

DAVID K. CHENG
SYRACUSE UNIVERSITY

ADDISON-WESLEY PUBLISHING COMPANY
Reading, Massachusetts Menlo Park, California
London Amsterdam Don Milis, Ontario Sydney

This book is in the APDISON WESLEY SERIES IN ELECTRICAL ENGINEERING
SPONSORING EDITOR: Tom Robbins
PRODUCTION EDITOR: Marilee Sorotskin
TEXT DESIGNER: Melinda Grbsser
ILLUSTRATOR: Dick Morton
COVER DESIGNER AND ILLUSTRATOR: Richard Hanzus
ART COORDINATOR: Dick Morton
PRODUCTION MANAGER: Herbert Nolan

The text of this book was composed in Times Roman by Syntax International.

Library of Congress Cataloging in Publication Data
Cheng, David K. (David-Keun), date-
Field and wave electromagnetiçs.
Bibliography: p.

1. Electromagnetism. 2. Field th :ory (Physics)
I. Title.

QC760.C48 $\quad 530.1$ '41 : : 81-12749
ISBN 0-201-01239-1 \quad i, AACR2

Copyright © 1983 by Addison-Wesley Publishing Company, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permissian of the publisher. Printed in the United States of America. Published simultaneously in Canada.
ISBN 0-201-01239-1
ABCDEFGHIJ-AL-89876543

Contents

1 The Electromagnetic Model

1-1 Introduction : 1
1-2 The electromagnetic model 3
1-3 SI units and universal constants 7
Review questions 9
2 Vector Analysis
2-1 Introduction 10
2-2 Vector addition and subtraction 11
2-3 Products of vectors 13
2-3.1 Scalar or dot product . . 13
2-3.2 Vector or cross product : 15
2-3.3 Product of three vectors 16
2-4 Orthogonal coordinate systems 18
2-4.1 Cartesian coordinates 21
2-4.2 Cylindrical coordinates 24
2-4.3 Spherical coordinates 31
2-5 Gradient of a scalar field 37
2-6 Divergence of a vector field 40
2-7 Divergence theorem 45
2-8 Curl of a vector field 48
2-9 Stokes's theorem 53
2-10 Two null identities 55
2-10.1 Identity I 55
2-10.1 Identity II $\quad 56$
2-11 Helmholtz's theorem 57
Review questions . . 60
Problems . 62

3 Static Electric Field.
3-1 Introduction
3-2 Fundamental postulates of electrostatics in free space

66
3-3 Coulonb's law 69
3.2.1 Electric field due to a system of discrete charges
3-3.2 Electric field due to a continuous distribution of charge
3-4 Gauss's law and applications 78
3-5 Electric potential : 82
3-5.1 Electric potential due to a charge distribution 84
3-6 Conductors in static electric field 91
3-7 Dielectrics in static electric field : . 95
3-7.1 Equivalent charge distributions of polarized dielectrics
3-8 Electric flux density and dielectric constant . 99
3-8.1 Dielectric strength 104

3-9 Boundary conditions for electrostatic fields 105
3-10 Capacitance and cepapators : 109
3-10.1 Series and parallel connections of capacitors
3-11 Electrostatic energy and forces . , 117
3-11.1 Electrostatic energy in terms of field quantities
3-11.2 Electrostatic forces : . 123
Review. questions 126

Problems : $\vdots 12 . \quad 128$
4
Solution of Electrostatic Problems

| 4-1 | Introduction | 133 |
| :--- | :--- | :--- | :--- |
| $4-2$ | Poisson's and Laplace's equations | 133 |
| $4-3$ | Uniqueness of electrostatic solutions | 139 |
| $4-4$ | Method of images | 141 |
| $4-4.1$ Point charge and conducting planes | 142 | |
| $4-4.2$ Line charge and parallel | | |
| conducting cylinder : | | 144 |
| $4-4.3$ Point charge and conducting sphere | 147 | |

CONTENTS
6 Static Magnetic FieldsSteady Electric Currents
5-1 Introduction 172
5-2 Current density and Ohm's law 173
5-3 Electromotive force and Kirchhoff's voltage law 177
5-4 Equation of continuity and Kirchhoff's current law 180
5-5 Power dissipation and Joule's law 182
5-6 Boundary conditions for current densitk 183
5-7 Resistance calculations 187
Review questions 191
Problems 192
6-1 Introduction 196
6-2 Fundamental postulates of magnetostatics in free space 197
6-3 Vector magnetic potential 202
6-4 Biot-Savart's law and applications 204
6-5 The magnetic dipole 209
6-5.1 Scalar magnetic potential 212
6-6 - Magnetization and equivalent current densities 213
6-7 Magnetic field intensity and relative permeability 217
6-8 Magnetic circuits 220
6-9 Behavior of magnetic materials 225
6-10 Boundary conditions for magnetostatic fields 230
6-11 Inductances and Inductors 233
6-12 Magnetic energy 241
6-12.1 Magnetic energy in terms of field quantities 244

\qquad

xiv CONTENTS

9-4.3 Lines with arbitarary termination 404

9-4.4 Transmission-line circuits $\quad \therefore \quad 407$
9-5 The Smith chart 411
9-5.1 Smith-chart calculations for lossy lines 420
9-6 Transmission-line impedance matching : 422
9-6.1 Impedance matching by quatter:
wave transformer
9-6.2 Single-stub matching 426
9-6.3 Double-stub matching $\quad 431$
Review questions 1 : 435
Problems i, i, 437

10 Waveguides and Cavity Ressonators
10-1 Introduction 443
10-2 $\begin{aligned} & \text { General wave behaviors along uniform : } \\ & \text { guiding structures }\end{aligned}$
10-2.1 Transverse electromagnetic waves . . 447
10-2.2 Transverse magnetic waves $\vdots 448$
10-2.3 Transverse electric waves 452
10-3 Parallel-plate waveguide 456
10-3.1 TM waves between parallel plates 457
10-3.2 TE waves between parallel plates 461
$10-3.3$ Attenuation in parallel-plate :
waveguides
10-4 Rectangular waveguides 467
10-4.1 TM waves in rectangular waveguides 467
10-4.2 TE waves in rectangular waveguides 471
10-4.3 Attenuation in réctangular waveguides 475
$10-5$ Dielectric waveguides 478
10-5.1 TM wayes âlong a dielectric slab . 479
10-5.2 TE waves along a dielectric slab " 483
10-6 Cavity resonators 486
$10-6.1 \mathrm{TM}_{\text {mup }}$ modes : 487
$10-6.2 \mathrm{TE}_{\text {mnp }}$ modes 488
10-6.3 Quality factor of cavity resonator 490
Review questions . . . 493
Problems : : 495

Antennas and Radiating Systems

11-1 Introduction 500
11-2 Radiation fields of elemental dipoles 502
11-2.1 The elemental electric dipole 502
11-2.2 The elemental magnetic dipole 505
11-3 Antenna patieftrs and ar tenna parameters 507
11-4 Thir linear antennas $5: 2$
11-4.1 The halt-wave aipole 515
11-5 Antenna arrays 517
11-5.1 Two-element arrays 518
11-5.2 General uniform linear arrays 521
11-6 Receiving antennas 527
11-6.1 Internal impedance and directional pattern 528
11-6.2 Effective area 530
11-7 Some other antenna types 532
11-7.1 Traveling-wave antenna 533
11-7.2 Yagi-Uda antenna 535
11-7.3 Broadband antennas 537
11-8 Aperture Radiators 540
References 545
Review questions 545
Problems 547
Appendix A Symbols and Units
A-1 Fundamental SI (rationalized MKSA) units 552
A-2 Derived quantities 552
A-3 Multiples and submultiples of units 554
Appendix B Some Useful Material Constants
B-1 Constants of free space 555
B-2 Physical constants of electron and proton 555

Pretace

The many books on introductory electromagnetics can be roughly divided into two main groups. The first group takes the traditional development: starting with the experimental laws, generalizing them in steps, and finally synthesizing them in the form of Maxwell's equations. This is an inductive approach. The second group takes the axiomatic development: starting with Maxwell's equations, identifying each with the appropriate experimental law, and specializing the general equations to static and time-varying situations for analysis. This is a deductive approach. A few books begin with a treatment of the special theory of relativity and develop all of electromagnetic theory from Coulomb's law of force; but this approach requires the discussion and understanding of the special theory of relativity first and is perhaps best suited for a course at an advanced level.

Proponents of the traditional development argue that it is the way electromagnetic theory was unraveled historically (from special experimental laws to Maxwell's equations), and that it is easier for the students to follow than the other methods. I feel, however, that the way a body of knowledge was unraveled is not necessarily the best way to teach the subject to students. The topics tend to be fragmented and cannot take full advantage of the conciseness of vector calculus. Students are puzzled at, and often form a mental block to, the subsequent introduction of gradient, divergence, and curl operations. As a process for formulating an electromagnetic model. this approach lacks cohesiveness and elegance.

The axiomatic development usually begins with the set of four Maxwell's equations, either in differential or in integral form, as fundamental postulates. These are equations of considerable complexity and are difficult to master. They are likely to cause consternation and resistance in students who are hit with all of them at the beginning of a book. Alert students will wonder about the meaning of the field vectors and about the necessity and sufficiency of these general equations. At the initial stage students tend to be confused about the concepts of the electromagnetic model, and they are not yet comfortable with the associated mathematical manipulations. In any case, the general Maxwell's equations are soon simplified to apply to static fields, which allow the consideration of electrostatic fields and magnetostatic fields separately. Why then should the entire set of four Maxwell's equations be introduced at the outset?
vi

It may be argued that Coulomb's law, though based on experimental evidence, is in fact also a postulate. Consider the two stipulations of Coulomb's law: that the charged'bodjes are very small compared with their distance of separation, and that the force between the charged bodies is inverscly proportional to the square of their distance. The question arises regarding the first stlpulation: How small must the charged bodies be in arder to be considered "very small" compared with their distance? In practice the charged bodies cannot be of vanus ag sizes (ideal point charges), and there is difficulty in determining the, "true" distance between two bodies of finite dimensions. For given body sizes the relative accuracy in distance measurements is better when the separation is larger. However, practical considerations. (weakness of force, existence of extraneous charged bodies, etc.) restrict the usable distance of separation in the laboratory, and experimental inaccuracies cannot be entirely avoided. This leads to a more important question concerning the inversesquare relation of the second stipulation. Even if the charged bodies were of vanishing sizes, experimental measurements could not be of an infinite accuracy no matter how skillful and careful an experimentor was. How then was it possible for Coulomb to know that the force was exactly inversely proportional to the square (not the 2.000001 th or the 1.999999 th power) of the distance of separation? This question cannot be answered from an experimental viewpoint because it is not likely that during Coulomb'ș time experiments could have been accurate to the seventh place. We must therefore conclude that Coulombis law is itself a postulate and that it is a law of nature discovered and assumed on the basis of his experiments of a limited accuracy (see Section 3-2).

This book builds the electromagnetic model using an axiomatic approach in steps: first for static electric fields (Chapter 3), then for static magnetic fields (Chapter 6), and finally for time varying fields leading to Maxwell's equations (Chapter 7). The mathematical basis for each step is Helmholtz's theorem, which states that a vector field is determined to within an additive constant if both its divergence and its curl are specified everywhere. Thus, for the development of the electrostatic model in free space, it is pnly necessary to define a single vector (namely, the electric ficld intensity \mathbb{E}) by specifying its divergende and its curl as postulates. All other relations in electrostatics for free space, including Coulomb's law and Gauss's law, can be derived from the two rather simple postulates. Relations in material media can be developed through the concept of equivalent charge distributions of polarized dielectrics.

Similarly, for the magnetostatic model in frete space it is necessary to define only a single magnetic fuxidensity vector \mathbf{B} by specifying its divergence and its curl as postulates all other formulas can be derived from these two postulates. Relations in material media can be developed through the concept of equivalent current densities. Of course, the validity of the postulates lies in their ability to yield results that conform with experimental evidence.

For time-varying fiejds, the electric andmagnetic field intensities are coupled. The curl \mathbf{E} postulate for the electrostatic model mist be modified to conform with Faraday's law. In addition, the curl B postulate for the magnetostatic model must also be modified inorder to be consistent with the equation of continuity. We have,
then, the four Maxwell's equations that constitute the electromagnetic model. I believe that this gradual development of the electromagnetic model based on Helmholtz's theorem is novel, systematic, and more easily accepted by students.

In the presentation of the material, I strive for lucidity and unity, and for smooth and logical flow of ideas. Many worked-out examples (a total of 135 in the book) are included to emphasize fundamental concepts and to illustrate methods for solving typical problems. Review questions appear at the end of each chapter to test the students' retention and unde-standing of the essential material in the chapter. The problems in each chaper are designed $t>$ reinforce su'dents' comprehension of the interrelationships bstween the different quantities in the formulas, and to extend their ability of applying the formulas to solve practical problems. I do not believe in simple-minded drill-type problems that accomplish little more than an exercise on a calculator.

The subjects covered, besides the fundamentals of electromagnetic fields, include theory and applications of transmission lines, waveguides and resonators, and antennas and radiating systems. The fundamental concepts and the governing theory of electromagnetism do not change with the introduction of new electromagnetic devices. Ample reasons and incentives for learning the fundamental principles of electromagnetics are given in Section 1-1. I hope that the contents of this book, strengthened by the novel approach, will provide students with a secure and sufficient background for understanding and analyzing basic electromagnetic phenomena as well as prepare them for more advanced subjects in electromagnetic theory.

There is enough material in this book for a two-semester sequence of courses. Chapters 1 through 7 contain the material on fields, and Chapters 8 through 11 on waves and applications. In schools where there is only a one-semester course on electromagnetics, Chapters 1 through 7, plus the first four sections of Chapter 8 would provide a good foundation on fields and an introduction to waves in unbounded media. The remaining material could serve as a useful reference book on applications or as a textbook for a follow-up elective course. If one is pressed for time, some material, such as Example 2-2 in Section 2-2, Subsection 3-11.2 on electrostatic forces, Subsection 6-5.1 on scalar magnetic potential, Section 6-8 on magnetic circuits, and Subsections 6-13.1 and 6-13.2 on magnetic forces and torques, may be omitted. Schools on a quarter system could adjust the material to be covered in accordance with the total number of hours assigned to the subject of electromagnetics.

The book in its manuscript form was class-tested several times in my classes on electromagnetics at Syracuse University. I would like to thank all of the students in those classes who gave me feedback on the covered material. I would also tike to thank all the reviewers of the manuscript who offered encouragement and valuable suggestions. Special thanks are due Mr. Chang-hong Liang and Mr. Bai-lin Ma for their help in providing solutions to some of the problems.

2 THE ELECTROMAGNETIC MODEL / 1

Fig. 1-1 A monopole antenna.

Fig. 1-2 An electromagnetic problem.
point of view, the source feeds into an open circuit because the upper tip of the antenna is not connected to anything physically; hence no current would flow and nothing would happen. This viewpoint, of course, cannot explain why communication can be established between walkie-talkies at a distance. Electromagnetic concepts must be used. We shall see in Chapter 11 that when the length of the antenna is an appreciable part of the carrier wavelength ${ }^{\dagger}$, a nonuniform current will flow along the open-ended antenna. This current radiates a time-varying electromagnetic field in space, which can induce current in another antenna at a distance.

In Fig. 1-2 we show a situation where an electromagnetic wave is incident from the left on a large conducting wall containing a small hole (aperture). Electromagnetic fields will exist on the right side of the wall at points, such as P in the figure, that are not necessarily directly behind the aperture. Circuit theory is obviously inadequate here for the determination (or even the explanation of the existence) of the field at P. The situation in Fig. 1-2, however, represents a problem of practical importance as its solution is relevant in evaluating the shielding effectiveness of the conducting wall.

Generally speaking, circuit theory deals with lumped-parameter systemscircuits consisting of components characterized by lumped parameters such as resistances, inductances, and capacitances. Voltages and currents are the main system variables. For DC circuits, the system variables are constants and the governing equations are algebraic equations. The system variables in AC circuits are time-dependent; they are scalar quantities and are independent of space coordinates. The governing equations are ordinary differential equations. On the other hand, most electromagnetic variables are functions of time as well as of space coordinates. Many are vectors with both a magnitude and a direction, and their representation and manipulation require a knowledge of vector algebra and vector calculus. Even in static cases, the governing equations are, in general, partial differential equations. It

[^0]
1-2 THE ELECTROMAGNETIC MODEL
 - HE ELECTROMC MODEL

is essential that we are equipped to handle vector quantities and variables that are both time- and space-dependent. The fundamentals of vector algebra and vector calculus willibe developed in Chapter 2. Techniques for solving partial differential equations are heeded in dealing with certain types of electromagnetic problems. These techniques will bit disichssed in Chapter 4 . The importance of acquiring a facility in the use of these mathematical tools in the study of electromagnetics cannot be overemphasiżed.

There are two approaches in the developntent of a scientific subject: the inductive approach and thetdeductive approach. Using the inductive approach, one follows the historical developiment of the subject, starting with the observations of some simple experiments and inferring from them laws and theorems. It is a process of reasoning from particular phenomena to general principles. The deductive approach, on the other hand, postalatesia few fundamental relations for an idealized model. The postulated relatidis atre axioms, from which particular haws and theorems can be derived. The validity of the model and the axioms is verified by their ability to prediet consequences thati cherk with experimental observations. In this book we prefer to use the deductive or axiomatic approtich because it is more elegant and enables the development of lie subject of electromagnetes in an, orderly way.

The idealized model we adopt for studying a scientific subjeet must relate to real-world situations and be able to explain physical phenomena; otherwise, we would be engaged in merital exercises for no purpose. For example, a theoretical model could be built, from which one might obtain many mathematical relations; but, if these relations disadree with observed results, the whodel is of no use. The mathematics may be correct, biut the lunderlying assumptions of the model may be wrong or the implied approximations may not be justified.

Three essential steps are involved in buildintg a theory on an idealized model: First, some basic quantities germane to the subject of study are defined. Second, the rules of operation, (the mathematics) of these quantities are specified. Third, some fundamental relatlipns are postulated. These postulates or laws are invariably based on numerous experimental observations acquired under controlled conditions and synthesized by brilliant minds. A familiar example is the circuit theory built on a circuit model of ideal sources and pure resistünces, inductances, and capacitances. In this case the basic quantities are voltages (V), currents (I), resistances (R), inductances (L), and capacitarices (C); the rules of operations are those of algebra, ordinary differential equations, and Laplace transformation; and the fundamental postulates are Kirchhoff's voltage and current laws. Many relations and formulas can be derived from this baisically father simple model, and the responses of very elaborate networks can be determined. The valldity and value of the model have been amply demonstrated.

In a like manner, an electromagnetic theory can be built on a suitably chosen electromagnetic model. In this section we shall take the first step of defining the basic

+ ${ }^{2}$

quantities of electromagnetics. The second step, the rules of operation, encompasses vector algebra, vector calculus, and partial differential equations. The fundamentals of vector algebra and vector calculus will be discussed in Chapter 2 (Vector Analysis), and the techniques for solving partial differential equations will be introduced when these equations arise later in the book. The third step, the fundamental postulates, will be presented in three substery in Chapters 3, 0 , and 7 as we deal with, respectively, static electric fields, steady magnetic ficlds, and electromagnetic fields.

The quantities in our electromagnetic model can be divided roughiy itef two categorics: source atis"fleld quantities. The source of an electromagnetic field is invariably electric charges at rest or in motion. However, an electromagnetic field may cause a redistribution of charges which will, in turn, change the field; hence, the separation between the cause and the effect is not always so distinct.

We use the symbol q (sometimes Q) to denote electric charge. Electric charge is a fundamental property of matter and it exists only in positive or negative integral multiples of the charge on an electron. e^{+}

$$
\begin{equation*}
e=-1.60 \times 10^{-19} \quad \text { (C) } \tag{1-1}
\end{equation*}
$$

where C is the abbreviation of the unit of charge, coulomb. ${ }^{\ddagger}$ It is named after the French physicist Charles A. de Coulomb, who formulated Coulomb's law in 1785. (Coulomb's law will be discussed in Chapter 3.) A coulomb is a very large unit for electric charge; it takes $1 /\left(1.60 \times 10^{-19}\right)$ or 6.25 billion electrons to make up -1 C. In fact, two $1-C$ charges 1 m apart will exert a force of approximately 1 million tons on each other. Some other physical constants for the electron are listed in Appendix B-2.

The principle of conservation of electric churge, like the principle of conscrvation of momentum, is a fundamental postulate or law of physics. It states that electric charge is conserved; that is, it can neither be created nor be destroyed. Electric charges can move from one place to another and can be redistributed under the influence of an electromagnetic field; but the algebraic sum of the positive and negative charges in a closed (isolated) system remains unchanged. The principle of conservation of electric charge must be satisfied at all times and under any circumstances. It is represented mathematically by the equation of continuity, which we will discuss in Section 5-4. Any formulation or solution of an electromagnetic problem that violates the principle of conservation of electric charge must be incorrect. We recall that the Kirchhoff's current law in circuit theory, which maintains that the sum of all the currents leaving a junction must equal the sum of all the currents.entering the junction, is an assertion

[^1]sompasses damentals Analysis), aced when ulates, will spectively, f into two tic field: cfieldmay henge, the charge is a ve integral d af. the is in . 85. ge unit for zup -1 C . nillion tons 1 Appendix inscrvation hat electric tric charges influence of tive charges tion of elecrepresented icction 5-4. he principle Kirchhoff's ents leaving an rtion

[^2] ; not been veri-
of the conservation property of electric chatge. (Implicit in the current law is the assumption that there is ino cumulation of charge at the junction.)

Although, in a microscopic sense, electriccharge either does or does not exist at a point in a discrete anner, these abrupt vafiations on an atomic scale are unimportant when we considerthe electromagnetic effect of large aggregates of charges. In con ${ }^{2}$ structing a macroftopic or large-scale theory of electromagnetism, we find that the use of smoothed-glut average density functions yields very good results. (The same approach is used intmechanics where a smoothed-out mass density function is definod, in spite of the fact that mass is associated only with elementary particles in a discrete manner on an atorfic scople.) We define a volume charge densir,ρ, as a source quantity as follows:

$$
\begin{equation*}
\rho=\lim _{\Delta v \rightarrow 0} \frac{\Delta q}{\Delta v} \quad\left(\mathrm{C} / \mathrm{m}^{3}\right), \tag{1-2}
\end{equation*}
$$

where Δq is the amount of charge in a very small volume Δv. How small should Δv be? It should be small enough to represent an accurate variation of ρ, but large enough to contain a very large number of discrete charges. For example, an elemental cube with sides as small as 1 micron $\left(10^{-6} \mathrm{~m}\right.$ or $\left.1 \mu \mathrm{~m}\right)$ has a volume of $10^{-18} \mathrm{~m}^{3}$, which will still contain about 10^{11} (100 billion) atoms. A smoothed-out function of space coordinates, ρ, defined with such a small Δv is expected to yield accurate macroscopic results for nearly all practical purposes.

In some physical situations, an amount of charge Δy may be identified with an element of surface Δs or an element of line $\Delta \iota \cdot$ In such cases, it will be more appropriate to define a surface charge density, ρ_{s}, or a line charge density, ρ_{ℓ} :

$$
\begin{align*}
\rho_{s} & =\lim _{\Delta s \rightarrow 0} \frac{\Delta d}{\Delta s} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) ; \tag{1-3}\\
\rho_{\ell} & =\lim _{\Delta \ell \rightarrow 0} \frac{\Delta q}{\Delta l} \quad(\mathrm{C} / \mathrm{m}) . \tag{1-4}
\end{align*}
$$

Except for certain Specal situations, charge densities vary from point to point; hence ρ, ρ_{s}, and ρ_{ε} are, in geréral, point functions of space coordinates.

Current is the rate of change of charge with respect to time; that is,

$$
\begin{equation*}
\quad \therefore \quad I=\frac{d q}{d t} \quad(\mathrm{C} / \mathrm{s} \text { or } \mathrm{A}) \tag{1-5}
\end{equation*}
$$

where I itself may be time-dependent. The unit of current is coulomb per second $(\mathrm{C} / \mathrm{s})$, which is the same as ampere (A). A current must flow through a finite area (a conducting wire of a fillite cross section, for instatice); hence it is not a point function. In electromagnetics vie define a vector point function volume current density (or simply, .current density) \mathbf{J}, which measures the amount of current flowing through a unit area normal to the direction of current flow. The bold-faced J is a vector whose magnitude is the current per utiit area $\left(\mathrm{A} / \mathrm{m}^{2}\right)$ and whose direction is the direction of current flow. We shall elabordte on the relation between I and J in Chapter 5 . For very good

6 THE ELECTROMAGNETIC MODEL / 1

conductors, high-frequency alternating currents are confined in the surface layer, instead of flowing throughout the interior of the conductor. In such cases there is a need to define a surface current density \mathbf{J}_{s}, which is the current per unit width on the conductor surface normal to the direction of current flow and has the unit of ampere per meter (A / m).

There are fo r fundamental vector field quantities in electromagnetic: electric
 B, and magnetic field intensit!' 11 . The delmition and physieal siguiliennee ol these quantities will be explained fully when they are introduced hater in the book. At this time, we want only to establish the following. Electric field intensity \mathbf{E} is the only vector needed in discussing electrostatics (effects of stationary electric charges) in free space, and is defined as the electric force on a unit test charge. Electric displacement vector \mathbf{D} is useful in the study of electric field in material media, as we shall see in Chapter 3. Similarly, magnetic flux density \mathbf{B} is the only vector Aeeded in discussing magnetostatics (effects of steady electric currents) in free space, and is related to the magnetic force acting on a charge moving with a given velocity. The magnetic field intensity vector \mathbf{H} is useful in the study of magnetic field in material media. The definition and significance of \mathbf{B} and \mathbf{H} will be discussed in Chapter 6.

The four fundamental electromagnetic field quantities, together with their units, are tabulated in Table $1-1$. In Table $1-1, \mathrm{~V} / \mathrm{m}$ is volt per meter, and T stands for tesla or volt-second per square meter. When there is no time variation (as in static, steady,

Table 1-1 Electromagnetic Field Quantities

Symbols and Units for Field Quantities	Field Quantity	Symbol	Unit
Electric	Electric field intensity	E	V / m
	Electric flux density (Electric displacement)	D	$\mathrm{C} / \mathrm{m}^{2}$
	Magnctic flux density	B	T

or stationary cases), the electric field quantities \mathbf{E} and \mathbf{D} and the magnetic field quantities \mathbf{B} and \mathbf{H} form two separate vector pairs. In time-dependent cases, however, electric and magnetic field quantities are coupled; that is, time-varying E and D will give rise to \mathbf{B} and \mathbf{H}, and vice versa. All four quantities are point functions; they are defined at every point in space and, in general, are functions of space coordinates. Material (or medium) properties determine the relations between \mathbf{E} and \mathbf{D} and between \mathbf{B} and \mathbf{H}. These relations are called the constitutive relations of a medium and will be examined later.
face layer, inhere is a need h on the conof ampere per
etics: electric ic flux density ance of these book. At this E is the only larges) in fre: displacement e shall see in in discussing elated to the mgnetic field I media. The h th' 'anits, ands aut tesla ;tatic, steady,

V / m

agnetic field ies. E and " will ons; they are coordinates. and D and medium and

The princlpal objective of studyingelectiomagnetism is to understand the inter action between charges and currents at a distance based on the electromagnetic model. Fields and waves (time- and space-dependent fields) are basic conceptual quantities of this model. Fundamental postulaltes will relate E, D, B, H, and the source quantities; and derived:relations will lead to the explanation and prediction of electromagnetir phenomena.

1-3 SI UNITS AND UNIVERSAL CONSTANTS

A meaisiment of any piysical quantity must be expressed as number followed by a unit. Thus, we may talk about a length of three meters, a mass of two kilograms, and a time-period of ten seconds. To be useful, a urit system should be based on some fundamental units of convenient (practical) sizes. In mechanics all quantities can be expressed in terms of three basic units (for length, mass and time). In electromagnetics work a fourth basic unit (for current) is needed. The SI (Imernational System of Units or Le Sysicme Inlernationale d Unités) is an MKSA system built from the four fundamental units listed in Table 1-2. All other units used in electromagnetics, including those appearing in Table $1-1$, are derived units expressible in terms of $\mathrm{m}, \mathrm{kg}, \mathrm{s}$, and A . For example, the unit for charge, coulomb (C) is ampere-second $(\mathrm{A} \cdot \mathrm{s})$; the unit for electric field intensity $(\mathrm{V} / \mathrm{m})$ is $\mathrm{kg} \cdot \mathrm{m} / \mathrm{A} \cdot \mathrm{s}^{3}$; and the unit for magnetic flux density, tesla (T), is $\mathrm{kg} / \mathrm{A} \cdot \mathrm{s}^{2}$. More complete tables of the units for various quantities are given in Appendix A.

