total that the amplitude of the light drops discontinuously to zero just at the reflecting
surface. According to the boundary conditions of electromagnetic theory this is not
possible, however, and furthermore there is experimental evidence that a disturbance
capable of producing light exists for a short distance beyond the surface. Suppose
that a given surface is totally reflecting an intense beam of light and one brings the
edge of a razor blade very close to the surface, or scatters fine particles on it. Observa-
tion of the edge of the blade or of the particles with a microscope will show them to
be secondary sources of light. In the absence of such foreign matter the electro-
magnetic theory predicts a disturbance which dies off exponentially beyond the sur-
face* but which involves no net transfer of energy through it. The energy merely
oscillates in and out through the surface. The disturbance is periodic in a direction
parallel to the surface but not at right angles to it, and hence cannot properly be called
a light wave. When the electromagnetic field is distorted by the presence of denser
matter sufficiently close to the surface, however, energy is drained off in the form of
light.

An instructive experiment to illustrate this penetration was performed by Hall,t
who used it for quantitative measurements of the distance of penetration. The
apparatus, as shown in Fig. 25K, consists of two total-reflection prisms, one of which
has a slightly convex face. If the two prisms are barely in contact at the point C and
the angle of incidence exceeds the critical angle, total reflection would send all the
light in the direction (b). Actually it is found that in the reflected light there is a dark
patch about C and a corresponding bright one in the transmitted light. Photographs
of these are shown in the figure. As the angle of incidence is increased further beyond
c/Jc' the size of the patch shrinks, showing that the distance of penetration decreases.
At an angle of incidence just below the critical angle (the rays indicated by broken
lines), the complete set of Newton's rings in reflection and transmission appears,
as illustrated by the ring patterns at the left and right of the figure. Hall used measure-
ments of the diameters of these rings to measure the thickness of the air layers corre-
sponding to different observed diameters of the patch mentioned above. He thus had
an accurate measure of the distance of penetration. Both theory and experiment
give a decrease of the energy to about rh in a distance of one wavelength when
c/J = 45° and n = 1.51. When c/J = 60°, it decreases to 1/40,000 in the same distance .

• Quantitative relations are given, for example, in R. W. Ditchburn. "Light," p. 434,
Interscience Publishers, Inc., New York, 1953; reprinted (paperback), 1963.
t E. E. Hall, Phys. Rev., 15:73 (1902). See also K. H. Drexhage, Monomolecular
Layers and Light, Sci. Am., 222: 108 (March 1970).
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FIGURE 25K
Hall's experiment for measuring the penetration that occurs in total reflection.

25.8 METALLIC REFLECTION

In general, highly polished metallic surfaces have a higher reflectance than dielectrics.
At normal incidence, for example, silver and aluminum reflect over 90 percent of all
visible light. Experiments show that the reflectance depends not only on the particular
metal but on the preparation of the surface and on the wavelength and direction of the
incident light. If plane-polarized light is reflected from a metal at other than normal
incidence (Fig. 25L), the p and s components of the incident electric vector are re-
flected with a phase difference and this gives rise to elliptical polarization. It is a
general observation for all metals that plane-polarized light is not reflected as plane-
polarized light except when it vibrates either in the plane of incidence or perpendicular
to it.

In discussing the reflectance of metals it is convenient Gust as for dielectrics)
to resolve the incident light vector E into two components Ep and E... Curves for the
two reflectances as a function of the angle of incidence are shown in Fig. 25M. These
are experimental curves obtained by using white light from a tungsten-filament lamp.
A comparison with the corresponding curves for a dielectric [Fig. 25B(a)] shows
similarities and at the same time striking differences. Metals and dielectrics are similar

FIGURE 25L
Reflection of plane-polarized light from a
metal surface to give elliptically polar-
ized light.



FIGURE 25M
Reflectances for plane-polarized white
light from gold and silver mirrors.
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in that the values for the p and s components start together at normal incidence,
separate, and then come together again at grazing incidence. The essential differences
are the much higher reflectance of metals at normal incidence and the relatively high
minimum at (p. This angle for minimum reflection of Ep is called the principal angle
of incidence.

The reflectance of a metal usually varies considerably with wavelength. In
Fig. 25N this variation is shown for a number of typical metals. In spite ofirregulari-
ties at the shorter wavelengths, all metals reflect very well in the red and infrared.
The face plates on the Apollo space suits worn by the astronauts on the moon were
coated with a thin layer of gold. The coating reflected at least 70 percent of the light
from the sun. Objects seen through the visor appear light-blue or green in color,
but the eyes readily adapt to this color, which soon appears to be practically white.
Such face plates are designed to decrease the thermal load on the suit's cooling system
by strongly reflecting the infrared radiation from the sun while transmitting sufficient
visible light. Gold films deposited on the surface of a sheet of plastic to be used as
window shades are to be found on the sunny sides of many houses and officebuildings
for the same reasons.

Silver and aluminum are of particular importance for general use because they
maintain their high reflectance throughout the visible spectrum. The development
of methods of depositing metal films by evaporation in vacuum has rendered alumi-
num the most satisfactory substance for mirrors in optical instruments. This is due
chiefly to two factors: (1) aluminum retains its high reflectance in the near ultraviolet
as well as in the visible, and (2) the surface does not easily tarnish even after years of
exposure to air. It is now standard practice to coat the mirrors of large reflecting
telescopes, such as the 200-in. instrument at Mt. Palomar, with evaporated aluminum.
A freshly made silver mirror actually has a slightly greater reflectance in the visible,
but it soon tarnishes and becomes poorer than aluminum. For the reflecting surfaces
of Fabry-Perot etalons, however, silver is preferred for use in visible and infrared
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FIGURE 25N
Reflectances at normal incidence of aluminum, silver, gold, copper, and steel.

light. For ultraviolet light aluminum or a mixture of aluminum and magnesium
is better.

Silver is exceptional in showing a narrow region of very low reflectance near
3200A. The light of this wavelength that is not reflected may be mostly transmitted
if the silver film is sufficiently thin. Such a transmission band is also possessed by
the alkali metals at still shorter wavelengths.* A sodium film, for example, can be
used as an ultraviolet filter, opaque to all wavelengths except those near 1950A.

25.9 OPTICAL CONSTANTS OF METALS

The optical properties of a dielectric at a particular wavelength are completely described
by one constant, the refractive index n at the wavelength. For a metal, however,
another constant must be specified which measures the strength of absorption of light
as it enters the metal. Because they contain free electrons, metals have very high
absorption, the intensity falling to practically zero in a small fraction of a wavelength.

• For details, see R. W. Wood, "Physical Optics," 3d ed., pp. 558-566, The Macmillan
Company, New York, 1934; reprinted (paperback) Dover Publications, Inc.,
New York, 1968.
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An important quantity used in dealing with the optics of metals is the absorption
index ", which is defined in terms of the absorption coefficients "0 and 0( (Sec. 23.6) as

" = "0 = _o(A_
11 41tn

(25j)

The determination of n for a dielectric material is usually accomplished by refraction
measurements, but it can also be done using the reflected light by finding the polarizing
angle and applying Brewster's law. With metals the absorption is so strong that
measurements are difficult to do with transmitted light. It has been possible, working
with very thin samples, to measure rough values of nand ", but besides their inac-
curacy the results may not be strictly applicable to the metal in bulk. Hence accurate
values of the optical constants of metals are determined by investigating the reflected
light.

Since there are the two constants to be found, nand ", two measurements are
required. In analogy to the measurement of Brewster's angle for dielectrics, one of
these may be the principal angle of incidence <P, defined above. The other is then the
corresponding azimuth, called the principal azimuth iP. In view of the fact that the
light reflected from metals is elliptically polarized, it is not immediately evident what
is meant by its azimuth. The definition is made by disregarding the phase difference
between the p and s components, which is actually 90° if the light is incident at <P,
and defining the azimuth in the same way as for dielectrics, namely by the equation

Rtan if; = -l! (25k)
Rs

The theory shows that to a fair approximation* the two constants can be found from
the relations

n .J I + ,,2 = sin <p tan <p (251)

" = tan 2iP

The method of measurement of <p and iPwill be briefly described below, after we have
considered the variation in the character of the reflected light with the angle of
incidence.

The values of the optical constants found in the literature show considerable
variations because of different preparation of the surfaces, purity of the samples, and
accuracy of the equations used. We quote in Table 25A, however, some typical values,
including in the last column the reflectances at normal incidence. It will be seen that
there are large variations of n among the metals, those for the better conductors
running considerably below unity. These refractive indices cannot be interpreted in
the same way as for dielectrics, since here we are dealing with highly damped waves
(see Sec. 23.6). The value of "0 for copper, for instance, corresponds to the intensity
falling to lie when the light penetrates a depth of only one thirty-third of a vacuum
wavelength.

• See H. Geiger and K. Scheel, "Handbuch der Physik," vol. 20, pp. 240-250, Springer-
Verlag OHG, Berlin, 1928, which in general follows the work of C. Pfeiffer,
"Beitrlige zur Kentnisse der Metallreflexion," dissertation, Giessen, 1912.
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Plots of the phase difference ~~ - ~. for
a dielectric, a, and for three metals, b,
e, and d, of increasing absorption index
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25.10 DESCRIPTION OF THE LIGHT REFLECTED FROM
METALS

If plane-polarized light is reflected from a metal, the shape and orientation of the
elliptical vibration in the reflected light depend on the orientation of the incident
vibration, on the magnitude of the reflected p and s components, and on the phase
difference between them. The latter factor has not thus far been discussed, and a
quantitative treatment of it would require a more extensive mathematical develop-
ment than would be profitable to include here. We may, however, consider the main
result on the behavior of D(= lJp - Ds) as a function of <p.

Figure 250 shows plots of the theoretical equations for the phase differences
for three different metals b, c, and d, in the order of increasing absorption index K.

It also shows, as the broken line a, the plot for a dielectric, which has K = O. We see
that the discontinuous transition of lJ from 7t to zero which occurs at ;p for dielectrics
becomes for metals a more or less gradual change. We also note that at the principal
angle of incidence the value of lJ is always exactly 90°.

Knowing the values of Rp/Ep, Rs/Es, and D,it is possible to predict the shape of
the elliptical vibration reflected at each angle of incidence. Thus suppose, as in Fig.

Table 25A OPTICAL CONSTANTS FOR VARIOUS METALS FOR
SODIUM LIGHT, J.. = 5893 A

Metal i if n Ie leo r, %
Steel. 77°9' 27°45' 2.485 1.381 3.433 .58.4
Cobalt. 78°5' 31°40' 2.120 1.900 4.040 67.5
Copper. 71°34' 39°5' 0.617 4.258 2.630 74.1
Silver. 75°35' 43°47' 0.177 20.554 3.638 95.0
Gold 72°18' 41°39' 0.37 7.62 2.82 85.1
Sodium 71°19' 44°58' 0.005 522.0 2.61 99.7

• Data supplied the authors courtesy of R. S. Minor.
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25P, that the electric vector in the incident plane-polarized light makes an angle of
45° with the plane of incidence, so that Ep = E•. We have taken the reflecting metal
to be steel, which according to Fig. 25N has a reflectance R2/E2 = 0.58 for sodium
light at normal incidence. Hence near normal incidence [case (a) of Fig. 25P] we
construct the reflected amplitudes Rp = R. = 0.76Ep = 0.76E., since 0.76 = -J0.58.
Now because of the phase change of 11: shown in Fig. 250, we must shift the p vibration
in the reflected light 180° ahead of the s vibration, and the result is a linear vibration
of amplitude R in the direction shown. This direction is actually opposite in space
to that of E [see Fig. 25G(a)]. As the angle of incidence increases from zero, the
gradual change in the phase difference causes the vibration to open out into an ellipse
which is contained in a rectangle of sides 2Rp and 2R.. When the angle iP is reached,
as in (d) of the figure, we obtain an ellipse symmetrical to the axes, and the one that
has the least eccentricity. From then on the ellipse becomes slimmer until finally
at grazing incidence, as in (f), we have a linear vibration of the same amplitude as the
incident light, but exactly out of phase with it.

The meaning of the azimuth angle t/J is best seen from Fig. 25P. It is the angle
that the diagonal of the rectangle makes with R.. From the figure we see that t/J
first diminishes and then increases again in going from c/J = 0 to c/J = 90°. The mini-
mum value occurs at cp, but it is not zero at this angle as it is for a dielectric. The depth
of this minimum becomes less for metals of larger K. This effect may be seen in Fig.
25Q, where the letters a to d have the same significance as in Fig. 250. In the figure
we have marked the value of the principal azimuth iii for the particular metal c.
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Azimuth angle ~ for a dielectric, 0, and for three metals, b, c, and d.

25.11 MEASUREMENT OF THE PRINCIPAL ANGLE OF
INCIDENCE AND PRINCIPAL AZIMUTH

The determination of these quantities is a special case of the general problem of the
analysis of elliptically polarized light, a problem which will be treated in some detail
in Chap. 27. It is not difficult to see, however, with the aid of Fig. 25R in connection
with Fig. 25P(d), how measurements of ifj and iii might be made. Let the nicol Nt
of Fig. 25R be oriented so that the incident vibrations are at 45° to the plane of
incidence. In the reflected beam is placed some type of compensator C, which retards
the p vibrations by a quarter of a period, or 90°, with respect to the s vibrations.
This could be a Fresnel rhomb (Sec. 25.6) but is more commonly a quarter-wave
plate or a Solei! compensator (Sees. 27.2 and 27.4). Now at any angle of incidence
other than ifj the value of {)is different from 90°, so that the phase difference will not
be completely removed by the compensator. The light transmitted by C will still
be elliptically polarized and cannot be extinguished by rotation of the analyzer Nz.
Various angles of incidence are tried until complete extinction becomes possible, and
under this condition the light is '.incidentat ifj.

The fact that it is possible to obtain complete extinction with a nicol means that
the compensator has changed the elliptically polarized reflected light into plane-
polarized light. In Fig. 25P(d) the ellipse is converted into a linear motion along the

FIGURE 25R
Apparatus for determining the principle
angle of incidence and principal azimuth
for a metal. Metal mirror
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diagonal of the rectangle by removing the phase difference of 90° that exists between
the p and s components. It will therefore be seen that when the condition of extinction
has been found the plane of transmission of the analyzer makes the angle iii with
Rp, namely, with the plane of incidence.

25.12 WIENERtS EXPERIMENTS

In Sec. 12.3 we described a classical experiment in which Wiener demonstrated the
formation of standing waves of light by reflection from a silver mirror. The object
of this experiment was not only to reveal the standing waves but also to tell whether
it is the electric or the magnetic vector that produces the observed effects, and hence
is to be identified as the "light vector." According to the electromagnetic theory, the
incident and reflected electric vectors are oppositely directed in space for external
reflection at normal incidence. With dielectrics the reflected waves have a much
smaller amplitude than the incident ones so that the destructive interference is not
complete. For metals, however, we should obtain a node of the electric vector at the
surface. * As to the magnetic vectors, their relative directions in the incident and
reflected light can be found from the fact that E, H, and the direction of propagation
are related according to the right-hand screw rule. The result is shown in Fig. 25S.
If the angle of incidence is made to approach zero, we see that the H" and H vectors
approach the same direction for each polarization. Their superposition should pro-
duce an anti node of the standing waves at the surface. Now as was explained before,
Weiner observed a node where the detecting plate touched the surface. This indicated
that the electric vector was the important one, at least for photographic action.

One would expect from theory that the electric vector would be more important
than the magnetic one in producing the observed effects of light. Wherever it is a
question of the action of light on electrons, the electric fields in the wave exert much
greater forces than the magnetic fields. In fact, only 2 years after Wiener's work
Drude and Nernst showed that the same result holds when fluorescence instead of
photography is used for detection. Later Ives demonstrated it using the photoelectric
effect. It is assumed that the electric vector is also responsible for vision.

An even more convincing demonstration, and one which does not depend on
the phase changes or on the achievement of perfect contact of the end of the photo-
graphic plate with the mirror, was given by Wiener in the following way. Plane-
polarized light was reflected at an angle of incidence of exactly 45°. Then the incident
and reflected rays are at right angles to each other, and the orientations of the vectors
in space are those illustrated in Fig. 258. We see that for s polarization the electric
vectors Es and Rs vibrate along the same line and can interfere. On the other hand
Ep and Rp are perpendicular to each other, and no interference is possible. Exactly
the reverse is true for the H vectors. The experiment is illustrated schematically

• The values of~" and ~. are not exactly 0 or 1800 for metals at normal incidence,
although their difference is. The only effect of this, however, is to shift the position
of the node so that it does not occur exactly at the surface. With silver, for example,
the node is located 0.043). below the surface.
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(a) (J»
FIGURE 25S
Space relations between the incident and reflected E and H vectors: (a) for p
polarization and (b) for s polarization. The angle of incidence is assumed to be
less than 1.

in Fig. 25T. In part (a) the electric vector is perpendicular to the plane of the figure,
a condition which could be achieved by a preliminary reflection from a glass plate at
Brewster's angle, and interference can occur along the horizontal planes marked by
dots. These planes are 1/.•/2 times as far apart as for normal incidence. In the figure
the phase change of 1t on reflection is indicated by the change from solid to broken
lines, and vice versa. For the corresponding magnetic vectors, as shown in part (b),
there is no phase change on reflection. On the surface at point A the resultant is a
linear vibration normal to the surface. Farther up the vibration becomes elliptical,
then circular as at a, and finally linear again at B with horizontal vibrations. The
reverse sequence is followed to point C, with the points A, B, and C being separated
by a distance A./2along the ray. The energy associated with all these vibration forms
is the same (Sec. 28.8), and hence, if the magnetic vector were the active one, the test
plate should be uniformly blackened. Wiener actually found interference bands in the
case illustrated, and uniform blackening when the vibrations in the incident light were
turned through 90°.

(b)

FIGURE 25T
Wiener's experiment at 45° incidence. Interference is observed for the electric
vector oriented as in (a), while the corresponding magnetic vector (b) would
show none.
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PROBLEMS
25.1 Plot the external reflection intensity curves for red light incident on a transparent

crystal of diamond. Use the refractive index given in Table 23A.
25.2 Plot the internal reflectance curves for red light in diamond. Use the refractive index

given in Table 23A.
25.3 Compute the reflectance at normal incidence for the following materials: (a) diamond,

n = 2.426; (b) quartz, n = 1.547; (c) rutile, n = 2.946; (d) crown glass, n = 1.526;
(e) metallic silver, n = 0.177, KO = 3.638; (I) steel, n = 2.485, Ko = 3.433.

Ans. (a) 17.32%, (b) 4.61%, (c) 24.32%, (d) 4.34%, (e) 95.16%, (I) 58.46%
25.4 (a) Derive an equation for the azimuth of the refracted light in a dielectric. Assuming

n = 1.50, (b) make a plot of this angle I/t' against ~', similar to that for reflected light
in Fig. 25H.

25.5 Plane-polarized light is incident at t/J = 70° on a glass surface, with its electric vector
vibrating at 30° with the plane of incidence. Assuming n = 1.750, calculate (a) the
polarizing angle, (b) the critical angle, (c) the relative magnitudes Ep to E•• (d) the
relative magnitudes of Rp and Rs, and (e) the azimuth angle !/t.

25.6 Plane-polarized light is internally reflected at t/J = 45° from the hypotenuse of a total-
reflection prism made of glass of index 1.650. If the azimuth of the incident light is
45°, calculate (a) the phase change of the p and s components and (b) the phase
difference between the p and s components. (c) Plot to scale the elliptical vibrations
form as was done in Fig. 25J.

25.7 Unpolarized light strikes a smooth glass surface at an angle of 35°. Assume the glass
index to be 1.750. Calculate (a) the amplitudes and (b) the intensities of the reflected
p and s components. (c) Find the degree of polarization of the refracted light (see
Sec. 24.4).

Ans. (a) amplitudes, 0.2055 and 0.3374, (b) reflectances, 0.04223 and 0.11384,
(c) polarization 3.884%

25.8 (a) Make a plot of the phase changes on internal reflection in glass having an index
of 1.825. Limit the plot to angles between the critical angle and grazing incidence.
(b) Take the difference 15 = t5p - 15•• and find what two angles could be used in
designing a Fresnel rhomb of this glass.

25.9 Explain why in making a Fresnel rhomb described in Sec. 25.6, it is more desirable
to choose the angle 54°37' than the other angle (48°37'), which also gives a phase
difference of 15 = 45°.

25.10 The optical constants for a given polished metal surface are n = 2.340 and K = 1.176,
for green light. Calculate (a) its reflectance at normal incidence, (b) its principal angle
of incidence, and (c) its principal azimuth. Ans. (a) 50.0%, (b) 75.0°, (c) 24.81°

25.11 For a certain polished metal surface the principal angle of incidence is measured to
be 65,50 and the principal azimuth 38.4°. Determine (a) the optical constants of this
metal and (b) its reflectance at normal incidence.



26
DOUBLE REFRACTION

From the standpoint of physical optics, doubly refracting crystals are classified as
either uniaxial or biaxial. We have seen that in uniaxial crystals the refractive indices,
and hence the velocities, of the 0 and Ewaves become equal along a unique direction
called the optic axis.. In biaxial crystals, on the other hand, there are two directions
in which the velocity 'of plane waves is independent of the orientation of the incident
vibrations. These two optic axes make a certain angle with each other which is charac-
teristic of the crystal and depends to some extent on the wavelength. Uniaxial
crystals may be thought of as a special case of biaxial crystals where the angle between
the axes is zero.

26.1 WAVE SURFACES FOR UNIAXIAL CRYSTALS

Uniaxial crystals may be divided into two classes, negative and positive. In a negative
crystal like calcite, the extraordinary index of refraction is less than the ordinary
index. In quartz, a positive crystal, the index of the extraordinary ray is greater than
that of the ordinary ray. A general treatment of the propagation of light in positive
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FIGURE 26A
Wave-surface diagrams in calcite and
quartz crystals.

and negative crystals is usually given in terms of wave surfaces, which lend themselves
so aptly to Huygens' construction.

The wave surface is a wave front (or pair of wave fronts) completely surrounding
a point source of monochromatic light. Thus if in one of the crystals of Fig. 26A
the source is at P, the circle and ellipse around it represent the traces of the wave
fronts, which are the loci of points of equal phase in the waves given out by P. If
these crystals were isotropic substances such as glass, there would be a single wave
surface, which would take the form of a sphere, showing that the velocity of the wave
in all directions is the same. In most crystalline substances, however, two wave sur-
faces are formed, one called the ordinary wave surface and the other the extraordinary
wave surface. In both calcite and quartz the ordinary wave surface is a sphere and
the extraordinary wave surface an ellipsoid of revolution. The actual three-dimen-
sional surfaces are obtained by rotating the cross-sectional figures of Fig. 26A about
the optic axes which, for reasons to be explained, are labeled xx' and zz'. The circle
generates a sphere, and the ellipse an ellipsoid of revolution. The three cross sections
of these surfaces are shown in Fig. 26B. The eccentricity of the elliptical sections in
these figures is exaggerated, the major and minor axes actually differing by only
11 percent for calcite and 0.6 percent for quartz.

In calcite the ellipsoid touches the enclosed sphere at the two points where the
optic axis through P passes through the surfaces. In quartz the sphere and enclosed
ellipsoid do not quite touch at the optic axis through P. The fact that they do not
touch gives rise to a whole new phenomenon called optical activity, a subject which
will be treated in detail in Chap. 28. The approach of the two surfaces along the optic
axis is so close, however, that for the present they will be assumed to touch as they
in fact do in other positive crystals like titanium dioxide, zinc oxide, ice, etc. It should
be pointed out that owing to the dispersion of all media the wave surfaces shown apply
to one wavelength only. Correspondingly smaller or larger surfaces would be drawn
for other wavelengths. Furthermore, it is important to remember that the radii
drawn from P are proportional to phase velocities and hence do not measure the rate
of propagation of energy. The group velocities, which in dispersive media are usually
less than phase velocities (Sec. 23.7), would be represented by proportionately smaller
surfaces. They would be the same as the wave surfaces described here only in the
case of ideal monochromatic light.

The directions of vibration in the two wave surfaces are indicated in Fig 26A
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FIGURE 26B
Cross sections of the wave surfaces for calcite and quartz crystals.

by ..Lfor vibrations perpendicular to the page and by II for vibrations in the plane
of the page. These will be more exactly specified after we have considered how the
wave surfaces may be applied.

26.2 PROPAGATION OF PLANE WAVES IN UNIAXIAL
CRYSTALS

The origin of the double refraction of light at a crystal surface is readily explained in
terms ofthe wave surfaces just described. This is accomplished by the use of Huygens'
principle of secondary wavelets. Consider, for example, a beam of parallel light
incident normally on the surface of a crystal like calcite, whose optic axis makes some
arbitrary angle with the crystal surface (see Fig. 26C). The optic axis has the direction
shown by the broken lines. According to Huygens' principle, we may now choose
points anywhere along the wave front as new point sources of light. Here A, B, and C
are chosen just as the wave strikes the crystal boundary. After a short time interval
the Huygens wavelets entering the crystal from these points will have the form shown
in the figure.

If one now proceeds to find the common tangents to these secondary wavelets,
the result is the two plane waves labeled 00' and EE' in the figure. Since the first
is tangent to spherical wavelets, it behaves like a wave in an isotropic substance,
traveling perpendicular to the surface with a velocity proportional to AA', BB', and
CC'. We have seen in the last chapter that the vibrations for this 0 wave are normal
to the principal section. The tangent to the ellipsoidal wavelets represents the wave
front for the E vibrations, which take place in the principal section. The E rays,
connecting the origins of the wavelets with the points of tangency, diverge from the
o rays and are no longer perpendicular to the wave front. They represent the direc-
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FIGURE 26C
Huygens' construction for a plane wave incident normally on a calcite crystal.

tion in which a narrow beam of light would be refracted, which is the direction in
which the energy of the E vibrations is transmitted. Its velocity, proportional to
Aa, Bb, or Cc, is called the ray velocity. This is greater than the normal velocity,
measured by Aa', Bb', or Cc', the velocity with which the wave advances through the
crystal in a direction normal to its own plane.

If the normal velocity Aa' is plotted in polar coordinates as a function of the
angle between the optic axis and the E-wave normal, we get the dashed ovals of Fig.
26D. These ovals are of course three-dimensional surfaces symmetrical about the
optic axis. Now it is seen that the wave surface, i.e., the ellipsoid of revolution, is
really a ray-velocity surface. The normal-velocity surface and the ray-velocity surface
for the ordinary vibrations are both represented by the same circle or sphere. Here-
after the ellipsoid of revolution will be referred to as the wave surface of the E wave
and the oval of revolution as the normal-velocity surface of the E wave.

In constructing Fig. 26C the optic axis was assumed to be in the plane of the

2:'
Negotivtl "PositiVtl

FIGURE 26D
Wave surfaces and normal-velocity surfaces for uniaxial crystals.
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page. In case the optic axis is not in the plane of the page, a plane drawn tangent
to the ellipsoidal wavelets will make contact at points in front of or in back of the
plane of the page. If the optic axis is either parallel or perpendicular to the surface
of the crystal, however, the situation is especially simple. Figure 26E illustrates Huy-
gens' construction in these important cases, where the crystal face is cut (1) parallel
to the optic axis as in (a) and (b), and (2) perpendicular to the optic axis as in (c).
In both cases the ray velocities are equal to the normal velocities, and there is no
double refraction. In case I, however, the E wave travels faster than the 0 wave.
When a difference in these velocities exists, we obtain the phenomenon of inter-
ference in polarized light, discussed in the following chapter.

It will assist in understanding the rather complex behavior of the velocity of
light vibrating in different directions, and described by the wave surface, to note the
following facts. The 0 wave, which vibrates everywhere perpendicular to the optic
axis, has the same velocity in every direction. The vibrations of the E wave make a
different angle with the axis for each different ray that is drawn from P (Fig. 260).
In particular, for the ray drawn along the optic axis, the vibrations of which are per-
pendicular to the axis, the velocity becomes equal to that of the 0 ray, which is also
vibrating perpendicular to the axis. These facts suggest that the velocity of light is
for some reason dependent on the angle of inclination between the vibrations and the
optic axis. In terms of the elastic-solid theory, this could be explained by assuming
two different coefficients of elasticity for vibrations parallel and perpendicular to the
optic axis. In calcite, for example, the restoring force is taken to be greater for the Eray
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FIGURE 26F
Huygens' construction when the optic
axis of a calcite crystal lies in the plane
of incidence.

traveling perpendicular to the optic axis (vibrations parallel to the axis) than for the
o ray in the same direction (vibrations perpendicular to the axis). Hence the E wave
travels faster in this direction.

26.3 PLANE WAVES AT OBLIQUE INCIDENCE

Continuing the study of the double refraction of light in uniaxial crystals, consider
the case of a beam of parallel light incident at an angle on the surface of a crystal
whose optic axis lies in the plane of incidence and at the same time makes some
arbitrary angle with the crystal surface (see Fig. 26F). At the point A where the light
first strikes the boundary, the O-wave surface is drawn with such a radius that the
ratio CBfAD is equal to the refractive index of the 0 ray. The ellipsoidal wave surface
is then drawn tangent to the circle at the intersection with the optic axis xx'. The
points D and F and the new wave fronts DB and FB are located by drawing tangents
from the common point B to the circle and ellipse. While the light is traveling from
C to B in air, the 0 vibrations travel from A to D in the crystal and the E vibrations
travel from A to F. In the more general case where the optic axis is not in the plane
of incidence, the refracted ray will not lie in the same plane. Such cases require three-
dimensional figures and cannot be easily shown.

The principles of Huygens' construction are applied to three special cases in
Fig. 26G. In (a) and (c), the optic axis, the plane of incidence, and the E and 0
principal planes coincide with the plane of the page. In (b) the axis is perpendicular
to the plane of incidence, and the cross sections of the wave surfaces from A yield
two circles. This is a case where the two principal planes defining the directions of
vibrations of the 0 and E rays (Sec. 24.9) are separate from each other and from the
principal section.

From geometry it may be shown for the special case of Fig. 26G(a), where the
optic axis is in the surface as well as in the plane of incidence, that the directions of
the refracted rays are given by

nE tan cP~-=--
no tan cPo

Here cPE and cP~ are the angles of refraction, and nB and no are the principal refractive
indices.
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FIGURE 26G
Double refraction for crystals cut with the optic axis parallel and perpendicular
to the surface.

26.4 DIRECTION OF THE VIBRATIONS

In crystals the physical nature of the "vibrations" must be specified more closely
than merely as the oscillations of the electric (or magnetic) vector used thus far.
For reasons to be discussed below, the direction of the electric displacement D (Sec.
23.9) is not in general the same as that of the electric field E. The application of Max-
well's equations to anisotropic substances along the lines to be outlined in Sec. 26.9
shows that the vibrations lying in the wave front are those of D. The vibrations of
E, however (i.e., of the electric vector-not to be confused with the symbol E for the
extraordinary wave) are perpendicular to the ray, and hence inclined to the wave
front. Hence the extraordinary wave is a transverse wave for D but not for E. In
our Figs. 26C and 26D, and in what follows, we indicate as the direction of the vibra-
tions that of the electric displacement D.

For uniaxial crystals, the directions of vibration of the 0 and E rays may be
specified in terms of the principal planes for these rays defined in Sec. 24.9. The 0
vibrations are perpendicular to the principal plane of the 0 ray, which contains this
ray and the optic axis. They are also tangent to the O-wave surface. The E vibrations
lie in the principal plane of the E ray and are tangent to the E-wave surface. These
definitions may seem unnecessarily complicated in cases like Fig. 26C, where the
principal section and the two principal planes all coincide with the plane of the figure,
but they are essential in the more general case, where all three of these planes are
different. Another way of determining the directions of the vibrations, which holds
quite generally for all cases including biaxial crystals, is as follows. The electric
displacements associated with one ray (the E ray in uniaxial crystals) are in the direc-
tion of the projection of the rayon its wave front. Those associated with the other
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ray may then be found from the fact that for a given direction of the wave normal
the two possible directions of D are mutually perpendicular. Inspection of our
figures will show agreement with these rules in the simple cases we have considered.

26.5 INDICES OF REFRACTION FOR UNIAXIAL CRYSTALS

The index of refraction is usually defined as the ratio of the velocity of light in vacuo
to the velocity in the medium in question. In uniaxial crystals there are two principal
indices of refraction, one expressing the velocity of the E wave when traveling normal
to the optic axis, and the other the velocity of the a wave. These are related to the
two elastic coefficients mentioned in Sec. 26.2. In negative crystals, such as calcite,
the principal index for the extraordinary wave is defined as the velocity of light in vacuo
divided by the maximum velocity in the crystal.

velocity in vacuo
nE = --------- (26a)

maximum velocity of E wave

The maximum normal velocity, it should be noted, is equal to the maximum
ray velocity. The ordinary index is defined as

no = velocity in vacuo (26b)
velocity of a wave

In positive uniaxial crystals the principal index for the extraordinary wave is
defined as .

n - velocity in vacuo (26c)
E - minimum velocity of E wave

The principal indices for calcite and quartz are given in Table 26A for several
wavelengths throughout the visible, ultraviolet, and near-infrared spectrum.

Since the E-wave surface touches the a-wave surface at the optic axis, the ordin-
ary index no also gives the velocity of the E wave along the axis. Each pair of values
of no and nE for a given wavelength therefore determines the ratio between the major
and minor axes of the extraordinary wave surfaces for that wavelength of light.

The principal indices for uniaxial crystals are readily determined experimentally
by refracting light through a prism of known. angle. If either of the prisms in Fig.
26H is placed on a spectrometer table, two spectra will be observed. For any given
wavelength there will be two spectrum lines and hence two angles of minimum devia-
tion. The a and E indices are then calculated in the usual way (Sec. 2.5) by the formula

n = sin i(oc + 15m) (26d)
sin ioc

where 15m is the angle of minimum deviation and oc is the angle of the prism.
At minimum deviation in prism (a) the E ray is traveling essentially perpendicular

to the optic axis, the necessary conditions for measuring the principal index nE' In
prism (b) it should be noted that the cross section of the wave surface yields two
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FIGURE 26H
Double refraction in prisms cut from a negative uniaxial crystal.

circles. This means that the velocity of the E ray, as well as that of the 0 ray, is
independent of direction in the plane of the figure and Snell's law of refraction holds
for it also.

Two useful relationships for calculating points on an ellipse, plotted in rectan-
gular coordinates, are.

x = a cos 4J
y = b sin 4J

(26e)

One most interesting uniaxial crystal, called rutile, is synthesized TiOz (titanium
oxide), a clear water-white crystal used in making gemstones that show approximately

Table 26A PRINCIPAL INDICES OF CALCITE AND QUARTZ AT 18°C

Calcite Quartz
Source Wavelength, Fused
element A no nE no nE quartz

Au 2000.60 1.90302 1.57663 1.64927 1.66227
Cd 2265.03 1.81300 1.54914 1.61818 1.62992 1.52308
Cd 2573.04 1.76048 1.53013 1.59622 1.60714 1.50379
Cd 2748.67 1.74147 1.52267 1.58752 1.59813 1.49617
Sn 3034.12, 1.71956 1.51366 1.57695 1.58720 1.48594
Cd 3403.65 1.70080 1.50561 1.56747 1.57738 1.47867
Hg 4046.56 1.68134 1.49694 1.55716 1.56671 1.46968
Hy 4340.47 1.67552 1.49552 1.55396 1.56340 1.46690
Hp 4861.33 1.66785 1.49076 1.54968 1.55898 1.46318
Hg 5460.72 1.66168 1.48792 1.54617 1.55535 1.46013
Hg 5790.66 1.65906 1.48674 1.54467 1.55379
Na 5892.90 1.65836 1.48641 1.54425 1.55336 1.45845
H. 6562.78 1.65438 1.48461 1.54190 1.55093 1.45640
He 7065.20 1.65207 1.48359 1.54049 1.54947 1.45517
K 7664.94 1.53907 1.54800
Rb 7947.63 1.53848 1.54739 1.45340,

8007.00 1.64867 1.48212
0 8446.70 1.53752 1.54640

9047.0 1.64579 1.48095
Hg 10140.6 1.53483 1.54360

10417.0 1.64276 1.47982
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6 times the fire of a diamond. The refractive indices given in Table 26B, are calculated
from the modified two-term Cauchy equations;

o ray:

Eray:

n 2o

n 2
E

= 5.913 + 2.441 x 10
7

.t2 - 0.803 X 107

= 7.197 + 3.322 x 10
7

A,2 - 0.843 X 107

(26f)

26.6 WAVE SURFACES IN BIAXIAL CRYSTALS

The majority of crystals occurring in nature are biaxial, possessing two optic axes, or
directions of single normal velocity. Double refraction in such crystals, just as in
calcite and quartz, is most easily described in terms of wave-surface diagrams and
Huygens' principle. Three cross-sectional views of the wave surfaces for a biaxial
crystal are given in Fig. 261. As before, the directions of vibration are shown by dots
and lines. Each section cuts the two surfaces in one circle and one ellipse, and these
are different in the three sections. The figures are drawn for the case where the semi-
axes of the intersections of the wave surface with the coordinate planes are, as shown
in the figure, a = 3, b = 2, and c = 1. (Such large differences in a, b, and c are never
found in nature.)

Ofthe three cross sections, the center one (that in the xz plane) is the most inter-
esting, for it contains the four singular points where the outer wave surface (light
line) touches the inner surface (heavy line). As shown again in Fig. 26J(a), the rays
OR1 and OR2 represent directions in which there is but one ray velocity. These
are not the optic axes. The optic axes are located by drawing the tangent planes,
A1M1 and A2M2• It is difficult to show in two dimensions that these tangent planes
touch the three-dimensional outer surface in circles whose diameters are A 1M 1 and
A2M2, but such is the case. Since the cross section of one surface is a circle, the lines
OA1 and OA2 are perpendicular to the tangent planes. They therefore give the same
normal velocity for both the ellipse and the circle, so that OA1 and OA2 are the optic
axes for the point O.

From Fig. 261 it is seen that one can determine the shape of the wave surfaces

Table 26B REFRACTIVE INDICES FOR
Ti02 (RUTILE), FOR
SEVERAL OF THE
PRINCIPAL FRAUNHOFER
LINES

Designation l,A no n£._ ..-
C(H.) 6561 2.5710 2.8560
D (Na) 5890 2.6131 2.9089
E (Fe) 5270 2.6738 2.9857
F (H~) 4861 2.7346 3.0631
G'(H,) 4340 2.8587 3.2232
H (Ca+) 3968 3.0128 3.4261
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FIGURE 261
Cross sections of wave surfaces for a biaxial crystal.

by specifying three principal indices of refraction. These are determined by the fact
that there are three particular velocities, corresponding to vibrations parallel to x, y,
and z, respectively. The elastic-solid theory specified three different coefficients of
elasticity for these three types of vibration, which gave rise to these three velocities.
If the wave surfaces represent the wave fronts after they have traveled a time of 1 s
from the point 0, the indices are given by

• Vnc =-
c

(26g)

where V is the distance light travels in 1 s in vacuum and a, b, and c are the semiaxes
of the elliptic sections of the wave front. Values of na' nb' and nc are given for several
crystals in Table 26C.

The distinction between positive and negative crystals is made according to
to whether the angle IX of Fig. 26J(a) is less or greater than 45°.

The angle IX in Fig. 26J(a) can be calculated from the geometry of a circle and
an ellipse, and is given by the relation,

• Jb2 - c2
COSiX= 2 2

a - c
(26h)

Table 26C PRINCIPAL INDICES OF REFRACTION FOR BIAXIAL
CRYSTALS (FOR SODIUM LIGHT)

Angle
Crystal and formula n. nb n. IX, deg
Negative crystals:
Mica [KH2AI3(S04hJ 1.5601 1.5936 1.5977 71.0
Aragonite [CaO(COhl 1.5310 1.6820 1.6860 81.4
Lithargite (PbO) 2.5120 2.6100 2.7100 46.3
Stibnite(Sb2S3)( ),7620) 3.1940 4.0460 4.3030 80.7

Positive crystals:
Anhydrite (caS04) 1.5690 1.5750 1.6130 22.1
Sulfur (S) 1.9500 2.0430 2.2400 37.3
Topaz [(2AlO)FSi021 1.6190 1.6200 1.6270 20.8
Turquoise (CU03' Ah03.2P20s' 9H2O) 1.5200 1.5230 1.5300 33.3
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FIGURE 26J
Wave-surface diagram for (a) a biaxial crystal and (b) and (c) the limiting cases
of uniaxial crystals.

It can be seen from the diagram that, as a approaches b, lX approaches zero and the
surface takes the form of a positive uniaxial crystal [Fig. 26J(b)]. When, on the other
hand, lX = 90°, we have b = c and the surface is that of a negative uniaxial crystal,
as in (c) of the figure. In terms of the refractive indices these limiting cases are

Positive uniaxial crystal
having no = na or nb' nE = nc

Negative uniaxial crystal
having no = nb or nc, nE = na

It is to be noted in Fig. 261 that each coordinate plane contains one circular
cross section of the wave surface. This means that one of the two rays refracted into
a crystal along any of these planes will obey Snell's law. Prisms can therefore be
cut from crystals in such a way as to make use of this fact in determining the principal
indices of refraction.

One quadrant of the wave surface for a biaxial crystal is shown in Fig. 26K
to illustrate the directions of the electric displacements D, that is, the vibrations in
the wave fronts, and also to show the normal velocity surface (dashed lines). The outer
sheet touches the inner one at only four points, where it forms "dimples." These
are located at points such as R2, where the surface is intersected by the ray axes. Along
the x, y, and z axes the ray velocity is equal to the normal velocity. It will be seen
that the vibrations in the wave surface wherever it has a circular section are perpendic-
ular to the coordinate plane, for only under these conditions do they maintain a
constant angle with the optic axes.
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FIGURE 26K
Quadrant cross sections of wave surfaces for a biaxial crystal. Broken lines are
normal-velocity surfaces. Arrows show the direction of the electric displacement.

26.7 INTERNAL CONICAL REFRACTION

The investigation of refraction in biaxial crystals follows the same lines as that given
in the preceding sections for uniaxial crystals. To treat refraction in the xz plane, for
example, we may apply Huygens' construction using secondary wavelets of the form
shown in Fig. 26J. One finds in general two plane-polarized refracted rays, so that
we have double refraction here also. Two special cases arise, however, in which the
behavior of a biaxial crystal is different from the simpler uniaxial type. They corre-
spond to the singular case where light is sent along the optic axis of a uniaxial crystal.
One of these, internal conical refraction, is observed when a beam is directed along
one of the optic axes inside the crystal. In the other, external conical refraction,
it is sent along one of the ray axes.

Internal conical refraction comes about as follows: It has already been mentioned
that the tangent plane A2M2 [Figs. 26J(a) and 26L(a)] makes contact with the three-
dimensional wave surface in a circle of diameter A2M2• Suppose now that a plane-
parallel plate is cut from a crystal so that its surfaces are perpendicular to an optic
axis and that the crystal has the thickness OA2 of Fig. 26L(a). Let a ray of unpolarized
light be incident normally on the first surface at O. The perpendicular vibrations
will travel along the optic axis OA2 and pass through undeviated. The parallel
vibrations will be propagated along OM2, and will emerge after a second refraction
traveling in the same direction as OA2• Now the incident unpolarized ray contains
vibrations in all planes through the ray (Sec. 24.2) and for each particular plane of
vibration there is a different direction along which the wave will be propagated with
the same normal velocity as along any other ray. In three dimensions these rays will
form a cone of light in the crystal spreading out from O. Arriving simultaneously
at the second surface A2M2, all these waves are refracted parallel to each other to
form a circular cylinder. When this hollow beam of light is looked at end-on, the
planes of vibration will be as shown in Fig. 26L(b).
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FIGURE 26L
(a) Geometry of internal conical re-
fraction. (b) End view of internal
conically refracted light, showing the
directions of vibration.