In our electromagnetic model there are three universal constants, in addition to the field quantities listed in Table 1-1. They relate to the properties of the free space (vacuum). They are as follows: velocity of electromagnetic wave (including light) in free space, \dot{c}; permittivity of frce space, ϵ_{0}; and permeability of free space, μ_{0}. Many experiments have been performed for precise measurement of the velocity of light; to many dêcimal places. For our purpose, it is sufficient to remember that

$$
\begin{equation*}
c \cong 3 \times 10^{8} \quad(\mathrm{~m} / \mathrm{s}) \tag{1-6}
\end{equation*}
$$

Table 1-2 Fundamental SI Units

Quantily	Unit	Abbroviation
Length	meter	m
Mass	kilogram	kg
Time	second	s
Current	ampere	A

8 THE ELECTROMAGNETIC MODEL / 1

The other two constants, ϵ_{0} and μ_{0}, pertain to electric and magnetic phenomena respectively: ϵ_{0} is the proportionality constant between the electric flux density \mathbf{D} and the electric field intensity \mathbf{E} in free space, such that

$$
\begin{equation*}
\mathbf{D}=\epsilon_{0} \mathbf{E} ; \tag{1-7}
\end{equation*}
$$

μ_{n} is the proportionality constant between the magnetic field intensity \mathbf{H} and the magnetic flux density \mathbf{B} in free spacc, such that

$$
\begin{equation*}
\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B} \tag{1-8}
\end{equation*}
$$

The values of ϵ_{0} and μ_{0} are determined by the choice of the unit system, and they are not independent. In the SI system (rationalized ${ }^{\dagger}$ MKSA system), which is almost universally adopted for electromagnetics work, the permeability of free space is chosen to be

$$
\begin{equation*}
\mu_{0}=4 \pi \times 10^{-7} \quad(\mathrm{H} / \mathrm{m}), \tag{1-9}
\end{equation*}
$$

where H / m stands for henry per meter. With the values of c and μ_{0} fixed in Eqs. (1-6) and (1-9), the value of the permittivity of free space is then derived from the following relationships:

$$
\begin{equation*}
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}} \quad(\mathrm{~m} / \mathrm{s}) \tag{1-10}
\end{equation*}
$$

or

$$
\begin{align*}
\epsilon_{0}=\frac{1}{c^{2} \mu_{0}} & \cong \frac{1}{36 \pi} \times 10^{-9} \tag{1-11}\\
& \cong 8.854 \times 10^{-12} \quad(\mathrm{~F} / \mathrm{m})
\end{align*}
$$

where F / m is the abbreviation for farad per meter. The three universal constants and their values are summarized in Table 1-3.

Now that we have defined the basic quantities and the universal constants of the electromagnetic model, we can develop the various subjects in electromagnetics. But,

[^3]

2 Vector Analysis

2-1 INTRODUCTION

As we noted in Chapter 1, some of the quantities in electromagnetics (such as charge, current, energy) are scalars: and some others (such as electuic and magnetic lield intensities) are vectors. Both scalars and vectors can be functions of time and position. At a given time and position, a scalar is completely specified by its magnitude (positive or negative, together with its unit). Thus, we can specify, for instance, a charge of $-1 \mu \mathrm{C}$ at a certain location at $t=0$. The specification of a vector at a given location and time, on the other hand, requires both a magnitude and a direction. How do we specify the direction of a vector? In a three-dimensional space three numbers are needed, and these numbers depend on the choice of a coordinate system. Conversion of a given vector from one coordinate system to another will change these numbers. However, physical laws and theorems relating various scalar and vector quantities certainly must hold irrespective of the coordinate system. The general expressions of the laws of electromagnetism, therefore, do not require the specification of a coordinate system. A particular coordinate system is chosen only when a problem of a given geometry is to be analyzed. For example, if we are to determine the magnetic field at the center of a current-carrying wire loop, it is more convenient to use rectangular coordinates if the loop is rectangular, whereas polar coordinates (twodimensional) will be more appropriate if the loop is circular in shape. The basic electromagnetic relation governing the solution of such a problem is the same for both geometries.

Three main topics will be dealt with in this chapter on vector analysis:

1. Vector algebra - addition, subtraction, and multiplication of vectors.
2. Orthogonal coordinate systems-Cartesian, cylindrical, and spherical coordinates.
3. Vector calculus - differentiation and integration of vectors; line, surface, and volume integrals; "del" operator; gradient, divergence, and curl operations.

Throughout the rest of this book, we will decompose, combine, differentiate, integrate, and otherwise manipulate vectors. It is imperative that one acquire a facility in vector

such as charge, magnetic field c and position. bitude (positive e, yparge of n. H. to we : numbers are n. Conversion lices numbers. dor quantities expressions of ition of a co-- problem of a the magnetic nt to use recdinates (twope. The basic the same for

s :

गrs.
rical foordi-
surf and srations.

He, integrate, lity in vector
algebra and vecto calculus. In a threedimensional space a vector relation is, in fact, three scalar relations. The use of vector-analysis techniques in electromagnetics leads to concise and eldgant lormulations. A defieiency in vector analysis in the study of electromagnetiés is similar to a deficiency ln algebra and calculus in the study of physics; and it is obvous that these deficiencies cannot yield fruitful results.

In solving prattical problems, we alway deal with regions or objects of a given shape, and it is necessary to express generallformulas in a coordinate system appropriate for the given geometry. For exampe the familiar rectangular $(x, y ; z)$ coordinates are, obyfously, awkward to use fat problems involving a circular cylinder or a sphere oecause the boundaries of a ctrcular cylinder and a sphere cannot be described by constant values of x, y, and z. th this chapter we discuss the three most commonly ised dithogónal (perpendicular), coordinate systems and the representation and operation of Vectors in these systems. Familarity with these coordinate systems is essential in the solution of electromagnetic problems.

Vector calculd pertains to the differentiation and integration of vectors. By defining certain differential operators, we can express the basic laws of electromagnetism in a concise way that is invariant with the choice of a coordinate system. In this chapter we introduce the techniques for evaluating different types of integrals involving vectors, and define and discuss the various kinds of differential operators.

2-2 VECTOR ADDITION
 AND SUBTRACTION:

We know that a vector has a magnitude and a direction. A vector A can be written as

$$
\begin{equation*}
\mathbf{A}^{\top}=\mathbf{a}_{\mathbf{A}} A \tag{2-1}
\end{equation*}
$$

where A is the magnitude (and has the unit and dimension) of A,

$$
\begin{equation*}
A=|\mathbf{A}| \tag{2-2}
\end{equation*}
$$

and $\mathbf{a}_{\mathbf{A}}$ is a dimensionless unit vector ${ }^{\dagger}$ with a unity magnitude having the direction of A. Thus,

$$
\begin{equation*}
\mathbf{a}_{\mathbf{A}}=\frac{\mathbf{A}}{|\mathbf{A}|}=\frac{\mathbf{A}}{A} \tag{2-3}
\end{equation*}
$$

The vector-A can be represented graphically by a directed straight-line segment of a length $|\boldsymbol{A}|=A$ with its arrowhead pointing inthe direction of a_{A}, as shown in Fig. 2-1. Two vectors are cqual if they have the sane magititude and the same direction, even - though they may be displaced in space. Since it is difficult to write boldfaced letters by hand, it is a common practice to use an arrow or a bar over a letter ($\overrightarrow{\mathrm{A}}$ or $\overline{\mathrm{A}}$) or

[^4]
12 VECTOR ANALYSIS / 2

Fig. 2-1 Graphical representation of vector \mathbf{A}.
a wiggly line under 3 letter (A) to distinguish a vecior from a scalar. This distinguishing mark, once chosen, should never be omitted whenever and wherever vectors are written.

Two vectors \mathbf{A} and \mathbf{B}, which are not in the same direction nor in opposite directions, such as given in Fig. 2-2(a), determine a planc. Their sum is another vecyor C in the same plane. $C=A+13$ can be obtamed graphically in two ways.

1. By the parallelogram rule: The resultant C is the diagonal vector of the parallelogram formed hy \mathbf{A} and \mathbf{B} drawn from the same point, as shown in Fig. 2-2(b).
2. By the head-to-tail rule: The head of \mathbf{A} connects to the tail of \mathbf{B}. Their sum \mathbf{C} is the vector drawn from the tail of \mathbf{A} to the head of \mathbf{B}, and vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} form a triangle, as shown in Fig. 2-2(c).

It is obvious that vector addition obeys the commutative and associative laws.

$$
\begin{array}{rll}
\text { Commutative law: } & \mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A} . & (2-4) \\
\text { Associative law: } & \mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C} . & (2-5) \tag{2-5}
\end{array}
$$

Vector subtraction can be defined in terms of vector addition in the following way:

$$
\begin{equation*}
\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B}) \tag{2-6}
\end{equation*}
$$

where $-\mathbf{B}$ is the negative of vector \mathbf{B}; that is, $-\mathbf{B}$ has the same magnitude as \mathbf{B}, but its direction is opposite to that of B. Thus,

$$
\begin{equation*}
-\mathbf{B}=\left(-\mathbf{a}_{\mathbf{B}}\right) B . \tag{2-7}
\end{equation*}
$$

The operation represented by Eq. $(2-6)$ is illustrated in Fig. 2-3.

Fig. 2-2 Vector addition, $\mathbf{C}=\mathbf{A}+\mathbf{B}$.

2-3.1 Scala
Thes equal them.

In 51 betwe prodi

the magnitude of one vector and the projection of the other vector upon the first one; and (4) is zero when the vectors are perpendicular to each other. It is evident that
or

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{A}=A^{2} \tag{2-10}
\end{equation*}
$$

$$
\begin{equation*}
A=\sqrt[+]{\mathbf{A} \cdot \mathbf{A}} \tag{2-11}
\end{equation*}
$$

Equation (2-11) enables us to find the magnitude of a vector when the expression of the vector is given in any coordinate system:

The dot product is commutative and distributive.

$$
\begin{align*}
& \text { Commutative law: } \mathbf{A} \cdot \dot{\mathbf{B}}=\mathbf{B} \cdot \dot{\mathbf{A}} \tag{2-12}\\
& \text { Distributive law: }, \mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C} \tag{2-13}
\end{align*}
$$

The commutative law is obvious from the definition of the dot product in Eq. (2-9), and the proof of Eq. (2-13) is left as an exercise. The associative law does not apply to the dot product, since no more than two vectors can be so multiplied and an expression such as $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$ is meaningless.

Example 2-1 Prove the law of cosines for a triangle.
Solution: The law of cosines is a scalar relationship that expresses the length of a side of a triangle in terms of the lengths of the two other sides and the angle between them. Referring to Fig. 2-5, we find the law of cosines states that

$$
C=\sqrt{A^{2}+B^{2}-2 A B \cos \alpha}
$$

We prove this by considering the sides as vectors; that is
Hen the .

$$
\mathrm{C}=\mathrm{A}+\mathrm{B} .
$$

Taking the dot product of C with itself, we have, from Eqs. (2-10) and (2-13).

$$
\begin{aligned}
C^{2}=\mathbf{C} \cdot \mathbf{C} & =(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}+\mathbf{B}) \\
& =\mathbf{A} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{B}+2 \mathbf{A} \cdot \mathbf{B} \\
& =A^{2}+B^{2}+2 A B \cos 0_{A B} .
\end{aligned}
$$

Fig. 2-5 Illustrating Example 2-1.
 int that
xxpression of

ㄴ)
in Eq. (2-9), es not apply d and an ex-
cilen, of a rgle between

The vector representing the triple product on the left side of the expression above is perpendicular to \mathbf{A} and lies in the plane formed by \mathbf{B} and \mathbf{C}, whereas that on the right side is perpendicular to \mathbf{C} and lies in the plane formed by \mathbf{A} and \mathbf{B}. The order in which the two vector products are performed is therefore vital and in no case should the parentheses be omitted.

2-3.3 Product of Three Vectirs

 and the vector triple product. The scalar triple product is much the simpler of the two and has the following property:

$$
\begin{equation*}
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\mathbf{B} \cdot(\mathbf{C} \times \mathbf{A})=\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B}) \tag{2-18}
\end{equation*}
$$

Note the cyclic permutation of the order of the three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C}. Of course,

$$
\begin{align*}
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}) & =-\mathbf{A} \cdot(\mathbf{C} \times \mathbf{B}) \\
& =-\mathbf{B} \cdot(\mathbf{A} \times \mathbf{C}) \\
& =-\mathbf{C} \cdot(\mathbf{B} \times \mathbf{A}) . \tag{2-19}
\end{align*}
$$

As can be seen from Fig. 2-7, each of the three expressions in Eq. (2-18) has a magnitude equal to the volume of the parallelepiped formed by the three vectors A, B, and \mathbf{C}. The parallelepiped has a base with an area equal to $|\mathbf{B} \times \mathbf{C}|=\left|B C \sin \theta_{1}\right|$ and a height equal to $\left|A \cos \theta_{2}\right|$; hence the volume is $\left|A B C \sin \theta_{1} \cos \theta_{2}\right|$.

The vector triple product $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$ can be expanded as the difference of two simple vectors as follows:

$$
\begin{equation*}
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B}) . \tag{2-20}
\end{equation*}
$$

Equation (2-20) is known as the "back-cab" rule and is a useful vector identity. (Note "BAC-CAB" on the right side of the equation!)

Fig. 2-7. Illustrating scalar triple product $A \cdot(B \times C)$.
:ssion above is at on the right order in which ase should the
tripie product pler of the two
C. Of course,
(2-19)
3) haw . nagnitors A, B, and $2 \sin \theta_{1}$ and a
fference of two
identity. (Note

Example 2-2 ${ }^{\dagger}$ Prove the back-cab rule of vector triple product.
Solution: In order to prove Eq. (2-20), it is convenient to expand \mathbf{A} into two components

$$
\mathbf{A}=\mathbf{A}_{11}+\mathbf{A}_{\perp},
$$

where $\mathbf{A}_{\|}$and \mathbf{A}_{\perp} are, respectively, parallel and perpendicular to the plane containing \mathbf{B} and \mathbf{C}. Because the vector representing $(\mathbf{B} \times \mathbf{C})$ is also perpendicular to the plane, the cross product of \mathbf{A}_{\perp} and $\left(\mathbf{B} \times \mathbf{C}\right.$ vanishes. Let $\mathbf{D}=\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$. Since only $\mathbf{A}_{\|}$ is effective heric, we hâve

$$
\mathbf{D}=\mathbf{A}_{\|} \times(\mathbf{B} \times \mathbf{C}) .
$$

Referring to Fig. 2-8, which shows the plane containing B, C, and $A_{\|}$, we note that \mathbf{D} lies in the same plane and is normal to \mathbf{A}_{11}. The magnitude of $(\mathbf{B} \times \mathbf{C})$ is $B C \sin \left(0_{1}-\theta_{2}\right)$ and that of $\mathbf{A}_{\| \mid} \times(\mathbf{B} \times \mathbf{C})$ is $\mathbf{A}_{\|} B C \sin \left(\theta_{1}-\theta_{2}\right)$. Hence,

$$
\begin{aligned}
D & =\mathrm{D} \cdot \cdot_{\mathrm{a}}=A_{\| \mid} B C \sin \left(\theta_{1}-\theta_{2}\right) \\
& =\left(B \sin 0_{1}\right)\left(A_{\|} C \cos \theta_{2}\right)-\left(C \sin O_{2}\right)\left(A_{\| \mid} B \cos \theta_{1}\right) \\
& =\left[\mathbf{B}\left(\mathbf{A}_{\| \|} \cdot \mathbf{C}\right)-\mathbf{C}\left(\mathbf{A}_{\|} \cdot \mathbf{B}\right)\right] \cdot \mathbf{a}_{D} .
\end{aligned}
$$

Fig. 2-8 Illustrating the back-cab rule of vector triple product.

The expression above does not alone guarantee that the quantity inside the brackets to be \mathbf{D}, since the former may contain a vector that is normal to \mathbf{D} (parallel to $\mathbf{A}_{\| \mid}$); that is, $\mathbf{D} \cdot \mathbf{a}_{\boldsymbol{D}}=\mathbf{E} \cdot \mathbf{a}_{\boldsymbol{D}}$ does not guarantee $\mathbf{E}=\mathbf{D}$. In general, we can write

$$
\mathbf{B}\left(\mathbf{A}_{\|} \cdot \mathbf{C}\right)-\mathbf{C}\left(\mathbf{A}_{\|} \cdot \mathbf{B}\right)=\mathbf{D}+k \mathbf{A}_{\|},
$$

where k is a scalar quantity. To determine k, we scalar-multiply both sides of the above equation by $\mathbf{A}_{1 \mid}$ and obtain

$$
\left(\mathbf{A}_{\|} \cdot \mathbf{B}\right)\left(\mathbf{A}_{\|} \cdot \mathbf{C}\right)-\left(\mathbf{A}_{\| \mid} \cdot \mathbf{C}\right)\left(\mathbf{A}_{\| \mid} \cdot \mathbf{B}\right)=0=\mathbf{A}_{\|} \cdot \mathbf{D}+k A^{2}
$$

[^5]
18
 VECTOR ANALYSIS / 2

Since $\mathbf{A}_{\|} \cdot \mathbf{D}=0$, so $k=0$ and

$$
\mathbf{D}=\mathbf{B}\left(\mathbf{A}_{\|} \cdot \mathbf{C}\right)-\mathbf{C}\left(\mathbf{A}_{\|}!\mathbf{B}\right),
$$ point can be located as the intersection of three sürfaces. Assume that the three families of surfaces are described by $u_{1}=$ constant, $u_{2}=$ constant, and $u_{3}=$ constant, where the u 's need not all be lengths. (In the familiar Cartesian or rectangular coordinate system, u_{1}, u_{2}, and u_{3} correspond to x, y, and z respectively.) When these three surfaces are mutually perpendicular to one another, we have an orthogonal coordinate system. Nonorthogonal coordinate şystems are not used pecause they complicate problems.

Some surfaces represented by $u_{i}=$ constant $(i=1,2$, or 3$)$ in a coordinate system may not be planes; they may be curved surfaces. Let $\mathbf{a}_{u_{1},}, \mathbf{a}_{u_{2}}$, and $\mathbf{a}_{u_{3},}$ be the unit vectors in the three coordinate directions. They are called the base vectors. In a general right-handed, orthogonal, curvilinear coordinate system, the base vectors are arranged in such a way that the following relations are satisfied:

$$
\begin{array}{ll}
a_{u_{1}} \times a_{u_{2}}=a_{u_{3}} \\
\mathbf{u}_{2} \times a_{u_{3}}=a_{u_{1}} \\
a_{u_{3}} \times a_{u_{1}}=a_{u_{2}} \tag{2-21c}
\end{array}
$$

These three equations are not all independent, as the specification of one automatically implies the other two. We have, of cquise,
and

$$
\begin{equation*}
a_{u_{1}} \cdot a_{u_{2}}=a_{u_{2}} ? a_{u_{3}}=a_{u_{3}} \cdot a_{u_{1}} j=0 \tag{2-22}
\end{equation*}
$$

$$
\begin{equation*}
\left.a_{u_{1}} \cdot a_{u_{1}}=a_{u_{2}}\right\} a_{u_{2}}=a_{u_{3}}: a_{u_{3}}=1 . \tag{2-23}
\end{equation*}
$$

Any vector \mathbf{A} can be written as the sum of its components in the three orthogonal directions, as follows:

$$
\begin{equation*}
\mathbf{A}=\mathbf{a}_{u_{1}} A_{u_{1}}+\mathbf{a}_{u_{2}} A_{u_{2}}+\mathbf{a}_{u_{3}} A_{u_{3}} ; \tag{2-24}
\end{equation*}
$$

$=A \cdot B$.
nd B / A are
ure invariant he relations riate to the electrie field f the source onal space a at the three $=$ constant, wha lordi1 the e- three "cis nute complicate
inate system be the unit ectors. In a : vectors are
orth (nal
(2-24)
where the magnitudes of the three components, $A_{u_{1}}, A_{u_{2}}$, and $A_{u_{3}}$, may change with the location of \mathbf{A}; that is, they may be functions of u_{1}, u_{2}, and u_{3}. From Eq. (2-24) the magnitude of A is

$$
\begin{equation*}
A=|\mathbf{A}|=\left(A_{u_{1}}^{2}+A_{u_{2}}^{2}+A_{u_{3}}^{2}\right)^{1 / 2} . \tag{2-25}
\end{equation*}
$$

Example 2-3 Given three vectors A, B, and C, obtain the expressions of (a) A B B, (b) $\mathbf{A} \times \mathbf{B}$, and (c) $\mathbf{C} \cdots(\mathbf{A} \times \mathbf{B})$ in the orthogonal curvilinear coordinate system $\left(u_{1}, u_{2}, u_{3}\right)$.

Solution: First we write \mathbf{A}, \mathbf{B} and \mathbf{C} in the orthogonal coordinates $\left(u_{1}, u_{2}, u_{3}\right)$:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{a}_{u_{1}} A_{u_{1}}+\mathbf{a}_{u_{2}} A_{u_{2}}+\mathbf{a}_{u_{3}} A_{u_{3}}, \\
& \mathbf{B}=\mathbf{a}_{u_{1}} B_{u_{1}}+\mathbf{a}_{u_{2}} B_{u_{2}}+\mathbf{a}_{u_{3}}^{u_{3}}, \\
& \mathbf{C}=\mathbf{a}_{u_{1}} C_{u_{1}}+\mathbf{a}_{u_{2}} C_{u_{2}}+\mathbf{a}_{u_{3}} C_{u_{3}} .
\end{aligned}
$$

a) $\mathbf{A} \cdot \mathbf{B}=\left(\mathbf{a}_{u_{1}} A_{u_{1}}+\grave{\mathbf{a}}_{u_{2}} A_{u_{2}}+\mathbf{a}_{u_{3}} A_{u_{3}}\right) \cdot\left(\mathbf{a}_{u_{1}} B_{u_{1}}+\mathbf{a}_{u_{2}} B_{u_{2}}+\mathbf{a}_{u_{3}} B_{u_{3}}\right)$

$$
\begin{equation*}
=A_{u_{1}} B_{u_{1}}+A_{u_{2}} B_{u_{2}}+A_{u_{3}} B_{u_{3}}, \tag{2-26}
\end{equation*}
$$

in view of Eqs. (2-22) and (2-23).
b) $\mathbf{A} \times \mathbf{B}=\left(\mathbf{a}_{u_{1}} A_{u_{1}}+\mathbf{a}_{u_{2}} A_{u_{2}}+\mathbf{a}_{u_{1}} A_{u_{1}}\right) \times\left(\mathbf{a}_{u_{1}} B_{u_{1}}+\mathbf{a}_{u_{2}} B_{u_{2}}+\mathbf{a}_{u_{1}} B_{u_{3}}\right)$

$$
\begin{align*}
& =a_{u_{1}}\left(A_{u_{2}} B_{u_{3}}-A_{u_{3}} B_{u_{2}}\right)+\mathbf{a}_{u_{2}}\left(A_{u_{1}} B_{u_{1}}-A_{u_{1}} B_{u_{3}}\right)+\mathfrak{a}_{u_{1}}\left(A_{u_{1}} B_{u_{2}}-A_{u_{2}} B_{u_{1}}\right) \\
& =\left|\begin{array}{lll}
a_{u_{1}} & \mathbf{a}_{u_{2}} & \mathbf{a}_{u_{3}} \\
A_{u_{1}} & A_{u_{2}} & A_{u_{3}} \\
B_{u_{1}} & B_{u_{2}} & B_{u_{3}}
\end{array}\right| . \tag{2-27}
\end{align*}
$$

Equations (2-26) and (2-27) express, respectively, the dot and cross products of two vectors in orthogonal curvilinear coordinates. They are important and should be remembered.
c) The expression for $\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B})$ can be written down immediately by combining the results in Eqs. (2-26) and (2-27).

$$
\begin{align*}
\mathbf{C} \cdot(\mathbf{A} \times \mathbf{B}) & =C_{u_{1}}\left(A_{u_{2}} B_{u_{3}}-A_{u_{3}} B_{u_{2}}\right)+C_{u_{2}}\left(A_{u_{3}} B_{u_{1}}-A_{u_{1}} B_{u_{3}}\right)+C_{u_{3}}\left(A_{u_{1}} B_{u_{2}}-A_{u_{2}} B_{u_{1}}\right) \\
& =\left|\begin{array}{lll}
C_{u_{1}} & C_{u_{2}}, & C_{u_{3}} \\
A_{u_{1}} & A_{u_{2}} & A_{u_{3}} \\
B_{u_{1}} & B_{u_{2}} & B_{u_{3}}
\end{array}\right|, \tag{2-28}
\end{align*}
$$

Eq. (2-28) can be used to prove Eqs. (2-18) and (2-19) by observing that a permutation of the order of the vectors on the left side leads simply to a rearrangement of the rows in the determinant on the right side.

In vector calculus (and in electromagnetics work), we are often required to perform line, surface, and volume integrals. In each case we need to express the
differential length-change corresponding to a differential change in one of the coordinates. However, some of the coordinates, say $u_{i}^{(}(i=1,2$, or 3), may not be a length; and a conversion factor is needed to convert a differential change $d u_{t}$ into a change in length $d \ell_{i}$:

$$
\begin{equation*}
d r_{1}=h_{1} d u_{1}, \tag{229}
\end{equation*}
$$

where h_{i} is called a metric coefficlent and may itself be a function of u_{1}, u_{2}, and u_{3}. For example, in the two-dimensional polar coordinates $\left(u_{1}, \mu_{2}\right)=(r, \phi)$, a differential change $d \phi\left(=d u_{2}\right)$ in $\phi\left(=r i_{7}\right)$ corresponds to a differential length-change $d f_{2}=r d \phi$ $\left(h_{2}=r=u_{1}\right)$ in the $\mathbf{a}_{\phi}\left(=-\mathrm{a}_{4}\right)$ efimection. A dircoced difterential knglin change in an arbitrary direction can be written as the vector sum of the component lengh changes: ${ }^{\dagger}$

$$
\begin{equation*}
d \ell=\mathbf{a}_{\mu_{1}} d \ell_{1}+\mathbf{a}_{u_{2}} d \ell_{2}+\mathbf{a}_{u_{3}} d \ell_{3} \tag{2-30}
\end{equation*}
$$

or

$$
\begin{equation*}
d \ell=\mathbf{a}_{u_{1}}\left(h_{1} d \mu_{1}\right)+\mathbf{a}_{u_{2}}\left(h_{2} d u_{2}\right)+\dot{\mathbf{a}_{3}}\left(h_{3} d u_{3}\right) . \tag{2-31}
\end{equation*}
$$

In view of Eq. (2-25), the magnitude of $d \ell$ is

$$
\begin{align*}
d t & =\left[\left(d \ell_{1}\right)^{2}+\left(d \ell_{2}\right)^{2}+\left(d \ell_{3}\right)^{2}\right]^{1 / 2} \\
& \left.=\left[\left(h_{1} d u_{1}\right)^{2}+\left(h_{2} d u_{2}\right)^{2}+h_{3} d u_{3}\right)^{2}\right]^{1 / 2} . \tag{2-32}
\end{align*}
$$

The differential volume $d v$ formed by differential coordinate changes $d u_{1}, d u_{2}$, and $d u_{3}$ in directions $\mathbf{a}_{u_{1}}, \mathbf{a}_{u_{2}}$, and $\mathbf{a}_{u_{3}}$ respectively is $\left(d \ell_{1} d \ell_{2} d \ell_{3}\right)$, qr

$$
\begin{equation*}
d v=h_{1} h_{2} h_{3} d u_{1} d u_{2} d u_{3} \tag{2-33}
\end{equation*}
$$

Later we will have occasion to express the current or flux flowing through a differential area. In such cases the cross-sectional area perpendicular to the current or flux flow must be used, and it is convenient to consider the pifferential area a vector with a direction normal to the surface; that is,

For instance, if current density \mathbf{J} is not perpendicular to a differential area of a magnitude $d s$, the current, $d I$, flowing through $d s$ must be the component of \boldsymbol{J} normal to the area multiplied by the area. Using the notation in Eq. (2-34), we can write simply

$$
\begin{align*}
d I_{1} & =\mathbf{J} \cdot \dot{d} \mathrm{~s} \\
& =\mathbf{J} \cdot \dot{\mathbf{a}}_{n} d s . \tag{2-35}
\end{align*}
$$

In general orthogonal curvilinear coordinates, the differential area $d s_{1}$ normal to the unit vector $a_{u_{1}}$ is

$$
d \mathbf{s}_{1}=\mathbf{a}_{u_{1}}\left(d \ell_{2} d \ell_{3}\right)
$$

${ }^{\dagger}$ This ℓ is the symbol of the vector ℓ.
ne of the comay not be a nge $d u_{i}$ into a
${ }_{1}, u_{2}$, and u_{3}. . a differential ge $d \ell_{2}=r d \phi$ change in an gth changes: ${ }^{\dagger}$

2-32)
$d u_{1}, d u_{2}$, and

19 through a o the current area a vector
'ea of a magJ normal to write simply
(2-35)
or

$$
\begin{equation*}
d \mathbf{s}_{1}=\mathbf{a}_{u_{1}}\left(l_{2} h_{3} d u_{2} d u_{3}\right) \tag{2-36}
\end{equation*}
$$

Similarly, the differential area normal to unit vectors $\mathbf{a}_{u_{2}}$ and $\mathbf{a}_{u_{3}}$ are, respectively,

$$
\begin{equation*}
d \mathrm{~s}_{2}=\mathrm{a}_{u_{2}}\left(h_{1} h_{3} d u_{1} d u_{3}\right) \tag{2-37}
\end{equation*}
$$

and

$$
\begin{equation*}
d \mathbf{s}_{3}=\mathbf{a}_{u_{3}}\left(h_{1} h_{2} d u_{1} d u_{2}\right) \tag{2-38}
\end{equation*}
$$

Many orthogonal coordinate systems exist; but we shall only be concerned with the three that are most common and most useful:

1. Cartesian (or rectangular) coordinates. ${ }^{\dagger}$
2. Cylindrical coordinates.
3. Spherical coordinates.

These will be discussed separately in the following subsections.

2-4.1 Cartesian Coordinates

$$
\left(u_{1}, u_{2}, u_{3}\right)=(x, y, z)
$$

A point $P\left(x_{1}, y_{1}, z_{1}\right)$ in Cartesian coordinates is the intersection of three planes specified by $x=x_{1}, y=y_{1}$, and $z=z_{1}$, as shown in Fig. 2-9. It is a right-handed system with base vectors a_{x}, a_{y}, and a_{z} satisfying the following relations:

$$
\begin{align*}
& a_{x} \times a_{y}=a_{z} \tag{2-39a}\\
& a_{y} \times a_{z}=a_{x} \tag{2-39b}\\
& a_{z} \times a_{x}=a_{y} \tag{2-39c}
\end{align*}
$$

The position vector to the point $P\left(x_{1}, y_{1}, z_{1}\right)$ is

$$
\begin{equation*}
\overrightarrow{O P}=\mathbf{a}_{x} x_{1}+\mathbf{a}_{y} y_{1}+\mathbf{a}_{z} z_{1} \tag{2-40}
\end{equation*}
$$

A vector A in Cartesian coordinates can be written as

$$
\begin{equation*}
\mathbf{A}=\mathbf{a}_{x} A_{x}+\mathbf{a}_{y} A_{y}+\mathbf{a}_{z} A_{z} \tag{2-41}
\end{equation*}
$$

[^6]
22 Vector analysis / 2

Fig. 2-9 Cartesian coordinates.

The dot product of two yectors \mathbf{A} and \mathbf{B} is, from Eq. (2-26),

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}^{\prime} \tag{2-42}
\end{equation*}
$$

and the cross product of \mathbf{A} and \mathbf{B} is, from Eq. (2-27),

$$
\begin{align*}
& \mathbf{A} \times \mathbf{B}=\mathbf{a}_{x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\mathbf{a}_{y}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\mathbf{a}_{z}\left(A_{x} B_{y}-A_{y} B_{x}\right) \\
& =\left|\begin{array}{ccc:c}
\mathbf{a}_{\boldsymbol{x}} & \boldsymbol{p}_{y} & \mathbf{a}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & \vdots & B_{y} & \vdots
\end{array} B_{z}\right| . \tag{2-43}
\end{align*}
$$

Since x, y, and z are lengths themselves, all three metric coefficients are unity; that is, $h_{1}=h_{2}=h_{3}=1$. The expressions for the differential length, differential area, and differential volume are - from Eqs. (2-31), (2-36), (2-37), (2-38), and (2-33) respectively,

$$
\begin{equation*}
d \mathbf{a}_{x}=\mathbf{a}_{x} d x+\mathbf{a}_{y} d y+\mathbf{a}_{z} d z \tag{2-44}
\end{equation*}
$$

$$
\begin{align*}
& d \mathbf{s}_{x}=\mathbf{a}_{x} d y d z \tag{2-45a}\\
& d \mathbf{s}_{y}=\mathbf{a}_{y} d x d z \\
& d \mathbf{s}_{z}=\mathbf{a}_{z} d x d y
\end{align*}
$$

and

Example 2-4 A scalar line integral of a vector field of the type

$$
\int_{P_{1}}^{P_{2}} \mathrm{~F} \cdot d \ell
$$

is of considerable importance in both physics and electromagnetics. (If \mathbf{F} is a force, the integral is the work done by the force in moving from P_{1} to P_{2} along a specified path; if \mathbf{F} is replaced by \mathbf{E}, the electric field intensity, then the"integral represents an electromotive force.) Assume $\mathbf{F}=\mathbf{a}_{x} x y+\mathbf{a}_{y}\left(3 x-y^{2}\right)$. Evaluate the scalar line integral from $P_{1}(5,6)$ to $P_{2}(3,3)$ in Fig. 2-10 (a) along the direct path (1), $P_{1} P_{2}$; then (b) along path (2), $P_{1} A P_{2}$.

Fig. 2-10 ${ }^{*}$ Paths of integration (Example 2-4).

Solution: First we must write the dot product $\mathbf{F} \cdot d \boldsymbol{\ell}$ in Cartesian coordinates. Since this is a two-dimensional problem, we have, from Eq. (2-44),

$$
\begin{align*}
\mathbf{F} \cdot d \ell & =\left[\mathbf{a}_{x} x y+\mathbf{a}_{y}\left(3 x-y^{2}\right)\right] \cdot\left(\mathbf{a}_{x} d x+\mathbf{a}_{y} d y\right) \\
& =x y d x+\left(3 x-y^{2}\right) d y . \tag{2-47}
\end{align*}
$$

It is important to remember that $d \ell$ in Cartesian coordinates is always given by Eq. (2-44) irrespective of the path or the direction of integration. The direction of integration is taken care of by using the proper limits on the integral.
a) Along direct path (1) - The equation of the path $P_{1} P_{2}$ is

$$
\begin{equation*}
y=\frac{3}{2}(x-1) . \tag{2-48}
\end{equation*}
$$

This is easily obtained by noting from Fig. 2-10 that the slope of the line $P_{1} P_{2}$ is $\frac{3}{2}$. Hence $y=\left(\frac{3}{2}\right) x$ is the equation of the dashed line passing through the origin and parallel to $P_{1} P_{2}$. Since line $P_{1} P_{2}^{\prime}$ intersects the x-axis at $x=+1$, its equation is that of the dashed line shifted one unit in the positive x-direction; it can be

24 VECTOR ANALYSIS / 2

obtained by replacing x with $(x-1)$. We have, from Eqs. (2-47) and (2-48),

$$
\begin{aligned}
\int_{P_{1}}^{P_{2}} \mathbf{F} \cdot d \ell & =\int_{P_{1}}^{P_{2}}\left[x y d x+\left(3 x-y^{2}\right) d y\right] \\
& =\int_{5}^{3}\left(\frac{3}{2} x(x-1) d x+\int_{6}^{3}(2 y+3-)^{2}\right) d y \\
& =-37+27=-10 .
\end{aligned}
$$

In the integration with respect to y, the relation $3 x=2 y+3$ derived from Eq. (2-48) was used.:
b) Along path (2) - This path has two straight-line segments:

From P_{1} to $A: x=5, d x=0$.

$$
\mathbf{F} \cdot d \ell=\left(15-y^{2}\right) d y .
$$

From A to $P_{2}: y=3, d y=0$.

$$
\mathbf{F} \cdot d \ell=3 x d x
$$

Hence,

$$
\begin{aligned}
\int_{P_{P_{1}}}^{P_{2}} \mathbf{F} \cdot d \ell & =\int_{P_{1}}^{A}\left(15-y^{2}\right) d y+\int_{A}^{P_{2}} 3 x d x \\
& =\int_{6}^{3}\left(15-y^{2}\right) d y+\int_{y_{3}}^{3} 3 x d x \\
& =18-24=-6
\end{aligned}
$$

We see here that the value of the line integral depends on the path of integration. In such a case, we say that the vector field F is not conservative.

2-4.2 Cylindrical Coordinates

$$
\left(u_{1}, u_{2}, u_{3}\right)=(r, \phi, z)
$$

${ }^{6}$ In cylindrical coordinates a point $P\left(r_{1}, \phi_{1}, z_{1}\right)$ is the intersection of a circular cylindrical surface $r=r_{1}$, a half-plane containing the z-axis and making an angle $\phi=\phi_{1}$ with the $x z$-plane, and a plane parallel to the $x y$-plane at $z=z_{1}$. As indicated in Fig. 2-11, angle ϕ is measured from the positive x-axis, and the base vector a_{ϕ} is tangential to the cylindrical qurface. The following right-hand relations apply:

$$
\begin{align*}
& a_{r} \times a_{\phi}=a_{\varepsilon} \tag{2-49a}\\
& a_{\phi} \times a_{z}=a_{r} \tag{2-49b}\\
& a_{z} \times a_{r}=a_{\phi} \tag{2-49c}
\end{align*}
$$

lerived rrom
integration.
cular cylinngle $\phi=\phi_{1}$ indicated in ver a_{ϕ} is $1 \mathrm{p}_{\mathrm{F}}$.
(ja)
(2-49b)
(2-49c)

Fig. 2-11 Cylindrical coordinates.

Cylindrical coordinates are important for problems with long line charges or currents, and in places where cylindrical or circular boundaries exist. The two-dimensional polar coordinates are a special case at $z=0$.

A vector in cylindrical coordinates is written as

$$
\begin{equation*}
A a_{1}, A_{r}+a_{1,} A_{\psi}+a_{2} \dot{A}_{z} \tag{2-50}
\end{equation*}
$$

The expressions for the dot and cross products of two vectors in cylindrical coordinates follow from Eqs. (2-26) and (2-27) directly.

Two of the three coordinates, r and $z\left(u_{1}\right.$ and $\left.u_{3}\right)$, are themselves lengths; hence $h_{1}=h_{3}=1$. However, ϕ is an angle requiring a metric coefficient $h_{2}=r$ to convert $d \phi$ to $d \ell_{2}$. The general expression for a differential length in cylindrical coordinates is then, from Eq. (2-31):

$$
\begin{equation*}
d \ell=\mathbf{a}_{r} d r+\mathbf{a}_{\phi} r d \phi+\mathbf{a}_{z} d z \tag{2-51}
\end{equation*}
$$

The expressions for differential areas and differential volume are

$$
\begin{align*}
& d \mathbf{s}_{r}=\mathbf{a}_{r} r d \phi d z \tag{2-52a}\\
& d \mathbf{s}_{\phi}=\mathbf{a}_{\phi} d r d z \\
& d \mathbf{s}_{z}=\mathbf{a}_{z} r d r d \phi
\end{align*}
$$

- and

$$
\begin{equation*}
d v=\dot{r} d r d \phi d z \tag{2-53}
\end{equation*}
$$

26 VECTOR ANALYSIS / 2

Fig. 2-12 A differential volume element in cylindrical coordinates.

A typical differential volume element at a point (r, ϕ, z) resulting from differential changes $d r, d \phi$, and $d z$ in the three orthogonal coordinate directions is shown in Fig. 2-12.

A vector given in cylindrical çoordinates can be transformed into one in Cartesian coordinates, and vice versa. Suppose we want to express $\mathbf{A}=\mathbf{a}_{r} A_{r}+\mathbf{a}_{\phi} A_{\phi}+\mathbf{a}_{z} A_{z}$ in Cartesian coordinates; that is, we want to write $\mathbf{A}_{\text {a }} \mathbf{a}_{x} A_{x}+\mathbf{a}_{y} A_{y}+\mathbf{a}_{z} A_{z}$ and determine A_{x}, A_{y}, and A_{z}. First of all, we note that A_{z}, the z-component of \mathbf{A}, is not changed by the transformation from cylindrical to Cartesian coordinates. To find A_{x} we equate the dot products of both expressions of \mathbf{A} with \mathbf{a}_{x} Thus,

$$
\begin{aligned}
& A_{x}=\mathbf{A} \cdot \mathbf{a}_{x} \\
& \quad=A_{r} \mathbf{a}_{r} \cdot \mathbf{a}_{x}+A_{\phi} \mathbf{a}_{\phi} \cdot \dot{\mathbf{a}}_{x}
\end{aligned}
$$

The term containing A_{z} disappears here because $\mathbf{a}_{z}^{\prime} \cdot \dot{\mathbf{a}}_{x}=0$. Referring to Fig. 2-13, which shows the relative positions of the base vectors $\mathbf{a}_{x}, \mathbf{a}_{y}, \mathbf{a}_{r}$, and \mathbf{a}_{ϕ}, we see that
and

$$
\begin{equation*}
\mathbf{a}_{\mathbf{r}} \cdot \mathbf{a}_{x}=\cos \phi \tag{2-54}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{a}_{\phi} \cdot \mathbf{a}_{x}=\cos \left(\frac{\pi}{2}+\phi\right)=-\sin \phi . \tag{2-55}
\end{equation*}
$$

Hence,

Fig. 2-13 Relations between
$\mathbf{a}_{\mathbf{t}}, \mathbf{a}_{y}, \mathbf{a}_{r}$, and $\mathbf{a}_{\boldsymbol{d}}$.

Similarly, to find A_{y}, we take the dot products of both expressions of \mathbf{A} with \mathbf{a}_{y} :

$$
\begin{aligned}
A_{y} & =\mathbf{A} \cdot \dot{\mathbf{a}}_{y} \\
& =A_{r} \mathbf{a}_{r} \cdot \mathbf{a}_{y}+A_{\phi} \mathbf{a}_{\phi} \cdot \mathbf{a}_{y}
\end{aligned}
$$

From Fig. 2-13, we find

$$
\begin{equation*}
a_{r} \cdot a_{y}=\cos \left(\frac{\pi}{2}-\phi\right)=\sin \phi \tag{2-57}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{a}_{\phi} \cdot \mathbf{a}_{y}=\cos \phi \tag{2-58}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
A_{y}=A_{r} \sin \phi+A_{\phi} \cos \phi \tag{2-59}
\end{equation*}
$$

It is convenient to write the relations between the components of a vector in Cartesian and cylindrical coordinates in a matrix form:

$$
\left[\begin{array}{l}
A_{x} \tag{2-60}\\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{r} \\
A_{\phi} \\
A_{z}
\end{array}\right]
$$

) Fig. 2-13, we see that

Our problem is now solved except that the $\cos \phi$ and $\sin \phi$ in Eq. (2-60) should be converted into Cartesian coordinates. Moreover, A_{r}, A_{ϕ}, and A_{z} may themselves be functions of r, ϕ, and z. In that case, they too should be converted into functions of x, y, and z in the final answer. The following conversion formulas are obvious from Fig. 2-13. From cylindrical to Cartesian coordinates:

$$
\begin{align*}
& x=r \cos \phi \tag{2-55}\\
& y=r \sin \phi \\
& z=z
\end{align*}
$$

The inverse relations (from Cartesian to cylindrical coordinates) are

$$
\begin{align*}
& r=\sqrt{x^{2}+y^{2}} \tag{2-62a}\\
& \phi=\tan ^{-1} \frac{y}{x} \\
& z=z
\end{align*}
$$

28 VECTOR ANALYSIS / 2

Example 2-5 Express the yector

$$
\ddot{A}=a_{r}(3 \cos \phi)-a_{\phi} 2 r+a_{r} 5
$$

in Cartesian coordinates.

Solution: Using Eq. (2-60) directly, we have

$$
\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \cos \phi \\
-2 r \\
5
\end{array}\right]
$$

or

$$
A=\mathbf{a}_{x}\left(3 \cos ^{2} \phi+2_{i} r \sin (\phi)+\mathbf{a}_{y}(3 \sin \phi \cos \phi-2 r \cos \phi)+a_{x} 5^{\circ}\right.
$$

But, from Eqs. (2-61) and (2-62),
and

$$
\cos \phi=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

$$
\sin _{:} \phi=\frac{y}{\sqrt{x^{2}+y_{i}^{2}}}
$$

Therefore,

$$
\mathbf{A}=\mathbf{a}_{x}\left(\frac{3 x^{2}}{x^{2}+y^{2}}+2 y\right)+\mathbf{a}_{y}\left(\frac{3 x y}{x^{2}+y^{2}}-2 x\right)+\mathbf{a}_{z} 5
$$

which is the desired answer.
Example 2-6 Given $\mathbf{F}=\mathbf{a}_{x} x y-\mathbf{a}_{y} 2 x$, evaluate the scalar line integral

$$
\int_{A}^{B} \mathbf{F} \cdot d \ell
$$

along the quarter-circle shown in Fig. 2-14.

Fig, 214 Path for line integzal (Example 2-6).

Solution: We shall solve this problem in two ways: first in Cartesian coordinates, then in cylindrical coordinates.
a) In Cartesian coordinates. From the given \mathbf{F} and the expression for $d \ell$ in Eq. (2-44), we have

$$
\mathbf{F} \cdot d \ell=x y d x-2 x d y
$$

The equation of the quarter-circle is $x^{2}+y^{2}=9(0 \leq x, y \leq 3)$. Therefore,

$$
\begin{aligned}
\int_{A}^{P} \mathbf{F} \cdot d \ell & =\int_{3}^{0} x \sqrt{9-x^{2}} d x-2 \int_{0}^{3} \sqrt{9-y^{2}} d y \\
& =-\left.\frac{1}{3}\left(9-x^{2}\right)^{3 / 2}\right|_{3} ^{0}-\left[y \sqrt{9-y^{2}}+9 \sin ^{-1} \frac{y}{3}\right]_{0}^{3} \\
& =-9\left(1+\frac{\pi}{2}\right)
\end{aligned}
$$

b) In cylindrical coordinates. Here we first transform \mathbf{F} into cylindrical coordinates. Inverting Eq. (2-55), we have

$$
\begin{align*}
{\left[\begin{array}{l}
A_{r} \\
A_{t} \\
A_{z}
\end{array}\right] } & =\left[\begin{array}{lll}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
11 & \theta & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right] . \tag{2-63}
\end{align*}
$$

With the given F, Eq. (2-63) gives

$$
\left[\begin{array}{l}
F_{r} \\
F_{\phi} \\
F_{z}
\end{array}\right]=\left[\begin{array}{cll}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{r}
x y \\
-2 x \\
0
\end{array}\right],
$$

which leads to

$$
\mathbf{F}=\mathbf{a}_{r}(x y \cos \phi-2 x \sin \phi)-\mathbf{a}_{\phi}(x y \sin \phi+2 x \cos \phi) .
$$

For the-present problem the path of integration is along a quarter-circle of a radius 3 . There is no change in r or z along the path ($d r=0$ and $d z=0$); hence Eq. (2-51) simplifies to

$$
d \ell=\mathbf{a}_{\phi} 3 d \phi
$$

and

$$
\mathbf{F} \cdot d \ell=-3(x y \sin \phi+2 x \cos \phi) d \phi .
$$

Because of the circular path, F_{r} is immaterial ta the present integration. Along the path, $x=3 \cos \phi$ and $y=3 \sin \phi$. Therefore.

$$
\begin{aligned}
\int_{A}^{B} \mathbf{F} \cdot d \ell & =\int_{0}^{\pi / 2}-3\left(9 \sin ^{2} \phi \cos \phi+6 \cos ^{2} \phi\right) d \phi \\
& =-\left.9\left(\sin ^{3} \phi+\phi+\sin \phi \cos \phi\right)\right|_{0} ^{\pi / 2} \\
& =-9\left(1+\frac{\pi}{2}\right),
\end{aligned}
$$

In this particular example, F is given in Cartesian coordinates and the path is circular. There is no compelling reason to solve the problem in one or the other coordinates. We have shown the conversion of vectors and the procedure of solution in both coordinales.

Example 2-7 Given $\mathbf{F}=\mathbf{a}_{\mathrm{r}} k_{1} / r+\mathrm{a}_{2} k_{2}=$. evaluate the scalar surface integral

$$
\oint \mathrm{F} \cdot d \mathbf{s}
$$

over the surface of a closed cylinder about the z-axis specified by $z= \pm 3$ and $r=2$, as shown in Fig. 2-15.

Solution: In connection with Eq. (2-34) we noted that the direction of d s is normal to the surface. This statement is actually imprecise because a normal to a surface can point in either of two directions. No ambiguity would arise in Eq. (2-35), since the choice of \mathbf{a}_{n} simply determines the reference direction of current flow. In the present case, where $\mathrm{F} \cdot d \mathrm{~d}$ is to be integrated over a closed surface (denoted by the circle on the integral sign), the direction of d is always to be taken a 6 that of the outward normal. Our problem is to carry out the surface integral

$$
\int \sqrt{f} \cdot d s \quad=1 \mid d x \cdot a_{n} d s
$$

over the entire specified surface. This integral gives the net outward flux of the vector F through the enclosed surface.

The cylinder in Fig. 2-15 has three surfaces: the top face, the bottom face, and the side wall. So,

$$
\oint \mathbf{F} \cdot d \mathbf{s}=\int_{\substack{\text { top } \\ \text { face }}} \mathbf{F} \cdot \mathbf{a}_{n} d \mathbf{s}+\int_{\substack{\text { botoom } \\ \text { fiuce }}} \mathbf{F} \cdot \mathbf{a}_{n} d s+\int_{\substack{\text { sido } \\ \text { wall }}} \mathbf{F} \cdot \mathbf{a}_{n} d s
$$

We evaluate, the three integrals on the right side separately.
a) Top fa e. $z=3, \mathbf{a}_{n}=\mathbf{a}_{z}$

$$
\begin{aligned}
& \mathbf{F} \cdot \dot{\mathbf{a}}_{n}=k_{2} z=3 k_{2} \\
& d s=r d r d \phi \text { (from Eq. 2-52); }
\end{aligned}
$$

$$
\int_{\substack{\text { lop } \\ \text { face }}} \mathrm{F} \cdot \dot{\mathrm{a}}_{n} d s=\int_{0}^{2 \pi} \int_{0}^{2} 3 k_{2} r d r d \phi=12 \pi k_{2}
$$

b) Bottom face.

$$
\begin{aligned}
& z=-3, \mathbf{a}_{n}=-\mathbf{a}_{z} \\
& \mathbf{F} \cdot \mathfrak{a}_{n}=-k_{2} z=3 k_{2} \\
& d s=r d r d \phi ; \\
& \qquad \int_{c_{14 \mathrm{ce}}} \mathbf{F} \cdot \mathbf{a}_{n} d s=12 \pi k_{2},
\end{aligned}
$$

which is exactly the same as the integral over the top face.
c) Side wall. $r=2, a_{n}=a_{r}$

$$
\begin{aligned}
& \mathbf{F} \cdot \mathbf{a}_{n}=\frac{k_{1}}{r}=\frac{k_{1}}{2} \\
& d s=r d \phi d z=2 d \phi d z \text { (from Eq. } 2-52 \mathrm{a} \text {); } \\
& \qquad \int_{\substack{\text { side } \\
\text { wall }}} \mathbf{F} \cdot \mathbf{a}_{n} d s=\int_{-3}^{3} \int_{0}^{2 \pi} k_{1} d \phi d z=12 \pi k_{1} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\oint \mathbf{F} \cdot \dot{d} \mathbf{s} & =12 \pi k_{2}+12 \pi k_{2}+12 \pi k_{1} \\
& =12 \pi\left(k_{1}+2 k_{2}\right) .
\end{aligned}
$$

2-4.3 Spherical Coordinates

$$
\left(u_{1}, u_{2}, u_{3}\right)=(R, \theta, \phi)
$$

A point $P\left(R_{1}, \theta_{1}, \phi_{1}\right)$ in spherical coordinates is specified as the intersection of the following three surfaces: a spherical surface centered at the origin with a radius $R=$ R_{1}; a right circular cone with its apex at the origin, its axis coinciding with the z-axis

Fig. 2-16 Spherical coordinates.
and having a half-angle $\theta=\theta_{1}$; and a half-plane containing the z-axis and making an angle $\phi=\phi_{1}$ with the $x z$-plane. The base vector a_{R} at P is radial from the origin and is quite different from \mathbf{a}_{r} in cylindrical coordinates, the latter being perpendicular to the z-axis. The base vector \mathbf{a}_{θ} lies in the $\phi=\phi_{1}$ plane and is tangential to the spherical surface, whereas the base vector \mathbf{a}_{ϕ} is the same as that in cylindrical coordinates. These are illustrated in Fig. 2-16. For a right-handed system we have

$$
\begin{align*}
\mathbf{a}_{R} \times \mathbf{a}_{\theta} & =\mathbf{a}_{\phi} \tag{2-64a}\\
\mathbf{a}_{\theta} \times \mathbf{a}_{\phi} & =\mathbf{a}_{R} \tag{2-64b}\\
\mathbf{a}_{\phi} \times \mathbf{a}_{R} & =\mathbf{a}_{\theta} . \tag{2-64c}
\end{align*}
$$

Spherical coordinates are important for problems involving point sources and regions with spherical boundaries. When an observer is very far from the source region of a finite extent, the latter could be considered as the origin of a spherical coordinate system; and, as a result, suitable simplifying approximations could be made. This is the reason that spherical coordinatesare used in solving antenna problems in the far field.

A vector in spherical coordinates is written as

$$
\begin{equation*}
\mathbf{A}=\mathbf{a}_{R} A_{R}+\mathbf{a}_{\theta} A_{\theta}+\mathbf{a}_{\phi} A_{\phi} \tag{2-65}
\end{equation*}
$$

The expressions for the dot and cross products of two vectors in spherical coordinates can be obtained from Eqs. $(2-26)$ and $(2-27)$.

In spherical coordinates, only $R\left(u_{1}\right)$ is a length. The other two coordinates, θ and $\phi\left(u_{2}\right.$ and u_{3}), are angles. Referring to. Fig. 2-17, where a typical differential volume element is shown, we see that metric cqefficients $h_{2}=R$ and $h_{3}=R \sin \theta$ are required

Fig. 2-17 A differential volume element in spherical coordinates.
lking an

oher;
dinates.

$$
2-64 a)
$$

2-64b)
2-64c)
is and
region
dinate
This is
he far

2-65)
nates
es, θ
ume
ured
to convert $d \theta$ and $d \phi$ into $d \ell_{2}$ and $d \ell_{3}$, respectively. The general expression for a differential length is, from Eq. $(2-31)$,

$$
\begin{equation*}
d \ell=\mathbf{a}_{R} d R+\mathbf{a}_{0} R d \theta+\mathbf{a}_{\phi} R \sin \theta d \phi \tag{2-66}
\end{equation*}
$$

The expressions for differential areas and differential volume resulting from differential changes $d R, d 0$, and $d \phi$ in the three coordinate directions are

$$
\begin{align*}
d \mathrm{~s}_{R} & =\mathbf{a}_{R} R^{2} \sin \theta d \theta d \phi \tag{2-67a}\\
d \mathbf{s}_{\theta} & =\mathbf{a}_{\theta} R \sin \theta d R d \phi \\
d \mathbf{s}_{\phi} & =\mathbf{a}_{\phi} R d R d \theta
\end{align*}
$$

and

$$
\begin{equation*}
d v=R^{2} \sin \theta d R d \theta d \phi \tag{2-68}
\end{equation*}
$$

For convenience the base vectors, metric coefficients, and expressions for the differential volume are tabulated in Table 2-1.

A vector given in spherical coordinates can be transformed into one in Cartesian or cylindrical coordinates, and vice versa: From Fig. 2-17, it is easily seen that

$$
\begin{align*}
& x=R \sin \theta \cos \phi \tag{2-69a}\\
& y=R \sin \theta \sin \phi \\
& z=R \cos \theta
\end{align*}
$$

Table 2-1 Three Basic Orthogonal Coordinate Systems
b)

Coordinate-system Relations		Cartesian Coordinates (x, y, z)	Cylindrical Coordinates (r, ϕ, z)	\%	Spherical Coordinates (R, θ, ϕ)
Pas. Vectors.	$\mathrm{a}_{\mathrm{k}_{1}}$	a_{x}	a_{2}		a_{R}
	$\mathrm{a}_{u_{2}}$	a_{4}	$\mathrm{a}_{\mathrm{i}_{1}}$		\mathbf{a}_{5}
	$\mathrm{ar}_{5} \times$	n_{\sim} *	a_{2}		a_{9}
Metric Coefficients	h_{1}	1	1		1
	h_{2}	1.	r		R
	h_{3}	1	1		$R \sin 0$.
Differential Volume	$d v$	$d x d y d z$	$r d r d \dot{\phi} d z$		$R^{2} \sin \theta d R d \theta d \phi$

Conversely, measurements in Cartesian coordinates can be transformed into those in spherical coordinates:

$$
\begin{array}{|c}
R=\sqrt{x^{2}+y^{2}+z^{2}} \tag{2-70a}\\
\theta=\tan ^{-1} \frac{\sqrt[y]{x^{2}+y^{2}}}{z} \\
\phi=\tan ^{-1}
\end{array}
$$

Example 2-8 The position of a point P in spherical coordinates is $\left(8,120^{\circ}, 330^{\circ}\right)$. Specify its location (a) in Cartesian coordinates, and (b) in. cylindrical coordinates.

Solution: The spherical coordinates of the given point are $R=8, \theta=120^{\circ}$, and $\phi=330^{\circ}$.
a) In Cartesian coordinates. We use Eqs. $(2-69 \mathrm{a}, \mathrm{b}, \mathrm{c})$:

$$
\begin{aligned}
& x=8 \sin 120^{\circ} \cos 330^{\circ}=6 \\
& y=8 \sin 12 \rho^{\circ} \sin 330^{\circ}=-2 \sqrt{3} \\
& z=8 \cos 120^{\circ}
\end{aligned}
$$

Hence, the location of the point is $P_{1}(6,-2 \sqrt{3},-4)$, and the position vector (the vector going from the origin to the point) is

$$
\overline{O P}=\mathbf{a}_{x} 6-\mathbf{a}_{y} 2 \sqrt{3}-\mathbf{a}_{z} 4 .
$$

b) In cylindrical coordinates. The cylindrical coordinates of point P can be obtained by applying Eqs. (2-62a, b, c) to the results in part (a), but they can be calculated directly from the given spherical coordinates by the following relations, which can be verified by comparing Figs. 2-11 and 2-16:

$$
\begin{align*}
r & =R \sin \theta \tag{2-71a}\\
\phi & =\phi \tag{2-1b}\\
z & =R \cos \theta .
\end{align*}
$$

We have $P\left(4 \sqrt{3}, 330^{\circ},-4\right)$; anc its position vector in cylindrical coordinates is

$$
\stackrel{\rightharpoonup}{O P}=a_{r} 4 \sqrt{3}-a_{z} 4
$$

It is interesting to note here that the "position vector" of a point in cylindrical coordinates, unlike that in Cartesian coordinates, does not specify the position of the point exactly. Can you write down the position vector of the point P in spherical coordinates?