Internal conical refraction was predicted by Sir William Hamilton and at his
suggestion is reputed to have first been verified experimentally by Lloyd in 1833.
The observations are usually made now with a parallel crystal plate as shown in Fig.
26M. A beam of light, confined to a narrow pencil by two movable pinholes 81 and
82, is incident at just such an angle that the light vibrating perpendicular to the plane
of incidence is refracted along the optic axis. When the pinhole 82 is moved around
to vary the angle of incidence, there will be only two refracted rays until the correct
direction for internal conical refraction is reached. When this happens, the light
spreads out from the two spots near A2 and M2 into a ring.*

26.8 EXTERNAL CONICAL REFRACTION

External conical refraction in biaxial crystals deals with the refraction of an external
hollow cone of light into a narrow pencil or ray of light inside the crystal (Figs. 26N
and 260). Suppose that a beam of monochromatic light is moving inside a crystal

• A photograph of internal conically refracted light is given in Max Born, "Optik,"
p. 240, J. Springer, Berlin, 1933.

FIGURE 26M
Internal conical refraction in a biaxial
crystal plate.
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FIGURE 26N
Geometry of external conical refraction.

fbl

along the ray axis OR1• From the diagram in Fig. 26N two tangents can be drawn
at the intersection R1, one to the ellipse and one to the circle.

In the three-dimensional wave surfaces the point R1 is like a dimple, and there
is an infinite number of wave fronts enveloping the obtuse cone. Corresponding
to these wave fronts there will be an infinite number of wave normals, each with its
own particular direction of vibration [Fig. 26N(b)], and these will form an acute-
angled cone. When these wave fronts, the energy of each one of which travels along
the ray axis, arrive at the crystal surface, they will emerge as a cone of rays, since
each wave normal inside corresponds to a refracted ray outside. There is thus a cone
of wave normals outside as well as inside. By the principle of the reversibility of light
rays a hollow cone of polarized light rays from outside a crystal should unite to form
one ray inside traveling along the single-ray axis.

Experimentally a solid cone of converging unpolarized light, somewhat larger
than necessary, is made to fall on a crystal plate cut as shown in Fig. 260. The ray
axis is located by moving one of the pinhole apertures Sl and S2' From the incident
light the crystal picks the hollow cone of rays vibrating in the proper planes that
unite to form one ray. The various other rays travel different directions in the crystal
and are stopped by the screen S2. Upon refraction from the second crystal surface
a hollow cone of polarized light is observed emerging from S2' The cone shown in
Fig. 260 is not the same as the one shown in Fig. 26N(b), but is the one produced
by refraction of the latter.

FIGURE 260
Method of observing external conical
refraction.
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26.9 THEORY OF DOUBLE REFRACTION
Maxwell's equations for crystalline media have the same form as those given in
Sec. 23.9 for transparent media in general, namely,

!oD" = oHz _ oH.,
C ot oy oz
oD" + oD., + oDz = 0
ox oy oz

_!oH" = oEz _ oE.,
C ot oy OZ

oH" + oH., + oHz = 0
ox oy oz

(26i)

Only in the case of an isotropic substance like glass, however, is it permissible to write
for the electric displacement D = eE, as was done in Sec. 23.9. In anisotropic crystals
it is found that the measured values of the dielectric constant e vary with the orientation
of the optic axis or axes relative to the electric field E. In the electron theory of
dielectric media, the value of the dielectric constant depends on the polarization
of the atoms under the influence of the electric field. This fact was mentioned in
connection with our discussion of dispersion. The effect of the electric field is to
produce a slight relative displacement of the positive and negative charges, so that the
atom acquires an electricmoment. Now the moment generated in a given atom depends
on the electric fieldat that atom, whichwillbedetermined in part by the fields from other
polarized atoms in its immediate neighborhood. If these other atoms are arranged
in a particular way, it is clear that the polarization and the effective dielectric constant
should depend on the orientation of the electric vector of the waves. In calcite, for
example, the oxygen atoms in the C03 group are the most easily polarized, and they
exert a strong influence on each other. Under this influence, they are more easily
polarized by an electric field parallel to the plane of the group than by one perpendic-
ular to it. At a result, we shall find that the refractive index should be greatest for
light having its electric vector perpendicular to the trigonal axis.

The fact that e varies with direction in these crystals can be shown by the electro-
magnetic theory to give rise to double refraction. The direction of D differs from that
of E except in three singular directions, which are mutually perpendicular. The
value of e is a maximum along one of these axes, a minimum along another, and
intermediate along the third. Designating them by x, y, and z, we therefore find that,
for the three components of D in Maxwell's equations, we must now write

(26j)

When these values are substituted in Eqs. (26i), and the equation for plane electro-
magnetic waves derived, * it is found that for any direction of the wave front there
are two velocities for vibrations of the vector D in two mutually perpendicular direc-
tions, and this is the fundamental aspect of double refraction.

The most concise way of presenting the results of the electromagnetic theory

• See, for example, P. Drude, "Theory of Optics," English edition, pp. 314-317,
Longmans, Green & Co., Inc., New York, 1922.
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FIGURE 26P
Dielectric ellipsoid for a biaxial crystal.

is by the use of what we may call the dielectric ellipsoid. This is an ellipsoid described
by the equation '

x2 y2 Z2- + - + - = (26k)
8x 8" 8:

in which 8x' 8", and 8: are the principal dielectric constants of Eqs. (26j). The semiaxes
of the ellipsoid are .; 8x, .; 8", and .; 8:, as shown in Fig. 26P, where we have taken
8x < 8" < 8:. From the ellipsoid we may obtain the two velocities and the corre-
sponding directions of vibration for a wave traveling in any arbitrary direction through
the crystal, as explained below. This mode of representation was first given by Fresnel
in terms of the elastic-solid theory of light. Since, in the older theory, the velocity
was dependent on the elasticity and density of the ether, Fresnel's ellipsoid could be
either an "ellipsoid of elasticity" or an "ellipsoid of inertia." When it is replaced
by a dielectric ellipsoid, Fresnel's results can be translated directly into the terms
of the electromagnetic theory.

Suppose now that ordinary light waves vibrating in all planes are moving
through the point 0 in the crystal in every direction and that we wish to determine
the double wave surfaces presented in the preceding sections. In Eq. (23p), the
velocity of light was given by

c
v = .;;

where c is the velocity in vacuo. We therefore have the relations

(261)

C

Va = .J~
na = .J~

c
V =-c.fi:
nc = .fi:
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FIGURE 26Q
Correlation of the velocities and direc-
tions of vibration in the waves with the
directions of the three principal dielectric
constants.

where Va > Vb > VC' Now Va represents the velocity of waves traveling perpendicular
to the x axis with their electric displacements parallel to x. Their velocity is therefore
determined by 8". The application of this statement to the other directions of vibra-
tion and velocities of propagation along the three coordinate axes may be seen by
inspection of Fig. 26Q.

Let us now see how the two velocities in any arbitrary direction may be de-
termined by the use of the dielectric ellipsoid. First we note that the velocities along
anyone of the coordinate axes are inversely proportional to the major and minor
axes of the elliptical section of the ellipsoid made by the coordinate plane that is
perpendicular to that axis. In the same way, for any other direction of propagation,
we pass a plane through a parallel to the plane of the wave. This will cut the ellipsoid
in an ellipse with major and minor axes OA and OB, Fig. 26R(a). On the wave normal
the distances OM and ON are measured off inversely proportional to OA and OB.

FIGURE 26R
The construction of a normal-velocity surface.
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The planes M and N parallel to the initial plane represent a later position of the waves
vibrating parallel to the two axes of the ellipse. If we consider a single vibration in
plane AOB making an angle e with OA, the electric vector OP may be resolved into
two components OP cos e and OP sin e. These components along the major and
minor axes travel with the two different velocities. If now the plane AOB is rotated
about 0 in every possible direction the points M and N will trace out the normal-
velocity surfaces (dotted lines) shown in Fig. 26K(b).

For every ellipsoid with three different axes there are two planes only for which
the cross sections are circles. For these two planes, OA and OB in Fig. 26R(a) will
be equal and the planes M and N will coincide. The directions of the normal for these
two circular cross sections of the dielectric ellipsoid give the optic axes of the crystal, "
I.e., the directions of equal normal velocity for all planes of vibration. The envelope
of all plane waves at the instant they reach the normal-velocity surface is the wave
surface previously described in Sec. 26.6. This envelopment, giving a surface of ellipti-
cal section, is illustrated in Fig. 26R(b).

The optical properties of doubly refractive crystals are completely determined
when one knows the values of the three principal refractive indices and the directions
of two of the principal axes. As was mentioned, these can be measured by cutting
the crystal into prisms of different orientation. There exist, however, more powerful
and more convenient methods based on the interference effects resulting from the
difference in velocity of the two polarized components, and these will be discussed
in the next chapter.

PROBLEMS

26.1 A light ray strikes the surface of a crystal of ice at grazing incidence in a plane per-
pendicular to the optic axis. The crystal has been cut so that its axis lies parallel to
the surface. Find the separation in millimeters of the 0 and E rays at the opposite
face of the crystal, which is a plane-parallel slab 4.20 mm thick. Assume no = 1.3090
and nE = 1.3104 for sodium light. Ans. 0.01271 mm

26.2 Find by graphical construction how thick a natural calcite crystal would need to be
in order for a ray of sodium light incident normally on one cleavage face to emerge
from the opposite face as two rays separated by a linear distance of 2.50 mm. In a
principal section of calcite, the optic axis can be assumed to make an angle of 45°
with the normal.

26.3 A ray of unpolarized light falls on a calcite crystal, the optic axis of which is parallel
to the surface. The angle of incidence is 32°, and the plane of incidence coincides
with the principal section of the crystal. Find the angles of refraction of the 0 and E
rays for the green mercury line (see Table 26A and footnote Sec. 26.3).

26.4 A 50° prism is made of ammonium phosphate for which no = 1.5250 and nE =
1.4790. If the prism is cut with its optic axis parallel to its refracting edge, calculate,
(a) the angles of minimum deviation and (b) their difference.

Ans. (a) 00 = 30.26°,OE = 27.37°, (b) 2.89°
26.5 Draw to scale the two cross sections of the wave surface of Rutile (Ti02) made by

planes (a) parallel to the optic axis and (b) perpendicular to the axis. Indicate the
directions of the vibrations on each diagram. (c) Is rutile a positive or negative crys-
tal? Assume the light is for the Fraunhofer F line, A. = 4861 A.
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26.6 The angle 2« between the optic axes of a biaxial crystal is given by Eq. (26g). The
principal indices of refraction for two unidentified crystals are measured and found
to be (a) for the first, na = 1.6842, nb = 1.6935, and nc = 1.7126 and (b) for the
second, na = 2.1547, nb = 2.3282, and nc = 2.4034. Find the angle ce for both
crystals, and determine whether they are positive or negative.

Ans. (a) 35.24° positive, (b) 58.77° negative
26.7 Draw to scale cross sections in the three coordinate planes of the wave surfaces of a

biaxial crystal of sulfur. See Table 26C for refractive indices.
26.8 Construct one quadrant of the xz section of the elliptical wave surface for stibnite.

From this graphically construct the corresponding normal velocity surface in this
same plane [see Fig. 26R(b»). Show the optic axis.

26.9 A crystal of stibnite is cut into a 20° prism with its refracting edge perpendicular to
the plane containing the optic axes. The angle of minimum deviation is measured
for a ray of sodium light with its vibrations parallel to the refracting edge. What
value would be expected according to the refractive indices given in Table 26C?

Ans. 0 = 69.3°
26.10 The axis of single ray velocity in a biaxial crystal makes an angle P with the z axis,

the cosine of which is alb times as large as the value of cos ce. Find the apex angle of
the cone of internal conical refraction in a crystal of stibnite, using the refractive
indices given in Table 26C.
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INTERFERENCE OF POLARIZED LIGHT

The first investigation of the interference of polarized light was made by Arago in
1811. Examining the blue light of the sky with a calcite crystal, he observed that
when a thin sheet of clear mica was interposed, the ordinary and extraordinary rays
became richly colored. This color effect is produced by nearly all crystals and is due
in most cases to the interference of polarized light and in a relatively few to optical
activity. The latter sul,ject will be treated in detail in the next chapter, and the phen-'
omena attributed to interference will be considered now.

27.1 ELLIPTICALL Y AND CIRCULARLY POLARIZED
LIGHT

Suppose that plane-polarized light from a nicol prism N1J as in Fig. 27A, is incid~nt
normally on a thin plate of calcite C cut with faces parallel to the optic axis. Making
use of the wave-surface diagrams and Huygens' construction as in Fig. 26E(0), we
can now determine qualitatively the nature of the light emerging from the calcite
plate. Upon entering the crystal at P normal to the surface but with the vibrations
at an angle with the optic axis, the light will break up into two components E and



FIGURE 27A
Plane-polarized light incident normally
on a crystal plate cut parallel to the
optic axis.
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o (Fig. 27C). As shown in Fig. 27B, the E wave having vibrations parallel to the optic
axis will travel faster than the 0 wave, but along the same path.

To find just how far the E vibrations get ahead of the 0 vibrations by the time
they have traversed the thickness d of the crystal, we take the difference in the optical
paths (Sec. 1.5) and then convert this into phase difference. The optical path for the
o ray is, according to Eq. (Ii), merely nod, and that for the E ray, nE'i. The path
difference is therefore

Ii = d(no - nE) (27a)

The corresponding phase difference, by Eq. (13a), is given by 2nj). times the path
difference,

• (27b)

Here d may also represent the distance of penetration into a given crystal, and one
sees that the phase difference () steadily increases in proportion to this distance.

Looking end-on against the light beam, as in Fig. 27C, let the plane-polarized
light vibrations from the first nicol N1 meet the first crystal face, making an angle ()
with the principal section. If A is the amplitude of this light, it will be broken up into
two components, E = A cos () traveling with the faster velocity VB and 0 = A sin ()
traveling with the slower velocity Va. After leaving the crystal, the 0 and E rays will
continue in the same straight line and, of course, with their vibrations perpendicular
to each other. .

Within the crystal there are, at any given point, two vibrations at right angles
having the phase difference (). They are of the same frequency, equal to that of the

P Opticaxis

FIGURE 27B
Advance of the E wave ahead of the 0
wave in a negative crystal plate.

Qo
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Optic axisFIGURE 27C
Resolution by the crystal of plane-
polarized light incident as in Fig. 27A.

light outside the crystal. The problem of the composition of such vibrations has
already been investigated in Sec. 12.9, where it was shown that the resultant motion
is one of the various elliptical figures for equal frequencies (Fig. 12K). The vibration
is therefore an ellipse, a straight line, or a circle. In fact, at steadily increasing dis-
tances through the crystal from P towards Q (Fig. 27B), the vibration forms will
progress through a whole sequence of figures like those in Fig. 12K and usually will
repeat the sequence many times. It is only when the light emerges from the crystal,
however, that the type of vibration may be readily observed. Depending on the thick-
ness of the crystal and on the other quantities in Eq. (27b), this will be some figure
enclosed within a rectangle of sides 2A cos ()and 2A sin O. For () = 0, 2n, 4n, the
linear incident vibration will emerge unchanged, while for () = n, 3n, 5n it, will
be transformed into another linear vibration making an angle 20 with its original
direction. At all intermediate values of ()the motion is in an ellipse, the shape of which
is determined by the particular () and (j according to the principles explained in Sec.
12.9. Such light is termed elliptically polarized light, of which linearly polarized* and
circularly polarized light are obviously special cases.

Let us consider for a moment what is meant by the statement that the vibrations
in a beam of light are elliptical. Since the "vibration" is actually a periodic variation
of the electric field in space, it means that at any given point in an elliptically polarized
beam the terminus of the electric vector moves in an ellipse in a plane perpendicular
to the direction of propagation of the light. The vector thus varies continuously in
both direction and magnitude, returning to the original values with the frequency
of the wave. At other points along the wave the motion is similar but of different
phase, so that the vector is in a different part of the ellipse. In a "snapshot" of the
wave, the electric vectors would have a screwlike arrangement like that illustrated
in Fig. 20D(b).

• The terms plane-polarized and linearly polarized are often used interchangeably.
The latter is rather to be preferred when comparisons are made with elliptically
polarized light.
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For the crystal to produce circularly polarized light, two conditions must hold.
First, the amplitudes of the 0 and E rays must be equal. This requires that sin () = cos ()
or that () = 45°. Second, the phase difference must be either nl2 or 3n12. (Addition
of any multiple of 2n to either of these is of no consequence.) The difference between
the two cases is one of the direction of rotation in the circle, as was explained in Sec.
12.9 in connection with Fig. 12L. Which value of ~ gives right circular polarization
and which left will depend on whether the plate is made of a positive or of a negative
crystal. With calcite, for example, the E wave travels faster, and if ~ = n12, a left-
handed rotation is produced, looking against the direction of the light. The directions
parallel to and perpendicular to the optic axis in a negative crystal are often called
the fast and slow axes of the plate, as is indicated in Fig. 27C. In a positive crystal
these designations relative to the axis are of course interchanged.

27.2 QUARTER- AND HALF-WAVE PLATES

The simplest device for producing and detecting circularly polarized light is known
as a quarter-wave plate, or Af4 plate. Such plates are usually made of thin sheets of
split mica, although they can be of quartz cut parallel to the optic axis. The thick-
ness is adjusted so as to introduce a 90° phase change between the 0 and E vibrations. *
The correct thickness for such plates can in the case of uniaxial crystals be computed
by use of Eq. (27b). Since the phase difference ~ depends upon the wavelength,
the principal indices for yellow sodium light, A,5893, are usually used for computing
the required thickness for a quarter-wave plate. When a quarter-wave plate is oriented
at an angle of 45° with the plane of the incident polarized light, the emerging light is
circularly polarized. Reasonably good plates can be made by splitting good clear
mica into very thin sheets about 0.035 mm thick. This can be done with a penknife
or a needle, using a micrometer caliper for checking the thickness.

Use is often made of plates which introduce a phase difference of 180° between
the components and which are therefore called half-wave plates. As mentioned in
the previous section, the effect of a plate of this kind is merely to alter the direction
of vibration of plane-polarized light by the angle 2(), where ()is the angle between the
incident vibrations and the principal section. In certain instruments where it is desired
to compare two adjacent fields of light polarized at a certain angle with each other,
half the field is covered with a half-wave plate.

• Strictly speaking, mica is a negative biaxial crystal of which there are many different
forms. The angle between the optic axes may be almost anything from 0 to 42°
depending upon the chemical constitution as well as the crystal structure. The most
common mica, muscovite (pale brown in color) has an angle of 42° (= 180° - 2«)
between the optic axes (see Table 26C). The cleavage plane along which it splits
most easily is the yz plane in Figs. 261and 26J. The difference between the velocities
along the x axis is therefore very small. This is an advantage, since then the plates
do not have to be made too thin and fragile. Quartz has no natural cleavage planes
and has to be cut and the faces polished to optical flatness. Quarter-wave plates
can also be made in large sheets of plastic that has been formed by extrusion. These
sheets are double refracting and by careful control of the thickness can be made to
produce a phase difference of n/2 rad, or any other value.
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FIGURE 27D
Origin of the components brought to interference by crossed analyzer and polarizer.

27.3 CRYSTAL PLATES BETWEEN CROSSED POLARIZERS

As explained in Sec. 24.12, when the polarizer and analyzer are set at right angles to
each other, no light is transmitted by the combination. Suppose now that a crystal
plate cut parallel to the optic axis is inserted between crossed polarizers as shown in
Fig. 27D. The observed result is that light will now get through the analyzer. One
way of interpreting this result is to say that the plane-polarized light entering the crystal
at a emerges as elliptically polarized light at b and thus has developed a component
parallel to the transmitting plane of the analyzer. This view is correct and very simple:
it is just the component A 1 shown in Fig. 27£ that is passed by the analyzer, and the
corresponding intensity is proportional to A 1

2
• For purposes of computation, how-

ever, it is possible to consider the phenomenon as one of interference between the two
component vibrations emerging from the plate, part of each being transmitted by
the analyzer. In Fig. 27D, the four lower diagrams represent end-on views of the light
(looking against the light) at the four points designated by corresponding letters in
the diagram above. In (a) the plane vibration is shown as it arrives at the crystal
plate with an amplitude A and making an angle () with the optic axis. This ampli-
tude is broken up into two components, E = A cos ()along the optic axis, and 0 = A
sin () perpendicular to it. One of these components travels faster in the crystal and,
upon emerging, will be ahead of the other in phase. In (c) these two components
are shown as they arrive at the analyzer N2, where only the E vibrations parallel
to its principal section N2N2 can be transmitted. In other words, only the components
E' and E" get through and they are now vibrating in the same plane. These have the
magnitudes

E' = E sin () = A cos () sin () (27c)
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Polorl~er

FIGURE 27E
Component of elliptically polarized light
transmitted by a crystal plate, as in
Fig. 27D, and then by an analyzer that
is crossed with the polarizer.

Anolyzer

and
E" = 0 cos () = A sin ()cos () (27d)

This result shows that regardless of the angle () both components E' and E" trans-
mitted by the analyzer are equal in magnitude when the polarizers are crossed.

These two components are now vibrating in the same plane and have the phase
difference given by Eq. (27b). If the thickness of the plate is such that b = 0, 21t, 41t, ..• ,
the two destructively interfere. (Note that for zero thickness d = 0, b = 0, and the
components E' and E" are in opposite directions and hence cancel.) For all other
phase angles the resultant of the two vibrations will be transmitted. To find the ampli-
tude and intensity of this transmitted light the two components are combined as shown
in Fig. 12A. The equations for these quantities will be derived in Sec. 27.6.

It should be noted that destructive interference is not produced in front of the
analyzer. It is only after the two components are brought into the same plane that
interference is brought about. This principle is best expressed by the Fresnel-Arago
laws, the two most significant of which are

1 Two rays polarized at right angles do not interfere.
2 Two rays polarized at right angles (obtained from the same beam of plane-
polarized light) will interfere in the same manner as ordinary light only when
brought into the same plane.

27.4 BABINET COMPENSATOR

Frequently in the study of the optical phenomena a crystal plate of variable thickness
is useful in producing or analyzing elliptically polarized light. Such a plate, with
faces cut parallel to the optic axis, was first made by Babinet and is called a Babinet
compensator. It consists of two wedge-shaped prisms of quartz cut at a very small
angle as shown in Fig. 27F(a). The optic axes are parallel and perpendicular, re-
spectively, to the two refracting edges. If plane-polarized light is incident normally
on the compensator with the plane of vibration at some arbitrary angle () to the optic
axis, it will be broken up into two components. The E component, parallel to the
optic axis in the first crystal, traveis slower (since the compensator is made of quartz)
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FIGURE 27F
Diagrams of (a) Babinet compensator and (b) Solei! compensator.

than the 0 component until it reaches the second crystal. At this point the E vibration
becomes the 0 vibration since it is now perpendicular to the axis. At the same point
the 0 vibration from the first crystal becomes the E vibration in the second. In other
words, the two vibrations exchange velocities in passing from one prism to the other.
The effect is such that one prism tends to cancel the effect of the other. Along the
center at C, where both paths are equal, the cancellation is complete and the effect
is that of a plate of zero thickness. On each side of C one vibration will be behind or
ahead of the other because of the different path lengths. Thus the effect is that of a
plate the thickness of which is zero along the centerline and varies linearly in both
directions from this line.

The chief disadvantage of a Babinet compensator is that a specified plate thick-
ness or a certain desired retardation is confined to a narrow region along the plate
parallel to the refracting edges of the prisms. A modification which permits a change-
able thickness which is the same over a large field consists of two wedges cut and
mounted together with axes shown in Fig. 27F(b). The effective thickness is varied
by a calibrated screw which slides the top prism along the other. By making the prism
angles very small a careful adjustment to a ;';4 or ),f2 plate thickness is readily made
for any color of light. This arrangement is called a Solei! compensator.

The properties of a Babinet compensator are well illustrated by the following
experiment. Light from a carbon-arc lamp is polarized by a nicol prism Nt as shown

(0)

S •.

(6)

FIGURE 27G
Polarization and light bands produced by a Babinet compensator between
crossed nicols.
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in Fig. 27G(a). The compensator C is oriented at about 45° with Ni and its image
focused on a screen MM by means of a lens Lz.Owing to the effectively variable
thickness along the compensator, the light on the screen (with Nz removed) will be
polarized as shown in Fig. 27G(b) (see also Sec. 27.1 and Fig. 12K). If a second nicol
is inserted at Nz and oriented perpendicular to one set of plane-polarization regions,
e.g., those marked 1,2, and 3 in the figure, no light will be transmitted at these points.
The screen will thus be crossed by a set of equidistant parallel dark bands. With
white light the bands are colored and look like Young's double-slit fringes but with
the center one black. Best results are obtained with monochromatic light. Piles of
glass plates mounted in tubes or Polaroid films may of course be used in place of
nicols Ni and Nz.

27.S ANALYSIS OF POLARIZED LIGHT

If one has a beam of light that is completely polarized, linearly, elliptically, or cir-
cularly, it will appear to the eye no different from ordinary unpolarized light. By
using simple auxiliary apparatus, however, its character and vibration form can easily
be determined. For this purpose an analyzer, in the form of a nicol or Polaroid, is
used in conjunction with either a quarter-wave plate or some form of compensator.
For many purposes a quarter-wave plate is adequate, and the compensator need be
used only where precise measurements of elliptical polarization are required.

To illustrate the use of the quarter-wave plate, suppose, for example, that it is
placed in a beam of circularly polarized light. Regardless of the orientation of the
optic axis, the circular vibration is equivalent to two linear and mutually perpendicular
ones along the slow and fast axes, 90° out of phase with each other. Upon emerging
from the plate these two are in phase and recombine to give plane-polarized light
vibrating at 45° with the axes of the plate. The plane of the emergent light depends
on the direction of rotation of the incident circularly polarized light. In either of the
possible cases it can be completely extinguished by the analyzer. If the light to be
studied is elliptically polarized, it will be converted into plane-polarized light only
when the fast axis of the quarter-wave plate coincides with either the major or the
minor axis of the ellipse. The ratio of these axes can then be found as the tangent of
the angle that the plane of transmission of the analyzer makes with the fast axis
when extinction has been achieved.

The same information may be found with greater accuracy by means of a
Babinet compensator, which has the additional advantage of being usable for any
wavelength. We have seen that when the incident light is plane-polarized at 45° to
the principal section of one wedge, a dark band occurs at the center. If for some other
kind of light the dark band is displaced from this position, a phase difference must
exist between the two rectangular components of this light, and this means that it is
elliptical to a greater or less degree. Since a phase difference of 2n corresponds
to one whole fringe, the actual difference can be found from the fractional fringe
displacement. The measurement is done by screwing one wedge over the other until
the dark fringe returns to the center, so that the phase difference has been compensated.
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For details of the use of the compensator, the reader should refer to more advanced
texts.*

If the light is not completely polarized but contains some admixture of un-
polarized light, it is still possible to completely determine its character by using a
quarter-wave plate and an analyzer in the systematic way outlined in Table 27A.
The light is first studied with the analyzer alone. If there is no change in intensity
on rotating it, the procedure outlined in part A of the table is followed. If there is
some change of intensity, part B is followed. The seven kinds of light which can be
identified in this way represent all the possible conditions of polarization. Other more
complicated mixtures can be shown to be equivalent to one or another of these.

To specify quantitatively the state of polarization of a beam of light, it is found
that just four numbers are required. These Stokes parameters can be determined by
making four suitably chosen measurements. One of these involves the total intensity,
and another requires some phase-shifting device like a quarter-wave plate in con-
junction with an analyzer. The remaining two can be made with the analyzer alone.t

27.6 INTERFERENCE WITH WHITE LIGHT

Referring to Eq. (27b), it is observed that the phase difference between the E and 0
rays depends upon the wavelength as well as on the thickness of the plate. As for
the difference between the principal indices of refraction (no - nE), the values given
in Table 26A show that there is little change throughout the visible region. As the
thickness of a crystal plate increases, the phase difference 0 between the 0 and E
rays for violet light, A4000, increases nearly twice as fast as the phase difference for
red light, A6500, since A occurs in the denominator of the expression for o. This fact
gives rise to the rich colors frequently observed in thin plates of mica, quartz, calcite,
etc., cut parallel to the axis and placed between crossed nicols. The reason for the
color is that some one or more parts of the continuous visible spectrum are stopped
by the second nicol prism.

Suppose that a thin sheet of mica which introduces a phase change for yellow
light of 2n rad, that is, a full-wave plate, is introduced between crossed nicols and
oriented at an angle e = 45°. The orange and red wavelengths will undergo a phase
change less,than 2n and the green, blue, and violet more than 2n. Components of all
colors but yellow light will therefore get through the second nicol. With yellow absent,
the resultant color will be the mixture of red, orange, green, blue, and violet, giving
a purple hue.

If, in the above experiment with a mica sheet, the analyzing nicol is replaced
with a thick natural calcite crystal, one obtains the ordinary vibrations 0' and 0"
as well as the extraordinary ones (Fig. 27H) but in a different position. This 0 beam
is also colored and is complementary to the E beam containing the components

• M. Born, "Optik," p. 244, J. Springer, Berlin, 1933.
t A summary of the uses of the Stokes parameters, including their application to
photons and elementary particles, is given by W. H. McMaster, Am. J. Phys., 22:
351 (1954).
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FIGURE 27H N2co7Ciie
Components of plane-polarized light
transmitted by a thin doubly refracting
plate and an analyzing crystal. The lines
N 1 and N 2 indicate the directions of the
o and E vibrations in the calcite.

Table 27A ANALYSIS OF POLARIZED LIGHT

A. No intensity variation with analyzer alone

I. If with )./4 plate in front n. If with )'{4 plate in front of analyzer one finds a
of analyzer maximum, then

1. One has no intensity vari.
ation,

one has

natural unpolarized light

2. If one position of ana-
lyzer gives zero inten-
sity,

one has

circularly polarized light

3. If no position of ana-
lyzer gives zero inten.
sity,

one has

mixture of circularly
polarized light and un.
polarized light

B. Intensity variation with analyzer alone

I. If one position of n. If no position of analyzer gives zero intensity
analyzer gives

1. Zero intensity, 2. Insert a ),/4 plate in front of analyzer with optic axis parallel
to position of maximum intensity

(a) If get zero in- (b) If get no zero intensity,
tensity with ana-

(I) But the same (2) But some otherIyzer, analyzer setting analyzer setting
one has as before gives than before gives

the maximum in- a maximum in.
one has tensity, tensity,

one has one has

plane-polarized elliptically polar- mixture of plane- mixture of ellip-
light ized light polarized light tically polarized

and unpolarized light and plane-
light polarized light
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E' and E". These two beams if made to overlap will give white light, since what is
absent in one beam is present in the other. A slight increase or decrease in thickness
of the mica plate will change the wavelength or color of the light interfering destruc-
tively and hence change the color of each transmitted beam.

To show that these two colors are complementary it must be shown that the
sum of the two beams gives the original intensity A2• For the Ebeam the components
E' and E" must be combined with their proper phase angle difference.

A/ = E,2 + E,,2 + 2E'E" cos (0 + n)

= (A sin () cos ()2 + (A sin () cos ()2 + 2A2 sin2 () cos2 () cos (0 + n)

= 2A2 sin2 () cos2 () (I - cos 0)

= 4A2 sin2 () cos2 () sin2 £
2

where () is the phase angle difference given by Eq. (27b) and n is added since E' and E"
are oppositely directed when the plate thickness d = 0 (Fig. 27H).

Similarly, for the 0 beam the two components 0' and 0" must be combined.
A/ = 0,2 + 0,,2 + 20'0" cos ()

= (A cos2 ()2 + (A sin2 ()2 + 2A2 sin2 () cos2 () cos ()

= A2 [sin4 () + cos4 () + 2 sin2 () cos2 () (I - 2 sin2 ~)J
= A2 [(Sin2 () + cos2 ()2 - 4 sin2 () cos2 () sin2 ~J
= A2 - 4A2 sin2 () cos2 () sin2 £

2

When added together, the two intensities yield the original one, since

A12 + A/ = A2

Because of the rapid change of 0 with wavelength, if a plate several times as
thick as the one described above is inserted between crossed nicols, several narrow
bands of the visible spectrum will be absent from the transmitted light. This can be
shown experimentally with a crystal plate cut parallel to the axis as follows. A calcite
plate about 0.01 to 0.03 mm thick or a quartz plate 0.2 to 1.0 mm thick is placed in a
beam of plane-polarized light and beyond it a prism spectroscope arrangement as
shown in Fig. 271. With an arc lamp as a source at S, a continuous spectrum will be
formed on the screen MM. If the crystal plate axis is oriented at an angle () = 45°,
this light is polarized as shown schematically in the figure. To test this polarization,
a second nicol is now inserted between C and Sl' When it is crossed with the polarizer,
the intensity will vary sinusoidally through the spectrum, with zeros at those wave-
lengths for which the light transmitted by C is plane-polarized with vibrations per-
pendicular to the transmission plane of the second nico!. The thicker the plate the
larger the number of dark bands across the spectrum.

With thick plates the combined light of the spectrum will appear white, since
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FIGURE 271
Interference of white light produced by a crystal plate between crossed polarizers.

the large number of very narrow bands removed all along the spectrum affect the eye
only as a lowering of the intensity. If a Soleil compensator is used in place of a fixed
plate in the above experiment, any desired number of dark fringes can be introduced
across the spectrum. A slow continuous change in thickness will cause the bands
to move sideways across the spectrum and at the same time to increase or decrease
slowly in number.

27.7 POLARIZING MONOCHROMATIC FILTER

The dark bands produced in the spectrum as described above have been used in an
ingenious manner by Lyot* to construct a "light filter" which transmits one or more
very narrow bands of wavelength. The separation of the bands produced in the spec-
trum by a single crystal is inversely proportional to the thickness of the crystal.
Hence if one uses a thick crystal followed by one exactly half as thick, every other
maximum due to the thick one will be suppressed because it will coincide with a
minimum for the thinner one. Still another crystal one-quarter as thick as the first
will blot out every other maximum that is transmitted by the first two. Thus it will
be seen that, by placing in series a number of quartz plates the thicknesses of which
vary in the geometrical progression 1:2:4:8 ... , it is possible to isolate a very few
narrow wavelength bands. Then the unwanted ones can be cut out by an ordinary
color filter.

In one polarization filter Lyot used six quartz plates varying from 2.221 to
71.080 mm in thickness, with Polaroids between each pair. The optic axes of all
the plates were perpendicular to the light beam, and parallel to each other, while the
Polaroids were set at 45° with the optic axes. This filter transmitted 13 narrow bands
only 2 A wide. Filters of this type have been very valuable to astronomers, since they
permit the study of the solar corona and prominences without the necessity of a
total eclipse. By varying the temperature of the filter, it is possible to shift the wave-
length of the transmitted bands to the desired value, thanks to the expansion of the
plates, and decrease of the refractive indices, with rising temperature.

• B. Lyot. C. R .• 197: 1593 (1933).
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FIGURE 27J
Photoelastic effect in a plastic beam loaded at two points. (Courtesy of R.
W. Clough. Jr.)

27.8 APPLICATIONS OF INTERFERENCE IN PARALLEL
LIGHT

If the source is sufficiently intense, very small amounts of double refraction can be
detected by the restoration of light when the sample is placed between crossed polar-
izers. If a transparent, isotropic substance like glass is subjected to mechanical stress,
it becomes weakly doubly refracting with the effective optic axis in the direction of
the stress. Glass blowers examine their finished work in a polariscope to check it
for proper annealing. Engineers make models of structures out of a transparent
plastic in order to study the distribution of stresses when a load is applied. The
stresses are revealed by the distribution of light when the model is placed between
crossed Polaroids. As a simple example, Fig. 27J shows the interference fringes
produced by a rectangular beam when stressed at two points by small rollers. This
field of photoelasticity is obviously one of great practical importance. *

Many common transparent substances such as silk fibres, white hair, fish scales,
etc., possess a small anisotropy which can be detected by examination in polarized
light. Such substances are often highly colored when viewed in a polariscope. This
fact is made use of in the study of microscopic crystal growths, the color yielding
a contrast that permits ready observation of the normally transparent crystals.

These applications are cited merely as examples of the many practical uses of
interference in polarized light. Another is discussed in the following section, and still
further ones will be found in Chap. 32.

27.9 INTERFERENCE IN HIGHLY CONVERGENT LIGHT

Up to this point in our discussion of interference of polarized light we have considered
only uniaxial crystals in parallel beams. In Sec. 27.4 conditions of interference were
described in which the thickness of the crystal could be varied continuously, thus
altering the phase difference between the 0 and E rays by any desired amount. A

• Complete descriptions of the methods used are given in M. Procht, "Photo-
elasticity," vol. 1, 1941,vol. 2, 1948,John Wileyand Sons, Inc., New York.
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FIGURE 27K
Arrangement for projecting "rings and brushes" obtained by the interference of
highly convergent polarized light in birefringent materials.

similar result can be achieved by sending light at different angles through a plate of
uniform thickness. In this case a single plane-parallel plate is usually cut with its
two faces perpendicular to the optic axis. Experimentally such a plate is inserted
between crossed analyzer and polarizer as shown in Fig. 27K. Parallel white light
from the polarizer is made highly convergent by one or more short focus lenses at
L2• After passing through the crystal C, the light is made parallel again by a similar
lensL3• Beyond the analyzer N2 another lens L4 focuses on the screen MM all parallel
rays leaving C. This lens therefore images the secondary focal plane of L3 on MM.

A detailed diagram of the convergent light passing through a uniaxial crystal
is shown in Fig. 27L(a). The central ray parallel to the optic axis undergoes no change
in phase since both the 0 and E components travel with the same speed and, in fact,
there is no distinction between them. Other rays like P and Q, however, travel a
greater distance in the crystal and being at an angle with the optic axis are doubly
refracted. As they travel at different speeds, there will be a phase difference between
the 0 and E rays which will increase with increasing angle of incidence. Referring to
the end view in Fig. 27L(b), all rays entering at points on the circle P, H, Q, G pass
through the same thickness of crystal and show the same phase difference upon

Nz

FIGURE 27L
Resolution of 0 and E components for interference of highly convergent polar-
ized light in birefringent materials.
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emergence. The vertical line Nt represents the plane of vibration of the incident light
from the first nicol and N2 the plane of vibration transmitted by the second.

Consider now any point on the circle of Fig. 27L(b) such as Swhere the light is
not normal to the crystal surface. This light will be broken up into two components
o and E. Since the plane of incidence contains the optic axis, the refracted rays will
also be in this plane. The E vibrations with amplitude A sin e will lie in the plane of
incidence, and the 0 ray vibrations with amplitude A cos 0 will be perpendicular to it,
as shown. Upon arrival at the second nicol N2, the components E' and E" will be
transmitted and will interfere destructively or otherwise depending on the emergent
phase relations. Whatever the phase relations for the point S, they will be the same for
all other points on the same circle. For points on some other circle the phase will be
different. If the plate is of several millimeters thickness, there will be a number of
regularly spaced concentric dark circles where the phase difference is some multiple of
2n, so that destructive interference is produced. Thus the transmitted light will give
interference rings, as shown in Fig. 27M(a). If white light is used, these fringes will
be highly colored because of the various wavelengths present.

The dark cross appearing in these patterns, usually referred to as the "brushes,"
may be explained by again using Fig. 27L(b). As the point S approaches G or H, the
components E' and E" vanish. At these points the vibrations traverse the crystal
as pure 0 vibrations. They therefore undergo no change and are stopped by the
analyzer. Similarly the light striking P and Q is transmitted as E vibrations. Hence
the intensity along the directions Nt and N2, corresponding to the planes of the two
nicols, is zero. On each bright fringe it rises steadily to a maximum at 45° to these ..
directions.

If the second nicol is parallel to the first, the interference pattern becomes just
the complement, in every respect, of the one described. This pattern is shown in the
lower part of (a) in Fig. 27M. One sees that this must be true by remembering that
any light that is stopped by a crossed nicol will be passed by a parallel one, and vice
versa.

It is possible to eliminate the brushes by introducing quarter-wave plates im-
mediately before and behind the crystal. The light traversing the latter is then cir-
cularly polarized, and since there is no preferred direction, there can be no brushes.
The so-called optical ring sight is made in this way, using Polaroids as the polarizing
elements. Looking through such a combination one sees white-light interference
rings, the center of which is exactly on the foot of the perpendicular from the eye.
It can therefore be used as a gun sight of great accuracy and convenience.

In the case where the crystal is cut not perpendicular but parallel to the optic
axis, the fringes turn out to be hyperbolic instead of circular. Part (c) of the figure
shows fringes of this type. Because in this case the phase difference is not small
anywhere in the field, white light cannot be used in observing these fringes. The'
interference figures produced by'biaxiai crystals, such as those shown in (d), are more
complicated in their explanation, but the same general principles apply. The two
"eyes" show the points of intersection of the optic axes with the surface of the crystal.
Such figures are of importance in the identification of mineral specimens, and the
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FIGURE 27M
Interference patterns from crystals placed in highly convergent light. Upper
photographs: crossed polarizers; lower photographs: parallel polarizers. (a) Cal-
cite cut perpendicular to the optic axis. (b) Quartz cut perpendicular. (c) Quartz
cut parallel. (d) Aragonite cut perpendicular to the bisector of the two optic
axes.

mineralogist obtains them in a microscope fitted with polarizing attachments. *
The bright center of the ring system observed with the uniaxial crystal quartz [photo-
graphs (b)] will be explained in the next chapter.

PROBLEMS
27.1 A calcite plate cut with its faces parallel to the optic axis is placed between two crossed

nicols with its principal section at 35° with the polarizer. Find (a) the amplitudes and
(b) the intensities of the 0 and E vibrations leaving the calcite. Find also (c) the
relative amplitudes and (d) intensities leaving the analyzer.

Ans. (a) 0.819 and 0.574, (b) 0.671 and 0.329, (c) both equal 0.470,
(d) both equal 0.221

27.2 A quartz plate 0.850 mm thick is illuminated at normal incidence by green light of
wavelength 5461 A (see Table 26A). The optic axis is parallel to the surface. Find
(a) the optical paths of the two rays in traveling through the plate and (b) the phase
difference between these two in degrees.

27.3 It is desired to make a half-wave plate from a biaxial crystal of topaz. From the
refractive indices given in Table 26C determine (a) in which plane the crystal should

* See A. Johannsen, "Manual of Petrographic Methods," 2d ed., McGraw-Hili Book
Company, New York, 1918.
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be cut in order for the plate to be least thin and fragile. (b) Calculate the required
thickness for this section.

27.4 A quarter-wave plate is to be made of quartz. Using the refractive indices for blue
light, ..t = 4340 A, given in Table 26A, calculate the required thickness.

Ans. 0.01149 mm
27.5 Sodium light, ..t = 5893A, is passed through a Polaroid and then through a corun-

dum plate (no = 1.768, nE = 1.760) oriented with its axis at 35° in a counterclock-
wise direction from the electric vector of the incident light. Find (a) the magnitudes
of the 0 and E vibrations. If the plate is 0.160 mm thick, find (b) the phase difference
between the 0 and E components in passing through the plate, and (c) make a plot
similar to the one in Fig. 27E showing the form of vibration of the transmitted light.
Draw the vibration to scale and show its direction.

27.6 Into a polariscope with crossed Polaroids are inserted side by side two half-wave
plates with their axes making a small angle ex. The fields are of equal intensity when
the direction of the incident vibrations bisects the angle ex. Find the ratio of the
intensities when the analyzer is turned through 1° if ex has the values (a) 30°, (b) 10°,
(c) 5°, and (d) 2°.

27.7 The wedge angles of a Babinet compensator made of quartz are 2.75°. F;ind the
distance apart of sodium-light fringes when this device is placed between! crossed
nicols of a polariscope (see Fig. 27G). Ans. 0:674 mm

27.8 When a light beam of unknown polarization is viewed through a nicol prism, its
intensity varies upon rotation of the latter but does not go to zero in any position.
A quarter-wave plate is inserted in front of the analyzer when set for a maximum
intensity, and the fast axis is turned parallel to the plane of transmission of the
analyzer. A clockwise rotation of the analyzer by 60° will then completely extinguish
the light. (a) What is the type of polarization ? (b) Describe quantitatively the mode
of vibration.

Ans. (a) elliptically polarized light, (b) clockwise elliptical vibration
with major to minor axis ratio of 1.732

27.9 It is desired to determine the direction of rotation in a beam of circularly polarized
light. When a quarter-wave plate is placed in front of the analyzer and the latter set
for extinction, the fast axis of the quarter-wave plate lies in such a position that it
must be turned 45° clockwise in order to bring that axis in line with the direction of
transmission of the analyzer. (a) Make a diagram. (b) Does the light have right or
left circular pclarization?

27.10 Devise an arrangement that could be used to produce a beam of elliptically polarized
light for which the major axis of the ellipse is horizontal, the ratio of the major to
minor axis is 3 : 2, and the direction of rotation is clockwise. Make a scale drawing.
Carefully specify each part of the apparatus and its orientation.



28
OPTICAL ACTIVITY AND MODERN WAVE OPTICS

In the preceding chapters on the behavior of polarized light in crystals we have seen
that when the light travels along the optic axis there is no double refraction. In this
particular direction one expects that any kind of light will be propagated without
change. As early as 1811, however, Arago discovered exceptions to this simple rule.
He found that certain substances, notably crystalline quartz, will restore the light
when placed between crossed nicols even though the optic axis is parallel to the direc-
tion of the light. An example of this effect was shown in Fig. 27M(b).

28.1 ROTATION OF THE PLANE OF POLARIZATION
When a beam of plane-polarized light is directed along the optic axis of quartz,
the plane of polarization turns steadily about the direction of the beam, as shown in
Fig. 28A, and emerges vibrating in some other plane than that at which it entered.
The amount of this rotation is found experimentally to depend upon the distance
traveled in the medium and upon the wavelength of the light. The former fact shows
that the action occurs within the medium and not at the surface. This phenomenon
of the rotation of the plane of vibration is frequently called optical activity, and many
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FIGURE 28A
Rotation of the plane of vibration in an optically active substance.

substances are now known to exhibit the effect. Some of these are cinnabar, sodium
chlorate, turpentine, sugar crystals, sugar in solution, and strychnine sulfate.

Some quartz crystals and sugar solutions rotate the plane of vibration to the
right and some to the left. Substances which rotate to the right are called dextrorotatory
or right-handed, and those which rotate to the left are called levorotatory or left-
handed. Right-handed rotation means that upon looking against the oncoming light
the plane of vibration is rotated in a clockwise direction. Left-handed substances
rotate the light counterclockwise. *

28.2 ROTARY DISPERSION

A striking feature of optical activity is that different colors are rotated by very differ-
ent amounts. The first accurate measurements of this effect were made by Biot, who
found that the rotation is very nearly proportional to the inverse square of the wave-
length. In other words, there is a rotatory dispersion, violet light being rotated nearly
4 times as much as red light. This effect is illustrated diagrammatically for quartz
in Fig. 28B(a). Let plane-polarized white light be incident normally on a quartz
plate, and let the direction of its vibration be indicated by AA. Upon passing through
1 mm thickness of the crystal, the violet light is rotated about 50°, the red about 15°,
and the other colors by intermediate amounts. More exact values for 15wavelengths
throughout the visible and ultraviolet spectrum are given in Table 28A.

This rotation for a I-mm plate, plotted in Fig. 28B(b), is called the specific
rotation. Careful measurements on quartz and other substances as well show that
Biot's inverse-square law is only approximately true. In fact, optical activity is closely
enough connected with ordinary dispersion theory for the regular dispersion formulas
for refractive index to be applied to rotation. Cauchy's equation (Sec. 23.3), for
example, can be used to represent the specific rotation for quartz in the visible region.
Thus we have

B
p = A + - (28a)

).,2

where A and B are constants to be determined.

• Although the convention used here seems to be the most common, many books
will be found which use the opposite convention.
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FIGURE 28B
(a) Rotation for different colors by a plate of quartz 1 mm thick; (b) specific
rotation curve.

Experimentally, the phenomenon of rotatory dispersion can be illustrated by
inserting a quartz plate between crossed analyzer and polarizer as shown in Fig. 28C.
With a monochromatic source at S, some light will get through the analyzer to the
screen M M, since in passing through the quartz along the optic axis the plane of vibra-
tion has been rotated. This is shown diagrammatically in Fig. 28D(a). After the vibra-
tion is rotated from the plane AP to the plane AlP, a certain component EP = AlP
sin ()gets through the analyzer N2• If now the analyzer is made parallel to AlP, all
the light will be transmitted, whereas if it is normal to A IP, none will be transmitted.

Suppose that white light is used in place of monochromatic light, so that upon
passage through the crystal the different colors are rotated by different amounts as
shown in Fig. 28D(b). The new planes of vibration are RP for the red and VP for
the violet. On arriving at N2 the two horizontal components ERP to EvP will get
through. Since more violet light is transmitted than red, the image on the screen will
be colored. What has happened is that more of the red light has been eliminated
in the second nicol. This can be seen by the following modification of the experiment.

Let the analyzer in Fig. 28C be replaced by a calcite crystal. This will transmit
in one beam the E vibrations given by the analyzer alone and, in a separate beam,

Table 28A SPECIFIC ROTATION p OF PLANE-POLARIZED LIGHT
IN QUARTZ

Wavelength, Wavelength, Wavelength,
A Deg/mm A Deg/mm A Deg/mm

2265.03 201.9 4358.34 41.548 5892.90 21.724
2503.29 153.9 4678.15 35.601 6438.47 18.023
3034.12 95.02 4861.33 32.761 6707.86 16.535
3403.65 72.45 5085.82 29.728 7281.35 13.924
4046.56 48.945 5460.72 25.535 7947.63 11.589
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FIGURE 28C
Experimental arrangement for studying the rotation produced by an optically
active plate C.

the 0 vibrations. The E beam will contain the components ERP to EyP (see Fig. 28E)
and the 0 beam the components 0RP to OyP. In other words, what the E beam does
not contain, the 0 beam does. The two images on the screen MM are therefore the
complementary colors, and if made partly to overlap, the regions of overlapping will
be white. This is an excellent method for demonstrating a series of complimentary
colors, for if the calcite is turned slowly, varying amounts of the different colors can
be thrown into the 0 or E beams.

Another very striking demonstration of optical activity and rotatory dispersion
is achieved by passing plane-polarized light vertically into a clear solution of cane
sugar contained in a large glass tube. On observing the tube from the side with a nicol
prism, a very fine spiral arrangement of colors, somewhat like a barber-pole, will be
seen.

28.3 FRESNEL'S EXPLANATION OF ROTATION

Fresnel proposed an explanation for rotation in crystals like quartz which is based
upon the assumption that circularly polarized light is propagated along the optic
axis without change. This explanation, while not a theory in the sense of giving the

FIGURE 28D
Rotation of white light, showing the various colors transmitted by a crossed
analyzer.
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FIGURE 28E
Quartz plate between a polarizer Nl and
a calcite crystal E as analyzer. N,

E

basic cause of the phenomenon, nevertheless gives an admirable account of the facts.
It is based upon the elementary principle in mechanics that any simple harmonic
motion along a straight line can be described as the resultant of two opposite circular
motions.

Fresnel's first assumption is that plane-polarized light entering a crystal along
the optic axis is decomposed into two circularly polarized vibrations rotating in opposite
directions ••••ith the same frequency. In a crystal like calcite, which is not optically
active, these two circular motions Rand L travel with the same speed as shown in
Fig. 28F(a). Since both vibrations arrive simultaneously at any given point along their
path, their resultant will be a simple harmonic motion in the plane of the original
vibration as indicated in (b). Thus, in calcite, a plane-polarized wave along the axis
is propagated with its vibrations always in the same plane.

In an optically active crystal, the two circular vibrations move forward with
very slightly different velocities. In right-handed quartz, the right-handed or clock-
wise motion (looking against the light) travels faster, and in left-handed quartz
the left-handed or counterclockwise motion travels faster.

Consider now some point Q, in a right-handed crystal, along the path of a plane-
polarized incident beam as shown in Fig. 28F(c). Let the amplitude and plane of the
incident vibration be represented by AP in Fig. 28F(d). The right circular component
R of this vibration arrives at Q first, and as the wave travels on, the displacement
turns through an angle ()before the left-handed component L arrives. At this instant,
the two circular motions are in opposite senses with the same frequency, the one
starting at R and the other at L. The result is that the point B' vibrates along the
fixed line BQ with the same amplitude and frequency as the original vibration AP
and this represents the vibration form of the light at Q. Thus in traveling from the
crystal face at P to the point Q, the plane of vibration has been rotated through an
angle (}12. It is clear, therefore, that the plane of vibration would under these assump-
tions rotate continuously as the light penetrates deeper and deeper into the crystal
and that the angle of rotation would be proportional to the thickness.
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FIGURE 28F
Resolution of plane-polarized light into circularly polarized components.

28.4 DOUBLE REFRACTION IN OPTICALLY ACTIVE
CRYSTALS

Since the ability to rotate the plane of polarization is a special property not possessed
by many anisotropic crystals, the question arises as to its relation to the ordinary type
of double refraction discussed in previous chapters. Optical activity is shown only
by a certain type of crystal, but such a crystal will also show double refraction when
the light is transmitted in some direction other than that of the axis. Hence the one
phenomenon must change continuously into the other as the angle is changed. To
understand this, we must realize that Fresnel's two velocities for right and left circular
light are actually velocities represented by the wave surfaces introduced in Chap. 26
(Fig. 26B). There it was pointed out that the two sheets of the wave surface in quartz
do not touch at the optic axis as they do in calcite. In Fig. 28G the wave surfaces
for quartz are shown again. In the equatorial plane linear vibrations 0 and E, per-
pendicular and parallel, respectively, to the optic axis, are propagated with different
velocities but unchanged in form, as shown. Along the axis z, z', right and left cir-
cular vibrations Rand L are propagated with slightly different velocities. Along
intermediate directions like (b) and (c) only elliptical vibrations of a definite form can
be transmitted unchanged.

In calcite the elliptic wave surface gave a measure of the velocity of plane-
polarized light in the various directions, and the variation of the velocity, represented
by the radius vector of the surface, was due to the varying angle that the vibrations
made with the optic axis. In quartz or any optically active crystal, each of the two
surfaces represents the velocity of various kinds of polarized light, depending on the
direction of propagation. For a direction parallel to the axis, the velocity for the outer
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FIGURE 28G
Wave-surface diagram for a right-
handed quartz crystal, showing the two
vibrations associated with different
directions of the wave normal. z'

surface is that of right circularly polarized light (right-handed quartz), and that for
the inner surface is of left circularly polarized light. For directions at an angle with
this the velocity is that of two elliptically polarized components. The major axes
of the two ellipses are perpendicular to each other, and the ellipses become narrower
with increasing angle from the axis, degenerating into lines (plane-polarized light)
for a direction at right angles to the axis.

The behavior of plane-polarized light when it enters a crystal traveling either
parallel or perpendicular to the optic axis, as in,parts (a) and (b) of Fig. 28H, is easily
understood from the above characteristics of the wave surface. In (a) the incident linear
vibrations are resolved, upon entering the crystal, into two circular vibrations which
travel with different velocities. The resultant of these two gives merely a plane vibra-
tion which rotates by an amount depending on the thickness of the crystal and the
wavelength. In (b) the incident vibrations are again linear, but are here parallel to
the optic axis so that the light is transmitted as an E beam with the velocity determined
by the inner sheet of the wave surface. If the vibrations were perpendicular to the axis,
they would travel with the greater velocity of the 0 beam. In either case the form
and direction of vibration would remain unchanged. At other angles for the incident
vibrations there would be two linear components moving with different velocities,
and these give rise to elliptically polarized light. Hence for light traveling per-
pendicular to the optic axis quartz behaves precisely as do other uniaxial crystals
and gives the interference effects described in the last chapter.

When the axis is not perpendicular to the ray, the effects of optical activity will
manifest themselves to a greater or less extent, becoming greatest when the ray moves
parallel to the axis. In Fig. 28H(c), where the incident vibrations lie in the principal
section, they are decomposed upon entering the crystal into two ellipses LE and Ro
of different size. The major axes are at right angles, and the senses of rotation are
opposite. In contrast to the case of nonactive crystals, an incident ray vibrating
parallel to the principal section is not transmitted as a single E ray, but instead gives
two rays of different intensity. We shall see in the following sections that except
when the angle between the ray and the axis is very small, the intensity of the ray
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FIGURE 28H
Effects on plane-polarized light passing through quartz crystals cut in three
different planes.

marked Ro is very low and LE is a very slim ellipse. We shall also see that the 0 wave
surface is not strictly spherical, so that Ro is slightly deviated even at normal incidence.

Some biaxial crystals are known to show optical activity. In general the phen-
omenon is accompanied by double refraction and is somewhat difficult to show.
The wave surfaces for such crystals have the same general appearance as those given
in Chap. 26 with the exception that the inner and outer surfaces do not quite touch
at the ray axes, i.e., at the dimple in the outer surface.

28.5 SHAPE OF THE WAVE SURFACES IN QUARTZ

In order to explain the polarization effects observed when light is sent through quartz
crystals, it is found that the usual spherical and ellipsoidal surfaces for nonactive
crystals must be assumed to be distorted, ever so slightly, in the neighborhood of the
optic axis. The outer surface is bulged and the inner surface flattened as shown in an
exaggerated way at the bottom in Fig. 28G. The dotted lines represent a true circle
and ellipse, while the solid lines give the actual wave surface. The exact shape of these
two surfaces, however, is not so important optically as is the distance between them.
Actually the change from circularly polarized light to almost plane-polarized light
takes place within a very small angle of the optic axis, so that except for very small
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angles quartz acts essentially like an ordinary uniaxial crystal. This is due to the fact
that the difference in velocity (or difference in the refractive indices) of the two cir-
cularly polarized rays Rand L moving parallel to the optic axis is small compared
to the difference in velocity of the 0 and E rays moving perpendicularly. This is
best seen from the values given for red and violet light in Table 28B.

Along the optic axis the separation of the two surfaces as compared with the
radius of a spherical surface is as 1:26,000 for red light and 1:14,000 for violet.
Perpendicular to the axis the ratios are 1:170 and 1:160, respectively.

Since there are two velocities for circular vibrations along the optic axis, the
angle of rotation of plane-polarized light can be calculated from the refractive indices.
The phase difference ~ between two waves a given distance apart is given by Eq. (27b)
as

• (28b)

where d is the distance traveled in the medium A the wavelength of the light, and
nL - nR the difference in refractive index. If the R circular motion gets ~ rad ahead
of the L, the plane of vibration will be rotated through ~/2 rad [see Fig. 28F(d)].

For a quartz plate 1 mm thick, for example, we get, on substitution in Eq (28b),

2n~ = -0.-00-0-07-6-c-m(0.1 cm)(0.OOOO6)= 0.5 rad

This gives a rotation for red light, A7600,of about 14° [see Fig: 28B(b)]. It should be
pointed out, however, that accurate differences for nL - nR are in practice calculated
from the observed rotation.

28.6 FRESNEL'S MULTIPLE PRISM

The first experimental demonstration of double refraction into two circularly
polarized rays was made by Fresnel. He reasoned that if two circular components
travel with different velocities along the optic axis of quartz, they should, upon emerg-
ing obliquely from a crystal surface into the air, be refracted at different angles.
Upon failing to observe the effect with a single quartz prism, Fresnel constructed
a train of right- and left-handed prisms cut and mounted together, as shown in Fig.
281. With this prism train two circularly polarized beams were observed, one rotating
to the right and the other to the left.

The reason the two rays get farther and farther apart at each oblique surface

Table 28B REFRACTIVE INDICES FOR QUARTZ

Wavelength, A
3968
7620

1.56771
1.54811

1.55815
1.53917

1.55810
1.53914

1.55821
1.53920
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FIGURE 281
Fresnel multiple prism for demonstrating the two circularly polarized com-
ponents.

can be explained as follows. With light incident normally on the first crystal surface
the two component circular vibrations travel along the optic axis with different speeds.
Upon passing through the first oblique boundary, the R motion which was faster in
the first prism becomes the slower in the second. The opposite is true for the L motion.
By the ordinary law of refraction, then, the one ray is refracted away from the normal
to the boundary and the other toward it. At the second boundary the velocities are
again interchanged, so that the ray bent toward the normal at the first oblique bound-
ary is now bent away from it. The net result is that the angular separation of the
two rays increases at each successive refraction.

If such a prism is available to the student, Fresnel's observations can be repeated
by placing it on the table of a small laboratory spectrometer. If the two images in
the eyepiece are examined with a nicol prism or other analyzing device, they appear .
unchanged as the analyzer is rotated. If a quarter-wave plate is inserted in front of;'
the nicol, both circular vibrations become plane-polarized perpendicular to each other.
Now the images will disappear alternately with each 90° rotation of the nicol.

28.7 CORNU PRISM

The double refraction into circularly polarized light is appreciable even with a single
quartz prism cut with the optic axis parallel to the base as in Fig. 28J(0). For sodium
light and a 60° prism, the angular separation is only 27 seconds of are, and hence
is greatly exaggerated in the figure. When quartz prisms are to be used in spectro-
graphs, even this small doubling of spectrum lines cannot be tolerated, particularly
in the instruments of large dispersion. To overcome this effect, Cornu devised a
60° prism made up ofright- and left-handed quartz as shown in Fig. 28J(b). Because"
of the interchange in velocities, light can be transmitted without double refraction
if the prism is set at minimum deviation. Practically all 60° quartz prisms used in
spectrographs are of this type.

In a Littrow spectrograph only one-half of a Cornu prism is used, and this takes
the place of the grating shown in Fig. 17N. In this case the back face AB of, say, the
R prism, Fig. 28J(b), is made a reflector by depositing silver or aluminum on the sur-
face. By reflecting the light back the half prism is used a second time, giving the same
dispersion as the Cornu prism. The R vibrations approaching the mirror become L
vibrations after reflection, thus nullifying the double refraction.

Fused quartz prisms and lenses are sometimes used in optical devices, but not
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FIGURE 28J
(a) Simple crystal quartz prism. (b)
Cornu prism.

(.)A_ R
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where the best performance is desired. Although fused quartz is transparent and not
doubly refracting, manufacturing processes have not yet produced large samples
sufficiently free from inhomogeneities to make them useful for precision work.

28.8 .VIBRATION FORMS AND INTENSITIES IN ACTIVE
CRYSTALS

In Sec. 28.4 the propagation of light in various directions with respect to the optic
axis in quartz was briefly described in terms of the wave surface for such a crystal.
In right-handed quartz, for example, the outer sheet of the wave surface represents
the velocity of a right-handed circular vibration traveling along the axis, of an ellipti-
cal vibration at some angle to it, and of a linear vibration in the equatorial plane.
Looking against the light from the positions (a), (b), (c), and (d) of Fig. 28G, these
vibrations would appear as shown in Fig. 28K; All vibrations are confined to planes
tangent to the wave surface, with the major axis of each ellipse on the outer sheet
perpendicular to the optic axis, and the minot axis of each ellipse on the inner sur-
face also perpendicular to this axis. In left-handed quartz the directions of rotation
would be interchanged, but the figures would otherwise remain unchanged.

As has been mentioned, the transition from circularly polarized to essentially
linearly polarized light actually occurs within' a few degrees of the optic axis.* For
example, in quartz the ratio between the axes of the elliptical vibrations (major to
minor axes of each) is already 2.37 for sodium light traveling at 5° to the optic axis.
At 10° the ratio has increased to 7.8. These are the ratios used in drawing Fig. 28K(b)
and (c). "

When a quartz plate cut perpendicular tothe axis is placed in highly convergent
light between analyzer and polarizer, so that the light traverses the crystal at various
angles to the axis, the interference figures (see Fig. 27M) are much the same as those
obtained with a nonactive crystal like calcite. The essential difference is that the center
of the pattern, even with crossed analyzer and polarizer, is nearly always bright in-
stead of dark. A rotation of the vibration plane has the result that some light gets
through at the center of the otherwise dark brushes. The effect may be seen in both
the photographs shown in part (b) of Fig. 27M.

The intensities of the two elliptically polarized beams derived from an incident

••Equations giving the difference of velocity as a function of angle are derived in
P. Drude, "Theory of Optics," English edition, pp. 408-412, Longmans, Green &
Co., Inc., New York, 1922; reprinted (paperback) by Dover Publications, Inc.,
New York, 1968.
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FIGURE 28K
Vibrations for light traveling through an optically active crystal at different
angles with the optic axis.

unpolarized beam will always be equal. The two ellipses, such as those in part (b)
of Fig. 28K, are alike except for their orientation. Remembering that an elliptical
vibration can be regarded as made up of two linear ones at right angles and 900 out
of phase, we find the corresponding intensity in terms of the major and minor semi-
axes A and B as

I ~ A2 + B2 (28c)

In the limiting case of circularly polarized light having the radius B = A, we therefore
have

and for linearly polarized light (B = 0) the usual relation
I ~ 2A2 (28d)

I ~ A2 (28e)

If each beam is to maintain the same intensity regardless of the eccentricity, the
amplitude of the linear vibration must therefore be ../"2 times as large as the radius
of the corresponding circular one.

If the incident light is plane-polarized, as in the example of Fig. 28H(c), the
two ellipses are of different size. Now, in order that they may represent components
of the original linear vibration, Fig. 28L shows that the minor axis of the large ellipse
must equal the major axis of the smaller one. Namely, it is necessary that B£ - Ao = 0
for the horizontal components to cancel. Furthermore, since for the vertical ones to
add up to the initial linear vibration A£ + Bo = A, it follows that A£/B£ = Ao/Bo,
and the ellipses have the same shape. The ratio of the corresponding intensities will
depend on the actual value of either ratio A/ B, and will vary from unity in the direction
of the optic axis to zero at right angles to it.

For unpolarized light, which is equivalent to two independent linear vibrations
at right angles, each of these will yield two counterrotating ellipses of different size.
When one combines the two left-handed ones to obtain another left-handed ellipse,
and the two right-handed ones to obtain a right-handed ellipse, it is found that the
resultant ellipses have the same size. These are the ones illustrated in Fig. 28K.
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FIGURE 28L
Resolution of a linear harmonic vibra-
tion into two similar elliptical vibrations.

28.9 THEORY OF OPTICAL ACTIVITY

The theory of the rotation of plane-polarized light in optically active substances goes
back to an early experiment performed by Reusch. He found that when plane-polarized
light was incident normally on a pile of thin mica plates cut parallel to the axis and
each plate turned through a small angle to the right of the one preceding it, the plane
of vibration rotates to the right. The smaller the angle between successive plates,
the more nearly the pile imitates rotation along the axis in quartz.

Reusch's experiment thus suggests that optically active crystals are made up
of atomic layers which are twisted slightly one from the other. In right-handed
crystals the layers are built up clockwise around the optic axis, and in left-handed
crystals, counterclockwise. The known structure of crystalline quartz, which chemi-
cally is Si02, confirms this. Looking along the axis of a quartz-crystal model, one
finds columns of silicon and oxygen atoms built up in spirals, as shown in Fig. 28M.
These spirals of atoms form planes which give the effect of rotation along the optic
axis. From the diagrams of right- and left.handed crystals in Fig. 28N this twisted
formation is suggested by the arrangement of the smaller crystal faces. One crystal,
in both its gross and atomic structures, is a mirror image of the other. The above
analogy to a pile of plates must not be interpreted to mean that the plane of vibration
rotates as fast as the atomic layers, as this would preclude any rotatory dispersion.

The electromagnetic theory of optical activity is due mainly to Born and his
collaborators, and has been well summarized by Condon. * In an ordinary dielectric
an imposed electric field produces a separation of charges and a resultant polarization
of the medium in the direction of E (Sec. 23.9). In an optically active substance, we

• E. U. Condon, Rev. Mod. Phys., 9:432-457 (1937).
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FIGURE 28M
Spiral arrangement of silicon and oxygen atoms along the optic axis in quartz
crystals.

imagine the charges constrained to move in helical paths, so that in addition to the
forward motion producing ordinary polarization there is a circulatory motion of
charge which gives rise to magnetic effects. Drude has shown that this can be taken
into account by introducing an additional term in one of Maxwell's equations for a
dielectric [in the left-hand member of Eq. (231)]. The solution of the equations then
yields the phenomenon of optical activity. Born assumed that each molecule or crystal
unit consists of a set of oscillators coupled together by electric forces. The simplest
such unit, according to him, necessarily contains at least four oscillators arranged
in a form that does not have symmetry. A tetrahedron, as an example, has symmetry
properties, so that any crystal built on this structure will not show optical activity.
If, however, the tetrahedron is twisted slightly out of shape, optical activity is a natural
result. Born's early theoretical treatments have been applied to quartz by Hylleraas*
and found to give excellent agreement with observations. It has since been shown by
Condon and others that the assumption of coupled oscillators is not essential, and
that the desired results can be obtained with a single-oscillator model.

28.10 ROTATION IN LIQUIDS

The rotation of the plane of vibration by liquids was discovered quite accidentally by
Biot in 1811. He found that turpentine behaved like quartz in producing a rotation
proportional to the light path through the substance and very nearly proportional to
the inverse square of the wavelength. In such cases the rotation is attributable to the
molecular structure itself. In fact, most liquids exhibiting rotation are organic com-
pounds involving complex molecules.

Each molecule of a liquid may be thought of as a small crystal with an optic
axis along which plane-polarized light is rotated. Since in a liquid the molecules are
oriented at random, the observed rotation is an average effect of all the molecules
and therefore the same in any direction through the liquid. One might at first sight
think that the random orientation of the molecules would cancel out the rotatory
effect entirely. But each molecule has a screwlike arrangement of atoms, and a right-
handed screw is always right-handed, no matter from which end it is viewed.

• E. A. Hylleraas, Z. Phys., 44:871 (1927).
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FIGURE 28N
Diagrams of crystal planes in right- and
left-handed quartz crystals. Each is a
mirror image of the other.

I
(a) Right

I
(bl Left

Liquids made up of an optically active substance and an inactive solvent are
found to produce a rotation very nearly proportional to the amount of the active
substance present. This has led to the very wide use of polarized light in industry
as an accurate means of determining the amounts of sugar, an optically active sub-
stance, in the presence of nonactive impurities. The specific rotation or rotatory power
is defined as the rotation produced by a 10-cm column of liquid containing I g of
active substance for every cubic centimeter of solution. This may be written as an
equation,

(P] = 100 (28f)
ld

where [P] is the specific rotation, d the number of grams of active substance per
cubic centimeter, I the length of the light path in centimeters, and 0 the angle of rotation.

In general the rotation in liquids is considerably less than in crystals. For ex-
ample, 10.0 cm of turpentine rotates sodium light -37°. (The minus sign indicates
left-handed or counterclockwise rotation, looking against the direction of propaga-
tion.) An equal thickness of quartz, on the other hand, rotates sodium light 2172°.
It is for this reason that the specific rotation for crystals is taken as the angle for a
I-mm path.

Careful determinations of the rotatory power of an optically active substance
in various nonactive solvents have given slightly different results. There is a variation
not only with solvents but with the concentration of the active substance. From
experiment the rotatory power is found to be adequately given by

p = L + Md + Nd2 (28g)

where L, M, and N are constants and d is the amount of the active material in solution.
Like crystals, active substances in solution give rise to rotatory dispersion

quite similar to that shown for quartz in Fig. 28B(b). Just as normal dispersion is a
special case of anomalous dispersion observed near absorption bands in ordinary
nonactive materials, so normal rotatory dispersion is a special case of anomalous
rotatory dispersion known to exist at the absorption bands in optically active sub-
stances.
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FIGURE 280
Fraunhofer diffraction from a grating G1G2, showing the diffraction image
81808-1 in the plane F' and the grating PIP2 in the image plane 1'.

28.11 MODERN WAVE OPTICS

The major discoveries attributed to the wave properties of light, diffraction, inter-
ference and polarization, were all accounted for over 100 years ago. Up until the
beginning of the twentieth century, nearly all optical phenomena had been studied
by Fresnel, Fraunhofer, Huygens, Abbe, Airy, Foucault, Young, and a few others.
The wave theory, due largely to Fresnel, accounts for all their observations in the
minutest detail.

Over the years these fundamental principles have found many practical applica-
tions in the development of microscopes, binoculars, periscopes, telescopes, inter-
ferometers, etc. (see Chap. 10). Detailed studies of diffraction phenomena have led
in recent years to the development of a large number of useful optical instruments.
Although an explanation of their basic principles is quite complex, they are best
described using the wave picture of light. A brief account of discoveries best explain~d
by use of quantum theory and quantum optics will be presented in Chaps. 29 to 33.

Consider the diffraction grating experiment diagramed in Fig. 280. Parallel
monochromatic waves from a laser beam (see Chap. 30) or from a strong source S,
a pinhole P, a filter F, and a lens L1 are incident normally on an object plane as shown.
Acting on these waves the diffraction grating G1G2 and lens L2 produce a sharp,
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well-defined Fraunhofer diffraction pattern of spots in the diffraction image plane.
This is the secondary focal plane of the lens £2' and is sometimes called the transform
plane. Parallel rays from all open grooves of the grating come to a focus there.
Diverging rays from anyone groove like G1> however, come to a focus in the conjugate
plane at I, where the real image of the diffraction grating itself is formed.

If the grating spacing in Fig. 280 is of the order of the wavelength of light,
only the spot at or near the center images will be formed at F', since higher orders of
interference will miss the lens £2 and be lost. If the grating spacing is of the order of
10 or more wavelengths of light, the diffracted rays come together at points corres-
ponding to different orders of interference [see!diagram (b)]. These orders, given by

m = 0, :t 1, :t2, :t3, :t4,. . . (28h)

correspond to increasing spatial frequencies (cycles or lines per centimeter) in the
image (or object) plane. .

In terms of Fourier components, m =.:0 produces uniform illumination in
the image plane; m = :t 1 sinusoidally modulates this illumination at a fundamental
spatial frequency called the first harmonic, and characterized by the separation
between lines of the grating. m = :t 2 corresponds to the second harmonic with
twice the spatial frequency in the image plane; m = :t3 to the third harmonic, etc.
The addition of each higher Fourier component serves to sharpen up the image (see
Sees. 17.1 to 17.3), approaching the detail of the original object.

If we look upon the points So, S1> S2, S3" .. as though they were point sources
of Huygens wavelets, their diffraction pattern ~IP2 on the image plane is a real image
of the diffraction grating G1G2• Looking at this in another way, the waves from the
lens £1 are diffracted by the grating and then diffracted again by the lens £2' for if
£2 were not there, a Fresnel diffraction pattern of the grating would appear on the
image plane and a Fraunhofer pattern would be developed at infinity.

These principles were first investigated by Abbe in connection with the theory
of the microscope* (see Sec. 15.10). The lens £2 represents the microscope objective,
and the diffraction grating represents the slide specimen being illuminated by the
substage lens £1 and source S. The importance of this study by Abbe was his dis-
covery that a microscope objective of large aperture provides higher resolution than
a small one, since it collects higher orders of diffraction from small objects in the
specimen. It was previously thought that shice the light beam from the substage
goes through the central part of the objective lens, the dark space outside the beam
but still within the microscope tube is not used and a small objective should be
adequate.

28.12 SPATIAL FILTERING

Let us now consider the setup of an optical system composed of two identical lenses
spaced twice their focal length apart (see Fig. 28P). Since each lens has primary and
secondary focal planes, this divides the system into five equally spaced regions, an

• H. Volkmann, Ernst Abbe and His Work, App/. Opt., 5: 1720 (1966).
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FIGURE 28P
Symmetrical well-corrected lenses form an optical system that permits spatial
filtering. This arrangement is called an optical computer.

object plane Flo a lens Lh a transform plane F1F2, a lens L2, and afinal image plane F2.
Parallel rays from a laser are incident from the left.

Diverging bundles of rays from object points Ql' Q2, and Q3 emerge as parallel
bundles from Lh arrive at L2 as parallel bundles, and upon passing through L2,

converge to real image points Qt, Q~, and Q~, respectively. If Qh Q2, and Q3 are
thought of as grooves of a diffraction grating (see Fig. 280), parallel bundles of rays
from the grating form a Fraunhofer diffraction pattern on the secondary focal plane
F{ (see Fig. 17C).

Figure 28P is called an optical computer. The object is diffracted (scrambled)
by the first half of the system and diffracted again (unscrambled) by the second half.'"
We are now ready to insert masks into the diffraction pattern of the tranform plane
and block various features of the object, thereby preventing them from reaching the
final image plane. This process is called spatial filtering.

As an illustration consider the laboratory demonstration shown in Fig. 28Q,
using a laser beam or a point source and two high-quality lenses, each with a focal
length of approximately I m. With a square wire screen or gauze as an object, the
diffraction pattern in the transform plane will be a two-dimensional pattern of equally
spaced spots, while the real image in the image plane will be that of the screen, in-
verted as shown (see Fig. 28R).

We now place a slit in the transform plane and turn it about the very center of
the system until it transmits the vertical line of spots. The observer's eye sees the
horizontal wires of the screen, with no hint of the vertical wires. By rotating the slit

• In terms of advanced mathematics, the diffraction pattern is the two-dimensional
Fourier transform of a two-dimensional object, and the real image is the Fourier
transform of the diffraction pattern. Neglectingscale factors, the Fourier transform
of a Fourier transform is the original function. Fourier analysis is treated in
Sec. 12.6.
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Real image of wire screen

FIGURE 28Q
A laboratory experiment on spatial filtering. An optical computer with a wire
screen as an object.

so that only the horizontal row of spots gets through, only the vertical wires are visible.
Turning the slit to 45° and at other angles so that other rows of spots get through is
a part of the experiment that must be observed to be appreciated.

If a mask with a small round hole in the center is placed over the transform
plane, so that only the central spot gets through, the image screen shows only a
uniformly illuminated field. If a number of masks are made with small holes in them,
to pass certain sets of symmetrically located spots and stop others, some very interest-
ing and informative effects can be observed in the image. For example, with the slit
in a horizontal position across the center, the two spots m = :f: 1 are covered up,
the pattern observed changes to a set of vertical wires with one-half the normal spacing.
These experiments will illustrate the relationship between rows and sets of openings
in the object, the Fourier components in the transform plane, and what is visible in
the final image plane. Modem optical science makes use of these rather sophisticated
techniques for intercepting parts of a diffraction pattern of an object to change the
character of the image.

An excellent example of spatial filtering is shown in Fig. 28S. Here a photo-
graphic montage of the lunar surface consists of many horizontal film strips pieced
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FIGURE 28R
Correlation diagram between the object or image screen and the transform plane
for the demonstration shown in Fig. 28Q.

together. The strips were transmitted to the earth by Lunar Orbiter 1 as it circled the
moon. This photo was placed in the object plane of Fig. 28P and a photographic
plate at the transform plane. When the transform plate was exposed and printed,
a photograph like the one reproduced in diagram (b) was obtained. The moon as a
whole reproduced the mottled diffraction pattern, and the fairly regularly spaced
lines between adjacent strips generated the inconspicuous vertical dot pattern.

Two narrow masks, shown in black in photograph (d), were then carefully
mounted in the transform plane, to intercept and remove the spot pattern, thereby
preventing all higher orders from reaching the final image on the photographic plate
at F2• Light rays passing by these masks reached all the points of the final image,
thereby revealing a complete picture with little sign of the horizontal lines of the
original montage.

The actual photographs in Fig. 288 were made at the Jet Propulsion Laboratory
in Pasadena. The light source of the optical computer was composed of a 20 x micro-
scope objective and 10-Jim pinhole used to filter out random spatial noise from a
laser beam emitting light of wavelength 6328A (see Fig. 318). An air-spaced doublet
collimates the diverging beam into a 15-cm-diameter parallel beam with -loA. wave-
front flatness. The transform lens L1 in Fig. 28P and retransform lens L2 are identical
and located symmetrically about the transform plane. Aligned as a confocal pair,
they image a 10 by 10 em field from the object plane of L1 to the image plane of L2,
with a resolution of 100 line pairs per millimeter. These two high-quality lenses are
designed for 6328A light and to have a flat undistorted image plane. Each lens has five
air-spaced elements in a 28-cm-diameter lens cell 63 cm long with a mass of 115 kg.
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(a) (b)

(c) (d)

FIGURE 28S
(a) Lunar orbiter montage of the moon's surface. (b) Fraunhofer diffraction
pattern of montage (a) made in the transform plane of the optical computer.
(d) Shape of mask used to filter out the vertical dot pattern in (b). (c) Image-
plane photo made with filter (d) in the transform plane, almost eliminating the
horizontal lines of the montage. Note the concentric-ring pattern of mountains
in (a) and (d), suggesting the impact of a giant meteor early in the moon's history.
(Courtesy of David Norris and Thomas Bicknell. Jet Propulsion Laboratory,
California Institute of Technology.)
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FIGURE 2ST
Optical components of the phase-contrast microscope.

28.13 PHASE-CONTRAST MICROSCOPE

(b)

The eye readily detects differences in amplitude by intensity changes, but it is not able
to see changes in phase directly. Thus, as long as the objects on a microscope slide
are colored, opaque, or absorbing, they can be seen in the image. If they are trans-
parent, however, and differ only slightly from their surroundings in refractive index
or in thickness, they will ordinarily not be visible. It is nevertheless possible to convert
the phase changes produced by such objects into amplitude changes in the final image.
The so-called phase-contrast microscope, devised in 1935 by Zernike*, functions in
this way.

Figure 28T shows how this is done. In part (a) are shown the two essential
additions to an ordinary microscope: the phase plate P and an annular diaphragm D.
The latter is placed in the front focal plane of the substage condenser C, and an image

• F. Zernike (1888-1966). Professor of Physics at the University of Groningen,
Holland. In 1953 he was awarded the Nobel prize for his discovery of the phase-
contrast principle. For more reading, see E. Hecht and A. Zajac, "Optics," pp.
474-478, Addison-Wesley Publishing Company, Inc., Reading, Mass., 1974.
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FIGURE 28U
Vector diagrams for the waves at the transform plane of the objective lens in a
phase-contrast microscope: (0) Relative phases of the waves arriving at the
phase plate; and amplitudes for waves leaving the phase plate, (b) for bright-
contrast, and (c) dark-contrast illumination.

of the light source is focused upon D by the concave mirror M. The object on the
slide S is therefore illuminated by a hollow cone of parallel light. If there were no
diffraction by objects on the slide, this light would be focused again by the first two
lenses of the objective 0 to form an image of D on the phase plate P.

This phase plate is seen to be in the transform plane of the object. Typically it
consists of a glass plate upon which is evaporated an annular layer of transparent
material to such a thickness that it increases the optical path by one-quarter of a
wavelength of green light. The size of this retarding ring is such as to match the image
of D.

Let us assume that a small transparent object on the slide retards the phase of
the light passing through it by a small angle~, relative to the phase of the undisturbed
light transmitted by the unobstructed parts of the slide [see Fig. 28U(a)]. It can easily
be shown that a small phase shift of this sort produces a modulated wave, which is
given by the sum of the undisturbed wave and a new diffracted wave retarded in phase
by approximately nf2. This retarded wave is typically characterized by a varying
spatial structure and will therefore form a relatively broad and complex diffraction
pattern at the transform plane P. For simplicity this is shown as a single-slit diffrac-
tion pattern in Fig. 28T(b). Most of the light in this diffracted wave will therefore
miss the annular ring. The undisturbed wave is not diffracted and will only pass
through the thicker annular layer, where it undergoes a phase retardation of nf2
with respect to the diffracted light. Therefore the phase plate brings the two into
phase, with a resulting increase in the intensity at the corresponding point of the final
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FIGURE 28V
Schlieren optics for ballistics and ultrasonic wind-tunnel studies: (a) symmet-
ricallens system; (b) Fraunhofer diffraction pattern for a single slit.

image [see Fig. 28U(b)]. The diffracting object is then rendered visible by what is
called negative or bright contrast.

For positive or dark contrast, the annular phase plate is made thinner so that
the direct light is advanced in phase with respect to the diffracted light. The interfer-
ence at the image is then destructive and the object is dark [see Fig. 28U(c)]. For best
results a metal film is usually deposited on the annular portion of the phase plate to
make it absorbing, since otherwise the undisturbed light is too strong relative to the
diffracted light and the destructive interference is not sufficiently complete.

It is thus apparent that by introducing phase changes in the transform plane,
i.e., in the back focal plane of the objective, an object which influences the transmitted
beam only through changing its optical path can be made visible, provided of course
that such an object produces a diffraction pattern.

28.14 SCHLIEREN OPTICS

This is a method developed originally for observing the shock waves that develop
around bullets in ballistics and airfoils in jet aircraft when the flight of these objects is
at supersonic speeds.

Let us set up a symmetrical lens system for observing a single-slit diffraction
pattern as shown in Fig. 28V. With a monochromatic light source in front 'of the slit
a Fraunhofer diffraction pattern of the slit is observed in the conjugate plane P (see
Fig. I5D). Between the two identical lenses we now insert a wind tunnel, in the center
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FIGURE 28W
A schlieren photograph of the supersonic shock waves around a shuttle con-
figuration (Courtesy 0/ C. M. Jackson and Roy V. Harris. NASA. Langley
ResearchCenter.Hampton, Va.)
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Arc lamp
Wind tunnel

FIGURE 28X
Schlieren optics using concave parabolic mirrors.

Supersonic airstream

of which is mounted a stationary diffracting object like a rifle bullet or the foil of a
model jet airplane. As the supersonic airstream passes this object, shock waves develop
around it, changing the refractive index of the air according to pressure differences
in different areas. These changes of index give rise to diffraction patterns which are
formed by L2 on the plane P.

A knife-edge K parallel to the slit S is mounted in this diffraction image plane
and is slowly raised by means of a micrometer screw. As the sharp edge crosses the
central intense section of the diffraction pattern [see diagram (b)], the lower half of
the pattern is blocked off from the camera or eye of the observer. Just before the
extinction of the central maximum (the zero~order light) the field of view becomes
relatively dark (sometimes called the dark-ground condition), and the shock waves
become visible. Phase changes between higher orders of interference on the one side,
shown dotted in diagram (b), produce constructive and destructive interference
patterns (see Fig. 28W).

The lenses and wind-tunnel windows of the schlieren apparatus of Fig. 28V
must be of the highest obtainable quality, for any imperfections in the glass surfaces
or glass density will be clearly visible in the field of view. Although the lenses may be
corrected for chromatic aberration, second-order effects are troublesome, and in
recent years front-silvered mirrors have been used (see Fig. 28X).
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A mirror-system schlieren apparatus uses large off-axis, precision-made parabolic
mirrors, and the light as a parallel beam passes through the wind tunnel normal to
the glass plates. These plates are polished flat to less than one wavelength of light
and cause little trouble in the final image. Light sources with a broad spectrum permit
color film to be used in the camera, with the result that a number of color schlieren
systems have been made.

PROBLEMS

28.1 A quartz plate cut perpendicular to the optic axis is to be used to rotate the plane
polarized light through an angle of 90°. If the light to be used is green light of
wavelength 5461 A, find its thickness. Ans. 3.524 mm

28.2 (0) Find the thickness of a quartz plate, cut perpendicular to the optic axis, that will
rotate plane-polarized light of wavelength 1= 5086 A through an angle of 720°.
(b) Plot on a full sheet of graph paper the specific rotation for quartz for wavelengths
in the range 4000 to 7000 A [see Fig. 28B(b)]. (c) Using this graph, find what wave-
lengths will be missing if plane-polarized light is sent through this crystal and the
light is examined with a spectroscope. Assume the polarizer is parallel to the analyzer.

28.3 Calculate the values of A and B in Cauchy's equation for rotary dispersion, using
the values given in Table 28A, for ,1.= 5086 and 5893A.

28.4 Violet light of wavelength 3968A is refracted by a 60° quartz prism cut with the optic
axis parallel with the base. Find the angle between the right- and left-handed
circularly polarized rays refracted at or close to minimum deviation (see Tables 26A
and 28A). Ans. 32 seconds of arc, or 0.0101°

28.5 A quartz rod 5.639 cm long is cut from a crystal with the ends polished perpendicular
to the optic axis. The rod is then placed in a polariscope set with crossed polarizer
and analyzer, and white light is sent through the system. The transmitted light is
observed in a spectroscope. (0) Use a full sheet of graph paper (8t in. x 11 in.) and
plot a rotation curve for the wavelength range 4000 to 7000 A. (b) What wavelengths
as read from this graph will be missing in the spectograph? What is (c) the smallest
and (d) the largest rotation involved in the missing wavelengths?