Example 2-9 Convert the vector $\mathbf{A}=\mathbf{a}_{\mathrm{K}} A_{R}+\mathbf{a}_{0} A_{\theta}+\mathbf{a}_{\phi} A_{\phi}$ into Cartesian coordinates.
 This is very different from the preceding problem of converting the coordinates of a point. First of all, we assume that the expression of the given vector A holds for all points of interest and that all three given components A_{R}, A_{θ} and A_{ϕ} may be functions of coordinate variables. Second, at a given point, A_{R}, A_{θ}, and A_{ϕ} will have definite numerical values, but these values that determine the direction of A will, in general, be entirely different from the coordinate values of the point. Taking dot product of \mathbf{A} with \mathbf{a}_{x}, we have

$$
\begin{aligned}
A_{x} & =\mathbf{A} \cdot \mathbf{a}_{x} \\
& =A_{R} \mathbf{a}_{R} \cdot \mathbf{a}_{x}+A_{\theta} \mathbf{a}_{\theta} \cdot \mathbf{a}_{x}+A_{\phi} \mathbf{a}_{\phi} \cdot \mathbf{a}_{x}
\end{aligned}
$$

Recalling that $\mathbf{a}_{R} \cdot \mathbf{a}_{x}, \mathbf{a}_{\theta} \cdot \mathbf{a}_{x}$, and $\mathbf{a}_{\phi} \cdot \mathbf{a}_{x}$ yield, respectively, the component of unit vectors $\mathbf{a}_{R}, \mathbf{a}_{\theta}$, and \mathbf{a}_{ϕ} in the direction of \mathbf{a}_{x}, we find, from Fig. 2-16 and Eqs. (2-69a, b, c):

$$
\begin{align*}
& \mathbf{a}_{R} \cdot \mathbf{a}_{x}=\sin \theta \cos \phi=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{2-72}\\
& \mathbf{a}_{\theta} \cdot \mathbf{a}_{x}=\cos \theta \cos \phi=\frac{x z}{\sqrt{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)}} \tag{2-73}\\
& \mathbf{a}_{\phi} \cdot \mathbf{a}_{x}=-\sin \phi=-\frac{y}{\sqrt{x^{2}+y^{2}}} \tag{2-74}
\end{align*}
$$

Thus,

$$
\begin{align*}
A_{x} & =A_{R} \sin \theta \cos \phi+A_{\theta} \cos \theta \cos \phi-A_{\phi} \sin \phi \\
& =\frac{A_{R} x}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{A_{A} x z}{\sqrt{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)}}-\frac{A_{\phi} y}{\sqrt{x^{2}+y^{2}}} \tag{2-75}
\end{align*}
$$

Similarly,

$$
\begin{align*}
A_{y} & =A_{R} \sin \theta \sin \phi+A_{\theta} \cos \theta \sin \phi+A_{\phi} \cos \phi \\
& =\frac{\Lambda_{0}}{\sqrt{x^{2}+y^{2}+z^{2}}}+\frac{A_{y}}{\sqrt{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)}}+\frac{A_{\phi}}{\sqrt{x^{2}+y^{2}}} \tag{2-76}
\end{align*}
$$

and

$$
\begin{equation*}
A_{z}=A_{R} \cos \theta-A_{\theta} \sin \theta=\frac{A_{R} z}{\sqrt{x^{2}+y^{2}+z^{2}}}-\frac{A_{\theta} \sqrt{x^{2}+y^{2}}}{\sqrt{x^{2}+y^{2}+z^{2}}} \tag{2-77}
\end{equation*}
$$

If A_{R}, A_{θ}, and A_{ϕ} are themselves functions of R, θ, and ϕ, they too need to be converted into functions of x, y, and z by the use of Eqs. (2-70a, b, c). Equations (2-75), (2-76), and (2-77) disclose the fact that when a vector has a simple form in one coordinate system, its conversion into another coordinate system usually results in a more complicated expression.

Example 2-10 Assuming that a cloud of electrons copfined in a region between two spheres of radii 2 and 5 cm, has a charge density of

$$
\frac{-3 \times 10^{+8}}{R^{4}} \cos ^{2} \phi \quad\left(\mathrm{C} / \mathrm{m}^{3}\right),
$$

find the total charge contained in the region.
Solution: We have

$$
\begin{aligned}
& \dot{\rho}=-\frac{3 \times 10^{-8}}{R^{4}-\cos ^{2} \phi} \\
& Q=\int \rho d v .
\end{aligned}
$$

2-5 GRAI
\cap^{In}
pos
(i, u
We
at a
are
tior
poi:
rep:
ous
dep
line
con
chal
the

The given conditions of the problen obviously point to the use of spherical coordinates. Using the expression for 1 l in $\mathrm{Eq} .(2-68)$, we perform a triple integration.

$$
Q=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0.02}^{0.05} \rho R^{2} \sin \theta_{1} d \dot{R} d Q d \phi
$$

Two things are of importance here. First, since ρ is given in units of coulombs per cubic meter, the limits of integration for R must be converted to meters. Second, the full range of integration for θ is from 0 to π radians, not from 0 to 2π radians. A little reflection will convince us that a half-circle (not a full-circle) rotated about the z-axis

through 2π radians (ϕ from 0 to 2π) generates a sphere. We have

$$
\begin{align*}
Q & =-3 \times 10^{-8} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0.02}^{0.05} \frac{1}{R^{2}} \cos ^{2} \phi \sin \theta d R d \theta d \phi \\
& =-3 \times 10^{-8} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(-\frac{1}{0.05}+\frac{1}{0.02}\right) \sin \theta d \theta \cos ^{2} \phi d \phi \\
& =-0.9 \times\left. 10^{-6} \int_{0}^{2 \pi}(-\cos \theta)\right|_{5} ^{\pi} \cos ^{2} \phi \dot{\omega} \phi \\
& =-1.8 \times\left. 10^{-5}\left(\frac{\phi}{2}+\frac{\sin 2 \phi}{4}\right)\right|_{0} ^{2 \pi}=-1.8 \pi \quad(\mu C) . \tag{2-77}
\end{align*}
$$

mbs per :ond, the \therefore A little he z-axis

2-5 GRADIENT OF A SCALAR FIELD

In electromagnetics we have to deal with quantities that depend on both time and position. Since three coordinate variables are involved in a three-dimensional space, we expect to encounter scalar and vector fields that are functions of four variables: (t, u_{1}, u_{2}, u_{3}). In general, the fields may change as any one of the four variables changes. We now address the method for describing the space rate of change of a scalar field at a given time. Partial derivatives with respect to the three space-coordinate variables are involved and, masmuch as the rate of change may be different in different directions, a vector is needed to define the space rate of change of a scalar field at a given point and at a given time.

Let us consider a scalar function of space coordinates $V\left(u_{1}, u_{2}, u_{3}\right)$, which may represent, say, the temperature distribution in a building, the altitude of a mountainous terrain, or the electric potential in a region. The magnitude of V, in general, depends on the position of the point in space, but it may be constant along certain lines or surfaces. Figure 2-18 shows two surfaces on which the magnitude of V is constant and has the values V_{1} and $V_{1}+d V$, respectively, where $d V$ indicates a small change in V. We should note that constant- V surfaces need not coincide with any of the surfaces that define a particular coordinate system. Point P_{1} is on surface $V_{1} ; P_{2}$

Fig. 2-18 Concerning gradient of a scalar.

38
 VEGTOR ANALYSIS / 2

is the corresponding point on surface $V_{1}+d V$ along the normal vector $d \mathbf{n}$; and P_{3} is a point close to P_{2} along another vector $d \ell \neq d \mathbf{n}$. For the same change $d V$ in V, the space rate of change, $d V / d \rho$, is obviously greatest along $d \mathbf{n}$ because $d n$ is the shortest distance between the two surfaces. ${ }^{\dagger}$. Since the magnitude of $d V / d \ell$ depends on the direction of $d \ell, d V / d \ell$ is a directional derivative. We define the vector that represents both the magnitude and the direction of the maximum spaco rate of increase of a scalar as the gradient of that scalar, We write

$$
\begin{equation*}
\left[\operatorname{grad} V \triangleq \mathbf{a}_{n} \frac{d V}{d n}\right. \tag{2-78}
\end{equation*}
$$

For brevity it is customary to employ the operator del, represented by the symbol V and write ∇V in place of grad V. Thus.

$$
\begin{equation*}
\nabla V \triangleq \mathbf{a}_{n} \frac{d V}{d n} \tag{2-79}
\end{equation*}
$$

We have assumed that $d V$ is positive (an increase in V); if $d V$ is negative (a decrease in V from P_{1} to P_{2}), ∇V will be negative in the a_{n} ditection.

The directional derivative along $d \ell$ is

$$
\begin{align*}
\frac{d V}{d \ell} & =\frac{d V}{d n} \frac{d n}{d \ell}=\frac{d V}{d n} \cos \alpha \\
& =\frac{d V}{d n} \mathbf{a}_{n} \cdot \mathbf{a}_{\ell}=(\nabla V) \cdot \mathbf{a}_{\ell} \tag{2-80}
\end{align*}
$$

Equation (2-80) states that the space rate of increase of Y in the a_{c} direction is equal to the projection (the component) of the gradient of V in that direction. We can also write Eq. (2 80) as

$$
\begin{equation*}
d V=(\nabla V) \cdot d e \tag{2-81}
\end{equation*}
$$

where $d \ell=\mathbf{a}_{\ell} d \ell$. Now, $d V$ in Eq. $(2-81)$ is the total differential of V as a result of a change in position (from P_{1} to P_{3}^{i} in Fig. 2-18); it can pe expressed in terms of the differential changes in coordinates:

$$
\begin{equation*}
d V=\frac{\partial V}{\partial \ell_{1}} d \ell_{1}+\frac{\partial V}{\partial \ell_{2}} d \ell_{2}+\frac{\partial V}{\partial \ell_{3}} d \ell_{3} \tag{2-82}
\end{equation*}
$$

Eq:

In.
where $d \ell_{1}, d \ell_{2}$, and $d \ell_{3}$ are the components of the vector differential displacement $d \ell$ in a chosen coordinate system. In terms of general orthogonal curvilinear coordi-

[^7]and P_{3} is in V, the shortest s on the presents rascalar
ymbol ∇

1 is equal can also
esult of a ns of the

lacement r coordi- nates $\left(u_{1}, u_{2}, u_{3}\right), d \ell$ is (from Eq. 2-31),

$$
\begin{align*}
d \ell & =\mathbf{a}_{u_{1}} d \ell_{1}+\mathbf{a}_{u_{2}} d \ell_{2}+\mathbf{a}_{u_{3}} d \ell_{3} \\
& =\mathbf{a}_{u_{1}}\left(h_{1} d u_{1}\right)+\mathbf{a}_{u_{2}}\left(h_{2} d u_{2}\right)+\mathbf{a}_{u_{3}}\left(h_{3} d u_{3}\right) \tag{2-83}
\end{align*}
$$

It is instructive to write $d V$ in Eq. $(2-82)$ as the dot product of two vectors, as follows:

$$
\begin{align*}
d V & =\left(\mathbf{a}_{u_{1}} \frac{\partial V}{\partial \ell_{1}}+\mathbf{a}_{u_{2}} \frac{\partial V}{\partial \ell_{2}}+\mathbf{a}_{u_{3}} \frac{\partial V}{\partial \ell_{3}}\right) \cdot\left(\mathbf{a}_{u_{1}} d \ell_{1}+\mathbf{a}_{u_{2}} d \ell_{2}+\mathbf{a}_{u_{3}} d \ell_{3}\right) \\
& =\left(\mathbf{a}_{u_{1}} \frac{\partial V}{\partial \ell_{1}}+\mathbf{a}_{u_{2}} \frac{\partial V}{\partial \ell_{2}}+\mathbf{a}_{u_{3}} \frac{\partial V}{\partial \ell_{3}}\right) \cdot d \ell
\end{align*}
$$

Comparing Eq. $(2-84)$ with Eq. $(2-81)$, we obtain

$$
\begin{equation*}
\nabla V=\mathbf{a}_{u_{1}} \frac{\partial V}{\partial \ell_{1}}+\mathbf{a}_{u_{2}} \frac{\partial V}{\partial \ell_{2}}+\mathbf{a}_{u_{3}} \frac{\partial V}{\partial \ell_{3}} \tag{2-85}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{\nabla} V=\mathbf{a}_{u_{1}} \frac{\partial V}{h_{1} \partial u_{1}}+\mathbf{a}_{u_{2}} \frac{\partial V}{h_{2} \partial u_{2}}+\mathbf{a}_{u_{3}} \frac{\partial V}{h_{3} \partial u_{3}} \tag{2-86}
\end{equation*}
$$

Equation $(2-86)$ is a useful formula for computing the gradient of a scalar, when the scalar is given as a function of space coordinates.

In Cartesian coordinates, $\left(u_{1}, u_{2}, u_{3}\right)=(x, y, z)$ and $h_{1}=h_{2}=h_{3}=1$, we have

$$
\begin{equation*}
\nabla V=\mathbf{a}_{x} \frac{\partial V}{\partial x}+\mathbf{a}_{y} \frac{\partial V}{\partial y}+\mathbf{a}_{z} \frac{\partial V}{\partial z} \tag{2-87}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla V=\left(\mathbf{a}_{x} \frac{\partial}{\partial x}+\mathbf{a}_{y} \frac{\partial}{\partial y}+\mathbf{a}_{z} \frac{\partial}{\partial z}\right) V \tag{2-88}
\end{equation*}
$$

In view of Eq. (2-88), it is convenient to consider ∇ in Cartesian coordinates as a vector differential operator.

$$
\begin{equation*}
\nabla \equiv a_{x} \frac{\partial}{\partial x}+\mathbf{a}_{y} \frac{\partial}{\partial y}+\mathbf{a}_{z} \frac{\partial}{\partial z} \tag{2-89}
\end{equation*}
$$

Looking at Eq. (2-86), one is tempted to define V as

$$
\nabla \equiv\left(\mathbf{a}_{u_{1}} \frac{\partial}{h_{1} \partial u_{1}}+\mathbf{a}_{u_{2}} \frac{\partial}{h_{2} \partial u_{2}}+\mathbf{a}_{u_{3}} \frac{\partial}{h_{3} \partial u_{3}}\right)
$$

in general orthogonal coordinates, but one must refrain from doing so. True, this definition would yield a correct answer for the gradient of a scalar. However, the
-The

$$
\mathbf{E}=-\nabla V_{i}-\mathbf{a}_{\mathbf{z}} \frac{\partial}{\partial z}\left(V_{0} z\right)-\mathbf{a}_{\mathbf{z}} V_{0} .
$$

2-6 DIVERGENCE OF A VECTOR FIELD

In the preceding section we considered the spatial derivatives of a scalar field, which led to the definition of the gradient. We now turn our attention to the spatial derivatives of a vector field. This will lead to the definitions of the divergence and the curl
of a vector. We discuss the meaning of divergence in this section and that of curl in Section 2-8. Both are very important in the study of electromagnetism.

In the study of vector fields it is convenient to represent field variations graphically by directed field lines, which are called flux lines or streamlines. These are directed lines or curves that indicate at each point the direction of the vector field. The magnitude of the field at a point is depicted by the density of the lines in the vicinity of the point. In other words, the number of flux lines that pass through a unit surface normal to a vector is a measure of the magnitude of the vector. The flux of a vector field is analogons to the fiow of an incrimpressible fluid such as water. For a volume with an enclosed surface there will be an excess of outward or inward flow through the surfoce only when the volume contains, respectively, a vource or a sank; that is, a net positive sivegence indicates the presence of a source of fluid inside the volume, and a net negative divergence indicates the presence of a sink. The net outward flow of the fluid per unit volume is therefore a measure of the strength of the enclosed source.
skraca ${ }^{\prime}$
We define the divergence of a vector field \mathbf{A} at a point, abbreviated $\operatorname{div} \mathbf{A}$, as the net outward flux of \mathbf{A} per unit volume as the volume about the point tends to zero:

$$
\begin{equation*}
\operatorname{div} \mathbf{A} \triangleq \lim _{\Delta v \rightarrow 0} \frac{\oint_{\mathbf{s}} \mathbf{A} \cdot d \mathbf{s}}{\Delta v} \tag{2-90}
\end{equation*}
$$

The numerator in Eq. $(2-90)$, representing the net outward flux, is an integral over the entire surface S that bounds the volume. We have been exposed to this type of surface integral in Example $2-7$. Equation $(2 \cdots 90)$ is the general definition of div \mathbf{A} which is a scalar quantity whose magnitude may vary from point to point as \mathbf{A} itself varies. This definition holds for any coordinate system; the expression for div \mathbf{A}, like that for \mathbf{A}, will, of course, depend on the choice of the coordinate system.

At the beginning of this section we intimated that the divergence of a vector is a type of spatial derivative. The reader may perhaps wonder about the presence of an integral in the expression given by Eq. (2-90); but a two-dimensional surface integral divided by a three-dimensional volume will lead to spatial derivatives as the volume approaches zero. We shall now derive the expression for div \mathbf{A} in Cartesian coordinates.

Consider a differential volume of sides $\Delta x, \Delta y$, and Δz centered about a point $P\left(x_{0}, y_{0}, z_{0}\right)$ in the field of a vector \mathbf{A}, as shown in Fig. 2-19. In Cartesian coordinates, $\mathbf{A}=\mathbf{a}_{x} A_{x}+\mathbf{a}_{y} A_{y}+\mathbf{a}_{z} A_{z}$. We wish to find div \mathbf{A} at the point $\left(x_{0}, y_{0}, z_{0}\right)$. Since the differential volume has six faces, the surface integral in the numerator of Eq. (2-90) can be decomposed into six parts.

$$
\begin{equation*}
\oint_{S} \mathbf{A} \cdot d s=\left[\int_{\substack{\text { front } \\ \text { face }}}+\int_{\substack{\text { back } \\ \text { face }}}+\int_{\substack{\text { righi } \\ \text { face }}}+\int_{\text {left }}+\int_{\text {face }}+\int_{\text {face }}+\int_{\text {fottem }}\right] \mathbf{A} \cdot d s \tag{2-91}
\end{equation*}
$$

Fig, 2-19 A differential yolume in Cartesjan coordinte

On the front face,

$$
\begin{align*}
\int_{\substack{\text { front } \\
\text { face }}} \mathbf{A} \cdot d \mathbf{s} & =\underset{\substack{\text { frapt: } \\
\text { fape }}}{ } \cdot \underset{\substack{\text { fronnt } \\
\text { face }}}{ }=\underset{\text { frace }}{\mathbf{A}_{\text {frot }} \cdot \mathbf{a}_{x}(\Delta y \Delta z)} \\
& =A_{x}\left(x_{0}+\frac{\Delta x}{2}, y_{0}, z_{0}\right) \Delta y \Delta z . \tag{2-92}
\end{align*}
$$

The quantity $A_{x}\left(\left[x_{0}+(\Delta x / 2), y_{0}, z_{0}\right]\right)$ can be expanded as a Taylor series about its value at $\left(x_{0}, y_{0}, z_{0}\right)$, as follows:

$$
\begin{align*}
A_{x}\left(x_{0}+\frac{\Delta x}{2}, y_{0}, z_{0}\right)= & A_{x}\left(x_{0}, y_{0}, z_{0}\right)+\left.\frac{\Delta x}{2} \frac{\partial A_{x}}{\partial x}\right|_{\left(x_{0}, y_{0}, z_{0}\right)} \\
& + \text { higher-order terma } \tag{2-93}
\end{align*}
$$

where the higher-order terms (H.O.T.) contain the factors $(\Delta x / 2)^{2},(\Delta x / 2)^{3}$, etc. Similarly, on the back face,

$$
\begin{gather*}
\int_{\substack{\text { back } \\
\text { face }}} \mathbf{A} \cdot d \mathbf{s}-\mathbf{A}_{\text {back }} \cdot \Delta \mathbf{s}_{\text {back }}=\mathbf{A}_{\text {face }} \cdot\left(-\mathbf{a}_{x} \Delta y \Delta z\right) \\
\text { face } \tag{2-94}\\
=-A_{x}\left(\dot{x}_{0}-\frac{\Delta x}{2}, y_{0}, z_{0}\right) \Delta y \Delta z
\end{gather*}
$$

The Taylor-scries expansion of $A_{x}^{0}\left(x_{0}-\frac{\Delta x}{2}, y_{0}, z_{10}\right)$ is

$$
\begin{equation*}
A_{x}\left(x_{0}-\frac{\Delta x}{2}, y_{0}, z_{0}\right)=A_{x}\left(x_{0}, y_{0}, z_{0}\right)-\left.\frac{\Delta x}{2} \frac{\partial A_{x}}{\partial x}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}+\text { H.O.T. } \tag{2-95}
\end{equation*}
$$

Substituting Eq. (2-93) in Eq. (2-92) and Eq. (2-95) in Eq. (2-94) and adding the contributions, we have

$$
\begin{equation*}
\left[\int_{\text {front }}^{\substack{\text { face }}}+\int_{\substack{\text { back } \\ \text { face }}}\right] \mathbf{A} \cdot d \mathbf{s}=\left.\left(\frac{\hat{Q_{1} A_{x}}}{\partial x}+\text { H.O.T. }\right)\right|_{\left(\times x_{0}, y_{0}, F_{0}\right)} \Delta x \Delta y \Delta z . \tag{2-96}
\end{equation*}
$$

Here a Δx has been factored out from the H.O.T. in Eqs. (2-93) and (2-95), but all terms of the H.O.T. in Eq. (2-96) still contain powers of $\Delta \dot{x}$.
sinc:

Following the same procedure for the right and left faces, where the coordinate changes are $+\Delta y / 2$ and $-\Delta y / 2$, respectively, and $\Delta s=\Delta x \Delta z$, we find

$$
\begin{equation*}
\left[\int_{\substack{\text { right } \\ \text { face }}}+\int_{\substack{\text { left } \\ \text { face }}}\right] \mathbf{A} \cdot d \mathrm{~s}=\left.\left(\frac{\partial A_{y}}{\partial y}+\text { H.O.T. }\right)\right|_{(x 0, y 0, z 0)} \Delta x \Delta y \Delta z . \tag{2-97}
\end{equation*}
$$

Here the higher-order terms contain the factors $\Delta y,(\Delta y)^{2}$, etc. For the top and bottom faces, we have

$$
\begin{equation*}
\left[\int_{\substack{\text { opp } \\ \text { foce. }}}+\int_{\substack{\text { batato }}}^{\infty}\right] \mathbf{A} \cdot d \mathrm{~s}=\left.\left(\frac{\partial A_{z}}{\partial z}+\text { H.O.T. }\right)\right|_{\left(x o, y_{0}, z_{0}\right)} \Delta x \Delta y \Delta z, \tag{2-98}
\end{equation*}
$$

where the higher-order terms contain the factors $\Delta z,(\Delta z)^{2}$, etc. Now the results from. Eqs. (2-96), (2-97), and (2-98) are combined in Eq. (2-91) to obtain

$$
\begin{align*}
\oint_{\mathrm{s}} \mathbf{A} \cdot d \mathrm{~s}= & \left.\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)\right|_{\left(x_{0}, y_{0},=0\right)} \Delta x \Delta y \Delta z \tag{2-99}\\
& + \text { higher-order terms in } \Delta x ; \Delta y, \Delta z .
\end{align*}
$$

Since $\Delta v=\Delta x \Delta y \Delta z$, substitution of Eq. (2-99) in Eq. (2-90) yields the expression of div \mathbf{A} in Cartesian coordinates

$$
\begin{equation*}
\operatorname{div} \mathrm{A}=\frac{\partial A_{x}}{\partial x}+\frac{\partial d_{y}}{\partial y}+\frac{\partial d_{z}}{\partial z} \tag{2-100}
\end{equation*}
$$

The higher-order terms vanish as the differential volume $\Delta x \Delta y \Delta z$ approaches zero. The value of $\operatorname{div} \mathbf{A}$, in general, depends on the position of the point at which it is evaluated. We have dropped the notation (x_{0}, y_{0}, z_{0}) in Eq. (2-100) because it applies to any point at which \mathbf{A} and its partial derivatives are defined.

With the vector differential operator del, ∇, defined in Eq. (2-89) for Cartesian coordinates, we can write Eq. $(2-100)$ alternatively as $\nabla \cdot \dot{A}$. However, the notation $\nabla \cdot \mathbf{A}$ has been customarily used to denote div \mathbf{A} in all coordinate systems; that is,

$$
\begin{equation*}
\nabla \cdot \mathbf{A} \equiv \operatorname{div} \mathbf{A} \tag{2-101}
\end{equation*}
$$

We must keep in mind that ∇ is just a symbol, not an operator, in coordinate systems other than Cartesian coordinates. In general orthogonal curvilinear coordinates $\left(u_{1}, u_{2}, u_{3}\right)$, Eq. $(2-90)$ will lead to

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(h_{2} h_{3} A_{1}\right)+\frac{\partial}{\partial u_{2}}\left(h_{1} h_{3} A_{2}\right)+\frac{\partial}{\partial u_{3}}\left(h_{1} h_{2} A_{3}\right)\right] . \tag{2-102}
\end{equation*}
$$

Example 2-12 Find the divergence of the position vector to an arbitrary point.

44 VECTOR ANALYSIS $/ 2$

Solution: We will find the squation in Cartesian as well asin spherical coordinates.
a) Cartesian coordinates. The expression for the position vector to an arbitrary point (x, y, z) is

$$
\begin{equation*}
\overline{O P}=\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z \tag{2-103}
\end{equation*}
$$

Using Eq. (2-100), we have

$$
\nabla \cdot(\overline{\partial P})=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=3
$$

b) Spherical coordinates. Here the position vector is simply

$$
\begin{equation*}
\overrightarrow{O P}=\mathbf{a}_{R} R . \tag{2-104}
\end{equation*}
$$

Its divergence in spherical coordinates (R. (1, 中) xan he ohtained from Eq. (2-102) by using Table 2-1 as follows:

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)+\frac{1}{R \sin \theta} \frac{\partial}{\partial \theta}\left(A_{\theta} \sin \theta\right)+\frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} . \tag{2-105}
\end{equation*}
$$

Substituting Eq. (2-104) in Eqg. (2-105), we alsö obtain $\nabla \cdot \cdot(\overrightarrow{O P})=3$, as expected.

Example 2-13 The magnetip flux density \mathbf{B} outside a very long current-carrying wire is circumferential and is ipversely proportional to the distance to the axis of the wire. Find $\nabla \cdot B$.

Solution: Let the long wire be coincident with the z-axis in a cylindrical coordinate system. The problem states that

$$
\mathrm{B}=\mathrm{a}_{\phi} \frac{k}{r} .
$$

In cylindrical coordinates (r, ϕ, z), Fq. (2-102) reduces to

$$
\begin{equation*}
\nabla \cdot \boldsymbol{A}=\frac{1}{\partial \partial}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi_{1}}+\frac{\partial A_{z}}{\partial z} \tag{2-106}
\end{equation*}
$$

Now $B_{\phi}=k / r$, and $B_{r}=B_{z}=0$. Equation (2-106) gives

$$
\nabla \cdot \mathbf{B}=0
$$

We have here a vector that is hot a constant, but whose divergence is zero. This property indicates that the magnetic flux lines close upon themselves and that there are no magnetic sources or sinks. A divergenceless field is called a solenoidal field. More will be said about this type of field later in the bogk.

"-carrying axis of the
:oordinate
chro. This that there ridal field.
 oldal field.

Fig. 2-20 Subdivid: volume for proof of divergence theorem.

2-7 DIVERGENCE THEOREM

In the preceding section we defined the divergence of a vector field as the net outward flux per unit volume. We may expect intuitively that the volune integral of the divergence of a vector field equals the total outward flux of the vector through the surface that bounds the volume; that is,

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{A} d v=\oint_{S} \mathbf{A} \cdot d \mathbf{s} \tag{2-107}
\end{equation*}
$$

'This identity, which will toe proved in the following paragraph, is called the diveryence theorem. ${ }^{\dagger}$ It applies to any volume V that is bounded by surface S. The direction of $d \mathbf{s}$ is always that of the outward normal, perpendicular to the surface $d s$ and directed away from the volume.