28.6 Plane-polarized light is incident normally on a plane-parallel plate of quartz cut
with its optic axis at an angle of 5° with the normal as shown in Fig. 28H(c). (0)
Using the axis ratio given in Sec. 28.8, make plots of the vibration forms in the two
refracted beams La and RE• (b) If the plate is of such a thickness as to produce a
phase difference of 90° between these beams, find by graphical composition the result-
ant vibration form of the emergent light.

28.7 In measuring the rotation produced by sugar solutions, the accuracy obtainable by
using the ordinary extinction point of an analyzer is not sufficient. Best results are
obtained by matching the intensity of two adjacent fields produced by altering the
polarizer so that it gives two beams linearly polarized at a small angle IX with each
other. Investigate the action of such a device by plotting the intensities of the two
fields for a complete rotation of the analyzer. Take IX 10°.

28.8 What should be the angle <X in Prob. 7 to be able to measure the rotation to 1 minute
of arc, supposing the eye can detect 2 percent diftererice of intensity in the two fields?

Ans. IX = 6.659° (see Fig. P28.8)
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28.9 An unknown solution is suspected of containing I-glucose and does not contain any
other optically active substance. If a IS-em length of this solution rotates sodium
light 25.6°, what is the concentration of I-glucose? [P] = - 51.4° for I-glucose.

Ans. 33.20 g/l
28.10 A weighed amount of 14.50 g of sucrose is dissolved in water to give 60 cm3 of

solution. When this is placed in a polarimeter tube 15 em long, it rotates the plane of
polarization of sodium light 16.8° to the right. Find the fraction of the sample that
is not sucrose. For sucrose [P] = 66.5°.

28.11 A coarse transmission grating with 40 grooves per centimeter is located in the object
plane of an optical computer. Both lenses have a focal length of 100.0 em. If laser
light with a wavelength of 6943 A is used, find the spot separation in the transform
plane. Ans. 2.777 mm

28.12 A square mesh or gauze containing 30 wires per centimeter each way is located in the
object plane of an optical computer. If the lenses have focal lengths of 90.0 em and
laser light of wavelength 6328 A is used, find the spot separation in the transform
plane. Ans. 1.709 mm

28.13 A Cornu prism with a vertex angle of 60° is made of right- and left-handed quartz
crystals. See Fig. 28J. Parallel light of wavelength 3968A is incident on the left-hand
face so the upper refracted ray travels through the prism exactly along the axes.
Assume the refractive indices are those given in Table 28B. Find (a) the angle of
incidence of the unpolarized light at surface AC, and (b) the angle of refraction of the
upper ray as it leaves the prism at surface AD. Find (c) the angle of refraction of the
lower ray as it leaves surface AC, (d) the angle of incidence of the lower ray at surface
AB, (e) the angle of refraction of the lower ray at surface AB, and (/) the angle of
refraction of the lower ray at surface AD. Use a nine- or ten-place calculator.
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29
LIGHT QUANTA AND THEIR ORIGIN

In Chap. 21, Sources of Light and Their Spectra, we observed that solids and gases,
when heated to high temperatures, are the chief man-made sources of light. The
plasma state of our sun and the distant stars, at high temperatures, are certainly the
most prominent light sources in the universe. The fact that so many of the brightest
stars emit the same spectra that we observe in our laboratories is direct evidence that
light throughout the universe comes from the same chemical elements we find on
the earth.

The origin of light from within gas molecules, liquids, and solids is similar in
many respects to that within individual atoms. Although the processes are reasonably
well understood, many of them are quite complex. We take time and space in this
chapter to give only a brief account of present concepts of the origin of light from
within atoms, and in the next chapter use these concepts to present the principal
features of lasers.
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FIGURE 29A
Orbital diagram of the hydrogen atom
according to the Bohr theory (1916).

+Ze

M

29.1 THE BOHR ATOM

Historically the atomic and molecular structure of nearly all of the known chemical
elements was established during the first three decades of the twentieth century. They
became known through the establishment of the quantum theory and the various
relationships found between the frequencies of light waves they emit (see Figs. 2IH
and 2IJ).

The Bohr model of the hydrogen atom is a logical starting point for any sys-
tematic presentation of atomic structure* because the energy relations developed in
Bohr's theory are basic to an understanding of the quantum theory.

According to Bohr, the hydrogen atom is composed of a single electron of mass
m and charge -e rotating like a planet in a circular orbit around a positively charged
nucleus of mass M and charge +Ze (see Fig. 29A). Z, the atomic number, is equal to
unity for hydrogen. According to classical laws of electrodynamics, the electron's
motion is governed by the equation

• v2 Ze2m-=k-
r r2

Centripetal force = electrostatic attraction

(29a)

Bohr adopted this relation as his first assumption and then introduced the.
quantum theory. His second assumption says that the angular momentum of the
electron mvr must always be equal to a whole number of units of hf21t

• mvr = nfz (29b)

• N. Bohr, Phil. Mag., 26:1 (1913); L. M. Rutherford, Phil. Mag., 21:669 (1911).
For an elementary account of atomic structure and atomic spectra, see Harvey
E. White, "Modern College Physics," 6th ed., D. Van Nostrand Company, New
York, 1972. For a detailed account, see Harvey E. White, "Introduction to Atomic
Spectra," McGraw-Hili Book Company, New York, 1934.
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FIGURE 29B
Bohr circular orbits of hydrogen drawn
to scale.
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where m is the electron mass, It is Planck's constant of action (h divided by 21t), first
introduced in 1905 by Max Planck to derive the law of thermal radiation, and n is a
whole number called the principal quantum number;

m = 9.10956 x 10-31 kg
h = 6.62620 X 10-34 J s
k = 8.98755 X 109 N m2/C2

e = -1.602192 x 10-19 C
It = 1.054592 X 10-34 J s
Z = I = atomic number of hydrogen
n = I, 2, 3, 4, ...

(29c)m

This means that the electron is not free to move in just any orbit, like a satellite in
classical mechanics, but only in certain quantized orbits. By combining Eqs. (29a)
and (29b) and solving for the orbit radius we obtain

1t2r = n2 -- = n2(0.529177 x 10-1°)
me2Zk

and by solving for the orbital speed v we obtain

1 e2Zk I
v = - - = - (2.18768 X 106)

n It n
m/s (29d)

A diagram showing the relative sizes of the first five circular orbits is shown in
Fig. 29B. Bohr's first success is to be attributed to the fact that with n = 1 or 2,
Eq. (29c) gives a theoretical size that agrees with previously known values and that
Eq. (29d) gives an orbital frequency approximately equal to that of visible light.

Bohr's final assumption regarding the hydrogen atom concerns the emission of
light. Bohr postulated that light is not emitted by an electron when it is moving in
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n=3

FIGURE 29C
Bohr's quantum theory of the radiation of light from a hydrogen atom.

one of its allowed orbits, as one might well expect classically of an accelerated electric
charge, but only when the electron jumps from one orbit to another, as shown
schematically in Fig. 29C. The frequency of the emitted light is not given by the orbit
frequency of either the initial or final orbit but by a kind of average of the two, given
by the simple relation

• (2ge)

(29f)Hz

where El is the total energy in the initial orbit, Ef is the total energy in the final orbit,
h is again Planck's constant, and v is the frequency of the emitted light.

To illustrate, let E1> E2, E3, E4, • •• represent the total energy of the electron
when it is in orbits n1> n2, n3, n4, ... , respectively. When the electron is in orbit
n = 3, where its energy is E3, and it jumps to orbit n = 2, where its energy is E2, the
energy difference E3 - E2 is ejected from the atom in the form of a light wave of
energy hv, called a photon. This is the origin of light waves from within the atom (see
Fig. 29C).

By combining the three equations (29a), (29b), and (2ge)and inserting the known
values of the atomic constants, Bohr derived the following equation for all of the
frequencies of light emitted by free hydrogen atoms:

v = 3.28984 X 1015 (~ - ~)
nf nl

where nl and nf are the principal quantum numbers of the initial and final orbits.
If we introduce the wave equation

c = vA. (29g)
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FIGURE 29D
The spectrum of the hydrogen atom: (a) the Balmer series and (b) the Lyman
series.

and replace v by ciA, we obtain for the wavelengths of light*

• A (29h)

Bohr observed that if nf = 2 and n, = 3, 4~ 5, 6, ... , this equation gives with
great precision the wavelengths of all the Balmer series of hydrogen (see Fig. 29D).

By substituting nf = 1 and n, = 2, 3, 4, 5, . .. Bohr predicted a series of lines
in the extreme ultraviolet region of the spectrum. These lines were first photographed
by T. Lyman at Harvard University, and the wavelengths were found to check exactly
with those calculated. This series, now called the Lyman series, which can be photo-
graphed only in a vacuum spectrograph, is reproduced in Fig. 29D. Observe that
the Lyman series arises from electron jumps from any outer orbit directly to the
innermost orbit, the ground state.

Other hydrogen series with the electron jumping to nf = 3, nJ = 4, nJ = 5, ... ,
found still later in the infrared region of the hydrogen spectrum, were found exactly
where they were predicted (see Fig. 29E).

• Due to the relativistic increase in the electrons mass with velocity and the rotation
of the electron and proton around their common center of mass, the value 911.267
obtained for Eq. (29h) has been multiplied by a small correction factor 1.000259 to
obtain 911.503.
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FIGURE 29E
Bohr circular orbits of hydrogen showing the transitions giving rise to the
emitted light waves, or photons, of different frequency.

29.2 ENERGY LEVELS

The total energy Elol ()f the electron in each of the Bohr orbits can be calculated from
Bohr's first two postulates, Eqs. (29a) and (29b). Classically the potential energy
Epol is electrical in concept and is given by

The kinetic energy, on the other hand, is mechanical, and is given by

Ze2
Ekin = tmv2 = k -

2r

Adding these two energies, we can eliminate r and v and obtain for the total energy

• (29i);

The minus sign, as we might expect, signifies that one must do work on the
electron to remove it from the atom. The electron is bound to the atom, and the
closer it is to the nucleus the greater the energy that must be supplied to remove it
from the atom.
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With the exception of the principal quantum number n, all quantities in Eq.
(29i) are fixed atomic constants for hydrogen, and we can write

1E10t = - R - (29j)
n2

where R has the value*
4Z2k2R = me . = 2.179350 X 10-18 J (22k)
2li2

Equation (29j) is an important equation in atomic structure: it gives the energy
of the hydrogen atom when it occupies anyone of its allowed states. Instead of
drawing orbits to scale as in Fig. 29E, it is customary to draw horizontal lines to an
energy scale, as shown in Fig. 29F. This is called an energy level diagram. The various
jumps between orbits can be represented by vertical arrows between the levels.

The importance of this kind of diagram is at least twofold: (1) regardless of the
atomic model presented, whether it is an orbital model, a quantum-mechanical wave
model, or any other yet to be proposed in the future, it represents with a high degree
of precision the stationary energy states of hydrogen; and (2) it represents the well-
established law of conservation of energy as applied through Bohr's third postulate,
Eq. (2ge), that the energy of each radiated photon hv is given by the energy difference
between two energy levels.

The first line of the Balmer series, A = 6561A, the red line in Fig. 29D(a),
corresponds to the short arrow, n = 3 to n =:2. The second line of the same series
is the blue-green line, A = 4861A, and corresponds to the slightly longer arrow,
n = 4 to n = 2, etc.

• (291)

29.3 BOHR-STONER SCHEME FOR BUILDING UP ATOMS

Bohr and Stoner proposed an extension of the orbital model of hydrogen to include
all the chemical elements. As shown by the.examples in Fig. 29G, each atom is
composed of a positively charged nucleus with a number of electrons around it.

Although the nucleus isa relatively small particle less than 10-14 m in diameter,
it contains nearly all the mass of the atom, a mass equal in atomic mass units to the
atomic weight. The positive charge carried by the nucleus is equal numerically to the
atomic number, and it determines the number of electrons located in orbitals outside.

A helium atom, atomic number Z = 2,' contains two positive charges on the
nucleus and two electrons outside. The lithium atom, atomic number Z = 3, con-
tains three positive charges on the nucleus and three electrons outside. A mercury
atom, atomic number 80, contains 80 positive charges on the nucleus and 80 electrons
outside.

••For correction see footnote on page 615.
J
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FIGURE 29F
Energy level diagram for the hydrogen atom. Vertical arrows represent electron
transitions.

The orbits to which the electrons are confined are Bohr orbits of hydrogen with
n = I, 2, 3,4, ... , called electron shells. As one goes from element to element in
the atomic table, starting with hydrogen, electrons are added one after another, filling
first one shell then another. A shell is filled only when it contains a number of elec-
trons given by 2n2• To illustrate this, the first shell n = 1 is filled when it has two
electrons, the second shell n = 2 when it has 8 electrons, the third shell n = 3 when
it has 18 electrons, etc., 2 x 12 = 2,2 X 22 = 8, 2 X 32 = 18, etc.

Quantum number n

Number of electrons

1

2

2

8

3

18

4

32
Among the heavier elements there are several departures from the order in which

the shells are filled, e.g., the mercury atom. The four innermost shells n = I, 2, 3, and
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FIGURE 29G
Bohr-Stoner orbital models for the light and heavy atoms of the periodic table of
elements.

4 are entirely filled with 2. 8. 18. and 32 electrons. respectively. while the fifth shell
contains only 18 electrons and the sixth shell 2 electrons. The reasons for such
departures are well understood and are now known to follow another rule.

It is important to note that as the nuclear charge increases and additional
electrons are added in outer shells. the inner shells. under the stronger attraction by
the nucleus. shrink in size. The net result of this shrinkage is that the heaviest ele-
ments in the periodic table are not much larger in diameter than the lighter elements.
The schematic diagrams in Fig. 29G are drawn approximately to the same scale.

The experimental confirmation of these upper limits to the allowed number of
electrons in each shell is now considered one of the most fundamental principles of
nature. A sound theoretical explanation of this principle of atomic structure. first
given by W. Pauli in 1925, is commonly referred to as the Pauli exclusion principle.
For the order in which shells are filled throughout the periodic table see Appendix II.

29.4 ELLIPTICAL ORBITS, OR PENETRATING ORBITALS

Within only a few months after Bohr (in Denmark) published a report telling of his
phenomenal success in explaining the hydrogen spectrum with quantized circular
orbits, Sommerfeld. (in Germany) extended the theory to include quantized elliptical

• A. Sommerfeld, Ann. Phys., 51: 1 (1916); W. Wilson, Phil. Mag., 19:795 (1915).
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-4ts 3d

FIGURE 29H
A scale model for the hydrogen atom showing the innermost families of orbits
and designations according to the Bohr-Sommerfeld theory.

orbits as well. Because these orbitals played such an important role in later develop-
ments in atomic structure, they deserve some attention here.

The net result of Sommerfeld's theory showed that the electron in anyone of the
allowed energy levels of a hydrogen atom may move in anyone of a number of orbits.
For each energy level n = I, n = 2, n = 3, ... , as shown in Fig. 29£, there are n
possible orbits (see Fig. 29H). For n = 4, for example, there are four orbits with
designations I = 3, I = 2, I = 1, and I = O. The diameter of the circular orbit
given by Bohr's theory is just equal to the major axis of the three elliptical orbits.
The minor axes are one-fourth, two-fourths, and three-fourths the major axis.
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It is common practice to assign letters 1to the quantum numbers as follows:

_:_=_O__ I~= 1 I~'"
According to this system, the circular orbit with n = 3 and I = 2 is designated

3d, while the elliptical orbit n = 2 and I = 0 is designated 2s, etc. n is the principal
quantum number and I is the orbital quantum number. All orbits having the same value
of n have the same total energy, the energy given by Bohr's equation for circular
orbits, Eq. (29i).

Each of the allowed orbits of the Bohr-Sommerfeld model of the hydrogen
atom becomes a subshell into which electrons are added to build up the elements of
the periodic table in the Bohr-Stoner scheme. These subshells are given in Table 29A.

The maximum number of electrons in anyone subshell is given by the relation

2(21 + 1)

This is called the Pauli exclusion principle, each subshell being filled when it contains
the following number of electrons:

Designation
Number of electrons

Subshelll
o 1

s P
2 6

2

d
10

3

/
14

4

g
18

A model of the argon atom, atomic number 18, is shown in Fig. 291. There are
18 protons on the nucleus, and drawn to scale are 18 electrons around it in circular
and elliptical orbits. There are 2 electrons each in the Is, 2s, and 3s orbits, and 6
electrons each in the 2p and 3p orbits. Together all these electrons are represented by

Is2 2s2 2p6 3s2 3p6

which is called the complete electron configuration of the atom.
If argon atoms are excited to emit light, e.g., in an electric discharge in a tube

containing argon gas, one of the outer electrons, 3p or 3s, is excited to outer virtual
orbits. Upon returning to lower energy states, the atom will emit one or more photons.

Table 29A ELECTRON ORBITAL
DESIGNATIONS

Subshelll

Shell n 0 2 3 4

1 Is
2 2s 2p
3 3s 3p 3d
4 4s 4p 4d 4/
5 5s 5p 5d 5/ 5g
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FIGURE 291
Orbital diagram for an argon atom, Z = 18.

When such diagrams are drawn for atoms of higher atomic number, they become
more and more tedious, and a scheme like that shown for cesium in Fig. 29J is
frequently drawn. The electron configuration

Is2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s

shows 54 electrons filling closed subshells, with the fifty-fifth, or valence, electron
alone in the 6s subshell. When cesium atoms are excited in an electric-discharge tube,
it is this outer valence electron that jumps from orbit to orbit emitting photons. For
the order in which subshells are filled see Appendix II.

29.5 WAVE MECHANICS

In 1924 the French physicist Louis de Broglie* derived an equation predicting that all
moving particles have an associated wavelength. A beam of electrons, for example,
should, under the proper experimental conditions, act like trains of light waves or a

• L. de Broglie, Phil. Mag., 47:446 (1924); Ann. Phys., 3:22 (1925).
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ls2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 582 5p6 6s

FIGURE 29J
Schematic diagram of electron shells and subshells in the atom of cesium 55.

beam of photons. The wavelength of these particle waves depends upon the mass
and velocity of the particles according to the equation

h
,t =-

mv
(29m)

This is known as de Broglie's wave equation [see Fig. 29K(a)]. For an electron
moving at high speed, as it does in the first Bohr circular orbit of hydrogen, the
denominator mv is large and the wavelength is just equal to the circumference of the
orbit [see Fig. 29K(b)].

With the development of matrix mechanics by Heisenberg in 1925 and wave
mechanics by SchrOdinger* in 1926, the orbital picture of the atom was replaced by
one of de Broglie's waves. According to SchrOdinger's formulation, the electron
energy states in the atom of hydrogen can be described in terms of three-dimensional
standing waves called spherical harmonics.

• E. SchrOdinger, Ann. Phys., 79:361, 489, and 734 (1926); Phys. Rev., 28: 1047 (1926).
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'NOde

n = 1,1 = 0

FIGURE 29K
Schematic diagram of de Broglie electron wave, moving in (a) a straight line and
(b) as a standing wave in the first Bohr orbital of hydrogen.

Schrodinger's wave equation yields energy states having exactly the same values
as Bohr's theory, except that the quantum numbers n and I both come out as natural
solutions of his basic equation

• (29n)

where V is the potential energy, W is the total energy (kinetic energy and potential
energy), and'" is called the wave function of the electron. It may be thought of as the
amplitude of the electron wave, and it is related to the probability density at any point
within the atom. This is Schrodinger's wave equation.

Although solutions of this equation will not be given here, pictures representing
six states of the hydrogen atom are shown in Fig. 29L for Is, 2s, 2p, 2p, 3d, and 4f
orbitals. * If these pictures were shown to the same scale of dimensions, their sizes
should be enlarged as n2

, thereby comparing closely in size to their Bohr-orbit
counterparts shown to the same scale in Fig. 29H.

In 1928 Diract included the spin of the electron in the Schrodinger wave equation
and found similar probability density distributions for hydrogen, with appreciable
differences in the angular distributions for the lower states with small n.

The radial distributions of charge density in the Bohr-Stoner scheme of atomic
structures come out in such a way that closed shells and subshells form spherical
symmetry about the nucleus, while valence electrons in incomplete subshells form an
angular distribution similar to electron orbits. Because three-dimensional probability
density figures are so hard to draw, it is common practice to represent electron states
as orbital diagrams.

* See White, "Introduction to Atomic Spectra," chap. 4,
t P. A. M. Dirac, Proc. R. Soc., A117:610 (1928); A118:3S1 (1928).
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2p

2p 3d 4f

FIGURE 29L
Wave-mechanical pictures of six different states of the hydrogen atom
(according to SchrOdinger's equations). (By permission from H. E. White, Phys.
Rev., 37: 1416 (1931).

29.6 THE SPECTRUM OF SODIUM

Except for elements in the first two columns of the periodic table, the spectra of all
elements are quite complex [see Fig. 21H(a) and (b)]. Although their spectra have all
been analyzed and converted into the atomic structures of their atoms, they were
historically a long time in being thoroughly analyzed.

The spectra of the alkali metals Li, Na, Mg, Ca, Sr, Ba, and Ra are relatively simple
compared with those elements near the center of the periodic table. As an example of
other than hydrogen atoms we shall consider. the structure of the sodium atom, its
energy levels, and its observed spectrum. As the eleventh element in the periodic
table, with a chemical valence of 1, each sodium atom contains 11 protons in the
nucleus and 11 electrons in quantized orbits outside (see Fig. 29M). The 2 electrons
in each of the Is and 2s subshells, plus the 6 electrons in the 2p subshell, all form three
closed subshells. As closed subshells, their total angular momenta are all zero; their
spins all cancel in pairs, as do their orbital angular momenta.

As far as the electric field outside the core of 10 electrons is concerned, they
screen or neutralize approximately 10 of the nuclear charges, and the eleventh, or
valence, electron moves in a field that is almost hydrogenlike. It is not surprising,
therefore, that the four known series of spectrum lines in sodium, produced by this
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FIGURE 29M
Atomic model of sodium, Z = 11. All electrons spin with an angular momentum
of !<hj2n).

one electron jumping from orbit to orbit, are not far different in frequency and wave-
length from hydrogen.

The sodium energy level diagram in Fig. 29N shows the normal state, or ground
state, as 328 and the succeeding excited states as 32P, 428,32 D, 42P, etc. These level
designations correspond to the orbit designations 3s, 3p, 4s, 3d, 4p, etc. The super-
script 2 indicates that all levels, with the exception of 8 states, are doublets. This
doubling is due to the spinning of the electron and results in the doubling of all lines
in all series.

Transitions from the two 32P levels to the ground state 328 give rise to the most
prominent lines, the yellow D lines, of the principal series of sodium. These two
particular lines account for the yellow color of all sodium lamps and are called the
resonance lines. Other lines of this and other series are shown by arrows.

At relatively low temperatures nearly all sodium atoms are in their ground state.
As the temperature is raised, more and faster collisions occur between atoms and more
have their valence electron bumped into excited states, with the subsequent emission
of light.

29.7 RESONANCE RADIATION

A good demonstration of resonance is shown with sound waves, using two tuning
forks having exactly the same natural frequency, i.e., the same pitch. Fork A is set
vibrating for a moment and then stopped. Fork B 10 m or more away will then be
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Series limit
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FIGURE 29N
An energy level diagram for the sodium atom, Z = 11, showing transitions for
first members of the sharp, principal, and diffuse series.

found to be vibrating. Each sound pulse that emerges with each wave from fork A,
pushing with just the right frequency on the prongs of fork B, sets it vibrating. If
fork B is now stopped, fork A will again be found vibrating as the result of the waves
from fork B. Such resonance absorption will fail if there is a frequency mismatch
between the second fork and the passing waves.

An analogous demonstration of resonance absorption with visible light is
shown in Fig. 290. Light from a sodium lamp, in passing through a sodium flame
of a bunsen burner, casts a pronounced dark shadow on a nearby screen. A small
piece of asbestos paper soaked in common table salt (NaCI) and placed in an ordinary
gas flame can be used to produce an abundance of free sodium atoms.

The atomic process of resonance absorption taking place in this experiment is
shown in Fig. 29P. An excited atom in the sodium lamp emits a wave A. = 5890 A
by the downward transition from the upper of the two 32P excited levels to the 32S
ground state. Coming close to a normal sodium atom in the flame, this wave will be
absorbed and will raise the single valence electron to the corresponding 32P level.
This second atom will in turn emit the same frequency again, to be absorbed by another
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FIGURE 290
An experiment demonstrating resonance absorption of sodium light.

atom in the flame, or to escape from the flame in some random direction. Because
reemission will be in a random direction and seldom in the original direction from the
lamp, a shadow will be cast. The same explanation holds for A = 5896A.

If the sodium lamp in Fig. 290 is replaced by a source of white light from a hot
solid, those frequencies corresponding to the resonance lines 5890 and 5896A and
the entire principal series of sodium will be absorbed by the flame. The absorption
can be seen in a spectrograph as dark lines on a bright continuous background [see
Fig. 29H(i) and 0)]. Hence all arrows showing downward transitions to the ground
state in Fig. 29N can also have arrowheads at their upper ends, indicating resonance
absorption. All absorption lines originate on the ground state only.

Atom A
=::J:=:;::=:2p

AtomB-- __-----2p--•...----
at at hv at at
0 (0 ~ .. 0 (0
0> 0> 0> 0>
CXl ~ CXl CXl
Ltl """ " Ltl Ltl

VVV •.

-- .....-...1.---28 --"'-- ---28

FIGURE 29P
Energy level diagram illustrating light emission and resonance absorption
between two sodium atoms.



LIGHT QUANTA AND THEIR ORIGIN 629

29.8 METASTABLE STATES

(290)•

In gases like those found in a bunsen burner or in an electric-discharge tube emitting
visible light most of the atoms have their valence electrons in the ground state. When
by collision with another particle or atom the valence electron is raised to an excited
state, it remains there for approximately 1.6 x 10-8 s before jumping down to a
lower level with the emission of a photon.

Transitions to lower states by excited atoms are governed by well-established
selection rules, such that not all transitions are allowed. For all atoms with one
valence electron, the selection rules are quite simple:

!in = 0, :t 1, :t2, :t3, :t4, ...
Jil = :t 1 only

For an extension of the selection rule to atoms with more than one valence
electron, like the alkaline earths Be, Mg, Ca, Sr, Ba, and Ra, new sets of rules apply.
With two electrons taking part in producing the various energy levels, transitions may
occur as one electron jumps from orbit to orbit or two electrons may jump simul-
taneously, with the emission of a single radiated frequency. Selection rules for two
electron systems in general may be written

and M2 = 0, :t2 (29p)

If a single electron jumps, the / value of one changes by 1 and the other remains
unchanged. If two electrons jump simultaneously, the / value of one changes by 1
and the other by 0 or 2. There are no restrictions on the total quantum number n of
either electron. In calcium, for example, the two-electron transition 3d to 4p and 4s
to 3d gives rise to three groups of lines, called mu/tip/ets which constitute some of the
strongest lines in the visible spectrum.

An examination of the energy level diagram of sodium in Fig. 29N shows that
certain transitions, like 32D to 32S, are forbidden. To arrive at the ground state from
32D, an electron cannot jump directly to 32S, as this would involve a til by 2. The
electron can jump from 32D to 32P, emitting one photon, and then from 32P to 32S
with the emission of a second photon of a different frequency. Both these transitions
involve Jil = - 1.

In some atoms it is not possible for an electron to get back to the ground state
with the emission of light. Such is the case, for example, in ionized calcium, where the
one valence electron in the atom accounts for the observed spectrum (see Fig. 29Q).•

Once an electron finds itself in the 32D state, selection rules do not allow it to
return to the ground state, with the emission of a photon, and it remains there in-
definitely. It can return to the ground state, however, if upon collision with another
atom it transfers its excitation energy to the colliding atom. Such impacts are called
collisions of the second kind. Both the existence of metastable states and the transfer
of energy from one atom in a metastable state to another by collision are of importance
in lasers.

• For energy level values for most of the elements in the periodic table see R. F.
Bacher and S. Goudsmit, "Atomic Energy States," McGraw-Hili Book Company,
New York, 1936; reprinted by Greenwood Press, Inc., Westport, Conn., 1969.
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FIGURE 29Q
Energy level diagram of ionized calcium, showing the existence of metastable
states.

29.9 OPTICAL PUMPING

Nearly all atoms in solids, liquids, or gases at near absolute zero are in their ground
state. As the temperature is raised, by some form of energy input, more and more
electrons are bumped into excited states. The populations of electrons in the higher
energy levels increases at the expense of those that were in the ground level.

At 5000 K the populations in all states will have increased considerably, with
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the numbers in higher energy states at values less than those lying deeper. At any
constant temperature a steady state will exist, and just as many electrons will be
jumping into any level as will be jumping out of that level.

If a metastable state exists, the situation is different. As atoms are excited to
higher levels, more and more of them get caught in the metastable level and relatively
few of them get out except through mechanical collisions with other atoms. A steady
state can exist, however, and just as many will be leaving per second as there are
arriving there. The average populations of atoms in the metastable levels may be
thousands and even millions of times that of any other, except the ground state. If
they exceed the number in the ground state, ids called population inversion. .

By shining light of a higher energy hv than that required to excite an electron
from the ground state to a metastable level, atoms can be pumped into that state by
light absorption. The stronger the light source, the greater the number of electrons
getting to the upper levels and then dropping back into the trap. This process is called
optiral pumping.

While the mean life of an electron in most excited states is of the order of 10- 8 s,
the mean life of a metastable level can be millions of times longer.

PROBLEMS

29.1 Calculate the orbital frequency of the electron in (0) the first, (b) the second, and (c)
the third Bohr circular orbits. (d) To what wavelengths in angstroms would such
frequencies belong?

Ans. (0) 6.760 x 1015Hz, (b) 4.112 x 1014 Hz, (c) 8.123 X 1013 Hz,
(d) 443.5, 7290, and 36,907 A

29.2 Show that Eq. (29c) is derived from Eqs. (29a) and (29b).
29.3 Show that Eq. (29d) is derived from Eqs. (29a) and (29b).
29.4 Calculate the diameters of (0) the tenth, (b) the twenty-fifth, and (c) the hundredth

circular orbits of the hydrogen atom according to Bohr's theory.
Ans. (0) 1.0584 x 10-8 m, (b) 6.615 x 10-8 m, (c) 1.0584 x 10-6 m

29.5 Calculate the wavelengths of (0) the fifth, (b) the tenth, and (c) the fiftieth lines of
the Balmer series of hydrogen. (d) Find the wavelength of the series limit, i.e.,
as nl -> 00.

29.6 Calculate the wavelengths of (0) the first and (b) the fifth lines of the Paschen series
of hydrogen (see Fig. 29E). (c) Find the series limit when nl = 00.

29.7 Calculate the wavelengths of (0) the fourth, (b) the tenth, and (c) the twentieth
lines of the Lyman series of hydrogen. (d) Find the wavelength of the series limit,
i.e., as nl -> 00. Ans. (0) 949.48 A, (b) 919.10 A, (c) 913.57 A, (d) 911.50 A

29.8 (0) Make a diagram of a zinc atom, atomic number 30, according to the Bohr-Stoner
scheme, showing all subshells as circles. (b) Write down the complete electron
configuration.

29.9 What would be the approximate quantum number n for an orbit of hydrogen to be
1.00 mm in diameter?

29.10 Starting with the first two equations in Sec. 29.2, derive Eq. (29i).
29.11 Show that the magnitude of the kinetic energy tmv2 of a Bohr circular orbit is just

one-half the magnitude of the potential energy.
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LASERS

The name laser is an acronym of light amplification by stimulated emission of
radiation. A laser is a device that produces an intense, concentrated, and highly
parallel beam of coherent light. So parallel is the beam from a visible light laser
10 cm in diameter that at the moon's surface 384,000 km away the beam is no more
than 5 km wide.

Historically the laser is the outgrowth of the maser, a similar device using radio
microwaves instead of visible light waves. The first successful maser was built by
C. H. Townes* and his associates at Columbia University between 1951 and 1954.
During the next 7 years great strides were made in maser technology.

In 1958, A. H. Schawlow and C. H. Townes set forth the principles of the
optical maser, or laser. The first successful laser based on these principles was built
by T. H. Maiman of the Hughes Aircraft Company Laboratories in the summer of
1960. Extensive research on laser development has been carried on since that time.

• Charles H. Townes (1915- ), born in Greenville, South Carolina. He received
his Ph.D. degree from the California Institute of Technology in 1939, and is now
Professor-at-Iarge at the University of California. He is noted for his outstanding
work in the development of masers and lasers, for which he received the Nobel prize
in physics in 1964.
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Because such devices have such widespread use in so many fields of research and
development, a brief account of their basic principles will be presented here.

30.1 STIMULATED EMISSION

There are at least 10 basic principles involved in the operation of most lasers:

1 Metastable states
2 Optical pumping
3 Fluorescence
4 Population inversion
5 Resonance
6 Stimulated emission
7 Coherence
8 Polarization
9 Fabry-Perot interferometry
10 Cavity oscillation

While most of these concepts have long been known to science, the principle of
coherence accompanying stimulated emission was the key to the realization of maser
and laser operation. *

Consider a gas enclosed in a vessel containing free atoms having a number of
energy levels, at least one of which is metastable. By shining white light into this gas
many atoms can be raised, through resonance, from the ground state to excited states.
As the electrons drop back, many of them will become trapped in the metastable state.
If the pumping light is intense enough, we may obtain a population inversion, i.e.,
more electrons in the metastable state than in the ground state.

When an electron in one of these metastable states spontaneously jumps to the
ground state, as it eventually will, it emits a photon of energy hv. This is called
fluorescent or phosphorescent radiation. As the photon passes by another nearby
atom in the same metastable state, it can, by the principle of resonance, immediately
stimulate that atom to radiate a photon of the. exact same frequency and return it to
its ground state (see Fig. 30A). Amazingly enough this stimulated photon has
exactly the same frequency, direction, and polarization as the primary photon (spatial
coherence) and exactly the same phase and speed (temporal coherence).

Both of these photons may now be considered primary waves, and upon passing
close to other atoms in their metastable states, they stimulate them to emission in the
same direction with the same phase. However, transitions from the ground state to
the excited state can also be stimulate.d, thereby absorbing the primary wave. An
excess of stimulate emission therefore requires a population inversion, Le., more
atoms in the metastable state than the ground state. Thus if the conditions in the gas
are right, a chain reaction can be developed, resulting in high"intensity coherent
radiation.

• For a detailed treatment of lasers, see W. V. Smith and P. P. Sorokin, "The Laser,"
McGraw-Hili Book Company, New York, 1966, and E. Hecht and A. Zajac,
"Optics," pp. 481-490, Addison-Wesley Publishing Company, Inc., Reading, Mass.,
1974.
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FIGURE 30A
The principle of stimulated emission of light from an atom. Both waves have
the same wavelength A. and are in phase and vibrating in parallel planes.

30.2 LASER DESIGN

In order to produce a laser, one must collimate the stimulated emission, and this is
done by properly designing a cavity in which the waves can be used over and over
again. Here in optics the principles of the Fabry-Perot interferometer are applied
(see Sees. 14.10 and 14.13). Suppose we retain the high reflecting power of the two
end mirrors of the etalon and increase the distance between them. Into this cavity
we then introduce an appropriate solid, liquid, or gas having metastable states in the
atoms or molecules of its structure (see Fig. 30B).

By one means or another we now excite electrons in these atoms or molecules
and produce a population inversion. If one or more atoms in a metastable state
spontaneously radiate, those photons moving at an appreciable angle to the walls of
the cavity, or tube, will escape and be lost. Those emitted parallel to the axis will

Highly reflecting ends

Stimulated emission

FIGURE 30B
A laser cavity with highly reflecting ends, showing the stimulated emission of
light and the escape of some primary photons through the side walls.
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FIGURE 30C
Energy level diagram for a ruby crystal.

reflect back and forth from end to end. Their chance of stimulating emission will
now depend upon a high reflectance at the end mirrors and a high population density
of metastable atoms within the cavity. If both these conditions are satisfied, the
buildup of photons surging back and forth through the cavity can be self-sustaining
and the system will oscillate, or lase, spontaneously.

30.3 THE RUBY LASER

The first successful laser, developed by Maiman in 1960, used a single crystal of
synthetic pink ruby as its resonating cavity. The ruby is primarily a transparent
crystal of corundum (Alz03) doped with approximately 0.05 percent of trivalent
chromium ions in the form of CrZ03' the latter providing its pink color. The
aluminum and oxygen atoms of the corundum are inert; the chromium ions are the
active ingredients.

As grown in the laboratory, a ruby crystal is cylindrical in shape. It is cut some
10 cm or so long and the ends polished flat and parallel. (Later beveled at Brewster's
angle; see Fig. 30K.) In a typical ruby laser one end is highly reflective (about 96
percent), and the other end is close to half-silvered (about 50 percent).

When white light enters a crystal, strong absorption by the chromium ions in
the blue-green part of the spectrum occurs (see Fig. 30C). Light from an intense
source surrounding the crystal will therefore raise many electrons to a wide band of
levels as shown by the "up" arrow at the left. These electrons quickly drop back,
many returning to the ground level. However, some of the electrons drop down to
the intermediate levels, not by the emission of photons, but by the conversion of the
vibrational energy of the atoms forming the crystal lattice. Once in the intermediate
levels, the electrons remain there for several milliseconds (about 10,000 times longer
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FIGURE 30D
Ruby laser using a helical flash lamp for optical pumping.
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than in most excited states), and randomly jump back to the ground level, emitting
visible red light. This fluorescent radiation enhances the pink or red color of the
ruby and gives it its brilliance.

To greatly increase the electron population in the metastable levels, very intense
light sources, as well as light-gathering systems, have been developed. The arrange-
ment used by Maiman is shown in Fig. 30D. A high-intensity helical flash lamp
surrounding the ruby provides adequate pumping light to produce a population
inversion.

Another effective arrangement is shown in Fig. 30E. By placing a strong pulsed
light source at one focus of a cylindrical reflector of elliptical cross section and the
ruby rod at the other focus, high efficiencycan be realized. A bank of capacitors can
be discharged through the lamp for high-intensity pulsed operation.

A number of other pumping light sources of energy have been developed and
used successfully; exploding wires, chemical reactions, and concentrated sunlight
are but a few.

By pumping from a strong surrounding light source, a large part of the stored
energy is converted into a coherent beam. Coherent waves traveling in opposite
directions in the ruby crystal set up standing waves comparable to a resonating cavity
in microwaves. With one end only partially reflecting, part of the internal light is
transmitted as an emerging beam. (See Fig. 30F.) For some purposes both end
mirrors are fully silvered, and a center spot on one is left clear to transmit part of the
light as a narrow emergent beam.

30.4 THE HELIUM-NEON GAS LASER

The first successful gas laser was put into operation by Javan, Bennett, and Harriott in
1961. Since that time many different gas lasers, using gases of many kinds and
mixtures, have been put into operation. Because it is inexpensive, unusually stable,
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FIGURE 30E
Elliptical reflector for concentrating light from a source S on a laser L.

Fully silvered

o

Pumping radiation

FIGURE 30F
The coherent stimulation of light waves in a solid-state Jaser such as a ruby
crystal. Reflection from the ends sets up standing waves and resonance.
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FIGURE 30G
Simple components of a He-Ne gas laser. Micrometer adjusting screws for
making the mirror planes highly parallel are not shown.

and emits continuously, the He-Ne laser is widely used in optics and physics
laboratories the world over.

An early form of He-Ne laser is shown in Fig. 30G. It is composed of a glass
tube nearly I m long and contains helium at a pressure of approximately I torr and
neon at a pressure of approximately /0 torr. (l torr = I mmHg pressure.) The
highly reflecting mirrors at the ends are precision-adjusted and made parallel to a
high degree of accuracy.

A high voltage, such as that obtained from a step-up transformer or a Tesla
coil, is supplied by means of sealed-in electrodes or by metal bands around the ends
and middle.

Although there are 10 times as many helium atoms present in such a mixture as
there are neon atoms, the orange color of the gaseous discharge is characteristic of
neon atoms. The visible spectrum of helium contains strong lines in the red, yellow,
green, and blue, so the discharge appears as white light. The spectrum of neon, on
the other hand, has so many strong lines in the orange and red and so few in the

Table 30A THE LOWER ENERGY LEVELS, THEIR VALUES IN WAVE NUMBERS,
AND DESIGNATIONS FOR HELIUM AND NEON

Element

Electron
configura-
tion

Level
designa-
tion

Energy,
cm-1 II

Electron
configura-

Element tion

Level
designa- Energy,
tion cm-1

He Is2 ISO 0 6(0) 150,918
3S1 159,843

7(1) 150,773
He Is2s Ne 2p53p 8(2) 150,856

ISO 166,265 9(0) 151,039
Ne 2p6 ISO 0 10(0) 152,971

3P2 134,042 3P2 158,605

Ne 2p53s 3P1 134,460 Ne 2p54s 3P1 158,797
3PO 134,820 3PO 159,381
IP1 135,889 IP1 159,534

1(1) 148,258 3P2 165,829
2(3) 149,658 Ne 2p55s 3P1 165,913

Ne 2p53p 3(2) 149,825 3po 166,607
4(1) 150,122 1Pl 166,659
5(2) 150,316
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green, blue, and violet, that its gaseous discharge appears to be orange-red [see Fig
2IH(e) and (f)]. The neon spectrum also contains a large number of lines in the near
infrared.

All the lower energy levels for helium and neon are given in Table 30A, and an
energy level diagram for the same states is given in Fig. 30H.

The normal state of helium is a ISO level arising from two valence electrons in
Is orbits. The excitation of either one of these electrons to the 2s orbit finds the atom
in a 1So or a 3S, state, both quite metastable, since transitions to the normal state are
forbidden by selection rules [see Eq. (290)].

Neon, with Z = 10, has 10 electrons in the normal state and is represented by
the configuration Is2 2s2 2p6. When one of the six 2p electrons is excited to the 3s,
3p, 3d, 4s, 4p, 4d, 4/, 5s, etc., orbit, triplet and singlet energy levels arise. A subshell
like 2ps, lacking only one electron from a closed subshell, behaves as though it were
a subshell containing one 2p electron. The number and designations of the levels
produced are therefore the same as for two electrons, all triplets and singlets.

As free electrons collide with helium atoms during the electric discharge, one
of the two bound el.ectrons may be excited to 2s orbits, i.e., to the 3S 1 or 1So states.
Since downward transitions are forbidden by radiation selection rules, these are
metastable states and the number of excited atoms increases. We therefore have
optical pumping, out of the ground state 1So and into the metastable states 3S1 and
'So'

When a metastable helium atom collideswith a neon atom in its ground state,
there is a high probability that the excitation energy will be transferred to the neon,
raising it to one of the 1Pl or 3PO' 3P1, or 3P2 levels of 2ps5s. The small excess
energy is converted into kinetic energy of the colliding atoms.

In this process each helium atom returns to the ground state as each colliding
neon atom is excited to the upper level of corresponding energy. The probability of a
neon atom being raised to the 2ps3s or 2ps3p levels by collision is extremely small
because of the large energy mismatch. The collision transfer therefore selectively
increases the population of the upper levels of neon.

Since selection rules permit transitions from these levels downward to the 10
levels of 2ps3p and these in tum to the 4 levels of 2ps3s, stimulated emission can
speed up the process of lasing. Lasing requires only that the 4s and 5s levels of neon
be more densely populated than the 3p levels. Since the 3p levels are only sparsely
populated, lasing can be initiated without pumping a majority of the atoms out of the
ground state.

Light waves emitted within the laser at wavelengths such as 6328, 11,177, and
11,523A will occasionally be omitted parallel to the tube axis. Bouncing back and
forth between the end mirrors, these waves will stimulate emission of the same
frequency from other excited neon atoms, and the initial wave with the stimulated
wave will travel parallel to the axis. Most of the amplified radiation emerging from
the ends of the He-Ne gas laser are in the near-infrared region of the spectrum,
between 10,000 and 35,000A, the most intense amplified wavelength in the visible
spectrum being the red line at 6328A. A photogr~ph of an inexpensive laboratory
type of He-Ne gas laser is shown in Fig. 301. Methods for operating such lasers at
one wavelength will be presented in Sec. 30.7.
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FIGURE 30H
Correlation energy level diagrams for helium and neon atoms involved in the
He-Ne gas laser.
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FIGURE 301
Photograph of a He-Ne gas laser of the type used in the elementaryand advanced physics laboratories for student experimentation.
-(Metr%gic Instruments, Inc.)
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Fully silvered Partly silveredr/ Plane parallel : "'1:
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Hemispherical : ]:

Confocal IJ-i~ci
FIGURE 30J
Four types of end mirrors in cornmon use for lasers. (Mirror curvatures are
exaggerated.)

30.5 CONCAVE MIRRORS AND BREWSTER'S WINDOWS

A great many improvements have been made in laser technology. One of these is the
use of concave mirrors at one or both ends of the resonating cavity, resulting in less
sensitivity to misalignment. These mirrors are often separated from the plasma to
provide for easy adjustment and to permit insertion of a variety of optical components
into the standing-wave section.

Four commonly used configurations are shown in Fig. 30J. The hemispherical
arrangement at the center, with a concave mirror at one end only, has its center of
curvature at the center of the reflecting surface of the plane mirror. The spherical
mirror arrangement has the two centers of curvature falling together at the center
point C of the configuration. The confocal arrangement has the two centers at the
centers of the opposite mirror faces. One mirror is usually fully silvered, and the other
is partially silvered or fully silvered with a clear spot at its center.

With the end plates of a laser normal to the axis, reflection losses of approx-
imately 4 percent at each of the interfaces are detrimental to coherence. By tilting
these plates or beveling the ends of a solid laser to the polarizing angle ;P, the windows
or ends will have a 100 percent transmission for light whose electric vector is parallel
to the plane of incidence (see Fig. 30K). The normal component is partially reflected
at each interface with each traversal of the laser. The laser beam is thereby polarized,
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Fully silvered

Gas

(a) Partly silvered

FIGURE 30K
Beveling laser ends at Brewster's polarizing angle eliminates detrimental re-
flections and at the same time polarizes the light in the plane of incidence: (a)
gaseous laser and (b) solid-state laser like a ruby crystal of index 11.

as with a pile of plates (see Figs. 24D, 24E, 24F, and 25B). The polarizing angle is
given by

tan iP = n (30a)

where n is the refractive index of the medium. For glass of index 1.50, iP = 57°,
and at this angle of incidence in the rare medium, the normal component has
approximately a 15 percent reflectance in crossing each interface. As stated earlier
the plane of polarization of any stimulated photon is exactly the same as that of the
stimulating photon.

30.6 THE CARBON DIOXIDE LASER

An example of a high-power molecular-gas laser is one that operates on carbon dioxide
gas molecules. This optical device produces a continuous laser beam with a power
output of several kilowatts and at the same time maintains a relatively high degree of
purity and coherence.

The significance of such laser power can be demonstrated by the experimental
fact that a focused beam can cut through a diamond and thick steel plates in a matter
of seconds. Furthermore, such lasers generate a wide range of infrared frequencies
and are tunable over a range of wavelengths. The beams also have applications in
optical communications systems, as well as optical radar, and are well suited for use
in terrestrial and extraterrestrial systems, since infrared light is only slightly scattered
or absorbed by the atmosphere. (Scattering is proportional to v4.)
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FIGURE 30L
Diagrams showing vibrational and rotational quantized modes of the CO2

molecule.

The spectra of molecular gases are considerably more complicated than those
of many atomic gases. In addition to the electronic energy levels of a free atom, a
molecule can have levels arising from quantized vibrations and rotations of the atoms
themselves. Thus, for a given electronic configuration in a molecule, there are a
number of almost equally spaced vibration levels, and for each vibrational level there
are a number of rotational levels. Figure 30L shows these molecular modes in separate
diagrams. Note that while vibrating in anyone of the three quantum states (a), a
molecule may take on anyone of a number of quantized rotational states like (b).

The energy levels for the electron configuration of the ground state are shown in
Fig. 30M. The number with which each level is labeled gives the rotational angular
momentum in units of Ii. Two of the allowed infrared transitions between rotational
levels belonging to different vibrational levels are shown. See the simplified energy
level diagram in Fig. 30N.

The addition of nitrogen gas N 2 to the laser cavity results in the selective raising
of CO2 molecules to the desired laser levels. This is similar to the selective transfer
of excitation energy from helium to neon atoms in the He-Ne laser (see Fig. 30H).

The high efficiency of the CO2 laser is attributed largely to the fact that low-
lying vibrational and rotational states require little energy for excitation and a good
share of this energy is transferred to the laser beam. Whereas it requires some 20 V
of energy to excite a helium atom to its first metastable states, only t V is required to
excite a CO2 molecule to one of its lower vibrational and rotational levels (see
Probs. 30.11 and 30.12 at the end of this chapter):

• 1 V = 8065 cm - 1
1 cm-1 = 1.2399 x 10-4 V
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FIGURE 30M
Energy level diagram of a CO2 molecule, showing three vibration states, each
with nine rotation states.

One form of CO2 laser is shown in Fig. 300. Because the upper vibrational
levels have a relatively long lifetime, one can store energy in a gaseous discharge tube
for nearly a millisecond by blocking the path of light within the resonating cavity,
thereby preventing laser oscillation.

When the barrier is suddenly removed, output from the laser results in a sudden
pulse whose peak power is at least a 1,000 times larger than the average CW (con-
tinuous-wave) power. This is called Q switching or Q spoiling; it can be accomplished
by the insertion of any of a variety of elements in the cavity, such as a mechanical
chopper, a rotating mirror, a Kerr cell, a Pockels cell, etc. (see Chap. 33).

With a rotating mirror arranged in the position shown in Fig. 300, an infrared
light pulse at 10.6 fLm is emitted every time it lines up with the opposite mirror.
A 100-W CW laser will produce pulsed power of 100 kW in bursts approximately
150 ns long at a rate of 400 pulses per second.
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FIGURE 30N
Energy level diagrams comparing N2 with CO2, Excitation of nitrogen from the
ground state v = 0, to the first vibrational excited state v = I, and the transfer
of energy to the CO2 molecule.

30.7 RESONANT CAVITIES

A laser cavity can be operated in a variety of oscillation modes similar to those of a
waveguide. As waves travel back and forth between the end mirrors, a distance d
apart, standing waves are set up when

d
m = - (30d)

)../2

where m is a large integer. The frequency of the oscillation Vm is given by

mv
v = - (30e)
m 2d

where v is the speed of the waves in the cavity medium.
The frequency difference between modes is given by

Av = -!:.. (30f)
2d

and is the reciprocal of the round-trip time. For a gas laser I m long, Av = 150 MHz.



Water in

LASERS 647

Water out

Gas in Gas out

FIGURE 300
Carbon dioxide laser with water cooling jacket, Brewster's window, and rotating
mirror for pulsing the output laser beam.

In a spectrum-rich source single wavelengths can be selected for oscillation by
inserting a silvered prism for one of the mirrors, as shown in Fig. 30P. Owing to the
dispersion of the prism the optical path can be "tuned" to be collinear for the desired
wavelength only. This technique makes use of the Littrow spectrograph, where either
a prism or diffraction grating is used as the dispersion unit [see Fig. 17N(c)].

In addition to the longitudinal modes of oscillation, transverse modes can be
sustained simultaneously. Since the fields within a gas are nearly normal to the cavity
axis, these are known as transverse electric and magnetic (TEMmn) modes. The sub-
scripts m and n specify the integral number of transverse nodal lines across the
emerging beam. In other words, the beam in cross section is segmented into layers.•

The simplest mode, TEMoo, is the most widely used, in which the flux density
over the beam cross section is approximately gaussian (see Fig. 30Q). There are no
phase changes across the beam, as there are in other modes, so the beam is spatially
coherent. The angular spread of the emergent beam is limited by diffraction at the
exit aperture and to a first approximation (assuming uniform intensity over the beam

• For photographs of these mode patterns, see E. Hecht and A. Zajac, "Optics,"
p.484.

~
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Littrow prism Partly silvered
Fully silvered

FIGURE 30P
A fully silvered prism at one end of a laser disperses the light so that only one
spectrum line is collinear with the laser axis and is amplified by setting up
standing waves.
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FIGURE 30Q
Gaussian distribution of the light intensity over the beam cross section for a
laser oscillating in the TEMoo mode.

FIGURE 30R
Intensity-wavelength graph of the orange
line of the krypton (86Kr) spectrum,
A = 6058 A. The line with ~A is due
largely to doppler broadenmg.

AO
6058 A
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FIGURE 30S
Laser modes for two operational configurations of a CW gas laser showing a
gaussian envelope and (a) nine resonant frequencies without etalon control and
(b) a single frequency with etalon control (see Fig. 30T).

cross section of diameter D) is given by the single-aperture diffraction pattern,
Eq. (15k),

• A9 = 2.44-
D

(30g)

where 9 = 291, See Fig. 30F.
The resonant modes of a laser cavity are much narrower in frequency than the

bandwidth of the normal spontaneous atomic transition. Most of the bandwidths of
spectrum lines emitted by a discharge tube are due to doppler broadening (see Fig.
30R). Only those modes obeying Eq. (30d) are sustained in a cavity. A single radiation
transition within the atom or molecule produces a band of frequencies, out of which
the cavity will select and simplify only certain narrow bands. The number of these
narrow bands depends upon the wavelength A. and the distance between laser ends D
[see Fig. 30S(a)].

One method for selecting one narrow band only is shown in Fig. 30T. An
etalon with a much shorter length than the laser and with lightly silvered plates is
inserted in the laser cavity and fine-tuned by tilting to resonate to the selected
frequency vo. The next sideband frequency to Vo on either side will come at too wide
an angle to enter and be amplified by the longer cavity. Hence only Vo is sustained
by the combination.

Etalon

High voltage

Brewster window

Partly silvered

FIGURE 30T
Configuration for etalon control of a single laser oscillation mode.
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FIGURE 30U
Diagram illustrating plane, monochromatic, and polarized coherent waves
emerging from a laser.

30.8 COHERENCE LENGTH

Consider a point source of light emitting an infinitely long monochromatic wave
train having spherical or plane wave fronts (see Fig. 30U). Under such ideal con-
ditions the phase difference i1<jJ between two fixedpoints Xl and X2, spaced any distance
apart along any ray, is time-independent. Equivalent to this, the phase difference
measured at a single point in space at the beginning and end of a fixed time interval
/it does not change with time t. These are statements of perfect temporal coherence.

Alternately, the phase difference for any two fixed points in a plane normal to a
ray direction is time-independent. This is a statement of perfect spatial or lateral
coherence.

Since real light sources emit wave trains of finite length and this length is
important to the production of interference phenomena of all kinds, we should
determine practical values for coherence length. The average lifetime of an atom in the
state of radiating is approximately 1.6 x 10-8 s. Traveling with the speed of light,
each wave train has a length of about 3 m. Whether these waves are damped or of
constant amplitude, a Fourier analysis of the waves leads to a frequency distribution
called the natural breadth of a spectrum line [see Fig. 30V(a)].

Thermal light sources are composed of atoms randomly emitting wave trains
at random times, and their frequencies are altered by thermal motions and by local
electric and magnetic fields. The sum of all these effects is to greatly widen each
spectrum line and give it a bandwidth,

1
Av = - (30h)

/it

where /it is referred to as the coherent time. The broadening of most spectrum lines
is due to the doppler effect and is called doppler broadening. * The distance light

* See Harvey E. White, "Introduction to Atomic Spectra," chap. 21, McGraw-Hili
Book Company, New York, 1934.
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Imax

Frequency ~ Vo
FIGURE 30V
Comparison of the natural width of a spectrum line with its doppler width.

travels in this time At, called the coherent length, is given by

L = c tit = :..... (30i)av
Hence, the width of a spectrum line is a measure of coherence length, and the coherence
length is inversely proportional to the bandwidth of a spectrum line.

A more accurate equation for coherence length takes into account the line's
actual broadening effects and is given approximately by*

L -_ cJi In 2 __ 0.32 _c I'. 1 d' h (30';)--- Jor low-pressure ISC arges 'J

7t av . av

(30k)for high-pressure dischargesL = c In 2 = 0.11 :.....
27t av av

The spectrum lines from thermal sources have a coherence length of a few
millimeters up to several tens of centimeters. A laser, on the other hand, may have a
coherence length of several kilometers. One of the most coherent of nonlaser lines is
the orange line of krypton, at A = 6058 A (see Fig. 30R).

•

EXAMPLE The Doppler width aA of the orange line of krypton, Kr86, at A =
6058 A, is 0.00550 A. Calculate (a) the line frequency v, (b) the bandwidth av in
hertz, and (c) the coherence length in centimeters.

SOLUTION (a) The line frequency is given by c = VA as

V = 3.0 X 10
10
cmls = 4.95 x 1014 Hz

6.058 x 10-5 cm

(b) Using the well-known relationship aviv = aNA, we find

Av = v aA = 4.95 x 1014 0.0055 A = 4.50 X 108 Hz
A 6058 A

• See Collier, Burckhardt, and Lin, "Optical Holography," p. 445, Academic Press,
Inc., New York, 1971.
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(c) By Eq. (30j,) the coherence length is

c 3 X 1010
L = 0.32 L\v = 0.32 4.5 x 108 = 21.3 cm

Single-frequency operation of a laser, described above, offers an almost un-
limited coherence length, and this makes it ideal for the art of holography. For making
successful holograms the difference between any two optical paths from the light
source to any point on the recording medium must be less than the coherent length
(see Chap. 31). A few simultaneous oscillating modes can reduce the coherence
length tremendously, thereby limiting its use to a few centimeters.

30.9 FREQUENCY DOUBLING

With the development of lasers in 1960, scientists obtained for the first time light
beams intense enough to produce light-wave harmonics. Such phenomena had long
been known in electronics and sound, where sum and difference frequencies play an
important role in electronic circuitry, music, and hearing.*

In 1961 four physicists at the University of Michigan focused a beam from a
ruby laser emitting 3-kW pulses of red light of wavelength 6943 A onto a quartz
crystal, thereby producing an observable number of photons of half the wavelength,
or 3471.5 A (see Fig. 30C). This new wavelength, which lies in the ultraviolet region
of the spectrum, is exactly double the frequency ofthe laser's red light. The possibility
that this was fluorescent light could be ruled out since it was emitted in a highly
directional beam parallel to the incident light. t

Many related developments followed this preliminary discovery, and soon much
higher efficiencies were obtained, converting laser light to harmonic frequencies. In
other experiments two different wavelengths were made to interact with matter and
produce sum and difference frequencies in the ultraviolet and infrared, respectively.

The classical explanation of these phenomena involves ionization of the loosely
bound valence electrons, which in many crystals are shared by other atoms in the
bonding of the structure. An atom giving up an electron to its neighbor leaves it
with a net positive charge, and the neighbor with an extra electron has a net negative
charge. As light waves pass through, these ions respond to the associated electric
and magnetic fields by being set into vibration with the source frequency. When the
incident light intensity is extremely high, as it is in a laser beam, the induced atomic
vibrations are nonlinear in their response, just as they are with loud sounds, and
higher harmonics are generated. The second harmonic is far more intense than higher
modes.

From the point of view of quantum theory, when two photons interact with
matter, both energy and momentum are conserved in producing a single photon.

• See Harvey E. White, "Modern College Physics," 3rd ed., p. 371, D. Van Nostrand
Co., Inc., Princeton, N.J., 1956.
t P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Phys. Rev. Lett., 7: 118
(1961); J. A. Giordmaine, Sci. Am., 210:38 (April 1964).
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30.10 OTHER LASERS
Hundreds of different kinds of lasers using many different materials have been made,
emitting radiation over a wide range of wavelengths from the ultraviolet at one end
of the spectrum to microwaves at the other. Many gas elements are known to lase,
and the same is true of many diatomic and triatomic molecules and many metals.

One type of chemical laser derives its energy from the dissociation by light of
trifluoroiodomethane (CF3I). As this complex molecule dissociates, the carbon-
iodine bond is broken and an excited iodine atom is released. On returning to the
ground state, the iodine atom gives off a photon with a wavelength of 13,150A.

Another type of laser uses semiconductors in the form of pn junctions. Such
lasers are very small, require only low voltages, and are easily modulated. The most
commonly used material is gallium arsenide (GaAs) impregnated with zinc.

If a laser is fully pumped before oscillation begins, the first pulse will be con-
siserably higher in power than it would be under conditions of continuous operation.
A short-duration pulse emitted from such a pulsed source can be amplified by passing
the beam through subsequent lasers, called amplifiers. For example, a ruby-laser
oscillator may be followed by a sequence of ruby-laser amplifiers, each consisting of a
ruby rod with ends cut at Brewster's angle and unsilvered. Such a sequence can
amplify a single pulse as short as a small fraction of a microsecond up to an energy of
many joules.

30.11 LASER SAFETY
Laser light varies in intensity from a fraction of a milliwatt for an inexpensive He-Ne
laser to many kilowatts for a CO2 laser. Laser injuries have been few, and their
dangers highly debatable. However, the greatest danger is the inadvertent direction of
an undiverged laser beam directly into the eye.

The weak beam from a t-mW continuous He-Ne laser is probably of little
danger, since eyelids can close upon sudden exposure. More intense beams, and
especially pulsed beams, can cause serious injury, due primarily to the ability of the
eye to focus the parallel beam onto a small area of the retina.

Good safety practice in the presence of high-powered lasers involves the use of
filtering glasses and shields and awareness that a laser beam incident upon a specular
reflecting surface can redirect the beam undiminished in intensity.

30.12 THE SPECKLE EFFECT
Anyone observing a diverged laser beam against a diffuse surface will notice a granular
appearance. If one squints or moves back, the speckles become larger. No matter
where one's eyes are focused, the speckles will appear sharp. Moving sideways causes
the speckles to move too.

Curiously enough, the speckles do not exist in the reflected pattern but are
created in the eye itself. Laser light reflected from a diffuse surface will enter the eye,
producing bright speckles where random fluctuations cause constructive interference
on the retina. Such interference maxima can be related to a local convergence, real
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or virtual, of laser light in the vicinity of the observed area, in the plane in which the
eye is focusing. By moving the head sideways, the speckles will move in the same
direction for the far-sighted person, just as an object observed on the far side of an
open window will. Conversely a near-sighted person will see the speckles move in
opposition. Correct Yisionwill produce no apparent parallax.

30.13 LASER APPLICATIONS
Since the advent of the laser, many uses have arisen for it. Modulated laser beams
have been used for communication. Lasers have been used by the medical profession
in surgery, where retinal tissue is cauterized to weld detached retinas. They have been
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Recording electronics

FIGURE 30W
A variation of the Michelson-Morley experiment performed with two lasers of
slightly different frequency.
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used by surveyors and engineers for critical alignment, as well as for ranging in
metrology and determining the distance to the moon. Attenuation and scattering of
laser beams have been used in atmospheric research. High-power lasers have been
used to cut through diamonds and steel plates and to initiate thermonuclear reactions.
One of the most significant uses of the laser has been in the production and research
with holograms, the subject of the next chapter.

A variation of the Michelson-Morley experiment has been performed as a
sensitive test for an ether drift. * The beams of two infrared lasers of slightly different
frequency were combined by means of a beam splitter, and the resultant beat fre-
quency was detected by means of a photomultiplier and recording electronic circuits
(see Fig. 30W). The beat frequency, as with sound waves, is equal to the difference
between those of the two laser beams, Av = V1 - V2'

The exact frequency in which each laser operated was governed by the length of
each resonant cavity and the speed of light inside. If both lasers, operated at about
3 x 1014 Hz, were rotated through 90°, the ether drift should affect the speed of light
in the cavities and therefore the frequency difference between them. A relative change
of Av = 3 MHz is expected from the ether-drift hypothesis, due to the earth's orbital
velocity. No change in the beat frequency was detected.

Lasers have been used, like radar, to determine distances large and small.
During the Apollo moon flight 11, on July 20, 1969, Armstrong and Aldrin set up a
previously constructed array of triple prisms, to reflect light from the earth back to its

• T. S. Jaseja, A. Javan, J. Murray, and C. H. Townes, Test of Special Relativity or
of the Isotropy of Space by Use of Infrared Masers, Phys. Rev., 133:A1221 (1964).

Table 30B SOME COMMON LASER TYPES

Spectral Wavelength,
type Type Medium nm Radiation

Ultraviolet He-Cd Gas 325.0 CW
Nz Gas 337.1 pulsed
Kr Gas 350.7,356.4 CW
Ar Gas 351.1,363.8 CW,pulsed

Visible He-Cd Gas 441.6,537.8 CW
Ar Gas 457.9,514.5 CW,pulsed
Kr Gas 461.9, 676.4 CW,pulsed
Xe Gas 460.3,627.1 CW
Ar-Kr Gas 467.5,676.4 CW
He-Ne Gas 632.8 CW
Ruby Solid 694.3 pulsed
Cr3+AI03

Infrared Kr Gas 0.753,0.799 CW
GaAIAs Solid(diode) 0.850 CW
GaAs Solid (diode) 0.904 CW
Nd Solid (glass) 1.060 pulsed
Nd Solid (YAG) 1.060 CW,pulsed
He-Ne Gas 1.15,3.39 CW
COz Gas 10.6 CW,pulsed
H2O Gas 118.0 CW,pulsed
HCN Gas 337.0 CW,pulsed
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source.* A square array of 100 of these prisms, each 4 cm in diameter, was arranged
and placed approximately 20 m from the spacecraft at the landing site, the Sea of
Tranquility. t A return beam of light was first picked up on the earth by a group of
scientists at the Lick Observatory, University of California at Santa Cruz, Aug. 1,
1969. With a ruby laser in the l20-in. telescope, a pulsed beam of light 4 m in
diameter was aimed at the moon. The return light pulses arrived approximately
2.58 s later and were accurately timed to within O. I J1.S. The accuracy in time measure-
ments determined the reflector distance to within 6 m.

Shortly thereafter, another group, at the McDonald Observatory in Texas,
picked up a return beam from the moon reflector and were able to measure the time
to within 2 ns. This determines the distance to within 30 cm.

It should be pointed out that due to the relative motion of the moon and the
laser transmitter, the center of the return beam will be displaced several miles (velocity
aberration). Due to diffraction by each triple prism 4 cm in diameter, the light
spreads to almost 15 km by the time it reaches the earth. For this reason the return
beam can be picked up at the transmitter.

Much valuable information concerning the moon and the earth can be deter-
mined from the changing distance between these two astronomical bodies, and we can
look forward to announcements of new findings in the future.

PROBLEMS

30.1 Using a fuJIsheet of millimetergraph paper, draw an energy leveldiagram like the
upper half of Fig. 30H so that it is as large as possible. Use the range 130,000 to
170,000 em-I. Use the energylevelslisted below,whichare givenin wavenumbers,
and label the levelsas givenhere. Take differencesbetweenlevelsto findwhichones
are involvedin the lines at wavelengths(a) 6328 A, (b) 11,523 A, and (c) 11,117 A.

Ans. (a) Au = 15,803 cm-l, 2ps5s, IP1 jumps to 2ps3p, 8(2),
(b) Au = 8678.2 cm-1, 2ps4s, 3P2 jumps to 2ps3p, 2(3),

(c) Au = 8946.9cm-t, IP1 jumps to 2ps3p, 8(2); see Fig. 30H

He 1s2 ISO = 0 6(0) = 150,918

3S1 = 159,843 7(1) = 150,773
He 1s2s Ne 2ps3p 8(2) = 150,856

ISO = 166,265 9(1) = 151,039
Ne 2p6 ISo = 0 10(0) = 152,971

3P2 = 134,042
3P2 = 158,605

Ne 2ps3s 3P1 = 134,460 Ne 2ps4s 3P1 = 158,797
3PO = 134,820

3PO = 159,381
IP1 = 135,889

IP1 = 159,534
1(1) = 148,258
2(3) = 149,658 3P2 = 165,829Ne 2ps3p 3(2) = 149,825 Ne 2ps5s 3P1 = 165,913
4(1) = 150,122 3PO = 166,607
5(2) = 150,316 IP1 = 166,659

• See Sec. 2.2 and Fig. 2C(e).
t J. E. Faller and E. J. Wampler, The Lunar Reflector, Sci. Am., March 1970, p. 38.
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30.2 From the energy level values given in Prob. 1, what is (a) the smallest energy mis-
match of the helium metastable levels with the levels of neon? (b) What percentage
of mismatch are these values?

30.3 From the energy level values given in Prob. 1, specify the three transitions not
labeled in Fig. 30H and calculate their frequencies in wave numbers and their wave-
lengths in angstroms.

30.4 The beam from a ruby laser emitting red light of wavelength 6943 A is used with a
beam splitter to produce two coherent beams. Both beams are reflected from plane
mirrors and brought together on a thin photographic emulsion. If the angle ex
between these two interfering beams is 10° and the plate normal bisects this angle,
find the fringe separation of the interference fringes on the plate. Ans. 0.00398 mm

30.5 The following transitions give rise to strong lines in the neon spectrum. From the
energy level values given in Prob. 1 find their wavelengths in angstroms. (a) 2ps3p,
9(1) to 2ps3s, 3P2, (b) 2ps3p, 4(1) to 2ps3s, 1PIt (c) 2pS3p, 2(3) to 2ps3s, 3P2, (d) 2ps3p,
3(2) to 2ps3s, 1Pl'

30.6 Starting with the neon energy level values given in Prob. 1, the following strong lines
start at levels arising from the electron configuration 2ps3p and end on the con-
figuration 2ps3s. Find their wavelengths in angstroms. (a) 6(0) to 3PIt (b) 4(1) to
3P2 , (c) 3(2) to 3PIt (d) 1(1) to 3P2•

30.7 The following wavelengths are strong lines in the neon spectrum: 6144.7, 6335.0,
6403.6, and 7034.3 A. They all end on the lowest level of the electron configuration
2ps3s. (a) Find their frequencies in wave numbers, and using the energy level values
in Prob. I, identify the initial energy levels.

Ans. (a) 16,274, 15,785, 15,616, and 14,216 cm-I, (b) 5(2), 3(2), 2(3), and 1(1)
30.8 A He-Ne laser exactly 25.0 cm long is vibrating in the TEMoo mode. What is (a) the

number of loops in the standing wave pattern if A. = 6328.0 A, and (b) the frequency
difference between modes?

30.9 The doppler width of the red cadmium lineA. = 6438 A, produced in a low-pressure
discharge, is 0.00030 A. Calculate (a) the frequency of the light, (b) the line width in
hertz, and (c) the coherence length.

30.10 The sodium line at A.= 5890A, produced in a low-pressure discharge, has a doppler
width of 0.0194 A. Calculate (a) the frequency of the light, (b) the line width in
hertz, and (c) the coherence length in centimeters.

Ans. (a) 5.0934 x 1014 Hz, (b) 1.678 x 109 Hz, (c) 5.72 cm
30.11 Find the excitation energy for helium atoms raised to the Is28, ISO state (a) in volts

and (b) in wave numbers. What energy is radiated by the emission of A. = 6328 A
(c) in volts and (d) in wave numbers? (e) What is the theoretical efficiency?

30.12 Find the excitation energy for the nitrogen molecule in the CO2 laser shown in
Fig. 300 (see Fig. 30N) (a) in volts and (b) in wave numbers. What energy is radiated
when the laser ~mits'\ = 10.6 f'm (c) in volts and (d) in wave numbers? (e) What is
the theoretical efficiency of this laser?



31
HOLOGRAPHY

The term holography comes from the Greek meaning whole writing. It is a two-step
process by which (1) an object illuminated by coherent light is made to produce
interference fringes in a photosensitive medium, such as a photographic emulsion, and
(2) reillumination of the developed interference pattern by light of the same wave-
length produces a three-dimensional image of the original object. The viewed images
seen by this process have the appearance of the original object, including the differences
in perspective one obtains with a change of the viewer's observing position-a full
three-dimensional image.

The principles of holography were first put forward by Dennis Gabor, of the
Imperial College of Science and Technology, University of London. Gabor's inven-
tion consisted of a method for improving the resolution of images obtained with an
electron microscope, and his announcement of the concepts was published in 1948.*
Little was made of his work at that time, and it was not until the development of the
laser in 1960 that his basic ideas became more than a laboratory curiosity. He was
awarded the Nobel prize in physics in 1971 for his three-dimensionallensless method
of photography (holography).

• Dennis Gabor, Nature, 161:777 (1948).
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FIGURE 31A
The interference of coherent waves
scattered from a point source, with
plane waves,will giverise to a hologram
in the form of a Gabor zone plate.

H

H'

31.1 THE BASIC PRINCIPLES OF HOLOGRAPHY
In the preliminary stages Gabor's technique was to cause a beam of coherent light
to be scattered from an object and then allowed to overlap an unobstructed coherent
beam. The two sets of waves coming together on a photographic plate, placed in
front of the object, would produce interference fringes.

Consider the interference pattern caused by coherent monochromatic plane
waves incident from the left onto a point scatterer (see Fig. 31A). At the plane of the
photographic plate HH' to the right, bright and dark concentric circles will be formed
due to constructive and destructive interference between the scattered light and the
direct reference beam. Upon development, the plate is found to contain light and
dark partially absorbing fringes, as predicted.

This pattern, called a Gabor zone plate, is similar to a Fresenl zone plate treated
in Chap. 18, except that the light and dark fringes shade continuously into each other
(see Fig. 181). The ring pattern is a great deal like the circular fringe pattern produced
by the Michelson interferometer [see Fig. 13P(a) and (b)].

Since the reference beam is assumed to be in constant phase across the surface
of the hologram plane, the interference fringes at any point P will be separated by an
amount Ar, corresponding to a difference of path length of one wavelength of light A.,
as measured from S* (see Fig. 3IB):
• A. = Ar sin e (31a)

• For finding the radius of the rings we use the geometry of Fig. 31B. The path
difference d = R - D, and d = nA. = ,2/(2R - d). See Newton's rings [Eq. (14k»).
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FIGURE 3IB
The geometry for the fringe spacing M in a Gabor zone plate. P marks points
of constructive interference which develop as black fringes on a hologram.

This plate is then illuminated by plane coherent waves, as it was in the making,
but in the absence of the scatterer. The light formed by interference between the light
and dark bands will now produce a first-order interference maximum at the angle
(}as given by Eq. (3Ia) [see Fig. (31C)]. This light will therefore appear to diverge
from S. Since all points from the holograms will produce diffracted light propagated
in line with S, a virtual image is created and can be viewed from the right of the
hologram.

Suppose now that two scattering centers were originally present on the left.
Each now will create a Gabor zone plate. Moreover, the modulation intensity of each
zone plate will be proportional to the scattered light intensity provided the photo-
graphic response is linear. The reconstruction will therefore produce a virtual image
of both scattering centers, each with its proportionate intensity.

The argument can now be extended to a distributed scattering source corre-
sponding to a continuum of scattering centers. The hologram will now consist of a
continuum of superposed zone plates (see Fig. 3ID). Upon reconstruction, the dis-
tributed virtual image should appear exactly like the original object as viewed from
the right of the hologram.

Although the basic principles of Gabor's on-axis hologram are straightforward
enough, the application of these principles suffered from several technical difficulties,
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s
Virtual image Real image

H'

FIGURE 31C
Point images, both real and virtual, formed by plane coherent light falling on a
Gabor zone-plate hologram. The virtual image can be seen at S by the eye, and
the real image can be formed on a screen at S'.

H
Reference beam

Eye

Hologram photo plate

H'

FIGURE 310
An object at S and a reference beam form a complicated array of Gabor zone
plates on HH', which upon development is illuminated by the same reference
beam. The eye now observes a virtual image at S and a real image at S'. A
screen or photographic plate at S' will now register this real image.
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Laser beam

--------~-------
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FIGURE 31E
Monochromatic, coherent laser light is reflected, unchanged, onto a photographic
plate. Part of the beam is modulated by its reflection from an object to the same
plate. When developed, the plate reveals interference fringes called a hologram.

the most significant being the lack of a sufficiently coherent light source. With the
advent of the laser, the outlook for holography changed dramatically.

However, a second difficulty appeared in the form of a real image caused by
light diffracted in the opposite direction. This image was generally observed in front
of the first image, and therefore it was in the way when viewing the virtual image
(see Fig. 31D).

The next major breakthrough was made in 1962 by Leith and Upatnieks, who
developed the idea of the off-axis hologram. * This can be seen as a simple extension
of the Gabor hologram, using an off-axis section of the holographic plate. This
variation was made possible by the increased coherence length of the laser beam.

This simple variation not only separated the real from the virtual image line
of sight but allowed for separate handling of the reference and scattered beam. The
object could now be illuminated from any side or several sides. Moreover, it is not
necessary that the reference beam be normally incident plane waves, provided that it
is produced by the equivalent of a point source and that the reconstructing beam
readily reproduces it.

One method of producing such a hologram is shown in Fig. 31E, where an inci-
dent laser beam is split into two beams, one of which changes direction as it strikes
a plane mirror and the other is scattered by the object. At the photographic plate,
the two beams interfere in a very irregular pattern, as shown in Fig. 31D. The angle
P between the scattered light and the reference beam will determine the density of the

• G. N. Leith and J. Upatnieks, J. Opl. Soc. Am., 52: 1123 (1962).



HOLOGRAPHY 663

FIGURE 31F
An enlarged section of a plane hologram made with l = 6328 A from a He-Ne
gas laser. (Conductron Corporation.)

fringes, or spatial frequency. If the angle is small, the spatial frequency will be low
(fringes far apart), but visual interference of the real image will be severe. Moreover,
a mottled background can be seen, called intermodulation noise, due to fringes pro-
duced by the interference of light from various parts of the object.

By using larger angles, these effects can be eliminated, but the resulting high
spatial density will require high-resolution film, and particular care must be taken
to avoid relative motion of the optical components during exposure (see Fig. 31F).
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Laser beam

Virtual image

First order

Zero order

First order

Real image

FIGURE JIG
The monochromatic, coherent laser beam is incident on a hologram, where it is
modulated to produce two diffracted waves, the first order on each side. The
remainder of the direct beam forms the unchanged zero order.

31.2 VIEWING A HOLOGRAM

To see the reconstructed object when a hologram is made, the photographic plate
containing the interference fringes is placed in the monochromatic beam from the
same laser used making the picture and with the same alignment. The diffracted
waves diverge as if they came from the virtual image. The lens of the eye focuses
these waves on the retina, where a real image is formed (see Fig. 3IG).

The original waves producing the interference fringes and the waves reconstruct-
ing the image will be identical in all optical respects. The image is not only three
dimensional but in perspective as well, and will change as the viewer moves his head. As
the observer moves his eyes to different positions, the rays of light entering each pupil
come through small but different sections of the fringe pattern on the hologram, and
he sees the object in different perspective. Ifhe finds an object hidden behind another,
he can move his head and look around the nearby obstacle, thereby seeing the hidden
object.

If the reconstruction beam does not reproduce the original reference beam
geometrically, the image will be distorted. Illumination by light of wavelength different
from the original will cause both a change in size and displacement of the image.
Illumination by a spectral distribution will produce color fringing. The normal
shrinkage of a photographic emulsion during development is sufficient to cause minor
distortion similar to that caused by increasing the wavelength of the reference beam.
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If the hologram is broken into many small pieces, each piece will be a hologram
of the complete object scene. However, the perspective will be limited accordingly,
and there may be a loss in resolution.

A hologram made in the above fashion might be thought of as a negative.
Every hologram, however, is a positive print. If any hologram is copied by contact
printing, thereby reversing black for white and white for black, it will produce the
same images and not a reversal. This is similar to a Fresnel zone plate, where com-
plementary zones produce identica1 bright spots as foci. For complementary-zone
plates see Fig. 18I.

If the emulsion of a hologram is bleached by normal photographic processes
after it has been fixed, the darkened silver grains are replaced by transparent media
of a different refractive index. Under these conditions the film will appear uniformly
transparent. This changes an absorption hologram into a phase hologram, increasing
its clarity.

The real image from a hologram can be formed on a screen, and a photographic
plate located there can be developed into a real picture. This same image can be
observed by locating the eye beyond the real image, where it can intercept the waves
diverging from their points of intersection in the three-dimensional image. The eye
must be located far enough back, at least to the distance of most distinct vision, for
the object to be seen sharply.

The undistorted real image has some visual characteristics foreign to the trained
senses. As shown in Fig. 31G, the image of the lamp is illuminated on the front sur-
face, and the real image displays that side even though it is spatially behind the other
surface and should obscure it. A hologram made using an opaque object produces a
pseudoscopic image which displays contradictory visual cues, which must be seen to
be appreciated. As a result, the real image is of limited use.

31.3 THE THICK, OR VOLUME, HOLOGRAM

The holograms discussed above have been assumed to have negligible thickness and
are referred to as plane holograms. If the recording medium is thick with respect to the
spatial frequency, the interference fringes act as a series of ribbons, somewhat similar
to a venetian blind. The reconstructing beam will generally pass through several
sets of such fringes. This third dimension has the effect of adding an additional
constraint on the diffraction pattern produced in a way similar to Bragg scattering
of X rays from crystals.

In the Bragg-scattering experiments, used so much in X-ray studies, the regularly
spaced atoms in the crystal act like partially reflecting planes, scattering the waves
in definite preferred directions (See Fig. 31H). In these preferred directions the waves
reflected from adjacent planes differ from each other by exactly one wavelength and,
being in phase with each other, produce constructive interference. The Bragg-
scattering relationship for these directions is given by

• A. = 2d sin 0 (31b)
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X-ray beam
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FIGURE 3lH
Diagram of the reflection of X rays from the various atomic planes in a cubic
crystal lattice.

FIGURE 311
Geometry illustrating the Bragg rule of reflection for X rays from the surface
layers of a cubic crystal.
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M
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FIGURE 311
Two point sources Q and Q' emitting monochromatic coherent waves construc-
tively interfere along hyperboloidal surfaces.

where d is the distance between reflecting planes, A.is the wavelength of the waves,
and e is the reflection angle shown in Fig. 31I. This principle of Bragg reflection
forms the basis of a particularly simple geometrical model* that can be used to account
for most of the features of the thick hologram.

First consider two coherent point sources of light waves Q and Q', of wavelength
A.,separated by a distance D as shown in Fig. 311. Every point on the midplane MM',
bisecting the line connecting the sources, will be equidistant from the sources and will
therefore be a point of constructive interference. Other surfaces of constructive
interference can be found, each of which corresponds to a difference in path length
from the two sources of an integral number of wavelengths. These surfaces can be
shown to be hyperboloids, which are separated by A.j2 as measured along the line
connecting the sources.

• The simple geometrical model developed here for thick holograms is to be attri.
buted to T. H. Jeong. The hyperboloids drawn in Figs. 311, 31K, and 31L were
generated by computer. See T. H. Jeong, Geometrical Model for Holography,
Amer., Jour. Phys., 43: 714 (1975).
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FIGURE 31K
Any ray from source Q can be reflected by any of the hyperboloidal mirrors and
in such a direction that all rays appear to come from Q'.

Imagine now that each of these surfaces in the developed emulsion is a partially
reflecting surface and that point Q acts as a source of coherent illumination. The
midplane acts as a plane mirror, creating a virtual image at Q' (Fig. 3IK); see Fig. 3E.
Moreover, reflection from any portion of any of the hyperboloidal surfaces will obey
the law of reflection and emerge as if they diverged from Q'. The reflected pattern
from any volume occupied by the fringe surfaces will then produce a virtual image
at Q'.

Consider now that Q in Fig. 31L is a primary source, e.g., a laser. Point Q'
is a secondary coherent source, a scattering center exposed to the primary laser beam.
A thick photographic emulsion HH' is now exposed to the interfering light at an
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FlGURE 31L
A thick-hologram model which assumes that the interference fringe pattern
between two monochromatic coherent point sources forms inside the volume of
the recording medium a set of partially reflecting, absorbing, and transmitting
hyperboloidal surfaces.

off-axis position. When the film is developed, it will contain darkened bands represent-
ing the portions of the hyperbolic surfaces of constructive interference. The developed
image consists of grains of silver. Actually, fringes may consist of any material,
or simply a change of refractive index, as in a bleached emulsion, is sufficient. When
this hologram is illuminated from point Q and viewed on the far side, a virtual image
will appear at Q' (see Fig. 31M).

As with the plane hologram, the argument can now be extended to account for
the formation of a hologram capable of producing the virtual image of a distributed
object (see Fig. 31N). Such a hologram would be thought of as a superposition of
sets of hyperboloidal mirrors. When the hologram is viewed, each set reflects light
from the reference beam and forms an image of a point on the object.

31.4 MULTIPLEX HOLOGRAMS

One of the remarkable features of the thick hologram is its ability to produce multiple
scenes from the same photographic emulsion. If the distance between the fringes
is smaller than the emulsion thickness, each ray of the reconstruction light originating
from the direction of the reference beam will pass through several partially reflecting
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FIGURE 31M
The virtual image Q' is created by illumination of the thick hologram by a point
source Q.

planes (see Fig. 310). The reflected rays from each of these planes must be an integral
number of wavelengths apart. If the reillumination beam forms an angle significantly
different from the reference beam, the light reflected from the adjacent planes will no
longer be in phase and the virtual image will no longer be visible.

It is therefore possible to produce many holograms in the same photosensitive
medium, each with the reference beam at a different angle. When viewed later, each
of these images can be separately viewed simply by varying the angle of the reference
beam. This technique has been used to store hundreds of images in a single crystal
of lithium niobate. The process is capable of storing an entire book in an appropriate
medium by slightly changing the direction of the reference beam with each exposure.
When viewing the finished hologram, one can "turn the page" by merely moving
the reconstructing beam.

Alternatively, a multiplex hologram can be produced by appropriately moving
the reference beam angle with time, thereby producing holographic motion pictures.

31.5 WHITE-LIGHT-REFLECTION HOLOGRAMS

One of the possible arrangements for producing white-light holograms is to place the
photosensitive film between the reference beam and the object (see Fig. 31P). Such
a hologram is produced simply by illuminating the object through the photosen-
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FIGURE 3lN
A three-dimensional object is seen as the superposition from many sets of
surfaces in the thick hologram by the interference of the reference beam with the
light from points on the object.

sitive medium, thus avoiding beam splitters, mirrors, etc. In practice, the reference
intensity is so high relative to the scattered intensity that the technique is limited to
shiny objects !<?catedclose to the recording medium. Better reflection holograms can
be made by separating the object and reference beams.

Since the reference and object beams are oppositely directed, the spatial
frequency is extremely high. A large number of reflecting planes are thereby produced,
separated by about a half wavelength of light. As a result, the reconstructing light
must be of the same wavelength or the reflections from adjacent planes will not be in
phase for constructive interference. Alternatively, if the hologram is viewed in white
light (sunlight is an excellent source), the appropriate wavelength will be selected
to produce the reflected image. Ordinary photographic emulsions are of limited
use as they tend to shrink during development.

The technique is especially useful in that a laser is not required for viewing..
Moreover, if the hologram is produced by illumination by lasers which produce
the three additive primary colors (red, green, and blue), the resulting hologram will be
seen in full color when viewed in white light.
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FIGURE 310
Due to the Bragg reflection rule, all successively reflected waves will be in phase
and reinforce each other only if the hologram is illuminated with the same
wavelength of light and from the direction 8 of the original reference beam Q.

31.6 OTHER HOLOGRAMS
A wide variety of holograms can be produced to achieve special effects. These include
using lenses and mirrors and using other holographic images as objects.

One of the most impressive holographic images is formed by a 3600 circular
film. The technique was developed by T. H. Jeong using a photographic emulsion
mounted on a cylindrical surface surrounding the object (see Fig. 3IQ). The simplest,
but not necessarily the best, method of illumination is to direct a diverging beam from
above, illuminating the entire emulsion and object. Upon reillumination, the virtual
image will be observed in the center ofthe cylinder, and can be viewed from all sides.
If a high-intensity beam from a pulsed laser is used, there is no problem of using a
jiggle-free table mounting.

At this point in the development of the art of photography, a brief comparison
of lens photography and picture images with lensless photography and diffraction
fringes should be mentioned. Both techniques have their advantages and disadvantages
depending on the purposes for which they are used. The amount of information
stored in an emulsion depends solely upon the smallness of the grain of the finished
product. In the limit this appears to be determined by the size of the atoms and
molecules of the storage medium itself. See Fig. 31R.

It would appear, for example, that the side-by-side storage of microscopic
pictures can be equaled by the storage of superimposed sets of interference fringes in
a thick hologram. On the other hand, the fine detail of the three-dimensional images
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FIGURE 31P
Reflection hologram made from a single source and a transparent emulsion.