For a very small differential volume element Δv_{j} bounded by a surface s_{j}, the definition of $\nabla \cdot \dot{\mathrm{A}}$ in Eq: (2-90) gives directly

$$
\begin{equation*}
(\boldsymbol{\nabla} \cdot \mathbf{A})_{j} \Delta v_{j}=\oint_{s_{j}} \mathbf{A} \cdot d \mathbf{s} . \tag{2-108}
\end{equation*}
$$

In case of an arbitrary volume V, we can subdivide it into many, say N, small differential volumes, of which Δv_{j} is typical. This is depicted in Fig. 2-20. Let us now combine the contributions of all these differential volumes to both sides of Eq. (2-108). We have

$$
\begin{equation*}
\lim _{\Delta v_{j} \rightarrow 0}\left[\sum_{j=1}^{N}(\boldsymbol{\nabla} \cdot \mathbf{A})_{j} \Delta v_{j}\right]=\lim _{\Delta v_{j} \rightarrow 0}\left[\sum_{j=1}^{N} \oint_{s_{j}} \mathbf{A}^{\cdot} d \mathbf{s}\right] . \tag{2-109}
\end{equation*}
$$

The left side of Eq. $(2-109)$ is, by definition, the volume integral of $\nabla \cdot \mathrm{A}$:

$$
\begin{equation*}
\lim _{\Delta v_{j} \rightarrow 0}\left[\sum_{j=1}^{N}(\nabla \cdot \mathbf{A})_{j} \Delta v_{j}\right]=\int_{V}(\nabla \cdot \mathbf{A}) d v . \tag{2-110}
\end{equation*}
$$

[^8]The surface integrals on the right side of Eq. $(2-109)$ are summed over all the faces of all the differential volume elements. The contributions from the internal surfaces of adjacent elements will, however, cancel each other; because at a common internal surface, the outward normals of the adjacent elements. point in opposite directions. Hence, the net contribution of the right side of $\mathrm{Eq}^{\prime}(2-109)$ is due cnly to that of the external surface S bounding the volume V; that s,

$$
\begin{equation*}
\lim _{\Delta v_{j} \rightarrow 0}\left[\sum_{j=1}^{N} \int_{s_{j}} \mathbf{A} \cdot d \mathbf{s}\right]=\oint_{s} \mathbf{A} \cdot d \mathbf{s} \tag{2-i11}
\end{equation*}
$$

ine suostitution of Eqs. $(2-110)$ and (2-111) in Eq. $(2-109)$ yields the divergence theorem in Eq. (2-107).

The validity of the limiting processes leading to the proof of the divergence theorem requires that the vector fiela: as well as its first derivatives, exist and be continuous both in V and on S. Theidivergence theorem is an important identity in vector analysis. It converts a volume integral of the divergence of a vector to a closed surface integral of the vector, and vice versa. We use it frequently in establishing other theorems and relations in electromagnetics. We nothe that, although a single integral sign is used on both sides of Eq. (2-107) for simplicity, the volume and surface integrals represent, respoctively, triple and doublai integrations.

Example 2-14 Given $\mathbf{A}=\mathbf{a}_{x} x^{2}+\mathbf{a}_{y} x y+\mathbf{a}_{z} y z$, verify the divergence theorem over a cube one unit on each side. The cube is situated in the first octant of the Cartesian coordinate system with one corner at the origin.

Solution: Refer to Fig. 2-21. We first evaluate the surface integral over the six faces.

1. Front face: $x=1, d \mathbf{s}=\mathbf{a}_{\boldsymbol{x}} d y^{\prime} d z$;

$$
\int_{\text {front }} \mathbf{A} \cdot d \mathbf{s}=\int_{0}^{1} \int_{0}^{1} d y d z=1
$$

Henc

$$
\therefore
$$

2. Back face: $x=0, d \mathbf{s}=-\mathbf{a}_{x} d y d z ;$

Fig. 2-21 Aunit cube (Example 2-14).

1 the faces 1! surfaces in internal directions. to that of
livergence
livergence ist and be dentity in
o a closed ablishing : a single lampand
irem over f;arlcsjan
six faces.

3. Left face: $y=0, d s=-\mathbf{a}_{y} d x d z$;

$$
\int_{\substack{\text { left } \\ \text { face }}} A \cdot d s=0
$$

4. Right face: $y=1, d s=a_{y} d x d z$;

$$
\begin{equation*}
\int_{\substack{\text { right } \\ \text { face }}} \mathbf{A} \cdot \cdot d \mathbf{s}=\int_{0}^{1} \int_{0}^{1} x d x d z=\frac{1}{2} \tag{2-111}
\end{equation*}
$$

5. Top face: $z=1, d \mathbf{s}=d x d y \mathbf{a}_{z}$;

$$
\int_{\substack{\text { fop } \\ \text { face }}} \mathbf{A} \cdot \dot{d} \mathbf{s}=\int_{0}^{1} \int_{0}^{1} y d x d y=\frac{1}{2}
$$

6. Bottom face: $z=0, d \mathbf{s}=-\mathbf{a}=d x d y$;

$$
\int_{\substack{\text { bottom } \\ \text { face }}} \mathbf{A} \cdot d \mathbf{s}=0
$$

Adding the above six values, we have

$$
\oint A \cdot d s=1+0+0+\frac{1}{2}+\frac{1}{2}+0=2
$$

Now the divergence of \mathbf{A} is

$$
\mathrm{\nabla} \cdot \boldsymbol{\Lambda}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}(x y)+\frac{\partial}{\partial z}(y z)=3 x+y
$$

Hence,

$$
\int_{V} \nabla \cdot \mathbf{A} d v=\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}(3 x+y) d x d y d z=2
$$

as before.
Example 2-15 Given $\mathrm{F}=\mathrm{a}_{R} h R$, determine whether the divergence theorem hoids for the shell region enclosed by spherical surfaces at $R=R_{1}$ and $R=R_{2}\left(R_{2}>R_{1}\right)$ centered at the origin, as shown in Fig. 2-22.

Fig. 2-22 A sphérical shell region (Example 2-15).

Actually, since the integrand is independent of 0 or ϕ in both cases, the integral of a constant over a spherical surface is simply the constant multiplied by the area of the surface ($4 \pi R_{2}^{2}$ for the outer surface and $4 \pi R_{1}^{2}$ for the inner surface), and no integraion is necessary. Adding the two results, we have.

$$
\int_{s} k^{\prime} \cdot k-4 \pi k\left(k_{2}^{!}-R_{i}^{\prime}\right)
$$

To find the volume integral we first determine $\nabla \cdot F$ for an F that has only an F_{R} component:

$$
\nabla \cdot \mathbf{F}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} F_{R}\right)=\frac{1}{R^{2}} \frac{\partial^{\prime}}{\partial R}\left(k R^{3}\right)=3 k
$$

Since $\nabla \cdot F$ is a constant, its volume integral equals the product of the constant and the volume. The volume of the shell region between the two spherical surfaces with radii R_{1} and R_{2} is $4 \pi\left(R_{2}^{3}-R_{1}^{3}\right) / 3$. Therefore,

$$
\int_{V} \nabla \cdot \mathbf{F} d v=(\boldsymbol{Y} \cdot \mathbf{F}) V=4 \pi k\left(\mathcal{R}_{2}^{3}-\dot{R}_{1}^{3}\right)
$$

as before.
This example shows that the divergence theorem holds even when the volume has holes -that is, even when the volume is enclosediby a multiply connected surface.

2-8 CURL OF A VECTOR FIELD

In Section 2-6 we stated that a net outward flux of a vector A through a surface bounding a volume indicates the presence of a source. This source may be called a flow source and $\operatorname{div} \mathbf{A}$ is a measure of the strength of the flow source. There is another kind of source, called vortex source, which causes a circulation of a vector field around it. The net circulation (or simply: circulation) of a vector. field around a closed path is defined as the scalar line integral of the vector over the path. We have

$$
\begin{equation*}
\text { Circulation of } \mathbf{A} \text { around contour } \underset{C}{C} \oint_{C} \mathbf{A} \cdot d \ell \tag{2-112}
\end{equation*}
$$

Equation (2-112) is a mathematical'definition. The physical meaning of circulation depends on what kind of field the vector \mathbf{A} represents. If \mathbf{A} is a force acting on an object, its circulation will be the work done by the force in moving the object once

In : $\nabla \times$ as t. the are: the
around the contour; if A represens an coctric field intensity, then the circulation will be an electromotive force anound the closed path, as we shall see later in thebook. The familiar phenomenon of water whirling down a sink drain is an example of a vortex sink causing a circulation of fluid velocity. A circulation of A may exist even when $\operatorname{div} \mathbf{A}=0$ (when there is no flow source).

Since circulation as defined in Eq. (2-112) is a line integral of a dot product, its value obviously depends on the orientation of the contour C relative to the vector A. In order to define a point function, which is a measure of the strength of a vortex source, we must make C very small and orient it in such a way that the circulation is a maximum. We define ${ }^{\dagger}$

$$
\begin{align*}
\Gamma & =V \times \Lambda \\
& \triangleq \lim _{\Delta s \rightarrow 0} \frac{1}{\Delta s}\left[a_{n} \oint_{C} A \cdot d \ell\right]_{\max } \tag{2-113}
\end{align*}
$$

In words, Eq. $(2-113)$ states that the curl of a vector field A, denoted by Curl A or $\nabla \times \mathbf{A}$, is a vector whose magnitude is the maximum net circulation of \mathbf{A} per unit area as the area tends to zero and whose direction is the normal direction of the area when the area is oriented to make the net circulation maximum. Because the normal to an area can point in two opposite directions, we adhere to the right-hand rule that when the fingers of the right hand follow the direction of $d \ell$, the thumb points to the a_{n} direction. This is illustrated in Fig. 2--23. Curl \mathbf{A} is a vector point function and is conventionally written as $\nabla \times A$ (del cross A) although ∇ is not to be considered a vector operator except in Cartesian coordinates. The component of $\nabla \times \mathrm{A}$ in any other direction \mathbf{a}_{u} is $\mathbf{a}_{u} \cdot(\nabla \times \mathbf{A})$, which can be determined from the circulation per unit area normal to a_{u} as the area approaches zero.

$$
\begin{equation*}
(\nabla \times \mathbf{A})_{u}=\mathbf{a}_{\| 1} \cdot(\nabla \times \mathbf{A})=\lim _{\Delta s_{u} \rightarrow 0} \frac{1}{\Delta s_{u}^{\prime}}\left(\oint_{C_{11}} \mathbf{A} \cdot d \ell\right), \tag{2-114}
\end{equation*}
$$

where the direction of the line integration around the contour C_{u} bounding area Δs_{u} and the direction a_{u} follow the right-hand rule.

[^9]

Fig. 2-24 Determining $(\mathbf{V} \times \mathrm{A})_{x}$.
We now use Eq. (2-114) to find the three components of $\nabla \times \mathbf{A}$ in Cartesian coordinates. Refer to Fig. 2-24 where a differential rectangular area parallel wo the $y=$-planc and having sides Δy and Δz is drawn about a typieal point $P\left(x_{i j}, y_{0}, z_{1}\right)$. We have $\mathbf{a}_{u}=\mathbf{a}_{x}$ and $\Delta s_{u}=\Delta y \Delta z$ and the contour C_{u} consists of the four sides $1,2,3$, and 4. Thus,

$$
\begin{equation*}
(\nabla \times \mathbf{A})_{x}=\lim _{\Delta y \Delta=-0} \frac{1}{\Delta y \Delta z}\left(\oint_{\substack{\text { sides } \\ 1,21,3,4}} \mathbf{A} \cdot d \ell\right) \tag{2-115}
\end{equation*}
$$

In Cartesian coordinates $\mathrm{A}=\mathrm{a}_{x} A_{\mathrm{x}}+\mathrm{a}_{y} A_{y}+\mathrm{a}_{z} A_{y r}$. The contributions of the four sides to the line integral are

Side 1: $d \ell=\mathbf{a}_{z} d z, \mathbf{A} \cdot d \ell=A_{1}\left(x_{0}, y_{0}+\frac{\Delta y}{2}, z_{0}\right) d z$,
where $A_{z}\left(x_{0}, y_{0}+\frac{\Delta y}{2}, z_{0}\right)$ can be expanded as a Taylor series:

$$
A_{z}\left(x_{0}, y_{0}+\frac{\Delta y}{2}, z_{0}\right)=A_{2}\left(x_{0}, y_{0}, z_{0}\right)+\left.\frac{\Delta y}{2} \frac{\partial A_{z}}{\partial y}\right|_{\left(x_{10}, y_{0}, z_{01}\right)}+\text { H.O.T., (2-116) }
$$

where H.O.T. contains the factors $(\Delta y)^{2},(\Delta y)^{3}$, etc. Tllus,

$$
\int_{\text {side } 1} A \cdot d \ell=\left\{A_{2}\left(x_{0}, y_{0} z_{0}\right)+\left.\frac{\Delta y}{2} \frac{\partial A_{z}}{\partial y}\right|_{\left\{\left(x_{0}, y o, z o\right)\right.}+\text { H.O.T. }\right\} \Delta z
$$

Side 3: $\left.d \ell=\mathbf{a}_{z} d z, \mathbf{A} \cdot d \ell=A_{2}\left(x_{0}, y_{0}-\frac{\Delta y}{2},\right\}_{0}\right) d z$
where

$$
\begin{aligned}
& A_{z}\left(x_{0}, y_{0}-\frac{\Delta y}{2}, z_{0}\right)=A_{z}\left(x_{0}, y_{0}, z_{0}\right)-\left.\frac{\Delta y}{2} \frac{\partial A_{z}}{\partial v}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}+\text { H.O.T.; } \quad(2-118) \\
& \int_{\text {side } 3} \mathbf{A} \cdot d \ell=\left\{A_{z}\left(x_{0}, y_{0}, z_{0}\right)-\left.\frac{\Delta y}{2} \frac{\partial A_{z}}{\partial y}\right|_{\left(x_{0}, y_{0}, z_{0}\right)}+\text { H.O.T. }\right\}(-\Delta z) . \quad(2-119)
\end{aligned}
$$

Note that $d \ell$ is the same for sides 1 and 3 , but that the integration on side 1 is going upward (a Δz change in z), while that on side 3 is going downward ($\mathrm{a}-\Delta z$ change in z). Combining Eqs. $(2-117)$ and ($2-119$), we have

$$
\begin{equation*}
\int_{\substack{\text { sides } \\ 1 \propto 3}} \mathbf{A} \cdot d t=\left.\left(\frac{\partial A_{z}}{\partial y}+\text { H.O.T. }\right)\right|_{\left(x_{1}, y_{1}, z_{0}\right)} \Delta y \Delta z \text {. } \tag{2-120}
\end{equation*}
$$

The H.O.T. in Eq. (2-120) still contain powers of Δy. Similarly, it may be shown that

$$
\begin{equation*}
\int_{\substack{\text { iidus } \\ 2 \alpha 4}} \mathbf{A} \cdot d \ell=\left.\left(-\frac{\partial A_{y}}{\partial z}+\text { H.O.T. }\right)\right|_{\left(x_{0}, y_{0}, z_{0}\right)} \Delta y \Delta z . \tag{2-121}
\end{equation*}
$$

Substituing Eqs. $(2-120)$ and $(2-121)$ in Eq. $(2-115)$ and noting that the higherorder terms tend to zero as $\Delta y \rightarrow 0$, we obtain the x-component of $\nabla \times \mathrm{A}$:

$$
\begin{equation*}
(\nabla \times \mathbf{A})_{x}=\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z} \tag{2-122}
\end{equation*}
$$

A close examination of Eq. (2-122) will reveal a cyclic order in x, y, and z and enable us to write down the y and z-components of $\nabla \times \mathbf{A}$. The entire expression for the curl of A in Cartesian coordinates is

$$
\begin{equation*}
\nabla \times \mathbf{A}=\mathbf{a}_{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\mathbf{a}_{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\mathbf{a}_{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \tag{2-123}
\end{equation*}
$$

Compared to the expression for $V \cdot \mathrm{~A}$ in Eq. (2-100), that for $\nabla \times \mathrm{A}$ in Eq. (2-123) is more complicated, as it is expected to be, because it is a vector with three components, whereas $\nabla \cdot \mathbf{A}$ is a scalar. Fortunately Eq. (2-123) can be remembered rather easily by arranging it in a determinantal form in the manner of the cross product exhibited in Eq. (2-43).

$$
\nabla \times \mathbf{A}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \tag{2-124}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
A_{x} & A_{y} & A_{=}
\end{array}\right|
$$

It is apparent from Eq. $(2-125)$ that an operator form cannat be found here for the symbol ∇ in order to consider $\nabla \times \mathbf{A}$ a cross product, The expressions of $\nabla \times \mathbf{A}$ in cylindrical and spherical cosordinates can be easily obtained from Eq. (2-125) by using the appropriate u_{1}, u_{2}, and u_{3} and their metric coefficients h_{1}, h_{2}, and h_{3}.

Example 2-16 Show that $\nabla \times A \div 0$ if
a) $\mathrm{A}=\mathbf{a}_{\phi(}(k / r)$ in cylindrical coordinates, where k is a constimt, or
b) $\mathbf{A}=\mathbf{a}_{R} f(R)$ in spherical coordinates, where $f(R)$ is any funtion of the radial distance R.

Solution

a) In cylindrical coordinates the following apply: $\left(u_{1}, u_{2}, u_{3}\right)=(r, \phi, z) ; h_{1}=1$. $h_{2}=r$, and $h_{3}=1$. We have, from E.q. (2-125).

$$
\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{ccc}
\mathbf{a}_{r} & \mathbf{a}_{\phi} r & a_{z} \tag{2-126}\\
\frac{c}{\hat{c}} r & \frac{c}{\partial \phi} & \frac{c}{\partial} \\
A_{r} & r A_{\phi} & A_{z}
\end{array}\right|,
$$

which yields, for the given \mathbf{A},

$$
\nabla \times \mathbf{A}=\frac{1}{r}\left|\begin{array}{cccc}
\mathbf{a}_{r} & \mathbf{a}_{\phi} r & \mathbf{a}_{z} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\
0 & k & \ddots & 0
\end{array}\right|=0
$$

b) In spherical coordinates the following apply: $\left(u_{1}, u_{2}, u_{3}\right)=(R, 0, \phi) ; h_{1}=1$. $h_{2}=R$, and $h_{3}=R \sin$ g. Hence:
and, for the given A ,
e for the of $\nabla \times A$ $--125)$ by 3.
le radial
.
$\therefore h_{1}=1$,

$: h_{1}=1$,
(2-127)

which states that the surface inteqral of the curl of ia vector field over an open surface is equal to the closed line integral of the vector along the contour bounding the surface.

As with the divergence theorem, the validity of the limiting processes leading to the Stokes's theorem requires that the vector field A , as well as its first derivatives, exist and be continuous both on S and along C. Stokes's theorem converts a surface integral of the curl of a vector to ailine integrai of the yector, and vice versa. Like the divergence theorem, Stokes's theorem is an important identity in vector analysis, and we will use it frequently in establishing other theorems and relations in dren nagnetics.

If the surface integral of $\nabla \times \mathbf{A}$ is carried over a closed surface, there will be no surface-bounding external contour, and Eq. (2-131) tells us that

$$
\begin{equation*}
\oint_{s}(\nabla \times \mathbf{A}) \cdot d s=0 \tag{2-132}
\end{equation*}
$$

for any closed surface S. The geometry in Fig. 2-25 is chosen deliberately to cm phasize the fact that a nontrivial application of Stokes's theorem always implies an open surface with a rim. The simplest open surface would be a two-dimensional plane or disk with its circumference as the contour. We remind ourselves here that the directions of $d \ell$ and $d s\left(\mathbf{a}_{n}\right)$ follow the right-hand rule.

Example 2-17 Given $\mathbf{F}=\mathbf{a}_{x} x y-\mathbf{a}_{2} 2 x$, verify Stokes's theorem over a quartercircular disk with a radius 3 , in the first quadrant, as was shown in Fig. 2-14 (Example 2-6).

Solution: Let us first find the surface integral of $\nabla \times F$. From Eq. (2-130),

Therefore,

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{a}_{x} & \vdots & \mathbf{a}_{y} \\
\frac{\mathbf{a}_{z}}{\partial x} & \vdots \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\ddots}{\partial y} & \vdots 2 x & 0
\end{array}\right|
$$

$$
\begin{aligned}
\int_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{s} & =\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}}(\nabla \times \mathbf{F}) \cdot\left(\mathbf{a}_{2} d x^{\prime} d y\right) \\
& =\int_{0}^{3}\left[\int_{0}^{\sqrt{9-y^{2}}}-\left(2+x^{2}\right) d x\right] d y \\
& =-\int_{0}^{3}\left[2 \sqrt{9-y^{2}}+\frac{1}{2}\left(9-y^{2}\right)\right] d y \\
& =-\left.\left[y \sqrt{9-y^{2}}+9 \sin ^{-1} y+\frac{y}{3}+\frac{9}{2} y-\frac{y^{3}}{6}\right]\right|_{0} ^{3} \\
& =-9\left(1+\frac{\pi}{2}\right) .
\end{aligned}
$$

1 surface surface. ading to ivatives, 1 surface sa. Like analysis, tions in ill be no
to emiplies an ensional crent quarter1. 214

It is important to use the proper timits lor the two variables of integration. We can interchange the order of integration as

$$
\int_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{s}=\int_{0}^{3}\left[\int_{0}^{\sqrt{9-x^{2}}}-(2+x) d y\right] d x
$$

and get the same result. But it would be quite wrong if the 0 to 3 range were used as the range of integration for both x and y. (Do you know why?)

For the line integral around $A B O A$ we have already evaluated the part around the arc from A to B in Example 2-6.
From B to $O: x=0$, and $F \cdot d \ell=\mathbf{F} \cdot\left(a_{y} d_{y}\right)=-2 x d y=0$.
From O to $A: y=0$, and $\mathbf{F} \cdot d \ell=\mathbf{F} \cdot\left(\mathbf{a}_{x} d x\right)=x y d x=0$. Hence,

$$
\oint_{A B O A} \mathrm{~F} \cdot d \ell=\int_{A}^{B} \mathrm{~F} \cdot d \ell=-9\left(1+\frac{\pi}{2}\right)
$$

from Example 2-6, and Stokes's theorem is verified.

Of course, Stokes's theorem has been established in Eq. (2-131) as a general identity; there is no need to use a particular example to prove it. We worked out the example above for practice on surface and line integrals. (We note here that both the vector ficld and its lirst spatial derivatives are finite and continuous on the surface as well as on the contour of interest.)

2-10 TWO NULL IDENTITIES

Two identities involving repeated del operations are of considerable importance in the study of electromagnetism, especially when we introduce potential functions. We shall discuss them separately below.

2-10.1 Identity I

$$
\begin{equation*}
\nabla \times(\nabla V) \equiv 0 \tag{2-133}
\end{equation*}
$$

In words, the curl of the gradient of any scalar field is identically zero. (The existence of V and its first derivatives everywhere is implied here.)

Equation (2-133) can be proved readily in Cartesian coordinates by using Eq. (a si) for V and petoming the indiated operations. In general, if we take the surface integral of $\nabla \times(\nabla V)$ over any surface, the result is equal to the line integral of ∇V around the closed path bounding thé surface, as asserted by Stokes's theorem:

$$
\begin{equation*}
\int_{s}[\nabla \times(\nabla V)] \cdot d \mathbf{s}=\oint_{C}(\nabla V) \cdot d \ell \tag{2-134}
\end{equation*}
$$

However, from Eq. (2-81),

$$
\begin{equation*}
\oint_{c}(\nabla V) d \ell=\oint_{c} d V=0 \tag{2-135}
\end{equation*}
$$

The combination of Eqs. (2-134) and:(2-135) states that the surface integral of $\nabla \times$ (∇V) over any surface is zero. The integrand itself must tharefore vanish, which leads to the identity in Eq. (2-133). Since a coordinate system is not specified in the derivation. the identity is a general one and is invariant with the choices of coordinate systems.

A converse statement cil Identity:I can be made as follows. If cactor field is, curi-free, then it can be expressed as the gradient of a scalar jield. Let a vector field be E . Then, if $\nabla \times \mathrm{E}=0$, we can define a scalar field V such that

$$
\begin{equation*}
\mathbf{E}=-\nabla V . \tag{2-136}
\end{equation*}
$$

The negative sign here is unimportant as far as Identity I is concerned. (It is included in Eq. (2-136) because this relation conforms with a basic relation between electric field intensity \mathbf{E} and electric scalar potential V in electrostatics, which we will take up in the next chapter. At this stage it is immaterial what \mathbf{E} and V represent.) We know from Section 2-8 that a curl-free vector field is a conservative field; hence an irrotational (a conservative) vector field can always be expressed as the gradient of a scalar field.

2-10.2 Identity II

$$
\begin{equation*}
\nabla \cdot(\nabla \times A) \equiv 0 \tag{2-137}
\end{equation*}
$$

In words, the divergence of the curl of any vector field is identically zero.
Equation (2-137), too, can pe proved easily in Cartesian coordinates by using Eq. (2-89) for ∇ and performing the indicated operatipns. We can prove it in general without regard to a coordinate system by taking the volume integral of $\nabla \cdot(\nabla \times A)$ on the left side. Applying the divergence theorem, we have

$$
\begin{equation*}
\int_{V} \nabla \cdot(\nabla \times i \mathbf{A}) d v=\oint_{s}(\nabla \times \mathbf{A}) \cdot d \mathbf{s} . \tag{2-138}
\end{equation*}
$$

Let us choose. for example, the arbitrary volume V enclosed by a surface S in Fig. 2-26. The closed surface S can be splif into two open surfaces, S_{1} and S_{2}, connected by a common boundary which has been drawn twice as C_{1} and \dot{C}_{2}. We then apply Stokes's theorem to surface S_{1} bounded by C_{1}; and surface S_{2}^{\prime} bounded by C_{2}, and write the right side of Eq. (2-138) as

$$
\begin{align*}
\oint_{s}(\nabla \times \mathbf{A}) \cdot d \mathbf{s} & =\int_{s_{1}}(\nabla \times \mathbf{A}) \cdot \mathbf{a}_{n 1} d s+\int_{\mathbf{z}_{2}}(\nabla \times \mathbf{A}) \cdot \mathbf{a}_{n 2} d s \\
& =\oint_{0_{1}} \mathbf{A} d \ell+\oint_{C_{2}} \mathbf{A} \cdot d \ell \tag{2-139}
\end{align*}
$$

2-11

HELMHOLTZ'S THEOREM

In previous sections we mentioned that a divergenceless field is solenoidal, and a curl-free field is irrotational. We may classify vector fields in accordance with their being solenoidal and/or irrotational. A vector field \mathbf{F} is

1. Solenoidal and irrotational if

$$
\nabla \cdot \mathbf{F}=0 \quad \text { and } \quad \nabla \times \mathbf{F}=0
$$

Evample: A static electric lich in a charge-fiee region.
2. Solenoidal but not irrotational if

$$
\nabla \cdot \mathbf{F}=0 \quad \text { and } \quad \nabla \times F \neq 0
$$

Example: A steady magnetic field in a current-carrying conductor.
3. Irrotational but not solenoidal if

$$
\nabla \times F=0 \quad \text { and } \quad \nabla \cdot F \neq 0
$$

Example: A static electric field in a charged region.
4. Neither solenoidal nor irrotational if ,

$$
\nabla \cdot F \neq 0 \quad \text { ani } \quad \nabla \times \mathbf{F} \neq \dot{0}
$$

Example: An electric field in: ofter modium whatere aryag nagnetic field.
The most general vector field then has botha nomero divergence and a monzero curi, and can be considered as the sum of a solemoidal lield and an irrotational fied.

Helmholtz's Theorem: A vector fichd (ucctor point finction) is determined to within an additive constant if both its divergence and its curl are specified everywhere. In an unbounded region we assume that both the divergence and the curl of the vector field vanish at infinity. If the vector field is confined within a region bounded by a surface, then it is determined if its divergence and curl throughout the region, as well as the normal component of the vector over the bounding surface, are given. Here we assume that the vector function is single-valued and that its derivatives are finite and continuous.

Helmholtz's theorem can be proved as a mathematical heorem in a general way ${ }^{+}$ For our purposes, we remind ourselves (see Section 2-8) that the divergence of a - vector is a measure of the strength of the flow source and that the curl of a vector is a measure of the strength of the yortex source. When the strengths of both the flow source and the vortex source are specified, we expect that the vector field will be determined. Thus, we can decompose a géneral vector field F into an irrotational part F_{i} and a solenoidal part F_{s} :

$$
\begin{equation*}
\mathbf{F}_{F}=\mathbf{F}_{i}+\mathbf{F}_{s} \tag{2-141}
\end{equation*}
$$

with

$$
\left\{\begin{array}{l}
\nabla \times \mathbf{F}_{i}=0 \tag{2-142a}\\
\nabla_{i}=g
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\nabla \cdot \mathbf{F}_{s}=0 \tag{2-142b}\\
\nabla \times \mathbf{F}_{s}=\mathbf{G}
\end{array}\right.
$$

where g and \mathbf{G} are assumed to be known! We have
and

$$
\begin{gather*}
\nabla \cdot \mathbf{F}=\boldsymbol{\nabla}_{\cdot} \cdot \mathbf{F}_{i}=g \tag{2-144}\\
\boldsymbol{\nabla} \times \mathbf{F}=\boldsymbol{F}^{2} \times \mathrm{F}_{\mathrm{s}}=\mathrm{G} . \tag{2-145}
\end{gather*}
$$

Helmholtz's theorem asserts that when g and G are specified the vector function F

Sim? flume

[^10]is determined. Since ∇ • and $\nabla \times$ are differential operators, F must be obtained by integrating g and \mathbf{G} in some manner, which will lead to constants of integration. The determination of these additive constants requires the knowledge of some boundary conditions. The procedure for obtaining \mathbf{F} from given g and \mathbf{G} is not obvious at this time; it will be developed in stages in later chapters.