Convex mirror

FIGURE 31Q
A 360° circular hologram can be made that can be viewed from all sides.



(a) (b)
FIGURE 3lR
(a) A direct camera photograph of a 16-mm die made with an Exacta camera on 35-mm Plus X film. (Courtesy of A. D. White.) (b) Photo-
graph of the same die seen in a 3600 cylindrical hologram made with an arrangement Iik:~!hll.t shown in Fig. 31Q. (Metr%gic Instruments
Inc.• Bellmawr. N.J.) - . _.. .
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observed in full color and formed by a high-quality lens or concave mirror is to be
compared with the three-dimensional images that can be stored in a hologram and
used for later viewing.

31.7 STUDENT LABORATORY HOLOGRAPHY

Holography is such an intriguing subject that many students in the science laboratory
wish to make and observe their own holograms. Briefly described here is an inexpen-
sive experimental arrangement that requires a minimum of space and equipment.
Since the interference maxima in a hologram are about one-half wavelength apart,
very fine grain emulsions should be used and considerable care must be taken to
avoid jiggling the optical components during exposure.

To reduce the vibration hazard, all components, including the laser, must be
mounted on a vibration-free block or heavy plate. For this purpose a steel. plate
70 to 90 cm square and 1 to 2 cm thick should be drilled and tapped with a mosaic
pattern of holes for mounting the components rigidly. When all is in readiness for
photography, this plate should be taken to a darkroom and placed on an inflated
automobile inner tube. A valve stem mounted on the outer edge of the tube provides
for easy inflation and adjustment.

A relatively popular arrangement is to construct a sandbox, fill it with dry sand,
and mount it on several inner tubes. Optical components are each mounted on one
end of a solid wood or plastic rod, about 4 cm in diameter and 30 cm long, pointed
at the lower end. Pushed into the sand like a garden stake, this mounting is free of
vibrations.

A diagram showing all components and their functions is given in Fig. 31S.
Mt, M2, and M3 are front-silvered mirrors; MO is a microscope objective for spread.
ing the beam. A pinhole placed at the focal point of the microscope objective will
allow the undeviated laser beam to pass but will block out stray light originating in
the laser or from diffraction by dust or the preceding optical components. The size of
the pinhole should be about 25Jlm for a 10x objective and about 1 Jlm for a 60 x
objective.

Although a more uniform hologram is produced by such a spatial filter, it is
not essential and may not be worth the effort involved in aligning the pinhole. B is a
beam splitter, which is best if it reflects at least 75 percent of the light. The angle lX

should be 15 to 25°.
One major problem arises in the relative weakness of the modified light reflected

from the object. Since the object scatters light in all directions, only a small part of it
reaches the photographic plate. The maximum fringe contrast on the hologram is
theoretically attained when the total light from each beam is approximately equal
(see Sec. 13.4). However, in practice, the scattered beam should be 3 to 10 times
weaker than the reference beam to reduce fogging of the plate due to intermodulation
noise.

Care should be taken to approximately equalize the two path lengths in case
the coher~nce length of the laser beam is reduced by multiple modes of oscillation.
Susceptibility to vibrations should be checked before using the mounting table by



676 FUNDAMENTAlS OF OPTICS

FIGURE 3lS
Apparatus layout and components essential to making holograms. Components
are rigidly mounted on a steel plate about 90 cm square, or on wooden stakes in
the sand of a sandbox, resting on an inflated inner tube to reduce vibrations.

Wall

Beam splitter

FIGURE 31T
Michelson interferometer arrangement for locating sources of vibration affecting
the table set up for making holograms in the college physics laboratory.
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arranging the various components to form a Michelson interferometer and projecting
the fringes on a nearby wall (see Fig. 31T). A shift of one-half fringe during the time
of exposure is enough to prevent any image of fringes at all, and a smaller shift is
sufficient to reduce the image quality significantly. Such a test may indicate that
components are creeping, that they are affected by air drafts, or that the system is
jiggled by elevators, machinery, or people walking in the hall nearby. Appropriate
countermeasures can then be taken. High-resolution film must be used, and several
trial photographs are necessary before satisfactory holograms are obtained.
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PROBLEMS
31.1 Coherent plane waves and the waves scattered from a point source fall together on a

photographic plate as shown in Fig. 31A. If the wavelength of the light is 6563 A
and the perpendicular distance from the point source to the emulsion is 5.0 em, find
(a) the radius of the tenth bright fringe from the center of the developed pattern.
(b) What is the distance between the tenth and eleventh bright fringes? Assume that
the waves at the center of the pattern are in phase and on the developed film are black.

Ans. (a) 0.83016 mm, (b) 0.07433 mm
31.2 The beam from a ruby laser emitting red light of wavelength 6943 A is used with a

beam splitter to produce two coherent beams. Both are reflected from plane mirrors
and brought together on the same photographic plate. If the angle IX between these
two interfering beams is 10° and the plate normal bisects this angle, find the fringe
separation of the interference fringes on the plate.

31.3 Two point sources of coherent light Q and Q' are located 25.0 em apart, as shown in
Fig. 3IJ(a). (a) Find the fringe spacing along the center line QQ' if the wavelength
of the light is 5461 A. (b) How many fringes are there per millimeter?

31.4 In one part of a thick hologram a number of ribbonlike fringes are found parallel to
each other and 3.750 x 10-4 mm apart. At what angle with respect to these ribbons
will light be reflected in the first order if its wavelength is 6563 A? Ans. 61.053°



32
MAGNETO-OPTICS AND ELECTRO-OPTICS

We have already seen in Chap. 20 and Sees. 23.9, 26.9, and 28.9 that the electromagnetic
theory is capable of explaining the main features of the propagation of light through
free space and through matter. In further support of the electromagnetic character
of light, there is a group of optical experiments which demonstrates the interaction
between light and matter when the latter is subjected to a strong external magnetic
or electric field. In this group of experiments those which depend for their action
on an applied magnetic field are classed under magneto-optics and those which depend
for their action on an electric field are classed under electro-optics. In this chapter
the following known optical effects will be treated briefly under these headings:

M agneta-optics
Zeeman effect
Inverse Zeeman effect
Voigt effect
Cotton-Mouton effect
Faraday effect
Kerr magneto-optic effect

Electro-optics
Stark effect
Inverse Stark effect
Electric double refraction
Kerr electro-optic effect
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FIGURE 32A
Experimental arrangement for observing the Zeeman effect.

The four electro-optic effectsin the order listed here are respectively the analogues
of the first four magneto-optic effects.

32.1 ZEEMAN* EFFECT

In the year 1896, Zeeman discovered that when a sodium flame is placed between
the poles of a powerful electromagnet, the two yellow lines are considerably broadened.
Shortly afterward, Lorentz presented a simple theory for these observations, based
upon the electron theory of matter, and predicted that each spectrum line when pro-
duced in such a field should be split into two components when viewed parallel to the
field [Fig. 32A(a)] and into three components when viewed perpendicular to the
field [Fig. 32A(b)]. He further predicted that in the longitudinal direction (a) these
lines should be circularly polarized and in the transverse direction (b), plane-polarized.
With improved experimental conditions these predictions were later verified by
Zeeman, Preston, and others in the case of some spectral lines.

The Lorentz theory assumes that the electrons in matter are responsible for the
origin of light waves and that they are charged particles whose motions are modified
by an external magnetic field. In the special case of an electron moving'in a circular
orbit, the plane of which is normal to the field direction B, the electron should be
speeded up or slowed down by an amount proportional to the magnetic induction B.
A classical treatment of this problem shows that if Vo represents the orbital frequency
of the electron in a field-free space, the frequency in the presence of a field will be

• P. Zeeman (1865-1943). Dutch physicist and Nobel prize winner (1902). He is
most famous for his work on the splitting up of spectral lines in a magnetic field.
His chief contributions are summarized in his celebrated book "Researches in
Magneto-optics,"' Macmillan & Co., Ltd., London, 1913.
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given by Vo :t ~v, where

(32a)

(32b)cm-I

~V = eB = 1.399611 x 1010B
4nm

where e is the charge on the electron in coulombs, m is the electron mass in kilograms,
and B is the magnetic induction in teslas. One tesla = 1 T = 1 Wb/m2 = 10,000 G.

In the study of spectrum lines this frequency difference ~V is most conveniently
expressed in wave numbers (see Sec. 14.14) by dividing by the speed of light in centi-
meters per second; c = 2.997925 X 1010 cm/s:

~v~a = - = 0.46686B
c

•

A useful relationship between wavelength and frequency in hertz or wave numbers
follows from the wave equation c = VA:

~A ~v ~a
-=-=-
A. V a

where ~A is small compared with A, ~v is small compared with v, and ~a is small
compared with a.

In the classical theory of the Zeeman effect we are concerned with an aggregation
of atoms in which the electrons are revolving in circular or elliptical orbits oriented
at random in space. It will now be shown, however, that this situation is equivalent
to having one-third of the electrons vibrating in straight lines along the direction of
the magnetic field and two-thirds of them revolving in circular orbits in the plane per-
pendicular to the field. Of the latter ones, half are revolving in one sense and half in
the opposite sense. The radius of their orbits is I/J"2 times the amplitude of the linear
vibrations. To prove these statements, let us select anyone of the electrons and resolve
its elliptical motion into three mutually perpendicular linear motions as shown in
Fig. 32B(a). For simplicity we shall assume that the electron is bound by an elastic
force obeying the law

F = - kr (32c)

where r is the displacement from the equilibrium position. Under this condition the
three components are simple harmonic motions, but for anyone electron they are
not equal in amplitude or in the same phase.

If a magnetic field is now applied in the z direction, the component parallel
to z will be uninfluenced, for it is equivalent to a current directed along the lines of
force. The x and y vibrations will each be modified, however, since an electron which
is moving across a magnetic field experiences a force

FB = Bev (32d)

perpendicular to the field and also perpendicular to its motion. The effect of this
force is to change the x and y components into rosette motions such as that shown
in Fig. 32B(b) for the y component. These can be described to better advantage in
terms of circular components, y+ and y- for the y motion, and x+ and x- for the x
motion [diagram (c) of the figureJ. In the presence of the field both plus circular
components have a higher frequency than the minus ones, so we may combine the x+
and y+ motions to get a resultant positive circular motion, as in diagram (d), and



MAGNET<>-OPTICS AND ELIlCTR<>-OPTICS 681

tI{el

tel tI

x

tI

"
(al

z

FIGURE 32B
Resolution of an orbit for the explanation of the classical Zeeman effect.

x- and y- to get a negative one, as in (e). Thus the original elliptical orbit when
subjected to a magnetic field is equivalent to a linear motion of unchanged frequency
along the field, plus two circular motions, one of higher and one of lower frequency,
in the plane at right angles to the field.

Only the circular components will emit light along the field direction, and these
give circularly polarized light of two different frequencies. The intensity of these
two components must be equal when the whole aggregation of atoms is considered,
because as the field goes to zero, the light is unpolarized. When we observe the light
at right angles to the field, we are viewing the circular components edge-on, so these
yield two different frequencies of plane-polarized light in which the vibrations are
perpendicular to the field direction. Each of them has only half the intensity of the
above-mentioned circularly polarized beams. In addition, the linear z motions emit
light in the transverse direction. This light has the original frequency vo, vibrates
parallel to the field, and has an intensity equal to the sum of the other two. The
mean amplitude of the z components for all atoms is therefore ./2 times as great as
that of the x or y components.

Now let us calculate the change of frequency to be expected for the circular
components. In the absence of the field the centripetal force on the electron in its
circular orbit is furnished by the elastic force, so that by Eq. (32c) we have

F = - kr = - mwo 2r (32e)
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m being the mass of the electron and rooits angular velocity. After the field is applied,
there is a new angular velocity ro, and the new centripetal force must be the sum of
the elastic force and the force due to the field (Eq. 3Id). Thus

F' = - mro2r = F :t FB = - kr :t Bev

The positive sign corresponds to a clockwise rotation in the xy plane and the negative
sign to a counterclockwise one. Substituting for -kr its value from Eq. (32e), we
then obtain

or, since vIr = ro,

:t Bev = + Bero
mr m

(32f)

In order to get a simple expression for the change of frequency, it is necessary to
assume that the difference in the ro's is small compared to either roo This is always
justified in practice since it means that the Zeeman shifts are small compared with
the frequency of the lines themselves. Then we may put

and, from Eq. (32f),

ro _ roo = + Bero = + Be
- m2ro - 2m

Since v = ro/2n, the change in frequency becomes

Av = + Be (32g)
- 4nm

in agreement with Eq. (32a).
In this derivation it has been tacitly assumed that the radius of the circular

motion remains unchanged during the application of the magnetic field. The speeding
up or slowing down of the electron in its orbit occurs only while the field is changing
and is due to the changing number of lines of force threading the orbit. By Faraday's
law of induction this change produces an emf just as it would in a circular loop of
wire. The resulting increase or decrease of velocity might be expected to change the
radius, but the fact is that there is a corresponding alteration in the centripetal force
which is just sufficient to maintain the radius constant. The additional force is that
represented by Eq. (32d), which has the same origin as the perpendicular force on a
wire carrying a current in a magnetic field.

Let us now summarize what should be the observed effect of a magnetic field
on a spectrum line. The result will depend on the direction, with respect to that of
the magnetic field, in which the source is viewed. When the source is viewed in the
direction of the field, along the z axis, we have what is called the longitudinal Zeeman
effect. From this direction only the frequencies Vo+ Av and Vo- Av should appear,
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FIGURE 32C
Zeeman patterns for a normal triplet, showing the polarization of the light.

and this light should be right- or left-handed circularly polarized* [Fig. 32C(a)].
Since light is a transverse wave motion, the z vibrations will not emit light of frequency
Va in the z direction

Viewed perpendicular to the field, the z motions should be observed to give
plane-polarized light with the electric vector parallel to the field (p components),
and the circular motions, seen edge-on, should give plane-polarized light with the
electric vector perpendicular to the field (s components). A spectrum line viewed
-normal to B should therefore reveal three plane-polarized components [Fig. 32C(b)]
-a center unshifted line, and two other lines symmetrically located as shown. This
is called a normal triplet and is observed for some spectrum lines, though by no means
the majority of them.

Since the direction of rotation of the circularly polarized light depends on
whether one assumes positive or negative charges as the emitters of light, it is possible
to distinguish between these alternatives by using a quarter-wave plate and nicol.
Figure 32C(a), where the positive rotation has the higher frequency, was drawn
according to our assumption of negative electrons as the emitters.

In Zeeman's early investigations he was not able to split any spectrum lines
into doublets or triplets, but he did observe that they were broadened and that the
outside edges were polarized, as predicted by "Lorentz. The polarization corresponded
to emission by negative particles. He was later able to photograph the two outer
components of lines arising from the elements zinc, copper, cadmium, and tin, by
cutting out the p components with a nicol prism. Preston, using greater dispersion
and resolving power, was able to show not only that certain lines were split up into
triplets when viewed perpendicularly to the field but that others were split into as
many as four, five, or even a much larger number of components. Such patterns
of lines, shown in Fig. 32D, are called anomalous Zeeman patterns, and the phenom-
enon is called the anomalous Zeeman effect. The normal triplet separation 2avas

• Using the right-hand rule with the thumb pointing in the direction of the field, the
fingers point in the direction of the + rotations which have the higher frequency
designated by VI' The opposite direction gives the - rotations with the lower
frequency V2' Looking against the light, clockwise rotations give rise to right-
handed polarized light and counterclockwise rotations give rise to left-handed
circularly polarized light. This latter is in agreement with the definitions used in
treating optically active substances.
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FIGURE 32D
The normal and anomalous Zeeman effects.

given by the classical theory is shown by the bracket below each pattern. From Eq.
(32a) it is seen that each of the outer component lines should shift out by an amount
proportional to the field strength, thus keeping the pattern symmetrical. In very
strong magnetic fields, however, asymmetries are observed in many Zeeman patterns.
This phenomenon is known as the quadratic Zeeman effect, although it may also be
the beginning of a transition called the Paschen-Back effect according to which all
anomalous patterns become normal triplets in the limit of very strong fields.

Only the normal triplet can be explained by the classical theory. The more
complex patterns are now understood and are in complete agreement with the quantum
theory of atomic structure and radiation. * Each line of an anomalous pattern, when
viewed perpendicular to the magnetic field, is found to be plane-polarized. Usually
the centerlines of a pattern are p components with their vibrations parallel to the
fieldB, and those symmetrically placed on either side are s components with vibrations
perpendicular to the field. In the longitudinal effect only frequencies corresponding
to the s components are observed, and these are circularly polarized.

The quantum theory has developed to such an extent that one can now predict

• For a treatment of the anomalous Zeeman effect, see H. E. White, "Introduction to
Atomic Spectra," chaps. 10, 13, and 15, McGraw-HilI Book Company, New York,
1934.
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FIGURE 32E
Intensity curves for the inverse Zeeman effect. A normal triplet in absorption.

with the greatest certainty the complete Zeeman pattern for any identified spectrum
line in a field of any strength. Conversely, the study of these patterns has become
a potent tool in the analysis of complex spectra.

32.2 INVERSE ZEEMAN EFFECT

The Zeeman effect obtained in absorption is called the inverse Zeeman effect. The
phenomenon is observed by sending white lightthrough an absorbing vapor when the
latter is subjected to a uniform magnetic field. In considering the longitudinal effect,
analogous to Fig. 32C(a), unpolarized light of any particular frequency may be
imagined as consisting of right and left circularly polarized components with all
possible phase relations. If now Vo represents a natural resonance frequency of the
vapor in the absence of a field, the plus circular components (see footnote, page 683)
.offrequency VI will be strongly absorbed in the presence of a field. The corresponding
minus circular components of frequency VI pass on through with little decrease
in intensity, since to be absorbed these must have the frequency Vz. Hence at frequency
VI> looking against the field direction as in Fig. 32C(a), right circularly polarized
light is transmitted, and for a thick absorbing layer this is one-half as intense as the
background of continuous light [Fig. 32E(a)]. A similar argument can be given for Vz.

The Zeeman components of any spectrum line obtained in absorption along the
field direction are therefore not completely absorbed, and the light that does get
through is found to be circularly polarized in directions opposite to those of the
corresponding components obtained in emission. This is verified by experiment even in
anomalous patterns of many components.

Viewed perpendicular to the field [Fig. 32E(b»), the p and s components are
polarized at right angles to the corresponding components in emission. For vo, the
parallel components of all incident light vibrations are absorbed and the perpendicular
components are transmitted. For VI> the parallel components are all transmitted.
The perpendicular components, moving across the field, are absorbed by only half
the oscillators (the ones having positive rotation, frequency VI)' giving an absorption
line only half as intense as that at vo. The result is partially polarized light with a
maximum intensity for vibrations parallel to the field B. The same is true for the
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component V2' The absorption of the parallel component for Vo is analogous to the
selective absorption in crystals like tourmaline (Sec. 24.6), where one component
vibration is completely absorbed and the other transmitted. The frequencies of the
lines observed in the inverse Zeeman effect are also given by Eqs (32a) and (32b).

32.3 FARADAY EFFECT

In 1845Michael Faraday discovered that when a block of glass is subjected to a strong
magnetic field, it becomes optically active. When plane-polarized light is sent through
glass in a direction parallel to the applied magnetic field, the plane of vibration is
rotated. Since Faraday's early discovery the phenomenon has been observed in
many solids, liquids, and gases. The amount of rotation observed for any given
substance is found by experiment to be proportional to the field strength B and to
the distance the light travels through the medium. This rotation can be expressed
by the relation

• ()= VBI (32h)

where B is the magnetic induction in teslas, I is the thickness in meters, () is the angle
of rotation in minutes of are, and Va constant to be associated with each substance.
This constant, called the Verdet constant, is defined as the rotation per unit path
per unit field strength. In gases the density must also be specified. A few values
of the Verdet constant are given in Table 32A.

The Faraday effect is so closely associated with the direct and inverse Zeeman
effects, presented in the two preceding sections, that its explanation follows directly
from the principles given there. Because the phenomenon is best observed in vapors
at wavelengths near an absorption line, the explanation given here will be confined
to substances in the gaseous state. Consider the passage of light through a vapor
like sodium where in the absence of a field there are certain resonance frequencies
Vo at each of which absorption takes place. When the magnetic field is introduced,
there will be for each vo, according to the classical theory of the Zeeman effect, two
resonance frequencies, one Vi for left circularly polarized light and the other V2 for

Table 32A VALUES OF THE VERDET CONSTANT
IN MINUTES OF ARC PER TESLA PER
METER FOR l5893

Substance

Water
Glass (phosphate crown)
Glass (light flint)
Carbon disulfide (CS2)
Phosphorus, P
Quartz (perpendicular to axis)
Acetone
Salt (NaC!)
Ethyl alcohol

t, DC V

20 1.31 X 104
18 1.61 x 104
18 3.17 x 104
20 4.23 X 104
33 13.26 x 104
20 1.66 X 104
IS 1.109 X 104
16 3.585 x 104
2S 1.112 X 104
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FIGURE 32F
Absorption and dispersion curves used
in explaining the Faraday effect. These
curves refer to the magnetic splitting of a
single absorption line.
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right circularly polarized light traveling along the field. For each of these directions
of rotation an absorption curve and a dispersion curve [Fig. 23H(b)] may be drawn
as shown in Fig. 32F(a) and (b).

Referring to Fig. 32F(b), it is observed that outside the region Vi to V2 the value
of n- is greater than n+. Therefore positive rotations travel faster than negative,
and the plane of the incident polarized light is rotated in the positive direction (see
Sec. 28.3). The difference between the two dispersion curves, as given in Fig. 32F(c),
shows that for frequencies between Vi and V2 the rotation is in the negative direction.

If plane-polarized light is reflected back and forth through the same magnetically
activated vapor, the plane of vibration is found to rotate farther with each traversal.
This is not the case for naturally optically active substances like quartz, where upon
one reflection the light emerges vibrating in the same plane in which it entered. It
should be noted that when the field direction is reversed, the direction of rotation
of the plane of the incident light vibrations is also reversed. Therefore the sense of
the rotation is defined in terms of the direction of the field, positive rotation being
that of a right-handed screw advancing in the direction of the field, or that of the
positive current in the coil which produces the field.

The rotation in the Faraday effect is given by Eq. (32h), which shows that the
angle of rotation is proportional to the field strength. This follows from Eq. (32a)
for the Zeeman effect. As the two dispersion curves separate with an increasing field,
the differences in index (bottom curve) increase to a first approximation by an amount
which is.proportional to L\V and hence to B. This is most accurately true at frequencies
far from Vi or V2, where the dispersion curves over a short frequency interval may be
considered as straight lines.

One of the most interesting methods developed for observing the Faraday
effect is that shown in Fig. 32G. Without the right- and left-handed quartz prisms
or the vapor, no light would be transmitted by the analyzer when crossed by the polar-
izer as shown. With the insertion of the double quartz prism the light vibrations are
rotated by different amounts according to the portion of the prisms (in the plane of
the figure) through which they have passed. Hence varying amounts of light will
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FIGURE :3'2G
Experimental arrangement for observing the Faraday effect.

now get through the various portions of the analyzer. When this light is focused
on the slit of a spectroscope, alternate dark and light bands are formed as shown in
Fig. 32G(b). If white light is used as a source in front of the polarizer, the spectrum
as observed in the spectroscope will be crossed by a number of approximately hori-
zontal dark and light bands. If now the vapor is introduced into the light path,
absorption lines will be observed at all resonance frequencies vo. When the magnetic
field is turned on, rotation takes place within the vapor according to Fig. 32F(c), thus
shifting the bright bands accordingly. Close to the absorption lines the rotation is
large, causing greater shifts of the bands. Since this rotation changes continuously with
A, the bands are observed to curve up or down, taking the same general form as shown
in the theoretical curve of Fig. 32F(c). Figure 32H(a) is a photograph of these bands
for the D lines of sodium taken under high dispersion and resolving power. They
show not only the rapid increase in the positive rotation on each side of the absorption
frequencies but the opposite rotation between the two. It should be noted that both
these sodium lines give anomalous Zeeman patterns [Fig. 32D(b)]. The longitudinal
effect for A5896, Dh however, is a doublet leading to the same kind of curves as those
described above for a normal triplet. Theoretical curves for the D2 line are left as an
exercise for the student.

32.4 VOIGT EFFECT, OR MAGNETIC DOUBLE
REFRACTION

In 1902 Voigt discovered that when a strong magnetic field is applied to a vapor
through which light is passing perpendicular to the field, double refraction takes
place* This phenomenon, now known as the Voigt effect or magnetic double refraction,
is related to the transverse Zeeman effect in precisely the same way that the Faraday
effect is related to the longitudinal Zeeman effect. In view of this relation the phenom-
enon is readily explained from absorption and dispersion curves in much the same

• W. Voigt, "Magneto- und Elektro-optik," B. G. Teubner, Leipzig, 1908.
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FIGURE 32H
(a) The Faraday effect near the sodium resonance lines D1 and D2, (b) the Voigt
effect of the sodium lines, (e) the Voigt effect near the lithium line ),6707. (Cour-
tesy of Hansen.)

way as the Faraday effect in the preceding section. Consider a vapor having a reson-
ance frequency Vo which in the presence of an external field breaks up into a normal
Zeeman triplet [see Fig. 32C(b)]. When white light is sent through this vapor, those
light vibrations which have a frequency Vo will be in resonance with electrons of the
vapor which have Vo as their frequency and thus be absorbed. This is represented
by the central absorption and dispersion curve in Fig. 321(a) and (b). Other light
vibrations, perpendicular to the field, are in resonance with V1 and V2' These are
represented by the 1. absorption and dispersion curves. With unpolarized light
incident on the vapor the variations in n near V1 and V2 are half as great as at vo,
just as the absorption coefficients at V1 and V2 are only half as great as at vo'

The dispersion curves of Fig. 321(b) show that if plane-polarized light of any
frequency v is incident on the vapor it will be broken up into two components, one
perpendicular and one parallel to B. Since these components have different refractive
indices (therefore different velocities), one component gets ahead of the other in
phase and elliptically polarized light emerges. The relative magnitude of this phase
difference varies with wavelength, as is shown by the difference curve in Fig. 321(c).



690 FUNDAMENTALS OF OPJ1CS

FIGURE 321
Absorption and dispersion curves used
in explaining the Voigt effect.

t
Ie 1
I

t..
se
10.;
I

(al

(bl

(el

IJ. .JK... J.I Absorptionh. I J)\ .
I I I
I n I II I :Dispersion

I

To observe the Voigt effect, an experiment may be set up as shown for the Fara-
day effect in Fig. 32G. The field should be turned perpendicular to the absorption
tube and the quartz double prism replaced by a Babinet compensator (Fig. 27F).
Without the absorption tube the spectroscope slit and the photographic plate will be
crossed by parallel light and dark bands. When the vapor is introduced, absorption
is observed at vo. When the field is turned on, strong double refraction close to Vo, Vi>
and V2 causes these bands to curve up or down as shown in the photographs of
Fig. 32H(b) and (c). This pattern in (c) is a normal triplet observed in the Zeeman
effect of the lithium spectrum. *

The Voigt effect for anomalous Zeeman patterns like those in Fig. 32H(b) has
been studied by Zeeman, Geest, Voigt, Landenberg, Hansen, t and others. These
results are readily predicted by drawing dispersion curves similar to those shown in
Fig. 321. In any Zeeman pattern the s components form one continuous dispersion
curve and the p components another. Their difference represents a plot of the double
refraction as a function of the frequency. Its magnitude is proportional to the square
of the field strength B.

32.5 COTTON-MOUTON EFFECT

This effect, which was discovered in 1907 by Cotton and Mouton, has to do with
the double refraction of light in a liquid when placed in a transverse magnetic field.
In pure liquids like nitrobenzene very strong double refraction is observed, the effect
being some thousand times as great as the Voigt effect treated in the last section.
This double refraction is attributed to a lining up of the magnetically and optically
anisotropic molecules in the applied field direction. This lining up would result

• The lithium line ),6707 is in reality a doublet, each component of which in a weak
magnetic field gives an anomalous Zeeman pattern. In the strong field used to
observe the Voigt effect the two have coalesced (the Paschen-Back effect) to form a
normal triplet for which the above discussion has been given.

t H. M. Hansen, Ann. Phys., 43:205 (1914).
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whether the magnetic dipole moments of the molecules were permanent or induced
by the field. Such an effect should be by theory, and is found to be by experiment,
proportional to the square of the field strength. The effect is dependent upon tem-
perature, decreasing rapidly with a rise in temperature. The Cotton-Mouton effect
is the magnetic analogue of the electro-optic Kerr effect to be discussed in Sec. 32JO
and is not related to the Zeeman effect.

32.6 KERR MAGNETO-OPTIC EFFECT

In 1888 Kerr* made the discovery that when plane-polarized light is reflected at
normal incidence from the polished pole of an, electromagnet, it becomes elliptically
polarized to a slight degree, with the major axis of the ellipse rotated with respect to
the incident vibrations. At other angles of incidence the effect is observable if one
avoids the ordinary effect of elliptical polarization obtained by reflection of plane-
polarized light from metals at cP:f: 0 by having the electric vector of the incident
light either parallel or perpendicular to the plane of incidence. Under these conditions,
and without the field, the reflected beam can be extinguished by a nicol prism. Upon
turning on the magnetic field the light instantly appears and cannot be extinguished
by a rotation of the nicol. The introduction of a quarter-wave plate suitably oriented
will now enable the light to be again extinguished, showing the reflected light to be
elliptically polarized. The magnetic field has thus given rise to a vibration component
called the Kerr component perpendicular to the incident light vibration. This is the
Kerr magneto-optic effect and should be distinguished from the Kerr electro-optic
effect considered in Sec. 32.10.

32.7 STARK EFFECT

In the few years following Zeeman's discovery of the splitting up of spectral lines in a
magnetic field, many attempts were made to observe an analogous effect due to an
external electric field. In 1913 Stark observed that when the hydrogen spectrum is
excited in a strong electric fieldof 100kVjcm, each line split into a symmetrical pattern.
A photograph of the effect in the first line of the Balmer series of hydrogen is shown in
Fig. 321. When viewed perpendicular to the electric field, some of the components
of each line pattern are observed to be plane-polarized with the electric vector parallel
to the field (p components) and the others plane-polarized with the electric vector
normal to the field (s components); This is the transverse Stark effect. When viewed
parallel to the field, only the s components appear, but as ordinary unpolarized light.
This is the longitudinal Stark effect.

The theory of the Stark effect has been developed only in terms of the quantum
theory and will not be given here.t

• John Kerr (1824-1907), pronounced "car," Scottish physicist, inspired to investigate
electricity and magnetism by his association with William Thomson (Lord Kelvin).
t For a more extended treatment of the Stark effect and other references to the subject
see H. E. White. "Introduction to Atomic Spectra," p. 101, McGraw-Hill Book
Company, New York, 1934.
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FIGURE32J
Photograph of the Stark effect of H",
),6563, in hydrogen. (Courtesy of Wierl.)

Oba.

The method used for producing strong electric fields of lOOkV/cm or more, in
which the light source will operate, is based upon the characteristics of the ordinary
discharge of electric currents through gases at low pressures. In a discharge of the
type shown in Fig. 21D, the major part of the potential drop from one electrode
to the other occurs across a relatively dark region near the cathode. This region of a
specially designed discharge tube, when focused on the slit of a spectrograph, may
be made to give photographs of the type shown in Fig. 32K. Since the Stark effect
is proportional to the fieldF, the pattern of A,38l9,for example, may be taken to repres-
ent the field strength which is small at the top and increases toward the bottom, nearer
the cathode.

The widest Stark patterns are observed in the hydrogen and helium spectra.
In the case of all other spectra one seldom observes anything but a slight shift of the
line, usually toward longer wavelengths. This effect is called the quadratic Stark
effect, to distinguish it from the linear effect observed in hydrogen and helium. In
the former case the shifts are proportional to the square of the electric field strength,
while in the latter the splittings depend on the first power of this field. Characteristic
of the Stark effect, as shown in Fig. 32K for the helium spectrum, is the appearance
of new spectrum lines (marked with crosses) where the field strength is high.

32.8 INVERSE STARK EFFECT

The Stark effect with the lines appearing in absorption is called the inverse Stark
effect. The phenomenon has been investigated by Grotrian and Ramsauer, using a
long tube containing potassium vapor at low pressure and two long parallel metal
plates only 1.5 mm apart. With a potential of 14 kV on the plates, the absorption
lines A4044, A,4047,and A3447 were found to be shifted from the field-free position
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FIGURE 32K
The Stark effect in helium. (Courtesy of Foster.)

toward longer wavelength. This shift, although only a few hundredths of an angstrom
unit in magnitude, was found to be proportional to the square of the field strength.
This is therefore a case of a quadratic Stark effect.

32.9 ELECTRIC DOUBLE REFRACTION

Electric double refraction is related to the transverse Stark effect and is analogous
to magnetic double refraction, or the Voigt effect, discussed in Sec. 32.4. In 1924
Ladenberg observed the absorption of the sodium resonance lines when produced
with and without a strong transverse electric field applied to the vapor. Although
the shift of the lines predicted by the quadratic Stark effect was too small to observe
even with very high resolving power, double refraction was observed at
frequencies close to the absorption lines. This double refraction is attributed to
the very small difference in the frequency of the absorption line for light polarized
parallel and perpendicular to the electric lines of force. The explanation is therefore
analogous to that given for magnetic fields in Sec. 32.4 (see Fig. 321).

32.10 KERR ELECTRO-OPTIC EFFECT

In 1875 Kerr discovered that when a plate of glass is subjected to a strong electric
field, it becomes doubly refracting. That this effect is not due to the strains that such
a field sets up in the glass is shown by the fact that the phenomenon also appears
in many liquids and may even be observed in gases. When a liquid is placed in an
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FIGURE 32L
Arrangement for the electro-optic shutter, operating by the Kerr effect.

electric field, it behaves optically like a uniaxial crystal with the optic axis parallel
to the field direction, and when viewed from the perpendicular direction, it gives
rise to all the phenomena of interference considered in Chap. 27.

It is convenient experimentally to observe the effect by passing light between
two parallel oppositely charged plates inserted in a glass cell containing the liquid.
Such a device, known as a Kerr cell, is shown at the center in Fig. 32L. Such a cell
inserted between crossed polarizer and analyzer constitutes a very useful optical
device known as the electro-optic shutter.* One of these uses was described in Sec. 19.5.
When the electric field is off, no light is transmitted by the analyzer. When the electric
field is on, the liquid becomes doubly refracting and the light is restored. With the
cell oriented at 45°, the incident plane vibrations from the polarizer are broken up
into two equal components parallel and perpendicular to the field, as shown at the
bottom in Fig. 32L. These travel with different speeds, and hence a phase difference
is introduced and the light emerges as elliptically polarized light. The horizontal
component of the vibrations is transmitted by the analyzer.

The change in phase of the two vibrations in a Kerr cell is found to be proportional
to the path length, i.e., the length of the electrodes I and to the square of the field
strength F. The magnitude of the effect is determined by the Kerr constant K, defined
by the relation

a = K IE
2
).. (32i)

d2

Since the phase difference (j between the two components is given by 21[/)..
times the path difference a, we have

• (32j)

where (j is in radians, I and d are in meters, E is in volts, and K is in meters per volts
squared, and)" is the wavelength in the medium.

• For the theory and technique of the Kerr cell see F. G. Dunnington, Phys. Rev.,
38:1506 (1931) and E. F. Kingsbury, Rev. Sci. Instrum., 1:22 (1930).
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One of the substances most suitable for use in a Kerr cell is nitrobenzene,
because of its relatively large Kerr constant. This is shown by the values given for
a few liquids in Table 32B.

It should be pointed out that electric double refraction for gases discussed in
the last section and the Kerr electro-optic effect are not the same phenomenon. In
a gas the effect is due to changes inside the atom (Stark effect). In the Kerr effect
it is usually due to natural or induced anistropy of the molecule and a lining up of
such molecules in the field. This alignment causes the medium as a whole to be optic-
allyanistropic. As in the Cotton-Mouton effect (Sec. 32.5), the Kerr effect is depen-
dent on temperature. In fact, the Kerr electro-optic effect is the exact electric analogue
of that magnetic effect.

32.11 POCKELS ELECTRO-OPTIC EFFECT
A variety of uniaxial crystals have been found in which the induced birefringence
varies linearly with the applied electric field. This effect was named after F. Pockets,.
who studied the effect in 1893. Recent research has developed a variety of electro-
optic crystals, such as ammonia dihydrogen phosphate (NH4H2P04) (ADP) and
potassium dihydrogen phosphate (KH2P04) (KDP), which produce sizable Pockels
birefringence at relatively low voltages (see Fig. 32M).

A Pockels cell, which can be used as a fast light modulator or shutter, usually
involves a crystal mounted with its optic axis and applied field parallel to the beam
direction (see Fig. 32N). By placing the cell between crossed polarizers, the trans-
mission can be modulated at frequencies well above 1010 Hz, and as a shutter with
a response time shorter than I ns. Since the beam traverses the electrodes, these are
frequently made of transparent metallic oxides, such as CdO, SnO, or InO, or thin
metallic rings or grids.

Pockels cells, like Kerr cells, are used for a wide range of electro-optic systems,
including their use as a Q switch to produce ultrashort laser pulses (see Sec. 30.6).
These systems have been proposed as wideband laser-beam communication systems
to be used, in addition to terrestrial applications, in interplanetary space.

* See R. Goldstein, Pockels Cell Primer, Laser Focus Mag., (1968); R. S. Ploss,
A Review of Electro-optics Materials, Methods and Uses, Opt. Spectra, (1969);
and D. F. Nelson, Modulation of Laser Light, Sci. Am., (1968).

Table 32B VALUES OF THE
KERR CONSTANT
FOR l = 5893 A

Substance

Benzene
Carbon disulfide
Water
Nitrotoluene
Nitrobenzene

K

0.67 X 10-14
3.56 X 10-14
5.10 X 10-14

1.37 X 10-12
2.44 X 10-12
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FIGURE 32M
A laboratory-grown crystal of ammonia dihydrogen phosphate (NH4HzP04), or
ADP, for use in Pockels cells.

Modulated light beam----

Polarizer

Modulating voltage

FIGURE 32N
Components of a Pockels cell for high-frequency modulation of a light beam.
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PROBLEMS
32.1 Determine the Zeeman splitting Au of a single line in the zinc spectrum, where the

wavelength is 4700 A. Express this splitting in angstroms and assume the field strength
to be 2.520 T. Ans. Al = 0.260 A

32.2 The photograph of the normal Zeeman effect shown in Fig. 31D(a) was enlarged
20 times from the original negative. The plate factor of the spectrograph used was
2.30 A/mm at the wavelength of the line 4700 A. What was the value of the magnetic
induction?

32.3 For the first line of the Paschen series of hydrogen, the wavelength is 18,746 A.
Calculate the Zeeman shifts for a normal Zeeman triplet if the magnetic field is
1.650 T.

32.4 A diffraction grating has 50,000 lines ruled on its surface. What strength of magnetic
field would have to be applied to a light source for the grating to be able to resolve a
normal Zeeman triplet (a) in the violet at 4500 A and (b) in the red at 6500 A?
Assume the first-order spectrum is used. Ans. (a) 0.952 T, (b) 0.659 T

32.5 In the Faraday effect a magnetic field of 0.64 T is applied to a piece of light flint glass
10.50 cm long. Find the angle of rotation in degrees.

32.6 The Faraday effect is performed with a liquid in a glass tube 20.0 cm long. If the
applied magnetic induction is 0.820 T and the measured rotation of plane polarized
light is 65.46°, what is the value of the Verdet constant?

32.7 The Faraday effect is performed with a piece of phosphate crown glass 5.0 em thick.
This glass is placed between Polaroids with their principal sections at 45° with each
other. (a) What magnetic field strength applied to the glass will rotate the plane of
polarization 45° in order that the light transmitted gets through with maximum
intensity? (b) If ordinary light is sent through the system in the reverse direction,
what will be the intensity ofthe transmitted light? (c) Is this a one-way optical system?
(d) Make a diagram.

32.8 Very pure nitrobenzene is used in a Kerr cell, with a power source of 20 kV applied
to its plates. If the plates of the cell are 2.5 cm long and 0.75 cm apart, find (a) the
phase difference between the components emerging from the cell. If unpolarized
light is incident on the polarizer, what is (b) the amplitude of the plane-polarized
light incident on the cell, (c) the amplitude of the light emerging from the analyzer,
and (d) the intensity of the emerging light?

Ans. (a) 156.44°, (b) 0.7071Ao, (c) 0.6920Ao, (d) 0.479010
32.9 What voltage applied to a Kerr cell will produce polarized light emerging from the

cell? The electrodes are 3.0 cm long and 5.0 mm apart, and the cell is filled with
nitrotoluene.

32.10 A Kerr cell using very pure nitrobenzene has plates that are 2.80 cm long, separated
by a distance that is 0.60 cm. (a) What voltage should be applied to the plates to
produce a maximum in the transmitted intensity? (b) At this field strength, what
fraction of the incident unpolarized light will get through the system? Neglect losses
by reflection and absorption.



33
THE DUAL NATURE OF LIGHT

In this concluding chapter we shall give a brief account of the way in which the more
recently discovered corpuscular properties of light have been reconciled with the wave
theory. It will not be possible to recount in any systematic way the steps which have
led to our present view of the nature of light or to discuss its broad implications.
This subject forms an important part of a whole fieldof study, that of atomic or modern
physics.* Furthermore, the discussion of one part of this field presents difficulties
in view of the essentially mathematical character of the quantum theory, which was
first developed as a formalized set of equations and only later expressed in terms of
visualizable physical concepts.

It is with the hope of at least partially satisfying the reader's curiosity about
the dual nature of light, waves or particles, that the following discussion, brief and
incomplete as it is, has been included.

• See, for example, H. E. White, "Introduction to Atomic and Nuclear Physics,"
D. Van Nostrand, Litton Educational Publishing Co., New York, 1964; H.
Semat, "Introduction to Atomic and Nuclear Physics," 5th ed., Holt, Rinehart and
Winston, Inc., New York, 1972; F. K. Richtmyer, E. H. Kennard, and J. N. Cooper,
"Introduction to Modern Physics," 6th ed., McGraw-Hili Book Company, New
York, 1969; Max Born, "Atomic Physics," 5th ed., Hafner Publishing Company,
New York, 1951; and L. I. Schiff, "Quantum Mechanics," 3d ed., McGraw-Hili
Book Company, New York, 1968.
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33.1 SHORTCOMINGS OF THE WAVE THEORY
As long as one is dealing with questions of the interaction of light with light, such as
occurs in interference and diffraction, the electromagnetic theory, and in fact any
wave theory, gives a complete account of the facts. When one attempts to treat the
interactions of light with matter, however, as in the emission and absorption of light,
in the photoelectric effect, and in dispersion, serious difficulties at once present them-
selves. In many of these it is not merely a matter of slight deviations between experi-
ment and theory, detectable only by quantitative measurements; on the contrary,
the theory predicts results that are radically different from those observed. Historically
the first case of this kind was encountered in the attempt to explain the distribution
of energyin the spectrum of a blackbody (Sec. 21.9). Here the electromagnetic theory
was used in conjunction with the classical theory of equipartition of energy, which had
been so successful in explaining the specific heats of gases. The predicted curve was
nearly correct at long wavelengths, but its course toward shorter wavelengths, instead
of passing through a maximum and falling to zero (Fig. 21F), continued to increase
indefinitely. It was only by assuming that the oscillators in the radiating source could
not exist in states having all possible energies and amplitudes but only in certain
definite ones for which the energy was a whole multiple of some particular value
(quantum) that Planck in 1900 was able to derive the exact radiation formula
[Eq. (21e)].