The fact that F_{i} is irrotational enables us to define a scalar (potential) function V, in view of identity (2-133), such that

$$
\begin{equation*}
\mathbf{F}_{i}=-\nabla V . \tag{2-146}
\end{equation*}
$$

Similarly, identity (2-137) and Eq. (2-143a) allow the definition of a vector (potential) function A such that

$$
\begin{equation*}
\mathrm{F}_{s}=\nabla \times \mathrm{A} . \tag{2-147}
\end{equation*}
$$

Helmholtz's theorem states that a general vector function \mathbf{F} can be written as the sum of the gradient of a scalar function and the curl of a vector function. Thus,

$$
\begin{equation*}
F=-\nabla V+\nabla \times A . \tag{2-148}
\end{equation*}
$$

In following chapters we will rely on Helmholtz's theorem as a basic element in the axiomatic development of electromagnetism.

Example 2-18 Given a vector function

$$
\mathrm{F}^{+}-a,(3, \quad(\pi) \mid a,(a, x+2 z) \cdots a(c, y+z)
$$

a) Determine the constants c_{1}, c_{2}, and c_{3} if F is irrotational.
b) Determine the scalar potential function V whose negative gradient equals F.

Solution

a) For \mathbf{F} to be irrotational, $\nabla \times F=0$; that is,

$$
\begin{aligned}
\nabla \times \mathbf{F} & =\left|\begin{array}{lll}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 y-c_{1} z & c_{2} x-2 z & -\left(c_{3} y+z\right)
\end{array}\right| \\
& =\mathbf{a}_{x}\left(-c_{3}+2\right)-\mathbf{a}_{y} c_{1}+\mathbf{a}_{z}\left(c_{2}-3\right)=0
\end{aligned}
$$

Eachromponent of $\nabla \times F$ must vanish. Hence, $c_{1}=0, c_{2}=3$, and $c_{3}=2$.
b) Since \mathbf{F} is irrotational, it can be expressed as the negative gradient of a scalar function F^{\prime}, that is,

$$
\begin{aligned}
\mathbf{F}=-\nabla V & =-\mathbf{a}_{x} \frac{\partial V}{\partial x}-\mathbf{a}_{y} \frac{\partial V}{\partial y}-\mathbf{a}_{z} \frac{\partial V}{\partial z} \\
& =\mathbf{a}_{x} 3 y+\mathbf{a}_{y}(3 x-2 z)-\mathbf{a}_{z}(2 y+z) .
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial V}{\partial x}=-3 y \tag{2-149}\\
& \frac{\partial V}{\partial y}=-3 x+2 z \tag{2-150}\\
& \frac{\partial V}{\partial z}=2 y+z \tag{2-151}
\end{align*}
$$

Integrating Eq. (2-149) partially with respect to x, we have

$$
V=-3 x y+f_{1}(r ; z)
$$

where $f_{1}(y, z)$ is a function of y and z yet to be determined. Simitarly, integrating Eq. (2-150) with respect to y and Eq. (2-151) with respect to - leads to
and

$$
\begin{equation*}
V=-3 x y+2 y z+f_{2}(x, z) \tag{2-153}
\end{equation*}
$$

$$
\begin{equation*}
V=2 y z+\frac{z^{2}}{2}+f_{3}(x, y) \tag{2-154}
\end{equation*}
$$

Examination of Eqs. (2-152), (2-153), and (2-154) enables us to write the scalar potential function as

$$
\begin{equation*}
V=-3 x y+2 y z+\frac{z^{2}}{2} \tag{2-155}
\end{equation*}
$$

Any constant added to Eq. (2-155) would still make V an answer. The constant is to be determined by a boundary condition or the condition at infinity.

Review questions

R.2-1 Three vectors A, B and C, drawn in a head-to-tail fashion, form three sides of a triangle. What is $\mathbf{A}+\mathbf{B}+\mathbf{C}$? $\mathbf{A}+\mathbf{B}-\mathbf{C}$?
R.2-2 Under what conditions can the dot product of two vectors be negative?
R.2-3 Write down the results of $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{A} \times \mathbf{B}$ if (a) $\mathbf{A} \| \mathbf{B}$, and (b) $\mathbf{A} \perp \mathbf{B}$.
R.2-4 Which of the following produkts of yectors do not make sense? Explain.
a) $(A \cdot B) \times C$
b) $A(B \cdot C)$
c) $A \times B \times C$
d) A / B
e) $\mathrm{A} / \mathrm{a}_{\mathrm{A}}$
f) $(\mathbf{A} \times \boldsymbol{B}) \cdot \mathbf{C}$

62 VECTOR ANALYSIS / 2

PROBLEMS

P.2-1 Given three vectors \mathbf{A}, \mathbf{B}, and \mathbf{C} asfollows,

$$
\begin{aligned}
& \mathbf{A}=\mathbf{a}_{x}+\mathbf{a}_{y} 2-\mathbf{a}_{z} 3 \\
& \mathbf{B}=-\mathbf{a}_{y} 4+\mathbf{a}_{z} \\
& \mathbf{C}=\mathbf{a}_{x} 5-\mathbf{a}_{z} 2,
\end{aligned}
$$

find
a) a_{A}
b) $|A-B|$
c) $A \cdot B$
d) $\theta_{A B}$
e) the component of A in the direction of C
f) $A \times C$
g) $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ and $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$
h) $(A \times B) \times C$ and $A \times(B \times C)$
P.2-2 The three corners of a triangle are at $P_{1}(0,1,-2), P_{i 2}(4,1,-3)$, and $P_{3}(6,2,5)$.
a) Determine whether $\Delta P_{1} P_{2} P_{3}$ is a fight triangle.
b) Find the area of the triangle.
P.2-3 Show that the two diagonals of a rhombus áre perpendicular to exchether. (A rhombus is an equilateral parallelogram.)
P.2-4 Show that, if $\mathrm{A} \cdot \mathrm{B}=\mathrm{A} \cdot \mathrm{C}$ and $\mathrm{A} \times \mathrm{B}=\mathrm{A} \times \mathrm{C}$, where A is not a null vector, then $\mathrm{B}=\mathrm{C}$.
P.2-5 Unit vectors \mathbf{a}_{A} and \mathbf{a}_{B} denote the directions of two-dimensional vectors \mathbf{A} and \mathbf{B} that make angles α and β, respectively, with a refference x-axis, as shown in Fig. 2-27. Obtain a formula for the expansion of the cosine of the difference of two angles, $\cos (\alpha-\beta)$, by taking the scalar product $\mathbf{a}_{1} \cdot \mathbf{a}_{\beta}$.

Flg. 2-27 Graph for : : Problem P.2-5.
P.2-6 Prove the law of sines for a triangle.
P.2-7 Prove that an angle inscribed in a semicircle is a right angle.
P.2-8 Verify the back-cab rule of the vector triple product of free vectors, as expressed in Eq. (2-20) in Cartesian coordinates.
P.2-9 An unknown vector can be determined if both its scalar product and its vector product with a known vector are given. Assuming A is a known vector, determine the unknown vector \mathbf{X} if both p and \mathbf{P} are given, where $p=\dot{\mathbf{A}} \cdot \mathbf{X}$ and $\mathbf{P} \doteq \mathbf{A} \times \dot{\mathbf{X}}$
P.2-10 Find the component of the vectary $A=-a_{y} z+\dot{a}_{z} y$ at the point $P_{1}(0,-2,3)$, which is directed toward the point $P_{2}\left(\sqrt{3},-60^{\circ}, 1\right):$
P.2-11 The position of a point in cylindrical coordinates is specified by $(4,2 \pi / 3,3)$. What is the location of the point
a) in Cartesian coordinates?
b) in spherical coordinates?
P.2-12 A field is expressed in spherical coordinates by $\mathbf{E}=\mathbf{a}_{R}\left(25 / R^{2}\right)$.
a) Find $|E|$ and E_{x} at the point $P(-3,4,-5)$.
b) Find the angle which E makes with the vector $B=\mathbf{a}_{x} 2-\mathbf{a}_{y} 2+\mathbf{a}_{z}$.
P.2-13 Express the base vectors $\mathbf{a}_{R}, \mathbf{a}_{\theta}$, and \mathbf{a}_{ϕ} of a spherical coordinate system in Cartesian coordinates.
P.2-14 Given a vector function $\mathbf{E}=\mathbf{a}_{x} y+\mathbf{a}_{y} x$, evaluate the scalar line integral $j \mathbf{E} \cdot d \ell$ from - $P_{1}(2,1,-1)$ to $P_{2}(8,2,-1)$
a) along the parabola $x=2 y^{2}$,
b) along the straight line joining the two points.

Is this E a conservative field?
P.2-15 For the E of Problem P.2-14, evaluate $\int \mathbf{E} \cdot d \ell$ from $P_{3}(3,4,-1)$ to $P_{4}(4,-3,-\mathbf{i})$ by converting both \mathbf{E} and the positions of P_{3} and P_{4} into cylindrical coordinates.
P.2-16 Given a scalar function

$$
V=\left(\sin \frac{\pi}{2} x\right)\left(\sin \frac{\pi}{3} y\right) e^{-z}
$$

determinc
a) the magnitude and the direction of the maximum rate of increase of V at the point $P(1,2,3)$,
b) the rate of increase of V at P in the direction of the origin.

P.2-17 Evaluate

$$
\oint_{S}\left(a_{R} 3 \sin \theta\right) \cdot d \mathbf{s}
$$

over the surface of a sphere of a radius 5 centered at the origin
P.2-18 For a scalar function f and a vector function A, prove

$$
\nabla \cdot(f \mathbf{A})=f \nabla \cdot \mathbf{A}+\mathbf{A} \cdot \nabla f
$$

in Cartesian coordinates.
P.2-19 For vector function $A=\mathbf{a}_{r} r^{2}+\mathbf{a}_{z} 2 z$, verify the divergence theorem for the circular cylindrical region enclosed by $r=5, z=0$, and $z=4$.
P.2-20 For the vector function $\mathbf{F}=\mathbf{a}_{r} k_{1} / r+\mathbf{a}_{z} k_{2} z$ given in Example 2-7 evaluate $\int \nabla \cdot \mathbf{F}$ dv over the volume specified in that example. Exphain why the divergence theoren faits here.
P.2-21 \AA vector field $\mathbf{D}=\mathbf{a}_{\mathrm{K}}\left(\cos ^{2} \phi\right) / R^{3}$ exists in the region between two spherical shells defined by $R=1$ and $R=2$. Evaluate
a) $\oint \mathbf{D} \cdot d \mathbf{s}$
b) $\int \boldsymbol{\nabla} \cdot \mathbf{D} d v$
P.2-22 A radial vector field is represented by $F=a_{R} f(R)$, What do we know about the function $f(R)$ if $\nabla \cdot \mathrm{F}=0$?
P.2-23 For two differentiable vector functions A and H, prove

$$
\nabla \cdot(\mathbf{A} \times \mathbf{H})=H \cdot(\nabla \times \mathbf{A})-E \cdot(\nabla \times \mathbf{A})
$$

P.2-24 Assume the vector function $A=a_{x} 3 x^{2} y^{2}-a_{y} x^{3} y^{2}$.
a) Find $\oint \mathbf{A} \cdot d \ell$ around the triangular contour show'n in Fig. 2-28.
b) Evaluate $\int(\nabla \cdot A) \cdot d s$ over the triangular area.
c) Can a be'expressed as the gradient of a scalar? Explain.

Fig. 2-28 Graph for Problem P.2-24.
P.2-25 Given the vector function $A=\mathbf{a}_{\phi} \sin (\phi / 2)$, verify Stokes's theorem over the hemispherical surface and its circular contour that are shown in Fig. 2-29.

Fig. 2-29 Graph for: Problem P.2-25.
P.2-26 For a scalar function f and a vector function G, pròve

$$
\nabla \times(f \mathbf{G})=f \nabla \times \mathbf{G}+(\nabla f) \times \mathbf{G}
$$

in Cartesian coordinates.
P.2-27 Verify the null identities
a) $\nabla \times(\nabla V) \equiv 0$
b) $\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathrm{A}) \equiv 0$.
by expansion in general orthogonal curvilinear coordinates..

3 / Static Electric Fields

3-1 linimuduction

In Section 1-2 we mentioned that three essential steps are involved in constructing a deductive theory for the study of a scientific subject. They are the definition of basic quantities, the development of rules of operation, and the postulation of fundamental relations. We have defined the souree and field quantities for the electromagnetio model in Chapter 1 and developed the fundamentals of vector algebra and vector calculus in Chapter 2. We are now ready to introduce the fundamental postulates for the study of source-field relationships in electrostatics. In electrostatics, electric charges (the sources) are at rest, and clectric fields do not change with time. There are no magnetie lields; bence we deal will a relatively simple situation. After we have studied the behavior of static electric fields and mastered the techniques for solving electrostatic boundary-valuc problems, we will then go on to the subject of magnetic fields and time-varying electromagnetic fields.

The development of electrostatics in elementary physics usually begins with the experimental Coulomb's law (formulated in 1785) for the force between two point charges. This law states that the force between two charged bodies, q_{1} and q_{2}, that are very small compared with the distance of separation, R_{12}, is proportional to the product of the charges and inversely proportional to the square of the distance, the direction of the force being along the line connecting the charges. In addition, Coulomb found that unlike charges attract and like charges repel each other. Using vector notation, Coulomb's law can be written mathematically as

$$
\begin{equation*}
\mathbf{F}_{12}=\mathbf{a}_{R_{12}} k \frac{q_{1} q_{2}}{R_{12}^{2}} \tag{3-1}
\end{equation*}
$$

where \mathbf{F}_{12} is the vector force exerted by q_{1} on $q_{2}, a_{p_{12}}$ is a unit vector in the direction from q_{1} to q_{2}, and k is a proportionality constant depending on the medium and the system of units. Note that if q_{1} and q_{2} are of the same sign (both positive or both negative), F_{12} is positive (repulsive); and if q_{1} and q_{2} are of opposite signs, F_{12} is negative (attractive). Electrostatics can proceed from Coulomb's law to define electric field intensity \mathbf{E}, electric scalar potential, V, and electric flux density, \mathbf{D}, and then lead to Gauss's law and other relations. This approach has been accepted as "logical,"
perhaps because it begins with an experimental law observed in a laboratory and not with some abstract postulates.

We maintain, however, that Coulomb's law, though based on experimental evidence, is in fact also a postulate. Consider the two'stipulations of Coulomb's law: that the charged bodies be very small compared with the distance of separation and that the force is inversely propoftional to the square of the distance. The question arises regarding the first stipulation, How small must the charged bodies be in order to be considered "very small" dompared to the distance? In practice the charged bodies cannot be of vanishing sizes. (ideal point charges), and there is diffculty in determining the "true" distance between two bodies of finite dimensions. For given body sizes, the relative accuracy in distance measurements is better when the separation is larger. However, practical cónsiderations (weakness of force, existence of extraneous charged bodies, etc.) restrict the usable cistance of separation in the laboratory, and experimental ingecuracies camon beentirely avoided. This leads to a more important question concerning the inverse-square relation of the second stipulation. Even if the charged bodies are of vanishing sizes, experimental measurements cannot be of infinite accuracy, no matter how skillful and careful an experimentor is. How then was it possible for Coulomb to know that the force was exactly inversely proportional to the square (not the 2.000001 th or the 1.999999 th power) of the distance of separation? This question cannot be answered from an experimental viewpoint because it is not likely that during Coulomb's time experiments could have been accurate to the seventh place. ${ }^{\dagger}$ We must therefore conclude that Coulomb's law is itself a postulate and that the exact relation stipulated by Eq. $(3-1)$ is a law of nature discovered and assumed by Coulomb on the basis of his experiments of limited accuracy.

Instead of following the historical development of electrostatics, we introduce the subject by postulating both the divergence and the curl of the electric field intensity in free space. From Helmholtz's theorem in Section 2-1 we know that a vector field is determined if its divergençe and curl are specified. We derive Gauss's law and Coulomb's law from the divergence and curl relations, and do not present them as separate postulates. The conceptif of scilar potential followis naturally from a vector identity. Field behaviors in material media will be studied and expressions for electrostatic energy and forces will be developed.

3-2 FUNDAMENTAL POSTULATES QF electrostatics in free space

We start the study of electromagnetism with the consideration of electric fields due to stationary (static) electric charges in free space. Electrostatics in free space is the 4

[^11]ory and
imental b's law ion and juestion in order charged culty in or given separasnec of in the reads to second casureexpmor \therefore. imcia... could Ammbs law of conts of
roduce dinteni vector aw and them as a vector or elec-

Ids due c is
o be 2 to 26, 1971,
simplest special case of electromagnetics. We need only consider one of the four fundamental vector field quantities of the electromagnetic model discussed in Section $1-2$, namely, the electric field intensity, E. Furthermore, only the permittivity of free space ϵ_{0}, of the three universal constants mentioned in Section 1-3 enters into our formulation.

Electric field intensity is defined as the force per unit charge that a very small stationary test charge experiences when it is placed in a region where an electric field exists. That is,

$$
\begin{equation*}
\mathbf{E}=\lim _{q \rightarrow 0} \frac{\mathbf{F}}{q} \quad(\mathrm{~V} / \mathrm{m}) \tag{3-2}
\end{equation*}
$$

The electric field intensity F ir then proportional to and in the direction of the force F. If F is mensured in newtons (N) and charge q in coulombs (C), then \mathbf{E} is in newtons per coulomb (N / C), which is the same as voits per meter $(\mathrm{V} / \mathrm{m})$. The test charge q, of course, cannot be zero in practice; as a matter of fact, it cannot be less than the charge on an electron. However, the finiteness of the test charge would not make the measured \mathbf{E} differ appreciably from its calculated value if the test charge is small enough not to disturb the charge distribution of the source. An inverse relation of Eq. (3-2) gives the force, \mathbf{F}, on a stationary charge q in an electric field \mathbf{E} :

$$
\begin{equation*}
\mathrm{F}=\iota_{\mu} \mathrm{E} \quad(\mathrm{~N}) \tag{3-3}
\end{equation*}
$$

The two fundamental postulates of electrostatics in free space specify the divergence and curl of \mathbf{E}. They are

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}} \tag{3-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \mathrm{E}=0 \tag{3-5}
\end{equation*}
$$

In Eq. (3-4), ρ is the volume charge density $\left(\mathrm{C} / \mathrm{m}^{3}\right)$, and ϵ_{0} is the permittivity of free space, a universal constant. ${ }^{\dagger}$ Equation (3-5) asserts that static electric fields are irrotationat.-whercas Eq. (3-4) implies that a static electric field is not solenoidal unless $\rho=0$. These two postulates are concise, simple, and independent of any coordinate system; and they can be used to derive all other relations, laws, and theorems in electrostatiesl Suel is the beanty of the deduerive, axiomatic approach.

[^12]Equations (3-4) and (3-5) ar point relations; that is, they hold at every point in space. They are referred to as the diffetential form of the pastulates of electrostatics, since both divergence and curl operations involve spatial derivatives. In practical applications we are usually interested in the total field of an aggregate or a distribution of charges. This is more conveniently obtained by an integral form of Eq. (3-4). Taking the volume integral of both sides of Eq. $(3-4)$ over an arbitrary volume V, we have

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{E} \cdot d v=\frac{1}{\epsilon_{0}} \int_{V} \rho d v \tag{3-6}
\end{equation*}
$$

In view of the divergence theorem in Eq. (2-104), Eq. (3-6) becomes
where Q is the total charge contained in volume V bounded by surface S. Equation (3-7) is a form of Gauss's law, which states that: the total outward flux of the electric field intensity over any closed surface in free space is equal to the total charge enclosed in the surface divided $b y \epsilon_{0}$. Gauss's law is one \oplus f the most important relations in electrostatics. We will discuss it further in Section 3-4, along with illustrative examples.

An integral form can also be obtained for the curl relation in Eq. (3-5) by integrating $\nabla \times \mathbf{E}$ over an open surface and invoking Stokes's theorem as expressed in Eq. (2-131). We have

The line integral is performed over a closed contour C bounding an arbitrary surface; hence C is itself arbitrary. As a mattert of fact, the surface does not even enter into Eq. (3-8), which asserts that the falar line integral of the static electric field intensily around any closed path vanishes. This is simply another way of saying that \mathbf{E} is irrotational or conservative. Referring to Fig. 3-1, we seg, that if the scalar line integral

Fig, 3-1 An arbitrary cottour.
of \mathbf{E} over the arbitrary closed contour $C_{1} C_{2}$ is zero, then
or

$$
\begin{equation*}
\int_{C_{1}} \mathbf{E} \cdot d \ell+\int_{c_{2}} \mathbf{E} \cdot d \ell=0 \tag{3-9}
\end{equation*}
$$

$$
\begin{equation*}
\int_{\text {Along } C_{1}}^{P_{P_{2}}} \mathbf{E} \cdot d \ell=-\int_{\text {Along } C_{2}}^{P_{1}} \mathbf{E} \cdot d \ell \tag{3-10}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{P_{1}}^{P_{2}} \mathbf{E} \cdot d \ell=\int_{\text {Nong } C_{2}}^{P_{P_{2}}} \mathbf{E} \cdot d \ell \tag{3-11}
\end{equation*}
$$

Equation (3-11) says that the sealar line iptegrat-of the irrotational E lieh in ima pendent af the path: in deponds only on the end pomes. As we shall see in section \therefore i the integral in Eq. (3-11) represents the work done by the electric field in moving a unit charge from point P_{1} to point P_{2}; hence Eqs. (3-8) and (3-9) imply a statement of conservation of work or energy in an electrostatic field.

The two fundamental postulates of electrostatics in free space are repeated below because they form the foundation upon which we build the structure of electrostatics.

Postulates of Electrostatics in Free Space	
Differmaial Form	\cdot Integral Form
$\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}$	$\oint_{S} \mathbf{E} \cdot d \mathbf{s}=\frac{Q}{\epsilon_{0}}$
$\nabla \times \mathbf{E}=0$	$\oint_{C} \mathbf{E} \cdot d \ell=0$

surfice: ler into utonsity irrotaintegral

3-3 COULOMB'S LAW

We consider the simplest possible electrostatic problem of a single point charge, q, at rest in a boundless free space. In order to find the electric field intensity due to q. we draw a hypothetical spherical surface of a radius R centered at q. Since a point charge has no preferred directions, its clectric field must be everywhere radial and has the same intensity att all points on the spherical surface. Applying Eq. (3-7) to Pig. 3-2(a), we have
or

$$
\dot{\Phi_{S}} \mathbf{E} \cdot d \mathbf{s}=\oint_{S}\left(\mathbf{a}_{R} E_{R}\right) \cdot \mathbf{a}_{R} d s=\frac{\eta}{\epsilon_{0}}
$$

$$
\cdot E_{R} \oint_{S} d s=E \cdot\left(4 \pi R^{2}\right)=\frac{q}{\epsilon_{0}}
$$

70 STATIC ELECTRIC FIELDS / 3

(a) Point charge at the origin,

(b) Point charge not at the origin.

Fig. 3-2 Flectric fich intensity dic to a poin eharpe,

Therefore,

Equation (3-12) tells us that the electric field intensity of a point charge is in the outward radial direction and has a magnitude proportional to the charge and inversely proportional to the square of the distance from the charge. This is a very important basic formula in electrostatics. It is readily verified that $\nabla \times \mathbf{E}=0$ for the \mathbf{E} given in Eq. (3-12).

If the charge y is not located at the origin of a chosen coordinate system, suitable changes should be made to the unit vector \mathbf{a}_{R} and the distance R to reflect the locations of the charge and of the point at which \mathbf{E} is to be determined. Let the position vector of q be \mathbf{R}^{\prime} and that of a field point P, be \mathbf{R}, as shown in Fig. 3-2(b). Then, from Eq. (3-12),

$$
\begin{equation*}
\dot{\mathbf{E}}_{P}=\mathbf{a}_{q P} \frac{q}{4 \pi \epsilon_{0}\left|\mathbf{R}-\mathbf{R}^{\prime}\right|^{2}} \tag{3-13}
\end{equation*}
$$

where $\mathbf{a}_{q P}$ is the unit vector drawn from q to P. Since

$$
\begin{equation*}
\mathbf{a}_{q P}=\frac{\mathbf{R}-\mathbf{R}}{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|} \tag{3-14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\mathbf{E}_{p}=\frac{q\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}{4 \pi \epsilon_{0}\left(\mathbf{R}-\left.\mathbf{R}^{\prime}\right|^{3}\right.} \quad(\mathrm{V} / \mathrm{m}) \cdot \tag{3-15}
\end{equation*}
$$

Example 3-1 Determine the electric field intensity at $P(-0.2,0,-2.3)$ due to a point charge of $+5(\mathrm{nC})$ at $Q(0.2,0,1,-2.5)$ in air. All dimensions are in meters.

Solution: The position vector for the field point P

$$
\mathbf{R}=\overrightarrow{O P}=-\mathbf{a}_{x} 0.2-\mathbf{a}_{z} 2.3 .
$$

The position vector for the point charge Q is

$$
\mathbf{R}^{\prime}=\overrightarrow{O Q}=\mathbf{a}_{x} 0.2+\mathbf{a}_{y} 0.1-\mathbf{a}_{z} 2.5
$$

The difference is

$$
\mathbf{R}-\mathbf{R}^{\prime}=-\mathbf{a}_{x} 0.4-\mathbf{a}_{y} 0.1+\mathbf{a}_{z} 0.2
$$

which has a magnitude

$$
\left|\mathbf{R}-\mathbf{N}^{\prime}\right|=\left[(-U .4)^{2}+(-0.1)^{2}+(0.2)^{2}\right]^{1 / 2}=0.458
$$

Substituting in Eq. (3-15), we obtain

\because ill we mascly ! MAtant $\because 16 \mathrm{CH} 16$
suitable jcations n vector in, from
-
ue to a ars.

$$
\begin{aligned}
\mathbf{E}_{\mu} & =\binom{1}{4 \pi \epsilon_{0}} \frac{Q\left(\mathbf{R}-\mathbf{R}^{\prime}\right)}{\left|\mathbf{R}-\mathbf{R}^{\prime}\right|^{3}} \\
& =\left(9 \times 10^{\prime 9}\right) \frac{5 \times 10^{-9}}{0.458^{3}}\left(-\mathbf{a}_{x} 0.4-\mathbf{a}_{y} 0.1+\mathbf{a}_{z} 0.2\right) \\
& =214.5\left(-\mathbf{a}_{x} 0.873-\mathbf{a}_{y} 0.218+\mathbf{a}_{z} 0.437\right) \quad(\mathrm{V} / \mathrm{m})
\end{aligned}
$$

The quantity within the parentheses is the unit veetor $\boldsymbol{a}_{0}=\left(\mathbf{R}-\mathbf{R}^{\prime}\right) / \mathbf{R} \cdots \mathbf{R}^{\prime} \mid$. and Ef, has a magnitude of 214.5 (V/n).

Note: The permittivity of air is essentially the same as that of the free space. The factor $1 /\left(4 \pi \epsilon_{0}\right)$ appears very frequently in electrostatics. From Eq. ($1-11$) we know that $\epsilon_{0}=1 /\left(c^{2} \mu_{0}\right)$. But $\mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m})$ in SI units; so

$$
\begin{equation*}
\frac{1}{4 \pi \epsilon_{0}}=\frac{\mu_{0} c^{2}}{4 \pi}=10^{-7} c^{2} \quad(\mathrm{~m} / \mathrm{F}) \tag{3-16}
\end{equation*}
$$

exactly. If we use the approximate value $c=3 \times 10^{8}(\mathrm{~m} / \mathrm{s})$, then $1 /\left(4 \pi \epsilon_{0}\right)=9 \times 10^{9}(\mathrm{~m} / \mathrm{F})$.
When a point charge q_{2} is placed in the field of another point charge q_{1} at the origin, a force F_{12} is experienced by q_{2} due to electric field intensity \mathbf{E}_{12} of q_{1} at q_{2}. Combining Eqs. (3-3) and (3-12), we have

$$
\begin{equation*}
\mathbf{F}_{12}=q_{2} \mathbf{E}_{12}=\mathbf{a}_{R} \frac{q_{1} q_{2}}{4 \pi \epsilon_{0} R^{2}} \tag{3-17}
\end{equation*}
$$

Equation (3-17) is a mathematical form of Coulomb's law already stated in Section 3-1 in conjunction with Eq. (3-1). Note that the exponent on R is exactly 2, which is a consequence of the fundamental postulate Eq. (3-4). In SI units the proportionality constant k equals $1 /\left(4 \pi \epsilon_{0}\right)$, and the force is in newtons (N).

72 static electric fieldo / 3

Fig. 3-3 Electrostatic deflection system of a cathode-ray oscillograph (Fxample 3-2).

Example 3-2 The electrostatic defiection system of a cathode-ray oscillograph is depicted in Fig. 3-3. Electrons from a heated cathode are given an initial velocity $\mathbf{v}_{0}=\mathrm{a}_{z} v_{0}$ by a positively charged anode (not shown). The electrons enter at $z=0$ into a region of deflection plates where a uniform electric field $\mathbf{E}_{d}=-\mathbf{a}_{y} E_{d}$ is maintained over a width w. Ignoring gravitational effects, find the vertical deflection of the electrons on the fluorescent screen at $z=L$.