Other shortcomings of the older theory soon became evident. In the photo-
electric effect, the measured energies of the photoelectrons ejected from metal surfaces
by light were in marked disagreement with the predictions of electromagnetic theory
(see the following section). The amount of energy in the waves falling on a single
atom in the case of weak illumination was very much smaller than that observed in
the photoelectron, and this led Einstein in 1905to postulate the existence of photons.
In the explanation of the line series observed in the atomic spectrum of hydrogen
(Sec. 21.10), Bohr in 1913 had to assume that the electron revolved in a stable orbit
without radiating, whereas a charge with strong centripetal acceleration should,
according to the electromagnetic theory, rapidly lose energy as radiation (Sec. 20.8).
This would cause the frequency to change rapidly and would make it impossible to
explain the existence of sharp spectrum lines. The explanation of X rays according
to the electromagnetic theory as very short pulses of radiation, caused by the sudden
deceleration of electrons as they strike the target, was inconsistent with the observed
continuous X-ray spectrum. As was shown by Duane and Hunt in 1917, this spectrum
exhibits a sharp cutoff on the short-wavelength side, whereas the Fourier analysis
of a pulse yields a continuous spectrum falling off smoothly (Sec. 12.6). The discovery
in 1922 of the Compton effect, which is a shift toward lower frequency of scattered
monochromatic X rays, was a striking demonstration of the inadequacy of the wave
theory, since to explain it one had to postulate that photons collided with electrons in
atoms and rebounded like elastic billiard balls (see below).

These constitute a few of the simpler phenomena in which the wave theory
failed completeiy. In many of the more complex interactions between matter and
radiation the theory, althougli giving the rough features correctly, ran into insuperable
difficulties when attempts were made to give a complete quantitative account of the



700 FUNDAMENTALS OF OPTICS

w

FIGURE 33A
Experimental arrangement for studying
the photoelectric effect.

facts. One of the earliest phenomena in this class was the anomalous Zeeman effect
(Sec. 32.1), and one of the more recent ones the Raman effect (Sec. 22.11). Others
could be cited, but the list has now grown so long that it is no longer a question of
introducing refinements in the wave theory to obtain agreement. Quantum theory,
of which the wave theory is now recognized as an integral part, must be used in dealing
with such effects.

33.2 EVIDENCE FOR LIGHT QUANTA

In reaching conclusions about the nature of a phenomenon like light we must rely
upon observation of the effects it produces. An individual wave or a particle of light
cannot be seen and photographed as can large-scale waves and particles of matter.
We can conclude with certainty, however, that light has a wave character from the
study of interference and diffraction patterns, of its velocity, of the doppler effect,
etc. Evidence just as convincing exists that light consists of small packets of energy
which are highly localized, and anyone of which can communicate all its energy
to a single atom or molecule. We have seen in Chap. 29that these particles of energyhv
are known as light quanta or photons. It will be worthwhile to consider briefly three
pieces of experimental evidence of this type, those selected being ones that will be
useful in our further discussion of the subject.

In the photoelectric effect (Fig. 33A) light enters through the quartz window W
and strikes the cathode C, which is a clean metal plate. A current of negative charge
is observed by the galvanometer G to flow from C through the evacuated tube to the
plate P,which is at some positive potential with respect to C. This shows that electrons
of charge - e are being ejected from the surface of the metal cathode. Their velocities
and energies as they leave the surface can be studied by varying the voltage V applied
to the plate. It is found that the energy is independent of the intensity of the light and
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FIGURE 33B
The Compton effect: (a) method of observation; (b) energies of the incident
photon, scattered photon, and recoil electron.

is determined by the frequency of the light according to Einstein's photoelectric
equation

E = hv - k Energy of photoelectrons (33a)

Here again h is the universal constant 6.6262 x 10-27 Jls, known as Planck's constant,
v is the frequency cl)., and k is a constant characteristic of the kind of metal in the
cathode. For most metals k is large enough to require that light of fairly high fre-
quency (ultraviolet light) be used to produce the photoelectrons. The quantum charac-
ter of light appears in this experiment through the fact that each electron has evidently
taken on the same amount of energy hv and emerges with the difference between this
and the amount k required to get it through the surface. (This interpretation of k is
verified in other ways, notably in thermionic emission.) Furthermore a very faint
beam of light still causes some photoelectrons to be emitted instantaneously, and they
have the full energy. Under these circumstances it is apparent that there are very
few photons in the beam, each of energy hv. On the wave theory the small amount
of electromagnetic energy would be spread over the whole surface, and the amount
available to anyone electron would be insufficient to produce the effect.

The Compton effect is observed in X rays that are scattered at an angle 0 from
a scatterer S consisting of some light element like carbon [see Fig. 33B(a)]. A narrow
beam is defined by two lead slits and caused to fall on a crystal C. This diffracts the
X rays to the photographic plate P, and by suitably turning the crystal about an axis
perpendicular to the plane of the figure a spectrum can be photographed. For each
monochromatic line present in the original X rays, the spectrum of the scattered
rays shows a line shifted to longer wavelengths, the shift increasing with the scattering
angle 0 according to the equation

c c ha). = - - - = -(1- cosO)
v' v moc .

Compton shift (33b)

where mo is the mass of an electron at rest and hlmoc is called the Compton wavelength.
This equation may be easily derived by applying the laws of conservation of energy
and momentum to the collision of a photon and an electron [Fig. 33B(b)]. The elee-
tron in question is one that is knocked out of an atom in the scatterer, and its kinetic
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FIGURE 33C
Scintillation detector for gamma rays using a fluorescent block and a photo-
multiplier tube.

energy must be represented by the relativity formula given in the figure. Similarly
its momentum, and also that of the photon, must be expressed in terms of relativistic
equations, as will be explained below in Sec. 33.3. But the picture here presented of an
elastic collision of particles is clearly foreign to any wave model of light. It has even
been possible to detect the scattered photon and the recoil electron simultaneously
in the two directions predicted by theory, using various detectors, such as a Wilson
cloud chamber or photographic emulsion.

As a third example of the corpuscular behavior of light we may mention the
scintillation counter, which has been a valuable instrument for measuring hard X rays
and y rays. The principle of the instrument is similar to that of the scintillation method
which was employed to count ex particles in the early studies of radioactivity. As is
shown in Fig. 33C, photons in a beam of y rays enter a fluorescent crystal at the top
and produce visible light photons in the blue or violet part of the spectrum. The
fluorescent materials frequently used are crystals of sodium iodide (Nan and cesium
iodide (Csn. The tiny flashes of light occur in the interior of the crystal as the result
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of the passage of each )I-rayphoton. These photons strike a photocathode of a photo-
multiplier tube and are greatly amplified by eight or more dynodes. The resulting
electric pulses activate some counting device. In this device the effects of individual
photons are observed in a manner just as direct as that used for atomic particles of
matter, and it leaves no doubt as to the corpuscular behavior of light when observed
under these conditions.

33.3 ENERGY, MOMENTUM, AND VELOCITY OF
PHOTONS

In all experiments which reveal the existence of photons, and notably in the photo-
electric effect, their energy is found to be determined only by the frequency v. The
latter q1!antity must of course be measured independently by observing interference,
a typical wave property. We have seen that the constant of proportionality between
energy and frequency is Planck's constant h, so we have as an experimental result that

• E = hv Energy of a photon (33c)

E = mc2 (33d)

This equation has been experimentally verified many times for matter in studies of
nuclear disintegration, and it has been shown to hold in the conversion of radiation
into matter that occurs in the creation of electron-position pairs by "I rays. Combining
Eqs (33c) and (33d), one finds that

To obtain an expression for the momentum, we make use of Einstein's equation for
the equivalence of mass and energy, according to which

hv = hE. = mc2
A.

(33e)Momentum of a photon.•
and therefore, since the momentum p is the product of mass and velocity,

hv h
p=mc=-=-

c A.

This result is firmly established by the experimental evidence that in order to obtain
Eq. (33b) for the Compton effect the momenta of the photons must be taken as hv/c.

It is assumed in Eq. (33e) that photons always travel with the speed c, and in
fact it is true without exception that
• Velocity of a photon = c (30f)

In this respect photons differ from particles of matter, which can have any velocity
less than c. At first sight, Eq. (33f) seems to be in contradiction to the observed fact
that the measured velocity of light in matter is less than c. But this is the velocity
of a group of waves (Sec. 19.8) and not that of the individual photons. As was ex-
plained in the chapter on dispersion, light waves traversing matter are retarded by the

• Einstein's general theory of relativity postulates an increase in momentum and mass
of a photon as it passes through a strong gravitational field like that close to the sun.
See F. R. Tangherlini, Snell's Law and the Gravitational Deflection of Light, Am. J.
Phys., 36:1001 (1968); see also R. A. Houstoun, J. Opt. Soc. Am., 55:1186 (1965).
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alteration of their phase through interference with the scattered waves. In the case
of photons we may, at least in dilute matter like a gas, picture the photons as
traveling with the velocity c in the empty space between molecules, but as having their
average rate of progress retarded by the finite time consumed during the process of
absorption and reemission by the molecules they encounter. In any experiment where
the photon could be expected to be slowed down, for example, in an encounter with
an electron in the Compton effect, it is found that the energy and frequency are de-
creased, not the velocity. The only slowing-down that a photon can suffer is its com-
plete annihilation, as happens in the photoelectric effect.

33.4 DEVELOPMENT OF QUANTUM MECHANICS

The apparently irreconcilable contradiction between the corpuscular and wave
pictures oflight has been clarified on the basis of a new system of mechanics initiated
by Heisenberg and SchrOdinger in 1926 (see Chap. 29). This quantum mechanics is
essential for the treatment of all atomic processes. It also holds for ordinary large-
scale processes, although in this case the deviations from newtonian mechanics are
negligible. In quantum mechanics the behavior of the electrons in an atom, for ex-
ample, is calculated by the use of wave theory, and the solutions of wave equations
yield the allowed energy states. Any material particle has associated with it a group of
waves, and in the case of a free particle their wavelength is inversely proportional to
the momentum p of the particle. This is the celebrated de Broglie relation, treated in
Chap. 29, which represents an extension of Eq. (33e) to matter:

(33g)Wavelength of a free particle• ),=.!!-=~
mv p

This equation was experimentally verified by Davisson and Germer in the United
States and by G. P. Thomson in England. They showed that a beam of electrons can
be made to exhibit diffraction and that the pattern corresponded to that produced
with X rays by the regular arrangement of atoms in a crystal lattice. Diffraction of
a beam of atoms or molecules was subsequently demonstrated by Stern. The analo-
gous behavior of electrons and light is most beautifully demonstrated in the electron
microscope (Sec. 15.10). The existence both for matter and for electromagnetic
radiation of the two types of behavior, as waves and as particles, was the most signifi-
cant fact that was interpreted by quantum mechanics.

The physical significance of the waves that pertain to a given material particle
is that the square of their amplitude at any point in space represents the probability
of finding the particle at that point. The theory therefore yields the statistical distribu-
tion of the particles, and as we shall see, it denies the possibility of going any further
than this. Similarly for light the wave theory gives us the statistical or average distri-
bution of photons as the square of the amplitude of the electromagnetic wave. If we
postpone for the moment the question of which model, wave or corpuscle, is the real
one, and look at the achievements of quantum-mechanical theory, we find an ex-
tensive array of these, which prove beyond question the soundness of the basic assump-
tions of the theory. Not only are the many complex features of atomic and molecular
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spectra accounted for in detail, but also any process involving the extranuclear
electrons and their interaction with electromagnetic radiation. Only when attempts
are made to apply it to regions as small as atomic nuclei, or in general smaller than
the classical radius of the electron e2/moc2, are there indications that the theory
breaks down.

33.5 PRINCIPLE OF INDETERMINACY

The possibility of characterizing light as discrete packages of energy called photons
would seem to rest upon our ability to determine for a given photon both the position
and the momentum that it possesses at a given instant. These are usually thought of
as measurable properties of a material particle. It was shown by Heisenberg, however,
that for particles of atomic magnitude it is in principle impossible to determine both
position and momentum simultaneously with perfect accuracy. If an experiment is
designed to measure one of them exactly, the other will become completely uncertain,
and vice versa. An experiment can measure both, but only within certain limits of
accuracy. These limits are specified by the principle of indeterminacy (often called
the uncertainty principle), according to which

(33h)• hlip/!iy ~ -
21t

Here liy and lip, represent the variations of the value of the coordinate and of the
corresponding component of momentum of a particle which must be expected if we
try to measure both at once, i.e., the uncertainties in these quantities. The symbol
~ means "is of the order of, or greater than." The reason for this semiquantitative
way of stating the law will become clear through the example to be given in the follow-
ing section.

The principle of indeterminacy is applicable to photons, as well as to all material
particles from electrons up to the sizable bodies dealt with in ordinary mechanics.
For the latter, the very small magnitude of h renders the lip, and liy entirely negligible
compared to the. ordinary experimental errors encountered in measuring the large
p, and its corresponding y. When p, is very small, however, as for an electron or a
photon, the uncertainty may become an appreciable fraction of the momentu~ itself,
or else the uncertainty in the position must be relatively large.

33.6 DIFFRACTION BY A SLIT

Suppose that we undertake to find the position of a photon by passing it through a
narrow slit. This will specify its coordinate y in the plane of the screen to within an
uncertainty !:iy equal to the slit width (Fig. 33D). In doing so the momentum in the
y direction, initially zero in this experiment, is rendered uncertain by an amount !:ip,
given by the relation (33h), as we shall now show.

Passage of the light through the slit causes a diffraction pattern to be produced
on the screen. We shall assume the screen to be far enough away relative to the width
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FIGURE 330
The uncertainty principle applied to the momentum of a photon when it is
diffracted by a single slit.

of the slit for Fraunhofer diffraction to be obtained. Nearly all the photons will be
found within the angle 01, corresponding to the first zero of the pattern. We have
seen in Eq. (15f) that this angle is given by

The corresponding uncertainty in the momentum is

. 0 A.sm 1 = -
!:J.y

(33i)

pA.
=-

!:J.y
(33j)

Introducing the value for the momentump given by the de Broglie relation, Eq. (33e),
we find

h A. h
!:J.p., = I!:J.y = !:J.y (33k)

This gives !:J.p., !:J.y = h, but it will be seen that since the probability of the photon
striking the center of the pattern is greatest, the uncertainty in P., is not so large as is
indicated by Eq. (33k) and hence that our result is consistent with the principle of
indeterminacy

h
!:J.p., !:J.y ~ - (33h)

2n

No doubt this derivation will raise some important questions in the mind of the reader.
How does the photon acquire this sideways momentum? How is it possible that the
width of the slit should affect a photon which passes through at one place in the slit?
The answers to these questions will be postponed until we have given further considera-
tion to the consequences of the principle of indeterminacy.
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33.7 COMPLEMENTARITY

We owe to Bohr the interpretation of Heisenberg's principle in such a way as to make
clear the fundamental limitations on the accuracy of measurement and their bearing
on our views as to the nature of light and matter. According to the principle of com-
plementarity stated by Bohr in 1928, the wave and corpuscular descriptions are merely
complementary ways of regarding the same phenomenon. That is, to obtain the
complete picture we need both these properties, but because of the principle of in-
determinacy it is impossible to design an experiment which will show both of them
in all detail at the same time. Any experiment will reveal the details of either the wave
or the corpuscular character, according to the purpose for which the experiment is
designed.

It further appears that, if one attempts to push the accuracy of measurement to
the point where the experiment might be expected to reveal both aspects, there is an
unavoidable interaction between th~ measuring apparatus and the thing measured
which frustrates the attempt. This happens even in a hypothetical experiment which
we imagine to be performed by an experimenter endowed with infinite skill and re-
source. It is therefore not a question of the usual disturbances caused by large-scale
measuring instruments; these can be calculated and allowed for. The uncertainties
we are concerned with here are by their very nature impossible to evaluate without
spoiling the experiment in some other way. If this were not so, we would be able to
overstep the boundaries prescribed by the complementarity principle. To see how
these interactions occur, and that they occur just to the degree required by the principle
of indeterminacy, we now describe two celebrated experiments which for technical
reasons have never been performed exactly as they are here outlined, but for which
the results can be confidently predicted on the basis of other actual experiments
not quite as simple.

33.8 DOUBLE SLIT

The interference fringes in Young's experiment (Sec. 13.3) constitute one of the sim-
plest manifestations of the wave character of light. Yet it should be possible to reveal
the presence of photons by a suitable modification of the experiment. Such a modi-
fication would be the replacement of the observing screen by a photoelectric surface
so subdivided that the individual photoelectrons from different parts of the surface
could be counted. If this were done, the largest concentration of photons would be
found to occur at the maxima of the interference pattern, and none at all at the minima.
It is impossible to conceive of the interference between different photons going through
the two slits as being responsible for such a pattern. It is even more difficult to under-
stand how a single photon could be constrained to seek the maxima and avoid the
minima, since it presumably passed through only one of the slits. The presence of
the other slit should be immaterial, whereas actually it makes possible the interference
pattern and its position determines the dimensions of that pattern. Nevertheless,
according to quantum mechanics, the latter interpretation is correct. The fringes
could be produced by single photons, going one by one through the slits. We know
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_. Ie, _-==: I LD __------ ••.---------------~-:--l-r[]=---------~----------~ I c,
FIGURE 33E
Young's double-slit experiment as _modified to demonstrate both wave and
corpuscular properties of light.

that reducing the intensity of the light does not destroy the interference. The pattern
is therefore a characteristic of each photon. and represents the probability of its
arriving at various points on the screen. This probability must. however. be calculated
by wave theory and is measured by the square of the amplitude. The experiment is
one designed to show the properties of waves.

Now let us attempt to refine this experiment with the purpose of finding out
through which slit any given photon passed. This might be done by putting two scintil-
lation counters C1 and Cz in front of or behind the slits. as shown in Fig. 33E. With
light of sufficiently high frequency. these would register each photon as it goes through
one slit or the other. But in so doing we have spoiled the interference pattern because
of the deflections suffered by the photons in producing the scintillations. For the
fringes to be clearly visible it is necessary that these deflections be less than one-quarter
of a fringe width. according to the criterion mentioned in Sec. 16.7. Thus

!J.p, < (Jl = ~ (331)
p 4 4d

where (Jl is the angular separation of adjacent fringes and d the slit separation. Since
the counters tell us through which slit the photon passes, they specify the y coordinate
to within a distance of at most dll. Hence we may write for the uncertainty in this
coordinate

dAy =-
2

(33m)

Combination of Eqs. (331)and 33m) then yields
pl d pl

Ap, Ay < 4d 2 = 8" (33n)
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Upon insertion of the de Broglie value for )., the requirement that the interference
pattern shall not be spoiled becomes

h
Ap, Ay < 8 (330)

This violates the principle of indeterminacy according to which Ap, Ay ~ hf21t.
Hence we see that it is impossible to localize individual photons and at the same time
measure their wavelength. This would mean that we had simultaneously determined
both position and momentum. It is possible to measure only one of these with pre-
cision, according to whether the experiment is designed for photons or waves.

33.9 DETERMINATION OF POSITION WITH A
MICROSCOPE

Another idealized experiment, first discussed by Heisenberg, is that usually referred
to as the "I-ray microscope. If it is desired to find the position of a particle as accurately
as possible, the particle must be illuminated by light of the smallest possible wave-
length, since the resolving power is given, according to Eq. (l51), by

).
s = -- (33p)

2n sin i

We can imagine, in principle at least, a microscope using "I rays which is capable of
yielding an extremely small uncertainty Ax ~ s in the position of the particle. If then
the particle is at rest, its momentum p" is exactly zero and this simultaneous knowledge
of both position and momentum would appear to violate the principle of indeter-
minacy. One factor has been neglected, however; namely the recoil of the particle
when it is hit by a photon of high energy and momentum, which is demonstrated in
the Compton effect. This recoil will introduce a relatively large uncertainty in the
momentum, just as the principle would predict.

To find the magnitude of the uncertainty, note that in Fig. 33F the x component
of the momentum of the scattered photon can lie anywhere between +hf). sin i and
-hf). sin i, since it could have entered any part of the objective lens. The x component
of the momentum of the recoiling particle is rendered uncertain by the same amount,
since momentum is conserved in the collision and the momentum of the incident
photons can be exactly calculated from the wavelength. Hence for the particle

Multiplying by the!U from Eq. (33p), we find

•

A 2h ..up" ~ - sm I
A

(33q)

(33r)

as required. This is an example of the application of the principle of indeterminacy
to a material particle. Complementarity is well illustrated in the experiment by the
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FIGURE 33F
Measurement of position with a micro-
scope.
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fact that when one uses a very short wavelength, x is found with good precision but
Ap,. is made large, while the use of a longer wavelength will allow P,. to be better
known at a sacrifice of the accuracy Ax in the measurement of position.

33.10 USE OF A SHUTTER

It is also instructive to consider the result of trying to localize a photon by passing
light through a very rapidly acting shutter, such as that utilizing the Kerr electro-optic
effect (Sec. 32.10). In Fig. 33G(a) let S represent schematically such a shutter, which
has been opened only long enough to allow a train of N waves of uniform amplitude
to pass through. The experiment could be performed with light so faint that only
one photon would pass through in this time. This photon lies somewhere in the wave
packet (Sec. 11.11) of N waves, and its probability of being found anywhere in the
packet is measured by the square of the amplitude. This is uniform along the length

cAx = NAo = N - (33s)
Vo

The Fourier integral analysis of a finite train of N waves of equal amplitude yields a
certain distribution of frequencies, and when the intensities in various frequencies
are plotted, as in Fig. 33G(b), the resulting curve is to a very close approximation the
same as that for the Fraunhofer diffraction pattern due to a single slit. The half width
of the central maximum is just vo/N. Now such a spread of frequency corresponds,
according to Eq. (33e), to an uncertainty in the momentum of the photon amounting
to

Ap =!!.. = h Av = h(vo/N) (33t)
,. AA. c c

Localization of the photon to within a distance Axhas therefore rendered its momentum
indeterminate, and, as expected, the product of the two indeterminacies given by
Eqs. (33s) and (33t) is again

Ap,. Ax :::::h (33u)



THE DUAL NATURE OF LIGHT 711

~ m
FIGURE 330
(a) Idealized shutter experiment. (b) Result of Fourier analysis of a train of
Nwaves.

It is to be noted that the wave packet is not the photon, nor can we speak of the
photon itself as having any dimensions. The packet is merely a description of the
probability of finding the photon in any given position. When the length of a wave
train is measured with the Michelson interferometer (Sec. 13.12), one is not finding
the length of a photon but merely that of the region in which the photon must some-
where lie. .

33.11 INTERPRETATION OF THE DUAL CHARACTER
OF LIGHT

Granted the truth of these principles of indeterminacy and complementarity, what can
be said about the nature of light? First, it is important to realize that light (as well
as the elementary particles of matter: electrons, protons, etc.) is essentially more
primitive and subtle than those mechanical phenomena which we can observe on
a large scale. All our information about it must be obtained indirectly. The possibility
is therefore opened that it might not be feasible to describe light in the terms which
we are accustomed to use for everyday things. All our experience since childhood
would indicate that it should be possible to say, "Light is like a flight of bullets from
a machine gun," or "Light is like a train of water waves." But such a specific state-
ment cannot be made about light, and the complementarity principle indicates that
we shall never be able to make it. We can say, "In this experiment light behaves as
though it were composed of photons," and, "In that experiment it behaves as though
it were waves." Since complementarity rules out any experiment in which one can
measure both properties at once, the conclusion is inevitable that the concepts of
photons and waves are equally justified and that each is applicable in its own sphere.

The point of view adopted in quantum mechanics with regard to such a dilemma
as is presented by the double-slit experiment is simply that a classical description of
the motion of a single photon has meaning only within the limits set by the principle
of indeterminacy. When the interference pattern is being observed, there is no signi-
ficance to the statement that the photon went through one slit or the other, i.e., to a
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statement about its position. When the scintillations are being counted, we can specify
the position but then the momentum has lost its meaning. The latter quantity depends
on the wavelength, which in turn requires the dimensions of the now nonexistent
interference pattern for its determination. Similarly, in the diffraction by a single slit,
one cannot specify the momentum of a single photon unless the experiment is altered
to include a momentum measurement. Conservation of momentum could then be
verified, but as long as the diffraction pattern exists, this principle can only be applied
statistically to describe the average behavior of the photons.

33.12 REALMS OF APPLICABILITY OF WAVES AND
PHOTONS

The emphasis which has in this book been placed upon the wave properties of light
has a certain justification as long as one does not extend the meaning of light to in-
clude the very short-wavelength region of X rays and 'l' rays. The relative prominence
of the wave and corpuscular properties changes steadily in favor of the latter as one
proceeds through the electromagnetic spectrum in the direction ofincreasing frequency.
Thus radio waves behave in all important respects like classical electromagnetic
radiation. This is related to the fact that the photons are extremely small in their
energy hv and therefore usually very numerous. Similarly visible light of ordinary
intensities contains so many photons that their average behavior is accurately given by
the wave theory provided that the interactions with the individual atoms of matter do
not involve the quantized energy states of the latter. This accounts for the fact that
the corpuscular properties of light remained undiscovered for so many years.

The connecting link between the wave and quantum aspects of light (or of
matter) is furnished by Planck's constant h. As has been emphasized by Bohr, h
is the product of two variables, one characteristic of a wave, the other of a particle.
Thus if we designate by T the period, or reciprocal of the frequency v, the quantum
relation can be put in the symmetrical form

h = ET = PA. (33v)

Now E and p are attributes of particles, while T and A. are attributes of waves. If,
for example, the magnitudes of the former .arelarge, the latter must be correspondingly
small. Hence X rays and 'l' rays behave in most respects like photons, and their wave
character is even difficult to demonstrate. The region of frequencies where particle-
like properties begin to become prominent is of course determined by the magnitude
of h, and its actual value, 6.6262 x 10-34 J S, is so small that very high frequencies
are required before the wave character begins to be lost. Visible light lies well below
this region, and its wave properties may therefore be said to be the most important.
If h were much smaller than it is, the quantum theory would never have been required
and classical electromagnetic theory would have sufficed to explain all experiments.
It is a curious coincidence that the actual size of h, which of course is still unexplained,
is such that the nature of light seems to run the whole gamut, from obvious waves
at one end to obvious photons at the other, in the observed range of the electro-
magnetic spectrum.
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PROBLEMS
33.1 Using Eqs. (29c) and (29d), calculate (a) the velocity and (b) the radius of the Bohr

circular orbit, n = 4. (c) Find the de Broglie wavelength for the electron in this orbit.
(d) How many of these wavelengths are included in the orbit curcumference?

Ans. (a) 5.469 x 105 mIs, (b) 8.4668 x 10-10 m,
(c) 1.32997 x 10-9 m, (d) 4.00

33.2 Using the de Broglie relationship, find the wavelength associated with (a) an electron
moving with one-half the speed of light, (b) an oxygen molecule with its mean thermal
velocity of 480 mIs, and (c) a rifle bullet of mass 5 g moving with a velocity 550 m/s.

33.3 Find the number of photons per cubic centimeter in a monochromatic beam of
radiation of intensity 3 x 10-5 W/cm2• Take the wavelength to be (a) 0.20 A and
(b) 5000A.

33.4 For light of wavelength 5000 A, calculate the magnitude of the four quantities ap-
pearing in Bohr's complementarity relation, Eq. (33v).

Ans. E = 3.9730 X 10-19 J, T = 1.6678 X 10-15 s,
P = 1.3252 X 10-27 kg mIs, A. = 5.0 X 10-7 m

33.5 X rays of wavelength 0.4650 A are scattered from a carbon block at an angle of 75°
to the direction of the incident beam. Calculate the change of wavelength due to the
Compton effect.

33.6 The radiation flux from a distant star amounts to 2.50 x 10-17 W/m2• Assuming
the effective wavelength of starlight to be 5500 A, find how many photons per second
enter the pupil of the eye under these circumstances if the pupil diameter is 6.0 rom.

33.7 When a 500-V electron is passed through a pinhole 0.0180 rom in diameter, (a) what
uncertainty in the angle of emergence is introduced? (b) Make a similar calculation
for a 250-g baseball thrown with a velocity of 25 mls through a hole 16.0 cm in
diameter. The relation Ve = tmv2 can be used to find the electron velocity in meters
per second in terms of the voltage V in volts, e in coulombs, and m in kilograms.

Ans. (a) 1.257 seconds of arc, (b) 2.197 x 10-29 second of arc
33.8 A microscope of numerical aperture 1.4 is focused on a particle of mass 0.0050 mg.

If the illuminating light has a wavelength of 4800 A, what are the values of Ap" and
Ax predicted by Heisenberg's principle of indeterm.inacy?
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APPENDIX I
THE PHYSICAL CONSTANTS.

Symbol or
Quantity abbreviation Value Error, ppm

Speed of light c 2.9979250 x 108 m/s 0.33
Electron charge e 1.60219J7 x 1O-1OC 4.4
Electron mass m 9.1095585 x 10-31 kg 6.0
Proton mass M" 1.6726141 x 10-27 kg 6.6
Neutron mass m. 1.6749201 x 10-27 kg 6.6
Planck's constant h 6.6261965 x 10- 34 J s 7.6

Unit angular momentum
h 1.0545915 x 10- 34 J s 7.6
2n

Electronic ratio
e 1.7588028 x 1011 C/kg 3.1
m

Bohr radius '1 5.2917716 x 10-11 m 1.5

Proton-electron mass ratio m" 1836.1091 6.2
m.

Atomic mass unit amu 1.6605311 x 10-27 kg 6.6
Energy of electron mass V. 0.5110041 MeV 4.6
Mass energy of an electron moc2 8.1872652 x 10-14 J 6.5

Compton wavelength
h 2.4263096 x 10-12 m 3.1

moc
Gas constant R 8.3143435 l/mol K 42
Stefan-Boltzmann constant k 5.669620 J/s 170
Avogadro's number N 6.0221694 x 1026/kg mol 6.6
Gravitational constant G 6.673231 x 10-11 rn3/kg 82 460

• From Rev. Mod. Phys., 41 :476 (1969).



APPENDIX II
ELECTRON SUBSHELLS



The table shows the order in which the electron subshells are filled, in building up the elements of the periodic table; atomic weights are given with respect
to carbon 12 as 12 even.
--
n Sub-
+ shells 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

1 [Is
1.0080 4.003
H He

1 2

2[2s
6.939 9.012
Li Be

3 4

10.81 12.000 14.007 15.999 18.998 20.183

f B B N 0 F Ne
5 6 7 8 9 10

22.990 24.312
3s Na Mg

11 12

26.98 28.08 30.974 32.064 35.453 39.948

f Ai Si P S Cl Ar
13 14 15 16 17 18

39.102 40.08
4s K Ca

19 20

44.96 47.90 50.94 51.996 54.94 55.85 58.93 58.71 63.54 65.37
3d Sc Ti V Cr Mn Fe Co Ni Cu Zn

21 22 23 24 2S 26 27 28 29 30

69.72 72.59 74.92 78.96 79.91 83.80
SI4p Ga Ge As Se Br Kr

31 32 33 34 35 36

85.47 87.62
Ss Rb Sr

-.l 37 38 (Continued overleaf)-\C)



n Sub- tj
0

+ shells 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

88.90 91.22 92.91 95.94 (99) 101.1 102.91 106.4 107.870 112.40
4d Y Zr Nb Mo Tc Ru Rh Pd Ag Cd

39 40 41 42 43 44 45 46 47 48

114.82 118.69 121.75 127.60 126.90 131.3
615p In So Sb Te I Xe

49 50 51 52 53 54

132.90 137.34
69 Cs Ba

55 56

.. 138.91 140.12 140.91 144.24 (145) 150.35 151.96 157.25 158.92 162.50 164.93 167.2 168.93 173.04
4/ La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb

57 58 59 60 61 62 63 64 65 66 67 68 69 70

174.97 178.5 180.95 183.92 186.2 190.2 192.2 195.09 196.97 200.59
5d Lu Hf Ta W Re Os Ir Pt Au Hg

71 72 73 74 75 76 77 78 79 80
71

204.37 207.19 208.98 210 (210) 222
6p TI Pb Bi Po At Rn

81 82 83 84 85 86

(223) 226.05
79 Fr Ra

87 88

{:
227 232.04 231 238.03 (237) (242) (243) (245) (245) (248) (253) (254) (256) (254)
Ac Th Pa U Np Pu Am em Bk Cf Es Fm Md No

89 90 91 92 93 94 95 96 97 98 99 100 101 102

(258) (260)
Lw Rf Ha

103 104 105 106 107 108 109 110 111 112



APPENDIX III
REFRACTIVE INDICES AND DISPERSIONS

FOR OPTICAL GLASSES

nc . nD . nF . no • ICf
Glass 6563 A 5892 A 4861 A 4340 A type v

Barium flint 1.58848 1.59144 1.59825 1.60367 591/605 60.5
Borosilicate crown, 1 1.49776 1.50000 1.50529 1.50937 500/664 66.4

2 1.51462 1.51700 1.52264 1.52708 517/645 64.5
3 1.50883 1.51124 1.51690 1.52136 511/634 63.4

Dense flint, 2 1.61216 1.61700 1.62901 1.63923 617/366 36.6
4 1.64357 1.64900 1.66270 1.67456 649/338 33.8

Extra dense flint 1.71303 1.72000 1.73780 1.75324 720/291 29.1
Fused quartz 1.45640 1.45845 1.46318 1.46690 458/676 67.6
Light barium crown 1.53828 1.54100 1.54735 1.55249 541/599 59.9
Light flint, 2 1.57100 1.57500 1.58500 1.59400 575/411 41.1

1 1.57208 1.57600 1.58606 1.59441 576/412 41.2
Spectacle crown 1.52042 1.52300 1.52933 1.53435 523/587 58.7
Strontium titanate (SrTi03) 2.37287 2.41208 1.49242 2.57373 412/345 3.45
Telescopic flint 1.52762 1.53050 1.53790 1.54379 531/516 51.6
Very dense flint 1.87900 1.89000 1.91900 1.95400 890/223 22.3



APPENDIXIV
REFRACTIVE 'INDICES AND DISPERSIONS OF
OPTICAL CRYSTALS

nc 0

Crystal Ray 6563A

Quartz (Si02) 0 1.54190
E 1.55093

Calcite (CaC03) 0 1.65438
E 1.48461

Rutile (Ti02) 0 2.57100
E 2.85600

nD 0
5892 A

1.54425
1.55336
1.65836
1.48641
2.61310
2.90890

nF 0

4861 A

1.54968
1.55898
1.66785
1.49076
2.73460
3.06310

no' 0
4340 A

1.55396
1.56340
1.67552
1.49428
2.85870
3.22320

ICT
type

544/700
553/687
658/489
486/791
613/375
909/439

v

70.0
68.7
48.9
79.1
3.75
4.39



APPENDIX V
THE MOST INTENSE FRAUNHOFER.LINES

.
To change wavelengths in Angstroms (A) to nanometers (nm). move decimal one place to the left.

Designation Origin
raVelength.

Designation Origin
ravelength.

A O2 7594-7621'" b4 Mg 5167.343
B O2 6867-6884'" c Fe 4957.609
C H 6562.816 F H 4861.327
ot O2 6276-6287'" d Fe 4668.140
D1 Na 5895.923 e Fe 4383.547
D2 Na 5889.953 G' H 4340.465
D3 He ~B75.618 G Fe 4307.906
E2 Fe 5269.541 G ea 4307.741
b1 Mg 5183.618 g ea 4226.728
b2 Mg 5172.699 h H 4101.735
b3 Fe 5168.901 H ea+ 3968.468
b4 Fe 5167.491 K ea+ 3933.666



APPENDIX VI
ABBREVIATED NUMBER SYSTEM

At a meeting held on October 14, 1960, by the International Union for Pure and Applied
Physics, the following symbolism was adopted for general use.

103 kilo k 10-3 milli m
106 mega M 1O-1i micro /l
109 giga G 10-9 nano n
1012 tera T 10-12 pico p

The angstrom (A) as a unit of wavelength of light is still used by many spectroscopifots,
but the unit nanometer (nm) is becoming more common.

1A = 10-10 m
10m = 10-9 m
Inm=lOA



APPENDIX VII
SIGNIFICANT FIGURES

In solving the problems at the ends of the chapters in this text it is recommended that an
electronic calculator be used. A number of calculators for carrying out the operations of
addition, subtraction, multiplication, and division are available at a relatively low cost.
Somewhat more expensive calculators, for students of science, are available today which will
provide sines, cosines, and tangents of angles, squares and square roots, arcsines, cosines,
and tangents, reciprocals, logarithms, exponentials, and any number of memory banks.
Every student would do well to procure one of these calculators. The time saved in solving
problems and the accuracy obtained is well worthwhile.

Before solving problems the student should also have a good understanding of
significant figures. The table of numbers will serve to illustrate.

A B C
Three Four Five
significant significant significant
figures figures figures

374 5279 24,794
21.5 63.08 6.9428
6.05 0.1062 0.37625
0.00328 0.04503 0.053177
546,000 692,700 46,009
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1 All digits other than terminal zeros to the left of the decimal point are significant.
The measurement 42.65 kg contains four significant figures; 42,650 also contains four
significant figures.
2 Thefirst significant figure of a number is the first digit that is not zero. The measure-
ment 0.01 32 g contains three significant figures.
3 Zeros to the right of a decimal point and to the right of a nonzero digit are significant.
The reading 46.270 km contains five significant figures.

In powers of 10 notation a simple rule may be applied to specify significant figures.
This assumes that at least one nonzero digit appears in front of the decimal point.

4 All zeros that appear in the base number are significant. The reading 2.40 x lOs m
contains three significant figures. If this figure is desired to four significant figures it
may be assumed that zeros follow the last zero shown.

Suppose the numbers like those in column C are to be expressed to three significant
figures only. If the first figure begins with 1,2, or 3, the number should be reduced to four
figures, and if the first figure begins with 4, 5, 6, 7, 8, or 9, it should be reduced to three.
The numbers in column C would, therefore, be written 24790, 6.94, 0.3763, 0.0532, and
46,000, respectively.

When illustrating basic scientific principles by experiment or by mathematical problems,
some measurements may be specified by small whole numbers and others to several sig-
nificant figures. Suppose for example that a small car is said to travel a distance of 9 m in
4.15 s and we wish to calculate the average speed. If the answer is to be expressed to three
significant figures, it is common practice to assume both quantities are known to at least
three figures:

9mv = -- = 2.16867 mls
4.15 s

What has been done to obtain this answer is to assume that the numerator has the value
9.00 m, and upon dividing by 4.15 s, obtain 2.16867 mls with a calculator, which to three-
significant-figure accuracy is 2.169 m/s.

When a calculator is used in working problems, it is quite proper to carry each figure
out as far as it is specified. When the final answer is obtained, it is common practice to
express it to at least one more figure than the significant figures in the number containing the
least number of significant figures.

Most slide rules are capable of handling the multiplication and division of numbers
only to three significant figures. Most of the problems in optics require greater accuracy than
this, and for them a slide rule is not adequate.
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Abbe's sine theorem, 173
Aberration of light:
Airy's experiment, 414
Bradley's method, 405

Aberrations with lenses. 149 - 184
astigmatism, 167
chromatic, 176
coma, 162
curvature of field, 170
distortion. 171
spherical, 153

Absorptance of radiation, defined, 445
Absorption:
bands, 459
effect on dispersion. 485
by gases, 461
holograms, 665
of light in matter, 457 - 466
and scattering, 458
selective, 458
of waves, 23 I

Accommodation of human eye, 199
Achromatic lenses, 177- 183
Achromatism, corrections for, 176
Achromatized eyepieces, 207
Adams, N. 1.,429
Addition of wave trains. 242
with random phases, 244

INDEX

Air:
refractive index of, to
speed of light in, 9

Airy. Sir George, biography, 329
Airy's disk, 329
Airy's experiment on aberration, 414
Amplitudes:
complex representation, 299
vector addition. 240
Cornu's spiral, 389
vibration curves, 322, 346, 365
circular division of wave front, 386
strip division of wave front, 389

of vibration. defined, 216
Anastigmatic lenses. 171
Anderson, O. E., 308
Anderson, W. C .• 409
Angle:
of aberration, 405
critical, 25, 26, 510, 527
of deviation, 14. 28
by a prism, 27
on refraction. 13

half-field, 203
image field, 203
of incidence and reflection, 12
of minimum deviation: for doubly refracting

prisms. 551



730 INDEX

Angle:
of minimum deviation: for a prism, 30
object field, 122, 203
principal angle of incidence, 535
of refraction, II
of resolution: minimum, 327
for a telescope, 330

Angstrom, A. J., biography, 233
Angstrom unit, defined, 19
Angular dispersion by a prism, 474

(See also Dispersion)
Anomalous dispersion, 479

(See also Dispersion)
Anomalous Zeeman effect, 683
Aperture stops, 115- 126
Aplanatic points, defined, 166
Aplanatic surfaces, 168
Aqueous humor of the eye, 189
Astigmatic difference, defined, 169
Astigmatism:
of lenses, 167
of spherical mirrors, III, 112

Astronomical telescope, -202
field of view, 203
magnification, 203
minimum angle of resolution, 330

Atomic mass units, 617
Atomic number for atoms, 612
Autocollimators, optical, 209
Auxilliary-ray diagram:
image formation, 53
for thick lenses, 105

Babcock, H. D., 369
Babinet compensator, 569, 570
Bacher, R. F., 629
Back focal length of lenses, 85
Balmer series of hydrogen, 615
Bands:
absorption, 459
spectra, 453
photographs of, 455

Barrel distortion, 172- 174
Beeler, N. F., 189
Bending a lens, shape factor for, 154
Bergstrand, E., 411
Biaxial crystals:
defined, 554
negative. 554
positive, 554
refraction by, 553
refractive indices for, 554
wave surfaces for, 553-557

Bicknell, T., 601

Biprism experiment, Fresnel's, 266
Birge, R. T., 411
Blackbody:
radiation from, 446
radiation curves for, 448
formula for, 449

Blue sky:
Rayleigh scattering, 5 14
scattering experiment, 5 15, 5 16

Bohr, N., 612
Bohr atom of hydrogen, 612
Bohr-Sommerfeld orbits, 620
Bohr-Stoner scheme, 617
Bol, K., 411
Boltzmann, S., biography, 448
Born, ~ax, 529, 557, 568, 572
Bouguer, P., 231
Bouwers, A., 209
Bowie, W., 407
Bradley, J., biography, 405
Bragg rule for x-rays, 666
Branley, F. ~., 189
Brenden, B. B., 677
Brewster, Sir David, biography, 302
Brewster's fringes, 302
Brewster's law for polarized light, 500
Brewster's windows for lasers, 642
Bright contrast, phase contrast microscope, 603
Brouwer, W., 143
Brushes, convergent polarized light, 577
Bunsen flame, spectrum source, 442

Cadmium, spectrum of, 452
Calcite:
crystals of, 506, 511
double refraction, 506-509
refractive indices of, 552

Camatini, E., 677
Camera lenses:
anastigmats, 194
fvalue, 192
meniscus, 193
objectives, 191
principles of, 191
telephoto, 194

Candler, A. C., 311
Carbon are, light source, 439
Carbon dioxide:
energy level diagram, 646
laser, 643
molecular vibrations of, 645

Cardinal points, thick lenses, 80-95
Cat's eye, gem stones, 520
Cauchy's equation, 479



Caustic surface, spherical mirrors, 109
Cavity oscillations, 633
Cerenkov radiation, 434
Change of phase on reflection, 287, 527,

534-541
Chart of all electromagnetic waves, 234
Chief ray through lenses, 117, 120
Chromatic aberration, 176

secondary spectrum, 182
Chromatic resolving power:

for diffraction gratings, 365
for Fabry-Perot etalon, 304
of a prism, 326, 475
of a single aperture, 325

Circle:
of least confusion, 109
ofreference, 216

Circular aperture, diffraction by, 383
Circular obstacles, diffraction by, 384
Circular orbits, Bohr's theory, 612
Circularly polarized light, 564
Classification of spectra (see Spectra)
Closed shells of electrons, 622
Closed subshells of electrons, 622
Clough, W., Jr., 576
Coefficient:

of absorption, 458
of scattering, 458

Coherence:
in lasers, 633
lateral, 650
length, defined, 650
spatial, 633, 650
temporal, lasers, 633

Coherent sources of waves, 210, 633
Coiled spring:

elastic limit, 220
Hookes' law, 220
tension in, 218
vibration of, 221
work done by, 220

Collier, R. J., 677
Collisions of the second kind, 629
Color dispersion, 18
Coma:

formulas for, 162
sine theorem, 175

Comatic circle. defined, 163
Combinations of lenses, 93
Complementarity, principle of, 707
Complex amplitudes, method of, 229
Compound interferometer, 310
Compton, A. H., biography, 488
Compton effect, 699, 701
Compton wavelength, 70 I
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Concave diffraction gratings, 373
Rowland circle, 374

Concave mirrors, 98 - 112
Concentrated arc, 439, 440
Concentric optical systems, 209, 210
Condon, E. U., 593
Cones in the human eye, 189
Configurations, electron subshells, 621
Conical refraction, biaxial crystals, 556, 557
Conjugate planes, 48, 62
Conjugate points, 47, 62
Conjugate relations, 82
Conrady, A. E., 149
Constructive interference, 259
Contemporary optics, 596 - 606
Continuous spectra, 446-450
Convention of signs for lenses, 50
Converging lenses, 44, 45
Convex mirrors, 98 - 112

field of view, 124
Cooper, J. N., 698
Cornea of the eye, 190
Correlation interferometer, 351
Cornu, M. A., 389
Cornu's spiral, Fresnel diffraction, 389-392
Corpuscular theory of light, 8
Corundum crystals, 5 19
Cotton-Mouton effect, 690
Critical angle, defined, 26
Crossed polarizers, 505, 511

crystal plates between, 568
Crystalline lens, human eye, 189
Curvature:

of field, image aberration, 170
of spherical surfaces, defined, 55
of surfaces, in diopters, 55

Cylindrical wave fronts, Fresnel diffraction, 388
Cystoscope, fiber optics, 42

Dark-contrast illumination, phase microscope,
603

Davis, S. P., 372
de Broglie, L., 622, 704
de Broglie's wave equation, 623
Degree of polarization, defined, 502
Dense-to-rare reflection, 25
Derivation of equations:

Bohr circular orbits: energy of, 616
radius and ~ed of electron in, 613

Brewster's law, 500
Cauchy's equation, 483
chromatic: dispersion in dielectrics, 479

resolving power: Fabry-Perot etalon, 305
of a prism, 475



732 INDEX

Derivation of equations:
deviation from a parallel plate, 29
diffraction grating: dispersion, 362

resolving power, 362
double slit: amplitude and intensity offringes,

339
fringes, 263

Fraunhofer diffraction gratings: intensity of,
complex notation, 357

resolving power, 365
Fresnel diffraction: area of half-period zones,

381
distances on Cornu's spiral, 390
dragging coefficient, 421
focal length of zone plate, 386
gaussian formulas, single surface, 56
intensity for many waves with random

phases, 245
lens makers formulas, 73
Michelson-Morley experiment, time dif-

ference, 417
multiple reflections, fringe intensities, 300
optical path, 10
percentage polarization, pile of plates, 502
reflected waves from thin films, 287
scattering formula, by complex amplitudes,

471
single-slit, amplitudes and intensities, 317
superposition of two wave trains, vibrat-

ing: parallel, 242
right angles, 253

thick lenses, 84
thin lens combinations, 91

uncertainty principle: double slit, 707
microscope, 79
single slit, 707

velocity of waves in doubly refracting crys-
tals, 559

Zeeman effect, normal triplet, 681
Desains, P., 502
Destructive interference, two waves, 259
Diamonds:

manmade, 519
refractive indices, 519

Dichroic crystals, polarization by, 504
Dichtburn, R. W., 275, 393, 533
Dielectric reflection, 526

(See also Reflection)
Diffraction:

by circular apertures, 383
by circular obstacles, 384
by double slit, 339
Fraunhofer: diffraction grating, 355 - 370

double slit, 339.
single opening, 315
single-slit, 316, 320

Diffraction:
Fresnel, 315, 378-400

cylindrical wave fronts, 388
photographs of patterns, 396, 399, 400

gratings (see Diffraction gratings)
of light waves, 261
of microwaves, 334
obliquity factor, 380
from rectangular aperture, 324
by single slit, 316

uncertainty principle, 706
of sound waves, 334
of x-rays, 666

Diffraction gratings, 355 - 376
concave, 373
dispersion of, 362
eagle mounting, 374
echelle, 371
echellete, 371
echelon, 371
flare of spectra, 370
geometrical treatment, 367
ghosts, 370
intensity distribution from, 357
Littrow mounting for, 375
measurement of wavelength, 373
minima in intensity patterns, 358
overlapping orders, 363
Paschen mounting, 374
principal maxima, 358
reflection, 368
resolving power of, 364
Rowland mounting, 374
ruling engines for, 368
spectra from, 359
vibration curves for, 365
width of principal maxima, 358

Diffuse series of spectrum lines, 453
Diopter:

curvature of surfaces, 55
power, of a surface, defined, 55
prism, defined, 32
reduced vergence, 54

Dirac, P. A. M., 624
Direct vision prism, 34
Dispersion:

anomalous, 479
Cauchy's equation, 479
complete index curve, 488
curves for optical glasses, 179
curves for refractive index, 477
effect on absorption, 485
effect on friction, 486
effect on wave and group velocity, 487
frictional forces, 494
Maxwell's equations for, 489



Dispersion:
of optical glasses, table of, 476
by a prism, 474, 475
angular, 474

due to refraction, 18
rotation of polarized light, 582
Sellmeier's equation, 482
of sodium vapor, 481
speed of light in matter, 474-494
theory of, 491
in x-ray region, 488

Dispersive, index and power, defined, 19
Displacement, defined, 216
Displacement current, Maxwell's equations.