Solution: Since there is no force in the z-direction in the $z>0$ region, the horizontal velocity v_{0} is maintained. The field \mathbf{E}_{d} exerts a force on the electrons each carrying a charge $-e$, causing a deffection in the y direction.:

$$
\mathbf{F}=(-e) \mathbf{E}_{d}=\mathbf{a}_{y} e E_{d} .
$$

From Newton's second law of motion in the vertical direction, we have

$$
m \frac{d v_{y}}{d t}=e E_{u},
$$

where m is the mass of an electron Integrating both sides, we obtain

$$
v_{y}=\frac{d y}{d t}=\frac{e}{m} E_{d} t
$$

where the constant of integration is set to zero because $v_{y}=0$ at $t=0$. Integrating again, we have

$$
y=\frac{e}{2 m} E_{d} t^{2} .
$$

The constant of integration is again zero because $y=0$ at $t=0$. Note that the electrons have a parabolic trajectory between the deflection plates.
At the exit from the deflection platees, $t=w / v_{0}$,

$$
d_{1}=\frac{e E_{d}}{2 m}\left(\frac{w}{v_{0}}\right)^{2}
$$

and

$$
v_{y 1}=v_{y}\left(t=\frac{w}{v_{0}}\right)=\frac{e E_{d}}{m}\left(\frac{w}{v_{0}}\right)
$$

When the electrons reach the screen they have traveled a further horizontal distance of $(L-w)$ which takes $(L-w) / v_{0}$ seconds. During that time there is an additional vertical deflection

$$
d_{2}=v_{y 1}\left(\frac{L-w}{v_{0}}\right)=\frac{e E_{d}}{m} \frac{w(L-w)}{v_{0}^{2}}
$$

Hence the deflection at the screen is

$$
d_{0}=d_{1}+d_{2}=\frac{e E_{d}}{m v_{0}^{2}} w\left(L-\frac{w}{2}\right) .
$$

graph is
velocity
$a t=0$
$i, n ?$
an of he
rizontat corying
egrating
that

3-3.1 Electric Field due to a System of Discrete Charges

Suppose an clectrostatic field is craated by a group of n discrete point charges q_{1}, q_{2}, \ldots, q_{n} located at different positions. Since electric field intensity is a linear function of (proportional to) $\mathbf{a}_{R} q / R^{2}$, the principle of superposition applies, and the total \mathbf{E} field at a point is the vector sum of the fields caused by all the individual char es. From Ey. (3-15) we can write the clectric intensity at a field point whose posit on vector is \mathbf{R} as

$$
\begin{equation*}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \sum_{k=1}^{n} \frac{q_{k}\left(\mathbf{R}-\mathbf{R}_{k}^{\prime}\right)}{\left|\mathbf{R}-\mathbf{R}_{k \mid}^{\prime 3}\right|} \tag{3-18}
\end{equation*}
$$

Although Eq. (3-18) is a succinct expression, it is somewhat inconvenient to use, because of the need to add vectors of different magnitudes and directions.

Let us consider the simple case of an electric dipole that consists of a pair of equal and opposite charges, $+q$ and $-q$, separated by a small distance, d, as shown in Fig. 3-4. Let the center of the dipole coincide with the origin of a spherical coordirate system. Then the E field at the point P is the sum of the contributions due to $+q$

Fig. 3-4 Electric field of a dipole.

74 static electric fieldo $/ 3$

and $-q$. Thus,

$$
\begin{equation*}
\mathbf{E}=\frac{q}{4 \pi \epsilon_{0}}\left\{\left\{\frac{\mathrm{R}-\frac{\mathbf{d}}{2}}{\left|\frac{\mathbf{R}-\frac{\mathbf{d}}{2}}{}\right|^{3}}-\frac{\mathbf{d}+\frac{\mathbf{d}}{2}}{| |^{3}}\right\}\right. \tag{3-19}
\end{equation*}
$$

The first term on the right side of $\mathrm{Eq} .(3-19)$ can be simpified if $d \ll R$. We write

$$
\begin{align*}
\left|\mathbf{R}-\frac{\mathbf{d}}{2}\right| & =\left[\left(\mathbf{R}-\frac{\mathbf{d}}{2}\right) \cdot\left(\mathbf{R}-\frac{\mathbf{d}}{2}\right)\right]^{-3 / 2} \\
& =\left[R^{2}-\mathbf{R} \cdot \mathbf{d}+\frac{d^{2}}{4}\right]^{-3 / 2} \\
& \cong R^{-3}\left[1-\mathbf{R} \cdot \mathbf{d} \mathbf{R}^{-3 / 2}\right] \\
& \cong R^{-3}\left[1+\frac{3}{2} \frac{\mathbf{R} \cdot \mathbf{d}}{R^{2}}\right] \tag{3-20}
\end{align*}
$$

where the binomial expansion has been used and aill terms containing the second and higher powers of (d / R) have beend neglected. Similarly, for the second term on the right side of Eq. (3-19), we have :

$$
\begin{equation*}
\left|\mathbf{R}+\frac{\mathbf{d}}{2}\right|^{-3} \cong R^{-3}\left[1-\frac{3}{2} \frac{\mathbf{R} \cdot \mathbf{d}}{R_{i}^{2}}\right] . \tag{3--21}
\end{equation*}
$$

Substitution of Eqs. (3-20) and (3-21) in Eq. (3-19) leads to

$$
\begin{equation*}
\mathbf{E} \cong \frac{q^{\prime}}{4 \pi \epsilon_{\theta^{R}} R^{3}}\left[3 \frac{\mathbf{R} \cdot \mathbf{d}}{R^{2}} \mathbf{R}\right] . \tag{3-22}
\end{equation*}
$$

The derivation and interprotation of Eq. (3-22) require the manipulation of vector quantities. We can appreciate that determining the electric field caused by three or more discrete charges will be even more tedious. In Section 3.5 we will introduce the concept of a scalar efectric potemtiat, with which the electric fich intensity caused by a distribution of charges can be found more easily.

The electric dipole is an important entity in the study of the electric field in dielectric media. We define the product of the charge q and the vector d (going from $-q$ and $+q$) as the electric dipols moment, \mathbf{p} :

$$
\begin{equation*}
\mathbf{p}=q \mathbf{d} \tag{3-23}
\end{equation*}
$$

Equation (3-22) can then be rewritten as

$$
\begin{equation*}
\mathbf{E}=\frac{\vdots j}{4 \pi \epsilon_{0} \mathbb{R}^{3}}\left[3 \frac{\mathbf{R} \cdot \mathbf{p}}{R^{2}} \mathbf{R}-\mathbf{p}\right] \tag{3-24}
\end{equation*}
$$

where the approximate sign (\sim) over the equal sign has been left out for simplicity.

If the dipole lies along the z-axis as in Fig. 3-4, then (see Eq. 2-77)

$$
\begin{gather*}
\mathbf{p}=\mathbf{a}_{\mathbf{z}} p=p\left(\mathbf{a}_{\mathbf{R}} \cos \theta-\mathbf{a}_{\theta} \sin \theta\right) \tag{3-25}\\
\mathbf{R} \cdot \mathbf{p}=R p \cos \theta,
\end{gather*}
$$

and Eq. (3-24) becomes

$$
\begin{equation*}
\mathbf{E}=\frac{P}{4 \pi \epsilon_{0} R^{3}}\left(\mathbf{a}_{\boldsymbol{R}} 2 \cos \theta+\mathbf{a}_{\theta} \sin \theta\right) \quad(\mathrm{V} / \mathrm{m}) \tag{3-27}
\end{equation*}
$$

Equation (3-27) gives the electric field intensity of an electric dipole in spherizal coordinates. We see that \mathbf{E} of a dipole is inversely proportional to the cube of the distance R. This is reasonable because as R increases, the fields due to the closely spaced $+q$ and $-q$ tend to cancel each other more completely, thus decreasing more rapidly than that of a single point charge.

3-3.2 Electric Field due to a Continuous Distribution of Charge

The electric field caused by a continuous distribution of charge can be obtained by integrating (giperposing) the contribution of an element of charge over the charge distribution. Refer to fige 3-5, where a volume charge distribution is shown. The
 clement of charge behaves like a point charge, the contribution of the charge $p d 0^{\circ}$ in a differential volume element $d v^{\prime}$ to the electric field intensity at the field point P is
ation of ssed by we will ac licid
lield in ng from

(3) 24)
oplicity.
We have

$$
\begin{equation*}
d \mathbf{E}=\mathbf{a}_{R} \frac{\rho d v^{\prime}}{4 \pi \epsilon_{0} R^{2}} . \tag{3-22}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{V^{\prime}}, \mathbf{a}_{R} \frac{\rho}{R^{2}} d v^{\prime} \quad(\mathrm{V} / \mathrm{m}), \tag{3-29}
\end{equation*}
$$

Fig. 3-5 Electric field due to a continuous charge distribution.
or, since $\mathbf{a}_{R}=\mathbf{R} / R$,

$$
\begin{equation*}
\mathbf{E}=\frac{1}{4 \pi \epsilon_{\mathrm{a}}} \int_{V^{\prime}} \rho \frac{\mathbf{R}}{R^{3}} d v^{\prime} \quad(\mathrm{V} / \mathrm{m}) \tag{3-30}
\end{equation*}
$$

Except for some especially simple cases, the vector triple integral in Eq. (3-29) or Eq. (3-30) is difficult to carry out because, in general, all three quantities in the integrand (\mathbf{a}_{R}, ρ, and R) change with the location of the differential volume $d v^{\prime}$.

If the charge is distributed on a surface with a surface charge density $\rho_{s}\left(\mathrm{C} / \mathrm{m}^{2}\right)$, then the integration is to be carried out over the surface (not necessarily flat). Thus,

For a line charge, we have

$$
\begin{equation*}
\mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{L^{\prime}} \mathbf{a}_{R} \frac{\rho_{\ell}}{R^{2}} d \ell^{\prime} \quad(\mathrm{V} / \mathrm{m}), \tag{3-32}
\end{equation*}
$$

where $\rho_{,}(\mathrm{C} / \mathrm{m})$ is the line charge density, and L^{\prime} the line (not necessarily straight) along which the charge is distributed.

Example 3-3 Determine the electric field intensity of an infinitely long, straight. line charge of a uniform density ρ_{i} in air.

Solution: Let us assume that the line charge lics along the z^{\prime}-axis as shown in Fig. 3-6. (We are perfectly free to do this because the field obviously does not depend on how we designate the lince. It is an accepted convention to use primed erordinates for source points and unprimed coordinates for fiedel pionins when there is a possibility of confusion.) The problem asks us to find the electric field intensity at a point P, which is at a distance r from the line. Since the problem has a cylindrical symmetry (that is, the electric field is independent of the azimuth angle ϕ), it would be most convenient to work with cylindrical coordinates. We rewrite Eq. (3-32) as

$$
\begin{equation*}
\mathrm{E}=\frac{1}{4 \pi \epsilon_{0}} \int_{L^{\prime}} \rho_{\ell} \frac{\mathrm{R}}{R^{3}} d \ell^{\prime} \quad(\mathrm{V} / \mathrm{m}) \tag{3-33}
\end{equation*}
$$

For the problem at hand ρ_{ℓ} is constant and a line element $d \ell^{\prime}=d z^{\prime}$ is chosen to be at an arbitrary distance z^{\prime} from the origin. It is most important to remember that \mathbf{R} is the distance vector directed from the source to the field point, not the other way

Fig. 3-6 An infinitely long straight-line charge.
around. We have

$$
\begin{equation*}
\mathbf{R}=\mathbf{a}_{r} r-\mathbf{a}_{z} z^{\prime} \tag{3-34}
\end{equation*}
$$

The electric field, $d \mathbf{E}$, due to the differential line charge element $\rho_{\ell} d \ell^{\prime}=\rho_{\ell} d z^{\prime}$ is
(traight)
straight,
nown in : depend rdinates ossibility point P, mmetry be most
(1) 心.11 r that \mathbf{R} her way

$$
\begin{align*}
d \mathbf{E} & =\frac{p_{d} d z^{\prime}}{4 \pi \epsilon_{1}} \frac{\mathbf{a}_{r} r-\mathbf{a}_{z} z^{\prime}}{\left(r^{r^{*}}+z^{\prime 2}\right)^{3 / 2}} \\
& =\mathbf{a}_{r} d E_{r}^{\prime}+\mathbf{a}_{z} d E_{z} \tag{3-35}
\end{align*}
$$

where

$$
\begin{equation*}
d E_{r}=\frac{\rho_{\ell} r d z^{\prime}}{4 \pi \epsilon_{0}\left(r^{2}+z^{\prime 2}\right)^{3 / 2}} \tag{3-35a}
\end{equation*}
$$

and

$$
\begin{equation*}
d E_{z}=\frac{-\rho_{\ell} z^{\prime} d z^{\prime}}{4 \pi \epsilon_{0}\left(r^{2}+z^{\prime 2}\right)^{3 / 2}} \tag{3-35b}
\end{equation*}
$$

In Eq. (3-35) we have decomposed $d \mathbf{E}$ into its components in the \mathbf{a}_{r} and \mathbf{a}_{z} directions. It is easy to see that for every $\rho_{\ell} d z^{\prime}$ at $+z^{\prime}$ there is a charge element $\rho_{\ell} d z^{\prime}$ at $-z^{\prime}$, which will produce a $d \mathbf{E}$ with components $d E_{r}$ and $-d E_{z}$. Hence the \mathbf{a}_{z} components will cancel in the integration process, and we only need to integrate the $d E_{r}$ in Eq. (3-35a):

$$
\mathbf{E}=\mathbf{a}_{r} E_{r}=\mathbf{a}_{r} \frac{\rho_{\ell} r}{4 \pi \epsilon_{0}} \int_{-\infty}^{\infty} \frac{d z^{\prime}}{\left(r^{2}+z^{2}\right)^{3 / 2}}
$$

or

$$
\begin{equation*}
\mathbf{E}=\mathbf{a}_{r} \frac{\rho_{e_{r}}}{2 \pi \epsilon_{0} r} \quad(\mathrm{~V} / \mathrm{m}) \tag{3-36}
\end{equation*}
$$

i

78 STATIC ELECTRIC FIELDS / 3

Equation (3-36) is an importint result for an infinite line charge. Of course. no physical line charge is infinitcly long; nevertheless, Eq. (3-36) gives the approximate \mathbf{E} field of a long straight-line charge at a point close to the line charge.

3-4 GAUSS'S LAW AND APPLICATIONS

Gauss's law follows directly from the divergence postulate of electrostatics, Eq. (3-4), by the application of the divergence theorem, It has been derived in Section 3-2 as Eq. (3-7) and is repeated here on account of its importances:

$$
\begin{equation*}
\oint_{s} \mathrm{E} \cdot \mathrm{~d}=\frac{Q}{\epsilon_{0}} \tag{3-37}
\end{equation*}
$$

Gauss's law asserts that the total otmand flux of the E-fied over any closed surfocice in free space is equal to the total charge enclosed in the surface divided by ϵ_{0}. We note that the surface S can be any hypothetical (mathematical) closed surface chosen for convenience; it does not have to be. and usually is not, a physical surface.

Gauss's law is particularly useful in determining the E-field of charge distributions with some symmetry conditions, such that the normal component of the electric field intensity' is constant over an enclosed surface. In such cases the surface integral on the left side of Eq. (3-37) would be very easy to evaluate, and Gauss's law would be a much more efficient way for finding the electric field intensity than Eqs. (3-29) through (3-33). On the other hand, when symmetry conditions do not exist. Gauss's law would not be of much help. The essence of applying Gauss's law lies first in the recognition of symmetry conditions, and second in the suitable choice of a surface over which the normal component of E resulting from a given charge distribution is a constant. Such a surface is referred to as a Goussian surface. This basic principle was used to ollain liy. (3) i2) for a poim charge that possesses spherical symmetry; consequenty, a proper Gaussian surface is the simpaceiof a sphere cemtered an the point charge. Gauss's law cquld not help in the derivation of Eq. (3-22) or (3-27) for an electric dipole, since a surface about a separated pair of equal and opposite charges over which the normal component of \mathbf{E} remains constant was not known.

Example 3-4 Use Gauss's law to determine the electric field intensity of an infinitely long, straight, line charge of a uniform density $\rho_{6}^{\prime \prime}$ in air.

Solution: This problem was solved in Example 3-3 by using Eq. (3-32). Since the line charge is infinitely long, the resultant E field, must be radial and perpendicular to the line charge $\left(\mathbf{E}=\mathbf{a}_{r} E_{r}\right)$, and a component of \mathbf{E} along the line cannot exist. With the obvious cylindrical symmetry, we construct a"cylindrical Gaussian surface of a radius r and an arbitrary length L with the line charge as its axis, as shown in Fig. 3-7. On this surface, E_{p} is constant, and $d s=\mathbf{a}_{r} r d \phi d z$ (from Eq. 2-52a). We
ourse, no jroximate

Eq. (3-4), :tion 3-2

I surface We note wosen for
(i)! $\sqrt{5}$
ar.men
al oi.
vuld be a
-13 29
(minusn
or in the
1 surface ribution principle
mmetry;
d at the
ir (3-27)
opposite
known.
n finitely
incy
adicuar
ol Cl
anfince
lown in
2a). We

Fig. 3-7 Applying Gauss's law to an infinitely long line charge (Example 3-4).
have

$$
\oint_{s} \mathbf{E} \cdot d s=\int_{0}^{l} \int_{0}^{2 n} E_{r} r d \phi d z=2 \pi r L E_{r}
$$

There is no contribution from the top or the bottom face of the cylinder because on the top face $d s=a r d r d \phi$ but \mathbf{E} has no z-component there, making $\mathbf{E} \cdot d \mathbf{d}=0$.
 Substitution into Eq. (3-37) gives us immediately

$$
2 \pi r L E_{r}=\frac{\rho_{t} L}{\epsilon_{0}}
$$

or

$$
\mathbf{E}=\mathbf{a}_{\mathbf{r}} E_{r}=\mathbf{a}_{r} \frac{\rho_{\ell}}{2 \pi \epsilon_{0} r}
$$

This result is, of course, the same as that given in Eq. (3-36), but it is obtained here in a much simpler way. We note that the length, L, of the cylindrical Guassian suriace does not appear in the final expression; hence we could have chosen a cylinder of a unit length.

Example 3-5 Determine the electric field intensity of an infinite planar charge with a uniform surface charge density ρ_{s}.

Solution: It is clear that the E fied camsed by a charged shee of an intinite extent is thormal to the shect. Equation (3-31) could be used to find \mathbf{E}, but this would involve a double integration between infinite limíts of a general expression of $1 / R^{2}$. Gauss's law can be used to much advantage here.

Fig. 3-8 -Applying Gauss's law to an infinite planar charge (Example 3-5).

We choose as the Gaussian surface a rectangular box with top and bottom faces of an arbitrary area A equidistant from the planar charge, as shown in Fig. 3-8. The sides of the box are perpendicular to the charged sheet. If the charged sheet coincides with the $x y$-plane, then on the top face,

$$
\mathbf{E} \cdot d \mathbf{s}=\left(\mathbf{a}_{z} E_{z}\right) \cdot\left(\mathbf{a}_{z} d s\right)=E_{z} d s
$$

On the bottom face,

$$
\mathbf{E} \cdot d \mathbf{s}=\left(-\mathbf{a}_{z} E_{z}\right) \cdot\left(-\mathbf{a}_{z} d s\right) \doteq E_{z} d s
$$

Since there is no contribution from the side faces, we have

$$
\oint_{S} \mathbf{E}: d s=2 E_{z} \int_{A} d s=2 E_{z} A
$$

The total charge enclosed in the box is $Q=\rho_{s} A$. Therefore,

$$
2 \dot{E}_{z} A=\frac{\rho_{s} A}{\epsilon_{0}}
$$

from which we obtain

$$
E=a_{z} E_{j}=\mathbf{a}_{z} \frac{\rho_{s}}{2 \epsilon_{0}}, \quad\langle>0
$$

and

$$
\mathbf{E}=-\mathbf{a}_{\mathbf{F}} E_{z}=\mathbf{a}_{\mathrm{z}} \frac{\rho_{\mathrm{s}}}{2 \epsilon_{0}}, \quad z<0
$$

Of course, the charged sheet may not coincide with the $x y$-plane (in which case we do not speak in terms of above below the plane), but the \mathbf{E} field always points away from the sheet if ρ_{s} is positive,

Example 3-6 Determine the E field caused by a spherical cloud of electrons with a volume charge density $\rho=-\rho_{o}$ for $0 \leq R \leq b$ (both ρ_{o} and b are positive) and $\rho=0$ for $R>b$.

Solution: First we recognize that the given source condition has spherical symmetry. The proper Gaussian surfaces must therefore be concentric spherical surfaces. We must find the E field in two regions. Refer to Fig. 3-9.
a) $0 \leq R \leq b$

A hypothetical spherical Gaussian surface S_{i} with $R<b$ is constructed within the electron cloud. On this surface, \mathbf{E} is radial and has a constant magnitude.

$$
\mathbf{E}=\mathbf{a}_{K} E_{K}, \ldots d \mathbf{d}=\mathbf{a}_{K} d s .
$$

The total outward E flux is

$$
\oint_{s_{i}} \mathbf{E} \cdot d \mathbf{s}=E_{R} \int_{s_{i}} d s=E_{R} 4 \pi R^{2} .
$$

The total charge enclosed within the Gaussian surface is

$$
\begin{aligned}
Q & =\int_{V} \rho d v \\
& =-\rho_{v} \int_{v} d v=-\rho_{a} \frac{4 \pi}{3} R^{3} .
\end{aligned}
$$

Fig. 3-9) Bleuric fick intensity of a spherical electron cloud (Example 3-6).

Substitution into Eq. (3-7) yields

$$
\mathbf{E}=-\mathbf{a}_{R} \frac{\rho_{o}}{3 \epsilon_{0}} R, \quad 0 \leq R \leq b
$$

We see that within the uniform electron cloud the \mathbf{E} field is directed toward the center and has a magnitude pridportional to the distance from the center.
b) $R \geq b$

For this case we construgt a spherical Gaussiat, surface S_{o} with $R>b$ outside the electron cloud. We obtain the same exprëssion for $\oint_{s_{o}} \mathbf{E} \cdot d \mathbf{s}$ as in case (a). The total charge erclosed is

$$
Q=-\rho_{a} \frac{4 \pi}{3} b^{3}
$$

Consequently,

$$
\mathbf{E}_{1}=-\mathbf{a}_{\mathbf{R}} \frac{\rho_{o} b^{3}}{3 \epsilon_{0} R^{2}}, \quad R \geq b,
$$

which follows the inverse square law and could have been obtained directly from Eq. (3-12). We observe that autside the charged cloud the \mathbf{E} field is exactly the same as though the total charge is concentrated on a single point charge at the center. This is true, in general, for a spherically symmetrical charged region even though ρ is a function of R.
The variation of E_{R} versus R is plotted in Fig. 3-9. Note that the formal solution of this problem requires only a few lines. If Gaus's law is not used, it is necessary (1) to choose a differential volume element arbitrarily located in the electron cloud, (2) to express its vector distance \mathbf{R} to a field point in a chosen coordinate system, and (3) to perform a triple integration as indicated in Eq; (3-29). This is a hopelessly involved process. The moral is: Try to apply Gauss's law if symmetry conditions exist for the given charge distribution.

3-5 ELECTRIC POTENTIAL

In connection with the null identity in Eq. (2-130) we poted that a curl-free vector field could always be expressed as the gradient of a scalar field. This induces us to define a scalar electric potential, V, , such that

$$
\begin{equation*}
E=-\nabla V \tag{3-38}
\end{equation*}
$$

because scalar quantities are aasier to handle than vector quantities. If we can determine V more easily, then E cap be fbund by a gradient operation, which is a straightforward process in an orthogonal coordinate system. The reason for the inclusion of a negative sign in Eq. (3-38) will be explained presently,

Mig. 3-9) Blectric ficd intensity of a spherical electron cloud (Example 3-6).
se vector ees us to

Electric potential does have physical significance，and it is related to the work done in carrying a charge from one point to another．In Section 3－2 we defined the electric field intensity as the force acting on a unit test charge．Therefore，in moving a unit charge from point P_{1} to point P_{2} in an electric field，work must be done against the field and is equal to

$$
\begin{equation*}
\frac{W}{q} \doteq-\int_{P_{1}}^{P_{2}} \mathbf{E} \cdot d \ell \quad(\mathrm{~J} / \mathrm{C} \text { or } \mathrm{V}) . \tag{3-39}
\end{equation*}
$$

$<$ Many paths may be followed in going from P_{1} to P_{2} ．Two such paths are drawil in Fig．3－10．Since the path between P_{1} and P_{2} is not specified in Eq．（3－39），the question naturally arises，how does tue work depend on the path taken？A litle thought wii lead us to conclude that W / q in Eq．（3－39）should not depend on the path；for，if it did，one would be able to go from P_{1} to P_{2} along a path for which W is smaller and then to come back to P_{1} along another path，achieving a net gain in work or energy． This would be contrary to the principle of conservation of energy．We have already alluded to the path－independence nature of the scalar line integral of the irrotational （conservative） \mathbf{E} field when we discussed Eq．（3－8）．

Analogous to the concept of potential energy in mechanics，Eq．（3－39）represents the difference in electric potential energy of a unit charge between point P_{2} and point P_{1} ．Denoting the electric potential energy per unit charge by V ，the electric potential， we have

$$
\begin{equation*}
V_{2}-V_{1}=-\int_{P_{1}}^{p_{i}} \mathbf{E} \cdot d \ell \quad(\mathrm{~V}) \tag{3-40}
\end{equation*}
$$

Mathematically，Eq．（3－40）can be obtained by substituting Eq．（3－38）in Eq．（3－39）． Thus，in view of Eq．（2－81），

$$
\begin{aligned}
-\int_{P_{1}}^{P_{2}} \mathrm{E} \cdot d \ell & =\int_{P_{1}}^{P_{2}}(\nabla V) \cdot\left(\mathbf{a}_{\ell} d \ell\right) \\
& =\int_{P_{1}}^{P_{2}} d V=V_{2}-V_{1} .
\end{aligned}
$$

Fig．3－10 Two paths leading from P_{1} to P_{2} in an electric． field．

Fig. 3-11 Relative directions of E and increasing V.

What we have defined in $\mathrm{Eq}_{i}(3-40)$ is a potential difference (electrostatic voltage) between points P_{2} and P_{1}. It makes no more sense to talk about the absolute potential of a point than about the absolute phase of a phasor ar the absolute altitude of a geographical location: a reference zero-potential point, a reference zero phase (usually
 most (but not all) eases, the gero-potential point is takena infinty. When the reference zero-potential point is not an intinity, it should be specifically stated.

We want to make two more points about $E q_{m}(3-38)$. First, the inclusion of the negative sign is necessary in order to conform with the convention that in going against the \mathbf{E} field the electric potential V increases. For fnstance, when a DC battery of a voltage V_{0} is connected between two parallel conducting plates, as in Fig. 3-11, positive and negative charges cumulate, respectively, on the top and bottom plates. The \mathbf{E} field is directed from positive to negative charges, while the potential increases in the opposite direction. Second, we know from Section $2-5$ when we defined the gradient of a scalar field that the dirèction of ∇V is normal to the surfaces of constant V. Hence, if we use directed field lines or streamlines: to indicate the direction of the E field, they are everywhere perpendicular to eypuipotential lines and equipotential
surfaces.

3-5.1 Electric Potential due to a Charge Distribution

The electric potential of a point at distance R frotm a point charge q referred to that at infinity, can be obtained réadily from Eq. (3-40):
which gives

$$
\begin{equation*}
V=-\int_{\alpha}^{R}\left(a_{R} \frac{q}{4 \pi \epsilon_{0} R^{2}}\right) \cdot\left(a_{R} d R\right), \tag{3-41}
\end{equation*}
$$

1

This is a scalar quantity and depends on, besides ruionly the distance R. The potential difference between any two points P_{2} and P_{1} at distanfes R_{2} and R_{1}, respectively,
rohtage rotential ude of a - (anally sificd. bn orerence
n of the
ingoing
1,:1
a plin....
nercases
ined the

- matant
mol the potential

$$
\begin{equation*}
V_{21}=V_{P_{2}}-V_{P_{1}}=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{1}}\right) \tag{3-43}
\end{equation*}
$$

This result may appear a litue surprising at lirst, since P_{2} and P_{1} may not lie on the same radial line through q, as illustrated in Fig. 3-12. However, the concentric circles (spheres) passing through P_{2} and P_{1} are equipotential lines (surfaces) and $V_{P_{2}}-V_{P_{1}}$ is the same as $V_{r},-V_{p}$. From the point of view of Eq, (3 40) we can choose the path "f intermion form P_{1} w i^{\prime}, and thea from b_{3} to l_{2}. No work is done from l^{\prime} : w P_{3} because E is perpendicular to $d \ell=\mathrm{a}_{\phi} R_{1} d \phi$ along the circular path $(\mathrm{E} \cdot d \ell=0)$.

The electric potential due to a system of n discrete point charges $q_{1}, q_{2}, \ldots, q_{n}$ located at $\mathbf{R}_{1}^{\prime}, \mathbf{R}_{2}^{\prime}, \ldots, \mathbf{R}_{n}^{\prime}$ is, by superposition, the sum of the potentials due to the individual charges:

$$
\begin{equation*}
V=\frac{1}{4 \pi \epsilon_{0}} \sum_{k=1}^{n} \frac{q_{k}}{\left|\mathbf{R}-\mathbf{R}_{k}^{\prime}\right|} . \tag{3-44}
\end{equation*}
$$

Since this is a scalar sum, it is, in general, easier to determine \mathbf{E} by taking the negative gradient of V than from the vector sum in Eq. (3-18) directly.