425
Distortion:
aberrations. 171
barrel. 172-174
pincushion, 172-174

Divergent rays:
reflection of, 36
refraction of, 36

Diverging lenses, 44
Division:
of amplitude, explained, 271
of wave front, explained, 271

Doermann, F. W., 353
Doppler, C. J., biography, 234
Doppler broadening of spectrum lines,

650
Doppler effect on light, 234
Double refraction:
biaxial crystals, 553-562
refractive indices for, 554

crystals, 544-562
Huygens' construction for, 547
polarization by, 508
prisms, dispersion by, 552
theory of, 559-562
uniaxial crystals, 544, 553
normal velocity, 547
optic axis, 546
ray velocity, 547
refractive indices, 551
table of, 547
wave surface diagrams, 544

Double slit:
Fraunhofer diffraction, 338-348
fringes, 265
intensity equation for, 339
uncertainty principle for, 708

Double-slit diffraction, 338-348
effect of source width, 347
intensity equation, 339
Michelson interferometer, 349
missing orders, 342
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Double-slit diffraction:
. vibration curve for, 346
Double-slit experiment, 261
formula for interference, 263

Dove prism, 26
Drude, P., 559, 591
Dual nature of light, 698, 711
Dunnington, F. G., 694

Echelle grating, 371
Echellete grating, 371
Echelon grating, 371
Effective power of thin lenses, 85
Einstein, A., 418
Elastic limit, stretching of a spring, 220
Electric double refraction, 693
Electromagnetic character of light, 423
Electromagnetic equations for transparent

media, 489
Electromagnetic waves:
chart of, 234
energy of, 429
Hertz's experiments, 432
intensity of, 429
light vector, 429
Maxwell's equations, 427
speed in free space, 434

Electron configuration in atoms, 621
Electron microscope, 333
Electron shells and subshells in atoms, 619
tables of, 720, 721

Electron transitions in atoms, 618
Electro-optics. 691 - 698
shutter, 694

Elliptically polarized light, 564
by internal reflection, 531
in quartz, 589

Emeralds, manmade, 519
Emittance of radiation, 445
Emsley, H. H., 190
Energy in Bohr orbits of hydrogen, 614
of photons hI!, 614

Energy level diagrams:
carbon dioxide, 645
hydrogen, 618
ionized calcium, 630
resonance absorption, sodium, 628
sodium, 627

Energy levels, tables of, helium and neon, 638
Entrance pupils, 116-126
Equiconvex lenses, 44
Essen, L., 411
Etalons:
Fabry-Perot, 306
Michelson's, 280
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Ether drift, experiments, 415, 416
Exit pupils, 116 - 126
Exponential law of absorption, 231
External:
conical refraction, 557
refraction, 527

Extraordinary ray, double-refracting crystals,
506

Extraordinary wave surface, crystals,
545

Eye:
cardinal points of, 190
Gullstrand's schematic, 190
human, accommodation, 199
lens, power of, 190
optical components of, 190
spectacle lenses for, 199,200

Eyepieces:
achromatized, 206
orthoscopic, 206
Huygens', 205
Ramsden, 206

f value, camera lenses, 192
Fabry-Perot interferometer, 30 I
construction of, 306
as a laser, 633, 635
for observing hyperfine structure, 308
use with a spectrograph, 307

Faraday effect, 686
Fermat, P. de, biography, 15
Fermat's principle, 14
Fiber optics, 40
Field of view, 115, 122-125
telescope, 203, 207

Field stops, 115
eyepieces, 205, 206

Fifth-order spherical aberration, 161
Fifth-order theory of refraction, 150
Films, nonreflecting, 295
Filters, interference, 312
First-order theory, defined, 150
Fizeau, A. H. L., biography, 6
Fluorescence:
of gases, 462, 463
in lasers, 633
of solids and liquids, 464

Focal length:
spherical mirrors, 98
spherical surfaces, defined, 45
thick lenses, 81
thin lenses, 60

Focal planes:
single spherical surface, 45

Focal planes:
thick lenses, 81 - 87
thin lenses, 60

Focal points:
spherical mirrors, 98, 104
spherical surface, 45
thick lenses, 81 - 87
thin lenses, 60

Foller, J. E., 27
Forbes, G., 406
Foster, G., 406
Foucault, J. B. L., biography, 8
Fourier analysis, 248
Fourier integrals, superposition of waves, 249
Fourier transform of wave packets, 249
Fovea of human eye, 190
Francon, M., 677
Franken, P. A., 652
Fraunhofer, J. von, biography, 18
Fraunhofer diffraction:
diffraction gratings, 355 - 370
double slit, 338-348
double-slit fringe intensity, 339
by a single aperture, 315 - 323
vibrations for single slit, 322

Fraunhofer lines, 18, 19
defined, 18
solar spectrum, 724
spectral wavelengths, 453

Frequency of vibration, defined, 216
Fresnel, A., 423
Fresnel diffraction, 315, 378-400
by circular apertures, 383
by circular obstacles, 384
by cylindrical wave fronts, 388
by opaque strips, 400
photographs of patterns, 396, 399, 400
single-slit, 397
straight edge, 388, 393

Fresnel dragging coefficient, 413
Fresnel half-period zones, 380
vibration spiral, 387

Fresnel integrals, table of, 392
Fresnel rhomb, 532
Fresnel's biprism experiment, 266
Fresnel's laws of reflection, 524
Fresnel's mirrors, experiment, 268
Fresnel's multiple prisms, 589
Fresnel's zone plates, 385
Friction effect on dispersion, 486
Fringes:
Brewster's, 302
circular aperture, 330, 385
diffraction gratings, 356, 361
double slit, 262, 339, 345



Fringes:
of equal inclination, 274, 291
Fabry-Perot interferometer, 301
Michelson interferometer, 274
Newton's rings, 296
opaque strip, 400
sharpness of, 297, 30 I
single slit, 317, 325, 330, 399
straight-edge, 396

Frocht, M., 576
Front focal length, thick lens, 85
Front stop, lenses, 117, 118
Froome, K. D., 411
Fundamental series of spectrum lines, 453
Fused quartz, table of refractive indices, 552

Gabor, D., 658
zone plate, 659

Gamma rays, chart of, 234
Gauss, K. F., biography, 72
Gaussian formula for single spherical surface,

48
derived, 56

Gaussian system of units, Maxwell's equations,
425

Geiger, H., 537
Gemstones, manmade, 518
Geometrical optics, classification, 3
Geometry for ray tracing, 134
Giordmaine, J. A., 562
Goldstein, R., 695
Goodman, J. W., 249, 677
Goudsmit, S., 629
Graphical construction:
auxiliary ray diagrams, 53
oblique ray method, 52
thin lenses, 63

parallel ray method, 50
for refraction, 13

Graphical methods of ray tracing, 33
Gratings (see Diffraction gratings)
Ground state of atoms, 615
Group velocity, 250
and wave velocity, 252

Gullstrand's schematic eye, 190

Haidinger, W. K. von, 292
Haidinger fringes, 292
Half-period zones:
Fresnel, 380
vibration spiral, 387

Hall, E. E., 533
Hallback, K., 143
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Halpern, 0., 353
Hamilton, Sir William, 557
Hanbury-Brown, R., 350, 351
Haner, A. B., 352
Hansen, H. M., 689, 690
Hardy, A. C., 28
Harmonics in light waves, 652
Hamwell, G. P., 493
Harris, R. V., 605
Harrison, G. R., 370, 372, 439, 470
Hecht, E., 602, 633, 647
Height of ray through a lens, 152
Heisenberg, W., 623, 704
Helium:
energy levels, table of, 638
and neon: energy level diagrams, 640
gas laser, 636
laser, photograph of, 641
spectral lines of, 638
table of energy levels, 638

spectral lines of, 452
Herapath, W. B., 505
Herschel prism, 32
Hertz, H. R., biography, 216
Hertz experiments on electromagnetic waves,

432
Hertz unit of frequency, defined, 216
Herzberg, G., 454
High-powered lasers, COl, 643
Highly convergent light, interference of, 576,

577
Hildebrand, B. P., 677
Hill, A. E., 652
Holograms:
absorption, 665
dependence on coherence length, 662
details, spatial frequency, 663
full circle, 674
intermodulation frequency, 663
multiplex, 669
phase, 665
photograph of interference details, 663
reflection, 673
thick, or volume, 665
viewing of, 664

Holography, 658-677
Gabor zone plate, 659
real images, 664
student laboratory, 675
virtual images, 664

Hooke, R., biography, 220
Hooke's law, stretching of a spring, 220
Houstoun, R. A., 412, 703
Hufford, M. E., 385
Hull, G. F., Jr., 271
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Human eye:
accommodation of, 199
hypermetropia of, 199
myopia of, 199
optical components, 199
presbyopia, 199
spectacle lenses for, 199, 200

Huygens' eyepiece, 205
Huygens' principle, 260, 379
Huygens' secondary wavelets, 317, 379
Hydrogen, spectrum lines of, 452
HyIleraas, E. A., 594
Hyperfine structure, photographs, 308

Image:
distance, formula for a lens, 64
formation, by a single surface, 46
magnification, for a single surface, 54
for paraxial rays, 35
space, defined, 69
virtual,65-67

Indeterminacy, principle of, 705
Index, dispersive, 19
Index of refraction:
for air, 10
biaxial crystals, 554
calcite crystals, 552
defined,9
fused quartz, 552
gemstones, 519, 553
by interference methods, 282
for optical glasses, 19, 177,476,722
quartz crystals, 552
along the optic axis, 589

relative, 13
uniaxial crystals, 510, 522

Infrared light, radiation chart, 234
Ingalls, A. R., 370
Intensity:
of double-slit fringes, 265, 345
of light, 231
of waves, 229

Intensity function, complex amplitudes, 300
Interference:
double-slit experiment, 265
in highly convergent light, 576
by multiple reflections, 286
of polarized light, 564-579
in thin films, 287
of two beams, 259 - 284
of white light, 572
wide angle, 352

Interference filter, 312
Interferometer:
correlation, 351
Fabry-Perot, 301

Interferometer:
Jamin, 283
~ach-Zehnder, 283
~ichelson, 271
Twyman-Green, 281

Intermodulation frequency, holography, 663
Internal conical refraction, 556
Internal reflection, 527
Inverse fourth power law, Rayleigh scattering,

469
Inverse square law, 230, 231
Inverse Stark effect, 692
Inverse Zeeman effect, 685
Ionized calcium energy level diagram, 630
Iris of the human eye, 189
Isenor, N. R., 352
Ives, H. E., 420

Jackson, C. ~., 605
Jaseja, T. S., 655
Jennison, R. C., 249
Jeong, T. H., 667, 672
Johannsen, J., 510

Kapany, N. S., 41
Kellermann, K. I., 352
Kellner-Schmidt optical system, 208
Kellstrom, E. C., 399
KeIlstrom, G., 270
Kelvin, Lord, 423
Kennard, E. H., 424, 698
Kerr, J., biography, 691
Kerr ceIl, 694
speed of light experiments, 408
uncertainty principle, 710

Kerr constants, table of, 695
Kerr electro-optic effect, 693
Kerr magneto-optic effect, 691
Kingsbury, E. F., 694
Kirchhoff, G., 445
Kirchhoff's law of radiation, 445
Krypton, spectrum lines of, 65 I
Kuerti, G., 418

Lagrange theorem associated with Abbe's sine
condition, 175

Lambert, J., biography, 231
Land, E. H., 505
Lanthanum spectrum, hyperfine structure, 308
Laser beam:
angular spread, '648
coherence length defined, 650
etalon control of oscillation mode, 649
intensity distribution in, 648



Laser design, 634
Lasers, 632-656
applications, 654
Brewster's windows, 654
confocal mirror arrangement, 642
frequency doubling, 652
hemispherical mirror arrangement, 642
high-powered, 643
modes of oscillation, 647
plane mirror arrangement, 642
Q switching, Q spoiling, 645
safety of operation, 653
speckle effect, 653
spherical mirror arrangement, 642
table of types, 655

Lateral chromatic aberration, 177
Lateral coherence, lasers, 650
Lateral displacement of light ray in a parallel

plate, 28
Lateral magnification:
lenses, 64, 81
single surface, 54

Lateral spherical aberration, 153, 158
Law of absorption, exponential, 281
Laws of reflection, 11
Laws of refraction, 1I, 12
Left-handed circularly polarized light, 255
Leith, G. N., 662
Lens formulas, derivation of, 67, 72, 73
Lens makers' formula, 67, 73
Lenses:
anastigmat Goerz, 194
camera, 193-195
field of view, 124
image aberrations, 149 - 184
astigmatism, 167
chromatic effects, 176
coma, 162
curvature of field, 170
distortion, 171
spherical aberration, 153

magnifying, 195 -199
meniscus, 193
speed of, 191
speed panchro, 194
symmetrical, 193
thick,79-95
thin, 60-73
zonal rays, defined, 175

Leone, F. C., 418
Light:
aberration, Airy's experiment, 414
absorption, 231
Doppler effect, 234
electromagnetic character, 423 - 436
Galileo's experiment, 6
intensity, decay curve, 232
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Light:
law of absorption, 23 I
Newton's corpuscular theory, 8
photons versus waves, 712
quanta, photons, 211
rays, reversibility of, 14
speed of, 6, 403-421
velocity of, 6, 403-421
waves versus photons, 712

Light sources (see Sources of light)
Line spectra, 450
(See also Spectra)

Liquids, rotation of polarized light, 595
Littrow mounting, diffraction grating, 373
Lloyd's mirror experiment, 268, 269
Lobe diagrams for diffraction patterns, 335
Lommel, E. V., 329
Longitudinal chromatic aberration, 176
Longitudinal spherical aberration, 153, 158,

165
Loofbourow, J. R., 439, 470
Lord, R. C., 439, 470
Lorentz, H. A., biography, 283
Luminosity curve, 178
Lummer-Brodhun cube, 27
Lummer-Gehreke plate, 3 10
Lunar orbiter, montage of moon, 600
Lunar reflector, prism array, 27,655
Lyman, T., biography, 370
Lyman ghosts, diffraction grating, 370
Lyman series of hydrogen, 615
Lyot, B., 575

McCuskey, S. W., 418
McMaster, W. H., 572
Magnetic double refraction (Voigt effect),

688
Magneto-optics, 678 - 691
Magnification of image/object size:
lateral, 54, 64, 81, 104, 20 I, 204
magnifiers, 196, 197
microscopes, 201
single spherical surface, 54
spherical mirrors, 104
telescopes, 203, 204
thick lenses, 89
thin lenses, 64

Magnifying lenses, power of, 196-198
Maiman, T. H., 635
Malus, E. L., 503
Mangin mirror, 110
Martienssen, W., 352
Maxwell, J. C., biography, 424
Maxwell's equations, 424-436
for transparent media, 489

Mean life of atoms in metastable states, 631
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Meissner, K. W., 309
Mercury, spectrum of, 452
Mercury arcs, light sources, 440
Meridian plane, defined, 135
Metallic arcs, light sources, 439
Metallic reflection, 534-542

(See also Reflection)
Metals, optical constants of, 536
Metastable states, 633
in atoms, 629, 630

Michelson, A. A., 7, 9, 271, 408
biography, 271

Michelson interferometer, 271
circular fringes with, 273
localized fringes, 275
measurement of standard meter, 279
visibility of fringes, 277
white light fringes, 276

Michelson-Morely experiment, 416
Michelson stellar interferometer, 349
Microscopes:
application of uncertainty principle, 709
electron, 333
eyepieces, and objectives, 20 I
magnification, 201
magnifying power, 196,201
numerical aperture, 333
objectives, 168
phase contrast: bright illumination, 603
dark illumination, 603

resolving power, 332
Microwaves:
chart of, 234
diffraction of, 334
production of, 271

Miller, D. C., 417
Minimum angle of resolution, 327
Minimum deviation by a prism, 30
Minor, R. S., 538
Mirrors:
astigmatism, III
field of view, 122-124
focal length, 98
focal points and planes, 98
graphical construction for, 99
power of, 104
spherical, 98 - III
aberration, 109

thick (see Thick mirrors)
Missing orders, double-slit fringes, 342
Mitchell, A. C. G., 461
Modem wave optics, 596
Modes of oscillation, lasers, 647
Molecular scattering, 468
Monk, G. S., 93, III, 169

Monochromatic aberrations with lenses,
151-184

Monochromatic light, 29
polarizing filter, 575

Montage of moon's surface, spatial filtering, 600
Moon reflector, mosaic of prisms, 27
Morton, V. K., 334
Motz, H., 435
Multiple holograms, 669
Multiple reflections, 298
intensity function, 300

Murray, J. J., 655

Nanometers, unit of length, 19
Natural breadth of spectum lines, 650
Negative biaxial crystals, 554
Negative nodal points, 90
Negative principal points, 90
Nelson, D. F., 695
Neon (see Helium, and neon)
Neutralizing power of a lens, 86
Newton, Sir Isaac, biography, 294
corpuscular theory, 8

Newton's rings, 294
Nicol, William, biography, 510
Nicol prism, light polarizer, 510
Nodal points, thick lenses, 88
Nodal slide, 93
Nomography, object-image relations, 57
Normal dispersion, transparent solids, 475
Norris, D., 60 I
Number system, abbreviations for, 725
Nussbaum, A., 143

Object field, defined, 122
Object-image formula for lenses, 62
Object space, defined, 69, 119
Oblique ray method, graphical construction:
single spherical surface, 52
spherical mirrors, 102
thick lenses, 82
thin lenses, 63

Oblique rays, defined, 130
Oil-immersion microscope objectives, 168
O'Neill, E. L., 143
Opaque strip, Fresnel diffraction around, 400
Optical activity, 580-595
dispersion, 582
Fresnel's theory of, 584
wave surface diagrams for, 586-588

Optical center, thick lenses, 88
Optical computer, 596 - 598
Optical density defined, 10



Optical glasses, table of refractive indices, 19,
177,722

Optical instruments, 188-210
Optical path, defined, 10
Optical pumping, described, 63 I
Optical ring sights for guns, 578
Orbitals, Bohr atom:
configurations of, 621, 622
electron designations, 621
elliptical orbits, 619
energy of, 616
penetrating, 619
quantum numbers for, 621
radii of circular orbits, 613
shells and subshells, 621
speed of electrons, 613

Ordinary ray, doubly refracting crystals, 506
Ordinary wave surfaces, doubly refracting crys-

tals, 545
Orthoscopic doublet, eye piece, 173
Overlapping orders, diffraction grating, 363

Packets, wave, described, 235
Page, L., 429
Parabolic mirrors, III
Parallel light interference, 576
Parallel polarizers, 50S, 511
Parallel ray method, graphical construction:
single spherical surfaces, 50
spherical mirrors, 98
thick lenses, 79
thin lenses, 62

Paraxial rays:
defined, 38, 47
plane surfaces, 38
single spherical surfaces, 47
spherical mirrors, 10I
thick lenses, 85
thin lenses, 62

Paschen mounting, diffraction grating, 374, 375
Pauli exclusion principle, 619
Pearson, F .• 408
Pease, F. G., 408
Period of vibration, defined, 216
Perrin, F. H., 28
Peters, C. W., 652
Petzval surface:
defined, 170
graphs of, 171

Pfeiffer, C., 537
Phase angles, defined, 225
Phase-contrast microscope, 602
Phase hologram, 665
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Phase plate in microscope, 603
Phase velocity, defined, 228
Photoelectric effect, 700
Photons:
energy of, 703
energy hv, 614
light waves, 614
momentum of, 703

Physical constants, table of, 716
Pile of plates for polarizing light, 50 I
Pincushion distortion, 172, 174
Pinhole camera, 4
Pink ruby, gemstones, 521
Planck, Max, biography, 448
Planck's constant, 449, 613, 701
blackbody radiation, 449
Bohr atom, 612
h, 449, 613, 701
11 (h-bar), 613, 70 I

Plane mirrors, field of view, 122
Plane parallel film, interference, 288
Plane polarized light, 255
defined,499
rotation in crystals, 580-595

Ploss, R. S., 695
Pockels cell, 696
Pockels electro-optic effect, 695
Pockels modulator:
laser, 695
light, 695

Pokels Q switching, 645
Polarized light, 497 - 520
analysis of, 571 - 573
Brewster's law, 500
by calcite crystals, 506
circularly, 564
degree of, 502
by dichroic crystals, 504
by double refraction, 50S, 508
elliptically, 564
interference of, 564-579
nicol prism, 510
by a pile of glass plates, 50 I
with polaroid, 504
by quartz crystals, 506
by reflection, 498
resolution into components, 509
Rochon prisms, 513
by scattering, 514 - 5 16
Wollaston prism, 513

Polarizing angle, 498 - 500
Polarizing crystals, 506
Polarizing filter, monochromatic, 575
Polaroid, polarizing film, 505
Population inversion in atoms, 631
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Position factor:
defined, 158
object-image relations, 158
spherical aberration factor, 158

Positive biaxial crystals, 554
Power:
dispersive, 19
of the human eye, 190
of magnifying lenses, 196-198
of microscopes, 332
notation, 55
for lenses, 55
for spherical surfaces, 55
for wave surfaces, 55

spectacle lenses, 75
of spherical mirrors, 104
of spherical surfaces, 55
of telescopes, 330
of thick lenses, 85
of thin lenses, 70, 75

Poynting, J. H., biography, 491
Poynting's theorem, dispersive medium, 491
Preston, T., 270, 329, 384,491
Principle:
of complementarity, 707
Fermat's, 14
of indeterminacy, 705
of reversibility of light rays, 14
of uncertainty, 705

Principle angle of incidence, defined, 535
Principle planes for polarizing crystals, 507
thick lenses, 81 - 87

Principle points, thick lenses, 81 - 87
Principle quantum numbers, defined, 613, 620,

621
Principle sections, polarizing crystals, 507
Principle spectral series, 453
Prism:
chromatic resolving power, 327
diopter defined, 32
direct vision, 38
dove, 26
Herschel, 32
refraction by, 29
roof, 26
thin, 32
total reflection, 27

Propagation of light, rectilinear, 4, 395
Propagation number, defined, 227
Provostaye, F., 502
Pulfrich refractometer, 28

Q spoiling, Q switching lasers, 645
Quantum mechanics, 704
Quantum numbers, 613-615

Quantum optics, classification, 3
Quarter-wave plates, 567
Quartz:
double refraction by, 588
fused, table of refractive indices, 552
optical activity, 581-594
table of refractive indices along the axis,
589

rotatory dispersion, 588, 589
Quartz crystals:
polarized light, 506
table of refractive indices, 552

Radiation:
from an accelerated electric charge, 430
blackbody, hot solids, 449
from a charge in periodic motion, 432
continuous spectra, 447
Kirchhoff's law, 445
line spectra, 450
Planck's law, 449
solar, 453
Stefan-Boltzmann law, 448
Wien's displacement law, 448

Radio waves:
chart of, 234
speed of, 8

Radius of Bohr circular orbits, 613
Raman, C. Y., 469
Raman effect, 469
Ramsden eyepiece, 206
Random phases, addition of many waves, 244
Rare-to-dense reflection, 25
Ray height through a lens, 152
Ray tracing, 130-143
calculations for, 134
geometry for, 134
graphical methods, 13I
oblique ray method, 52, 63, 82, 102
parallel ray method, 50, 62, 79, 98
paraxial rays, 47, 62, 85, 101
in prisms, 33
optically active, 589

tables of sample calculations, 136, 140
Rayleigh, Lord, zone plates, 386
Rayleigh scattering, 467
Rayleigh's refractometer, 284
Real images:
holography, 664
lasers, 664
single spherical surfaces, 47
spherical mirrors, 101
thick lenses, 82
thin lenses, 62

Rear stops, 117



Rectangular aperture, diffraction by, 324, 325
Rectilinear propagation of light, 4, 395
Red sunset, blue sky, scattering experiment,

515,516
Reduced vergence, 54, 75, 105
Reflectance:
defined, 525
Fresnel's laws, 524
of metals, 535, 536

Reflecting power, effect on fringe sharpness,
304

Reflection:
change of phase, 287
dense-to-rare media, 25
dielectrics: amplitudes and intensities,

525-527
curves for, 525
formulas, 524
polarized components, 529, 530

azimuth angles, 530
elliptically polarized light, 531
normal incidence, 526
penetration into rare medium, 533
phase changes: external reflection, 528
internal reflection, 529
polarized light, 527 - 530

external, 52
Fermat's principle, 16
internal, 527
elliptically polarized light, 531

lawof,ll
metallic: azimuth angles, 540
description of, 538
electric vector vs. magnetic vector, 542
optical constants, 536
from metals, 534-542

multiple, interference with, 286
optical constants of metals, 536
at plane surfaces, 24
from spherical mirrors, 98-112
total,26
Wiener's experiments, 541

Refraction:
at both surfaces of a lens, 79
critical angle, 25
Fermat's principle, 16
graphical construction, 13, 14
law of, II
in a parallel plate, 28
at plane surfaces, 25
by a prism, 29
at spherical surfaces, 44

Refractive index (see Index of refraction)
Refractometer:
Pulfrich, 28
Rayleigh's, 284
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Relative index of refraction, 13
Relativistic mass, 419
Relativity:
aberration of light, 420
change of mass, 419
Fresnel dragging coefficient, 420
general theory, 419

Residual rays, 464
Resolving power:
chromatic, 303
diffraction gratings, 364
Fabry-Perot, 305
of a microscope, 332
by a rectangular aperture, 325
single aperture, 325
of a telescope, 330

Resonance:
in lasers, 633
radiation: from gases, 461, 462
sodium spectrum, 626

Resonant cavity, laser principles, 646
Retina of the eye, 189
Reversibility of light rays, 14, 287
Richtmyer, F. K., 424, 698
Right-handed circularly polarized light, 255
Right-handed quartz crystals, 586
Rings:
interference in convergent polarized light,

577
Michelson's interferometer, fringes, 274
Newton's, 294

Risley prism, variable deviation by, 33
Rochester, G. D. 455
Rochon prism, polarized light, 513
Rods in the retina of the eye, 189
Romer, 0., 403
Roof prism, 26
Rotating mirror experiment, speed of light, 8
Rotation:
of polarized light in crystals, 580 - 595
of polarized light in liquids, 594

Rotatory dispersion:
complementary colors, 584
Fresnel's theory, 584
left- and right-handed quartz, 586
power, defined, 595

Rowland, H. A., biography, 368
Rowland circle, for diffraction gratings, 374
Rowland diffraction grating, concave, 370
Rowland mounting, concave gratings, 374
Ruby energy level diagram, 635
Ruby laser, 635
Ruby pumping of crystals, 636
Ruled gratings (see Diffraction gratings)
Rutherford, L. M., 612
Rutile, manmade crystal, refractive. indices, 519
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Saggital rays through a lens, 163
Sandbox, experimental holography base, 675
Sapphires, gemstones, 518
Scattering:
and absorption of light, 458
blue of the sky, 514
coefficient, 458
polarization by, 514
Rayleigh, 467
red sunset experiment, 5 17
and refractive index, 471
by small particles, 466
theory of, 470

Schawlow, Ao Ho, 632
Scheel, Ko, 537
Schematic eye, Gullstrand's, 190
Schiff, L. I., 435, 698
Schlieren optics, 604, 605
concave parabolic mirror system, 606
photograph of a space shuttle, 605
symmetrical lens system, 604

Schmidt optical system, 110, 208
SchrOdinger, Eo, 623, 704
SchrOdinger's wave equation, 624, 625
Secondary focal lengths and planes, 45, 61
Secondary focal points and planes, 45, 61
Secondary principal points and planes, 81
Secondary spectrum, chromatic aberration, 182
Secondary wavelets, Huygen's principle, 379
Seidel sums, defined, 151
Selection rules:
in helium and neon lasers, 639
for one-electron transitions, 629
for two-electron transitions, 629

Selective absorption, 458
Selective reflection, 464
Semat, Ho, 698
Shankland, R. So, 418
Shape factor, defined for lenses, 154
Sharp series of spectrum lines, 452
Shock waves, schlieren optics, 605
Siegbahn, K. M. G., biography, 488
Significant1igures, examples of, 726, 727
Simple harmonic motion:
addition along the same line, 239
amplitude of, 234
harmonic motion defined, 216
period of, 221, 226
phase of, 225
at right angles, 253
theory of, 217

Sine conventions:
principles of, 418
for ray tracing, 134
for a single surface, 50
special theory of, 418-421

Sine theorem:
and Abbe's sine conditions, 173
applied to coma, 175

Sine waves, described, 224
Single-slit diffraction, 315 - 335
amplitude and intensity diagrams, 320
applied principles of diffraction: to a micro-

scope, 332
to a prism, 328
to a telescope, 330

derivation of intensity formula, 3 18
diffraction pattern photographs, 317, 399
experimental apparatus for diffraction pat-

tern, 316
Fraunhofer diffraction, 315 - 323
fringe patterns, intensity table, 320

Fresnel diffraction, 397
division of wave front, 397
photographs of patterns, 399
x-ray diffraction pattern photograph, 399

fringe intensities, 318
spacing of maxima, 329

geometry for Fraunhofer diffraction, 318
graphical treatment of amplitudes, 322, 323
minimum angle of resolution, 331

photographs of diffraction patterns, 3 17, 325,
399

Rayleigh's criterion, 327
resolving power, 325
circular apertures, 329
of a prism, 328
two slit sources, 327

vibration curves for, 323
Single spherical surface, 44 - 58
conjugate points and planes, 47
curvature of, in diopters, 55
diopters, defined, 55
focal points and planes, 45
image formation, 46
magnification, 54
nomography for, 57
oblique ray method, 52
parallel ray method, 50
power of, 55
reduced vergence of, 54
sign conventions, 50
virtual images, 47

Skew rays, defined, 135
Smith, To, 143
Smith, W. Yo, 633
Snell, Wo, biography, 12
Snell's law, 12
ray tracing methods, 130-143

Sodium:
energy levels for, 626
lamp, light sources, 441



Sodium:
spectral lines, 452
spectrum, 452, 626
resonance lines, 626

structure of atoms, 626
Soleil compensator, 569, 570
Sommerfeld, A., 619
Sorokin, P. P., 633
Sound waves, diffraction of, 334
Sources of light, 438 - 444
bunsen flame, 442
classification of, 438
metallic arcs, 439
solids, 439
sparks, 442
vacuum tubes, 443

Southall, J. P. C., 107, 166
Space shuttle, schlieren optics, 605
Spatial coherence, 633, 650
Spatial filtering, 597
montage of moon, 600

Spatial frequency, hologram details, 663
Spark, spectral source, 442
Specific rotation:
plane of polarization, defined, 595
polarized light, 583
in liquids, 595

Speckle effect, lasers, 653
Spectacle lenses, 199, 200
Spectra, 444-455
band,453
of cadmium, 452
classification of, 445-455
continuous emission, 447
of diatomic molecules, 454
diffuse series, 453
Fraunhofer lines, 453
fundamental series, 453
of helium, 452
of hydrogen, 452
line, 450
of mercury, 452
photographs of, 451
principal series, 453
series of lines, 452
sharp series, 453
of sodium, 452
of the sun, 453

Spectral range, defined for Fabry-Perot inter-
ferometer, 309

Spectral series, sharp, principal, diffuse, and
fundamental, 453

Spectrum lines, shape of, 308
Spectrum sources:
bunsen flame, 442
metallic arcs, 439
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Spectrum sources:
sparks, 442
vacuum tubes, 443
wavelength of, 19

Speed of light, 6, 403-421
aberration method, 405
Bradley's method, 405
electrical units ratio, 411
Fizeau's experiments, 6
Foucault's experiments, 8
Galileo's experiments, 6
Michelson's experiments, 406-408
in moving matter, 412
Kerr cell method, 408
radar waves, 411
radio waves, 8, 410
Romer's method, 403
rotating mirror experiments, 8
in stationary matter, 8, 411
toothed wheel experiments, 6
vacuum pipe experiments, 408
x-rays, 8

Spherical aberration, 153
compared with coma, 164
corrections for, 159
negative, 153
positive, 153
spherical mirrors, 109, 110

Spherical harmonics, wave mechanics, 623
Spherical mirrors, 98 - 112
field of view, 124
formulas for, 102, 107
power of, 104
rules for, 102

Spherical surface, aplanatic points for, 166
Spiller, E., 352
Spring, coiled: tension in, 218, 219

vibrations of, 221
Standard meter in wavelengths of light, 281
Star rubies and sapphires, 519
Stark effect, 691
Stefan, J., biography, 448
Stefan-Boltzmann law, 448
Stellar interferometers:
correlation, 351
Michelson, 349

Stilwell, A. R., 420
Stimulated emission, 632, 633
Stokes, Sir George, biography, 287
Stops:
in lens systems, 115 - 126
between lenses, 118
in occulars, 205, 206

Straightedge, Fresnel diffraction, 388, 393
Stratton, J. A., 249
Stretch constant, coiled spring, 216
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Strip division of wave fronts, Fresnel diffrac-
tion, 389

Stroke, G. W., 370
Strong, H. M., 520
Strontium titanate:

crystals, 519
refractive indices, 22, 519

Student laboratory, lasers, and holography, 675
Subshells, electron, 720, 721

in atoms, 619
Superposition of waves, 238-256

Fourier analysis, 248

Tangential rays for lenses, 163
Tangherlini, F. R., 703
Telephoto lens for cameras, 195
Telescope:

astronomical, 202
entrance and exit pupils for, 332
field of view, 203
magnification, 202 - 204
resolving power of, 330
ultraviolet light, 209

TEM, laser modes of oscillation, 647
(See also Lasers)

Teubner, B. G., 688
Thick lens:

combinations, 93
made of thin lenses, 91
nodal points of, 82
optical center, 88

Thick lenses, 78-93
conjugate relations, 82
focal points and planes, 81 - 87
formulas for, 84-87
negative nodal points, 90
negative principal points, 90
oblique ray method, 82
principal points and planes, 81 - 87
ray tracing through, 134

Thick mirrors, 105
formulas for, 107
ray tracing methods, 133

Thick plates, Haidinger fringes, 292
Thin films:

interference in, 287
non-reflecting, 295

Thin lens:
combinations, 68, 91
derivation of equations for, 72
object-image formula, 62
power of, 70
virtual images, 65

Thin lenses, 60-73
conjugate planes and points, 62

Thin lenses:
in contact, 71
focal lengths, planes, and points, 60
image distance formula, 64
image formation with, 62
kinds of, 44
oblique ray method. 63
optical properties of, 60
power of, 75

combinations of, 75
vergence of, 75

Thin prisms:
combinations, 32
deviation by, 32

Third-order theory of aberrations, 151
Thomson, G. P., 704
Tigers eye, gemstones, 520
Tolansky, S., 301
Tolman, R. C., 419
Toothed wheel experiment, speed of light. 6
Total reflection:

fiber optics, 40
in fibers, 40
prisms, 27

array on the moon, 27
Tourmaline crystals, polarization by, 504
Townes, C. H., biography, 632, 655
Transform plane, optical computer, 597, 598
Transmission, limits in solids. table of, 460
Transverse waves, defined, 223
Triple prisms, array on the moon, 655
Tungsten lamp, light sources, 439
Twiss, R. Q., 350, 351
Twyman, F., 282
Tyndall, J., 468

scattering of light. 468

Ultraviolet light:
chart for, 234
telescope, 209

Uncertainty principle, 705
Uniaxial crystals:

defined, 544
double refraction (see Double refraction,

uniaxial crystals)
optic axis, 546

Upatnicks, J., 662

Vacuum spectrograph, diffraction grating, 375
Velocity of light (see Speed of light)
Velocity of photons, 703
Verdet constant:

Faraday effect, 686
table of, 686



Vergence, reduced: curvature of surfaces and
waves, 54, 75, 105

image waves, 55
mirrors, 105
object waves, 55
power of mirrors, 105
power of single surface, 55
power of thin lenses, 75

Verrill, J. F., 370
Vertex power of a thick lens, 85
Vibration curves:
diffraction gratings, 365
double-slit diffraction, 346
Fresnel diffraction: circular aperture, 386
circular division of spherical waves, 389
Cornu's spiral, 389
opaque strip, 400
single-slit, 397
straight-edge, 394
strip, division, 389

single slit, Fraunhofer diffraction, 322
Vibration frequency, 216
Vibrations and waves, 215 - 236
Vibratory motion, theory of, 217
Villa, J. J., 211
Virtual images:
holography, 664
lenses, 65
single spherical surface, 47

Visibility of fringes in interferometer, 277
Visible light, chart, 234
Vitreous humor of the human eye, 189
Voigt, W., 688
Voigt effect or magnetic double refraction, 688
Volkmann, H., 597
Von Helmholtz, H. L. F., 485

Wadsworth stigmatic mounting, diffraction
grating, 376

Wampler, E. J., 27
Water:
dispersion of, 492
speed of light in, 8

Watson, G. N., 299
Wave and group velocity, 250
effect on dispersion, 487
graph of, 252

Wave energy, 229, 230
Wave equation:
deBroglie, 623
Schrodinger, 624

Wave forms, transverse waves, 223
Wave functions, SchrOdinger's wave equation,

624
Wave optics, 3
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Wave packets:
described, 235
Fourier analysis, 248

Wave surface diagrams:
biaxial crystals, 553
optically active crystals, 586, 588

Wave velocity:
defined, 228
versus group velocity, 250

Wavelength, 232
in angstroms, 19
chart of all electromagnetic waves, 234
defined, 223
in nanometers, 19

Waves:
absorption of, 230
amplitudes of, 224
crests of, 223
intensity of, 229
period of, 224
phase angles of, 224
versus photons, 712
sine, 224
superposition of, 238-256
transverse, machine for demonstrating, 223

Weinreich, G., 652
White, H. E., 41,189,270,419,454,514,515,

517,612,624,625,650,652,684,691,698
White light:
dispersion by a prism, 18
fringes, with interferometer, 276
interference of polarized light, 572

Whittaker, E. T., 299
Wide-angle interference, 352
Wien, W., biography, 448
Wiener, 0., 244
Wiener's experiments, metallic reflection,

phase changes, 541
Williams, W. E., 310, 371
Wilson, W., 619
Wind tunnel, schlieren optics, 604
Window, field of view, 122, 123
Wollaston, W. H., 18
Wollaston prism, polarized light, 513
Wood, R. W., 249, 324, 371, 391, 464, 465,

480,482,536
biography, 462

X-rays:
Bragg rule, 666
Compton effect, scattering, 70 I
diffraction of, 396, 666
dispersion curves for, 488
interference of, 270
refraction of, 488
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X-rays:
speed of, 8
on wavelength chart, 234

Young, T., biography, 238,406
Young's experiment, 261, 262

formula for fringes, 263
intensity distribution of fringes, 265

Zajac, A., 602, 633, 647
Zeeman, P., biography, 679

Zeeman effect, 679 - 684
anomalous, 684
longitudinal patterns, 682
normal triplet, 683

Zeman sky, M. W., 461
Zernike, F.:

biography, 602
phase contrast microscope, 603

Zonal rays of a lens, 175
Zone plate:

amplitude curves for, 387
patterns for, 385
Rayleigh's, 386

Zone radius of rays through a lens, 152
Zworykin, V. K., 334