As an example, let us again consider an electric dipole consisting of charges $+q$ and $-q$ with a small separation d. The distances from the charges to a field point P are designated R_{+}and R_{-}, as shown in Fig. 3-13. The potential at P can be written down directly:

$$
\begin{equation*}
V=\frac{q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{+}}-\frac{1}{R_{-}}\right) . \tag{3-45}
\end{equation*}
$$

If $d \ll R$, we have

$$
\begin{equation*}
\frac{1}{R_{+}} \cong\left(R-\frac{d}{2} \cos \theta\right)^{-\mathrm{i}} \cong R^{-\mathrm{i}}\left(1+\frac{d}{2 R} \cos \theta\right) \tag{3-46}
\end{equation*}
$$

86

 STATIC ELECTRIC FIELDS 3

Fig. 3-13 An eloctric dipole.
and

$$
\begin{equation*}
\frac{1}{R_{-}} \cong\left(R+\frac{d}{2} \cos ^{1} \theta\right)^{-1} \cong R^{-1}\left(1-\frac{d}{2 R} \cos \theta\right) . \tag{3-47}
\end{equation*}
$$

Substitution of Eys. (3-46) and (3-47) in Ey. (3-45) gives.
or

$$
V=\frac{q d \cos \theta}{4 \pi \epsilon_{0} R^{2}}
$$

$$
\begin{equation*}
Y=\frac{\mathbf{p} \cdot \mathbf{a}_{R}}{4 \pi \epsilon_{0} R^{2}} \tag{3-48}
\end{equation*}
$$

where $\mathrm{p}=q \mathrm{~d}$. (The "approximate" sign (\sim) has been dropped for simplicity.)
The \mathbf{E} field can be obtained from - ∇V. In spherical coordinates we have

$$
\begin{align*}
\mathbf{E} & =-\nabla V=-\mathbf{a}_{R} \frac{\partial V}{\partial R}-\mathbf{a}_{\theta} \frac{\partial V}{R \partial \theta} \\
& =\frac{p}{4 \pi \sigma_{0} R^{3}}\left(\mathbf{a}_{R} 2 \cos \theta+a_{\|} \sin q\right) . \tag{3-49}
\end{align*}
$$

Equation (3-49) is the same as Eq. (3-27), but has been quained by a simpler procedure without manipulating ppsition vectors.

Example 3-7 Make a two-dimensional sketch of the equipotential lines and the electric field lines for an electric dipole.
Solution: The equation of an equipotential surfade of a charge distribution is obtained by setting the expressiop for V to equal a constant. Since q, d, and ϵ_{0} in Eq. (3-48) for an electric dipole are fixed quantities, a constant V requires a constant ratio $\left(\cos \theta / R^{2}\right)$. Hence the equation: for an equipotential surface is

where c_{V} is a constant. By plotting R versus θ for various values of c_{V}, we draw the solid equipotential lines in Fig. 3-14. In the range $0 \leq \theta \leq \pi / 2, V$ is positive; R is maximum at $\theta=0$ and zero at $\theta=90^{\circ}$. A mirror image is obtained in the range $\pi / 2 \leq \theta \leq \pi$ where V is negative.

The electric field lines or streamlines represent the direction of the E field in space. We set

$$
\begin{equation*}
d \ell=k \mathbf{E} \tag{3-51}
\end{equation*}
$$

Fig. 3-14 Equipotential and electric field lines of an electric dipole (Example 3-7).
where k is a constant. In spheripal coordinates, Eq. (3-51) becomes (see Eq. 2-66).

$$
\begin{equation*}
\mathbf{a}_{R} d \dot{R}+\mathbf{a}_{\theta} R d \theta+{\underset{a}{\phi}} R \sin \theta d \phi=k\left(\rho_{R} E_{R}+\mathbf{a}_{\theta} E_{\theta}+\mathbf{a}_{\phi} E_{\phi}\right), \tag{3-52}
\end{equation*}
$$

which can be written

$$
\begin{equation*}
\frac{d R}{E_{R}}=\frac{R d \theta}{E_{\theta}}=\frac{R \sin \theta d \dot{\phi}}{E_{\phi}} \tag{3-53}
\end{equation*}
$$

For an electric dipole, there is n $E_{i \phi}$ component, and

$$
\frac{d R}{2 \cos \theta}=\frac{R d \theta}{\sin \theta}
$$

or

$$
\begin{equation*}
\frac{d R^{\prime}}{R}=\frac{2 d(\sin \theta)}{\sin \theta} . \tag{3-54}
\end{equation*}
$$

Integrating Eq. (3-54), we obtaịn

$$
\begin{equation*}
\dot{R}=c_{E} \sin ^{2} \theta \tag{3-55}
\end{equation*}
$$

where c_{E} is a constant. The electric field lines, having maxima at $\theta=\pi / 2$, are dashed in Fig. 3-14. They are rotationally symmetrical about th z-axis (independent of ϕ) and are everywhere normal to the equipotential lines.

The electric potential due to a continuous distribution of charge confined in a given region is obtained by integrating the contribution of an element of charge over the charged region. We have, for a volume charge distribution,

$$
\begin{equation*}
V=\frac{b}{4 \pi \epsilon_{\rho}} \int_{V^{\prime}} \frac{\rho}{R} d v^{\prime} \quad(\mathrm{V}) \tag{3-56}
\end{equation*}
$$

For a surface charge distribution,
and, for a line charge.

Example 3-8 Obtain a formula for the electriofieldintensity on the axis of a circular disk of radius b that carries a uniform surface charge density ρ_{s}.

Solution: Although the disk has circular symmetry, we cannot visualize a surface around it over which the normal component of E has a constant magnitude; hence Gauss's law is not useful for the solution of this problem. We use Eq. (3-57). Working with cylindrical coordinates indicated in Fig. 3-15, we have
and

$$
d s^{\prime}=r^{\prime} d r^{\prime} d \phi^{\prime}
$$

$$
R=\sqrt{z^{2}+r^{\prime 2}}
$$

The electric potential at the point $P(0,0, z)$ referring to the point at infinity is

$$
\begin{align*}
V & =\frac{\rho_{s}}{4 \pi \epsilon_{0}} \int_{0}^{2 \pi} \int_{0}^{b} \frac{r^{\prime}}{\left(z^{2}+r^{\prime 2}\right)^{1 / 2}} d r^{\prime} d \phi^{\prime} \\
& =\frac{\rho_{s}}{2 \epsilon_{0}}\left[\left(z^{2}+b^{2}\right)^{1 / 2}-|z|\right] \tag{3-59}
\end{align*}
$$

Therefore,

$$
\begin{align*}
\mathbf{E} & =-\nabla V=-\mathbf{a}_{z} \frac{\partial V}{\partial z} \\
& =\left\{\begin{array}{cc}
\mathbf{a}_{z} \frac{\rho_{s}}{2 \epsilon_{0}}\left[1-z\left(z^{2}+b^{2}\right)^{-112}\right], & z>0 \\
-\mathbf{a}_{z} \frac{\rho_{s}}{2 \epsilon_{0}}\left[1+z\left(z^{2}+b^{2}\right)^{-1 / 2}\right], & z<0
\end{array}\right. \tag{3-60a}
\end{align*}
$$

The determination of \mathbf{E} field at an off-axis point would be a much more diffcult problem. Do you know why?

For very large z, it is convenient to expand the second term in Eqs. (3-60a) and (3-60b) into a binomial series and neglect the second and all higher powers of the ratio $\left(b^{2} / z^{2}\right)$. We have

$$
z\left(z^{2}+b^{2}\right)^{-1 / 2}=\left(1+\frac{b^{2}}{z^{2}}\right)^{-1 / 2} \cong 1-\frac{b^{2}}{2 z^{2}}
$$

Fig. 3-15 A uniformly charged disk (Example 3-8).

90 . STATIC ELECTRIC FIELD $/ 3$

Substituting this into Eqs. (3-GOa) and (3-60b), we obtain

$$
\begin{align*}
\mathbf{E} & =\begin{array}{ll}
\left(\frac{\left.\pi b^{2} \rho_{3}\right)}{4 \pi \epsilon_{0} z^{2}}\right. & \\
& =\left\{\begin{array}{cc}
\mathbf{a}_{2} \frac{Q}{4 \pi \epsilon_{0} z^{2}}, & z>0 \\
-\mathbf{a}_{z} \frac{Q}{4 \pi \epsilon_{0} z^{2}}, & z<Q_{i}
\end{array}\right.
\end{array} . \begin{array}{l}
\end{array}
\end{align*}
$$

where Q is the total charge on the disk. Hence, when the point of observation is very far away from the charged disk, the E field approximately follows the inverse square law as if the total charge were concentrated at a point.

Example 3-9 Obtain a formula for the electric field intensity along the axis of a uniform line charge of length h. The uniform line-eharge density is ρ_{c}.

Solution: For an infinitely long line charge, the E field can be determined readily by applying Gauss's law, as in the solution to Example 3-4. However, for a line charge of finite length, as show in Fig. 3-16, we cannot cqnstruct a Gaussian surface

over the source region

$$
\begin{align*}
V & =\frac{\rho_{l}}{4 \pi \epsilon_{0}^{\prime}} \int_{-L / 2}^{L / 2} \frac{d z^{\prime}}{z-z^{\prime}} \\
& =\frac{\rho_{\ell}}{4 \pi \epsilon_{0}} \ln \left[\frac{z+(L / 2)}{z-(L / 2)}\right], \tag{3-62}
\end{align*} \quad z>\frac{L}{2} .
$$

The \mathbf{E} field at P is the negative gradient of V with respect to the unprimed field coordinates. For this problem,

$$
\begin{equation*}
\mathbf{E}=-\mathbf{a}_{z} \frac{d V}{d z}=\mathbf{a}_{z} \frac{\rho_{0} L}{4 \pi \epsilon_{0}\left[z^{2}-(L / 2)^{2}\right]}, \quad z>\frac{L}{2} \tag{3-63}
\end{equation*}
$$

The preceding two exampies iliustrate the procedure for determining E by first finding V when Gauss's law cannot be conveniently applied. However, we emphasize that, if symmetry conditions exist such that a Gaussian surface can be constructed over which $\mathbf{E} \cdot d \mathbf{s}$ is constant, it is always easier to determine \mathbf{E} directly. The potential V, if desired, may be obtained from \mathbf{E} by integration.

3-6 CONDUCTORS IN STATIC ELECTRIC FIELD

So far we have discussed only the electric field of stationary charge distributions in free space or air. We now examine the field behavior in material media. In general, we classify materials according to their electrical properties into three types: conductors, semiconductors, and insulators (or dielectrics). In terms of the crude atomic model of an atom consisting of a positively charged nucleus with orbiting electrons, the electrons in the outermost shells of the atoms of conductors are very loosely held and migrate easily from one atom to another. Most metals belong to this group. The electrons in the atoms of insulators or dielectrics, however, are held firmly to their orbits; they cannot be liberated in normal circumstances, even by the application of an external electric field. The electrical properties of semiconductors fall between those of conductors and insulators in that they possess a relatively small number of freely movable charges.

In terms of the band theory of solids, we find that there are allowed energy bands for electrons, each band consisting of many closely spaced, discrete energy states. Between these energy bands there may be forbidden regions or gaps where no eiectrons of the solid's atom can reside. Conductors have an upper energy band partially filled with electrons or an upper pair of overlapping bands that are partially filled so that the electrons in these bands can move from one to another with only a small change in energy. Insulators or dielectrics are materials with a completely filled upper band, so conduction could not normally. occur because of the existence of a large energy gap to the next higher band. If the energy gap of the forbidden region is relatively small, small amounts of external energy may be sufficient to excite the electrons in the filled upper band to jump into the next band, causing conduction. Such materials are semiconductors.

92

STATIC ELECTRIC FIELPS $/ 3$

The macroscopic electrical ptoperty of a material medium is characterized by a constitutive parameter called conductivity, which we will define in Chapter 5. The definition of conductivity, however, is not important in this chapter because we are not dealing with current flow and are now interested anly in the behavior of static electric fields in material media; In this section we examine the electric field and charge distribution both inside the bulk and on the surfice of a conductor.

Assume for the present that some positive (of negative) charges are introduced in the interior of a conductor. An electric field will be set up in the conductor, the field exerting a force on the charges and making them m"pve away from one another. This movement will continue until all the charges reach the conductor surface and redistribute themselves in such a way that both the charge and the field inside vanish. Hence,

Inside a Conductor (Under Static Conditions)
$\rho=0$ \vdots

\cdots

When there is no charge in the interior of a conductor $(\rho) 0$, E must be zero because, according to Gauss's law, the total outward electric flux through any closed surface constructed inside the conductor must vanish.

The charge distribution op the surface of a conductpr depends on the shape of the surface. Obviously the chapges would not be in a stater equilibrium if there were a tangential component of the electric field intensity that produces a tangential force and moves the charges. Therefore, under static conditions the \mathbf{E} field on a conductor surface is everywhere normal ta the surface. In other; words, the surface of a conductor is an equipotential surface under static conditions. As a matter of fact, since $\mathbf{F}=0$ everywhere inside a conductir, he whole conductor has the same electrostatic potential. A finite time is reqpired for the charges to pedistribute on a conductor surface and reach the equilibrium state. This time depends on the conductivity of the material. For a good conducter such as copper, this time is in the order of $10^{-19}(\mathrm{~s})$, a very brief transient. (This ppintiwill be elaborated in Section 5-4.)

Figure 3-17 shows an inteface Between a condiuctor and free space. Consider the contour $a b c d a$, which has width $a b=c d=\Delta w$ and .hejght $b c=d a=\Delta h$. Sides $a b$ and $c d$ are parallel to the interfacel Applying Eq. $(3 \div 8)$ letting $\Delta h \rightarrow 0$, and noting that E in a conductor is zero, we optain immediately
or

which says that the tangential component of the \mathbf{E} fild on a conductor surface is zero. In order to find E_{n}, the normal component of \mathbf{E} at the drrace of the conductor, we
ed by a 5. The we are f static Id and oduced or, the nother. ice and vanish.

oductor

 whactor $\mathrm{E}=0$ ostatic ductor of the ${ }^{-19}$ (s),der the des $a b$ noting

Fig. 3-17 A conductor-free space interface.
construct a Gaussian surface in the form of a thin pilibox with the top face in free space and the bottom face in the conductor where $\mathrm{E}=0$. Using Eq. (3-7), we obtain

$$
\begin{gather*}
\oint_{\mathbf{S}} \mathbf{E} \cdot d \mathbf{s}=E_{n} \Delta S=\frac{\rho_{s} \Delta S}{\epsilon_{0}} \\
E_{n}=\frac{\rho_{s}}{\epsilon_{0}} . \tag{3-67}
\end{gather*}
$$

or

Hence, the normal component of the Efield at a conductor-free space boundary is equal to the surface charge density on the conductor divided by the permittivity of free space. Summarizing the boundary conditions. at the conductor surface, we have

Boundary Conditions at a Conductor-Free Space Interface
$E_{\mathrm{t}}=0$
$E_{n}=\frac{\rho_{s}}{\epsilon_{0}}$

When an uncharged conductor is placed in a static electric field, the external field will cause loosely held electrons inside the conductor to move in a direction opposite to that of the field and cause net positive charges to move in the direction of the field. These induced free charges will distribute on the conductor surface and create an induced field in such a way that they cancel the external field both inside the conductor and tangent to its surface. When the surface charge distribution reaches an equilibrium, all four relations, Eqs. (3-64) through (3-67), will hold; and the conductor is again an equipotential body.
Example 3-10 A positive point charge Q is at the center of a spherical conducting shell of an inner radius R_{i} and an outer radius R_{0}. Determine E and V as functions of the radial distance R.

94 : STATIC ELECTRIC FIELDS ${ }^{3}$

(a)

(b)

(c)

Fig. 3-18 Electric field intensity and potential variations of a point charge $+Q$ at the center of a conducting shell (Example 3-10).

Solution: The geometry of the problem is shown in Fig.;3-18(a). Since there is spherical symmetry, it is simplest to use Gauss's law to determine \mathbf{E} and then find V by integration. There are three distinct regions: (a) $R>R_{p}$, (b) $R_{\mathrm{f}} \leq R \leq R_{o}$, and (c) $R<R_{i}$. Suitable spherical Gausian sturfaces will be consffucted in these regions. Obviously, $\mathrm{E}=\mathbf{a}_{R} E_{\mathrm{R}}$ in all three regiohs.
a) $R>R_{0}\left(\right.$ Gaussian surface $\left.S_{1}\right)$:

The \mathbf{E} field is the same as that of a point charge Q without the presence of the shell. The potential referring to the point at infinity is

$$
\begin{equation*}
V_{1}=-\int_{\infty}^{R}\left(E_{R 1}\right) d R=\frac{Q}{4 \pi \epsilon_{0} R} . \tag{3-69}
\end{equation*}
$$

b) $R_{i} \leq R \leq R_{o}$ (Gaussian surface S_{2}): Because of Eq. (3-65), we know

$$
\begin{equation*}
E_{R 2}=0 . \tag{3-70}
\end{equation*}
$$

Since $\rho=0$ in the conducting shell and since the total charge enclosed in surface S_{2} must be zero, an amount of negative charge equal to $-Q$ must be induced on the inner shell surface at $R=R_{i}$. (This also means an amount of positive charge equal to $+Q$ is induced on the outer shell surface at $R=R_{0}$.) The conducting shell is an equipotential body. Hence,

$$
\begin{equation*}
V_{2}=\left.V_{1}\right|_{R=R_{o}}=\frac{Q}{4 \pi \epsilon_{0} R_{o}} . \tag{3-71}
\end{equation*}
$$

c) $R<R_{\mathrm{i}}$ (Gaussian surface S_{3}): Application of Gauss's law yields the same formula for $E_{R 3}$ as $E_{R 1}$ in Eq. (3-68) for the first region:

$$
\begin{equation*}
E_{R 3}=\frac{Q}{4 \pi \epsilon_{0} R^{2}} \tag{3-72}
\end{equation*}
$$

The potential in this region is

$$
V_{3}=-\int E_{R_{3}} d \dot{R}+C=\frac{Q}{4 \pi \epsilon_{0} R}+C
$$

where the integration constant C is determined by requiring V_{3} at $R=R_{i}$ to equal V_{2} in Eq. (3-71). We have

$$
C=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{o}}-\frac{1}{R_{i}}\right)
$$

and

$$
\begin{equation*}
V_{3}=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{R}+\frac{1}{R_{o}}-\frac{1}{R_{i}}\right) . \tag{3-73}
\end{equation*}
$$

The variations of E_{R} and V versus R in all three regions are plotted in Figs. 3-18(b) and 3-18(c).

3-7 DIELECTRICSTIN STATIC ELECTRIC FIELD

Ideal dielectrics do not contain free charges. When a dielectric body is placed in an external electric field, there are no induced free charges that move to the surface and make the interior charge density and electric field vanish, as with conductors. However, since dielectrics contain bound charges, we cannot conclude that they have no effect on the electric field in which they are placed.

Fig. 3-19 A cross section of a polarized dielectric medium.

All material media are composed of atoms with a positiyely charged nucleus and negative charges in opposite directions. These displacements, though small compared to atomic dimensions, nevertheless polarize a dielectric material and create electric dipoles. The situation is depifted in Fig. 3-19. Inasmych as electric dipoles do have nonvanishing electric potential ond electric field intensily, we expect that the induced electric dipoles will modify the electric field both in ide and outside the dielectric material.

The molecules of some dielectrips possess permanent dipgle moments, even in the absence of an external polarizing field. Such molecules usuglly consist of two or more dissimilar atoms and are called piplar molecules, in contrast to noipolar molecules, which do not have permanent dipole moments. The dipole moment's of polar molecules are of the order of $10^{-30}(\mathrm{C} \cdot \mathrm{mfi}$ When there is no cxternat field, the individual dipoles in a polar dielectric are randqmly ${ }^{\text {a riented, producing } \eta p \text { nof dipole moment }}$ macroscopically. An applied electric field will exert atorque on the individual dipoles and tend to align them with fheid in a manner simflar that shown in Fig. 3-19.

3-7.1 Equivalent Charge Distributions of Polarized Dielectrics

To analyze the macroscopic effect of induced dipoles we de
\mathbf{P}, as
where n is the number of atoms per unit volume and the numerator represents the vector sum of the induced dipole moments contained in a very small volume Δv. The vector \mathbf{P}, a smoothed point function, is the volume density of electric dipole moment. The dipole moment $d \mathbf{p}$ of an elemental volume $d v^{\prime}$ is $d \mathbf{p}=\mathbf{P} d v^{\prime}$, which produces an electrostatic potential (see Eq. 3-48)

$$
\begin{equation*}
d V=\frac{\mathbf{P} \cdot \dot{\mathbf{a}}_{R}}{4 \pi \epsilon_{0} R^{2}} d v^{\prime} \tag{3-75}
\end{equation*}
$$

Integrating over the volume V^{\prime} of the dielectric, we obtain the potential due to the polarized dielectric.

$$
\begin{equation*}
V=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\mathbf{P} \cdot \mathbf{a}_{R}}{R^{2}} d v^{\prime} \tag{3-76}
\end{equation*}
$$

hucleus lectrics a for josit. . 1 sm j creal dipoles hat the ide the
cun in two or , lecules, r moletividual soment lividual lown in

[^13]
98

STATIC ELECTRIC FIELDS/3
respectively, reveals that the eleqric potential (and thereforn the electric field intensity also) due to a polarized dielectrie can be calculated from the contributions of surface and volume charge distributions haying, respectively, densities
and
 other words, a polarized dielectrio can, be replaced hy ap equipalent polarization surface calculations.

$$
\begin{equation*}
V=\frac{1}{4 \pi \epsilon_{0}} \oint_{s^{\prime}} \frac{\rho_{p s}}{R} d s^{\prime}+\frac{1}{4 \pi \epsilon_{0}} \int_{V^{\prime}} \frac{\rho_{p}}{R} d v^{\prime} \tag{3-85}
\end{equation*}
$$

Although Eqs. (3-83) and (3-84) were derived mathematically with the aid of
whe an imaginary elemental surface Δs of a nonpolar dielectric. The application of an external electric field normal to Δs causes a separation of the bound charges: positive charge $+q$ move a distance $d / 2$ in the direction of the field and negative charges $-q$ move an equal distance against the direction of the field. The net total charge ΔQ that crosses the surface Δs in the direction of the field is $n q d(\Delta s)$, where n is the number of molecules per unityolume. If the external field is not normal to Δs, the separation of the bound charges in the direction of n_{n} will be $\mathrm{d} \cdot \mathrm{a}_{n}$ and

$$
\begin{equation*}
\Delta \rho=n q\left(\mathbf{d} \cdot \mathbf{a}_{n}\right)(\Delta s) \tag{3-86}
\end{equation*}
$$

But nqd, the dipole moment per unit volume, is by definition the polarization vector P. We have
and

tiensity surface
$(3-84)^{\dagger}$
fies. In surface or field
 - a untions. milarly onsider II , if : 11 hamen; egative et total where n rmal to ad
(3-86)
1 vector (3-87)
relath 9 and a

For a sufface S bounding a volume V, the net total charge flowing out of V as a result of polarization is obtained by integrating Eq. (3-87). The net charge remaining : within the volume V is the negative of this integral.

$$
\begin{align*}
Q & =-\oint_{S} \mathbf{P} \cdot \mathbf{a}_{n} d s \\
& =\int_{V}(-\nabla \cdot \mathbf{P}) d v=\int_{V} \rho_{p} d v, \tag{3-88}
\end{align*}
$$

which leads to the expression for the volume charge density in Eq. (3-84). Hence, when the divergence of \mathbf{P} does not vanish, the bulk of the polarized dielectric appears is be charged. However, since we started with an electrically neutral dielectric body, the total charge of the body after polarization must remain zero. This can be readily verified by noting that

$$
\begin{align*}
\text { Total charge } & =\oint_{s} \rho_{p s} d s+\int_{V} \rho_{p} d v \\
& =\oint_{S} \mathbf{P} \cdot \mathbf{a}_{n} d s-\int_{V} \nabla \cdot \mathbf{P} d v=0 \tag{3-89}
\end{align*}
$$

where the divergence theorem has again been applied.

3-8 ELECTRIC FLUX DENSITY AND dielectric constant

Becanse a polarized diededric gives rise to a volume change density ρ_{p}, we expect the electric field intensity due to a given source distribution in a dielectric to be different from that in free space. In particular, the divergence postulated in Eq. (3-4) must be modified to include the effect of ρ_{p}; that is,

$$
\begin{equation*}
\nabla \cdot \mathrm{E}=\frac{1}{\epsilon_{0}}\left(\rho+\rho_{p}\right) . \tag{3-90}
\end{equation*}
$$

Using Eq. (3-84), we have

$$
\begin{equation*}
\nabla \cdot\left(\epsilon_{0} \mathbf{E}+\mathbf{P}\right)=\rho . \tag{3-91}
\end{equation*}
$$

We now define a new fundamental ficld quantity, the electric flux density, or electric displacement, \mathbf{D}, such that

$$
\begin{equation*}
\mathrm{D}=\epsilon_{0} \mathrm{E}+\mathrm{P} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{3-92}
\end{equation*}
$$

The use of the vector \mathbf{D} enables us to write a divergence relation between the electric field and the distribution of free charges in any medium without the necessity of dealing explicitly with the polarization vector \mathbf{P} or the polarization charge density ρ_{p}. Combining Eqs. (3-91) and (3-92), we obtain the new equation

$$
\begin{equation*}
\nabla \cdot \mathrm{D}=\rho \quad\left(\mathrm{C} / \mathrm{m}^{3}\right) \tag{3-93}
\end{equation*}
$$

where χ_{e} is a dimensionless quantity called electric suscépptibilfty. ${ }^{\dagger}$ A dielectric medium is linear if χ_{e} is independent of $\frac{5}{5}$, and homogeneous if $\%$ ejs independent of space coordinates. Substitution of Eq. (3-96) in Eq. (3-92) yields
where

is a dimensionless constant known as the relatipe permitivityor the dielectric constant of the medium. The coefficient $\epsilon=\epsilon_{0} \epsilon$, is the absolute permittivity (often called simply permittivity) of the medium and measured in farads per meter (F / m). Air has a dielectric constant of 1.00059 ; hence fit permittivity is usudly taken as that of free space. The dielectric constants of some other materals a a included in a table in Appendix B.

are the redium. cse two volume
flux of
closed dicated due in ic, t^{\prime} rop (3.96) edium ispace 4
mstant simpla ha,
of free
tble

Note that ϵ_{r} can be a function of space coordinates. If ϵ_{r} is independent of position, the medium is said to be homogeneous. A linear, homogeneous, and isotropic medium is called.a simple medium. The relative permittivity of a simple medium is a constant.

Example 3-11 A positive point charge Q is at the center of a spherical dielectric shell of an inner radius R_{i} and an outer radius R_{o}. The dielectric constant of the shell is ϵ_{r}. Determine E, V, \mathbf{D}, and \mathbf{P} as functions of the radial distance R.

Solution: The geometry of this problem is the same as that of Example 3-10. The conducting shell has now been replaced by a dielectric shell, but the procedure of solution is similar. Because of the spherical symmetry, we apply Gauss's law to . find E and D in three regions: (a) $R>R_{o}$; (b) $R_{i} \leq R \leq R_{a}$; and (c) $R<R_{i}$. Potential V is found from the negative line integral of E, and polarization P is determined by the relation

$$
\begin{equation*}
\mathbf{P}=\mathrm{D}-\epsilon_{0} \mathbf{E}=\epsilon_{0}\left(\epsilon_{r}-1\right) \mathbf{E} \tag{3-99}
\end{equation*}
$$

The E, D, and \mathbf{P} vectors have only radial components. Refer to Fig. 3-20(a), where the Gaussian surfaces are not shown in order to avoid cluttering up the figure.
a) $R>R_{o}$

The situation in this region is exactly the same as that in Example 3-10. We have, from Eqs. (3-68) and (3-69),

$$
\begin{aligned}
E_{R 1} & =\frac{Q}{4 \pi \epsilon_{0} R^{2}} \\
V_{1} & =\frac{Q}{4 \pi \epsilon_{0} R}
\end{aligned}
$$

From Eqs. (3-97) and (3-99), we obtain

$$
\begin{equation*}
D_{R 1}=\epsilon_{0} E_{R 1}=\frac{Q}{4 \pi R^{2}} \tag{3-100}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{R 1}=0 \tag{3-101}
\end{equation*}
$$

b) $R_{i} \leq R \leq R_{c}$

The application of Gauss's law in this region gives us directly

$$
\begin{align*}
E_{R 2} & =\frac{Q}{4 \pi \epsilon_{0} \epsilon_{r} R^{2}}=\frac{Q}{4 \pi \epsilon R^{2}} \tag{3-102}\\
\therefore \quad D_{R 2} & =\frac{Q}{4 \pi R^{2}} \tag{3-103}\\
\therefore P_{R 2} & =\left(1-\frac{1}{\epsilon_{r}}\right) \frac{Q}{4 \pi R^{2}} \tag{3-104}
\end{align*}
$$

102 STATIC ELECTRIC FIELDS $/ 3$

(b)

(c)

(d)

1
Fig. 3-20 Field variations of a point charge $+\dot{Q}$ at the center of a dielectife shell (Example 3-11).

Note that $D_{R 2}$ has the same expression as $D_{R 1}$ and that both E_{R} and P_{R} have a discontinuity at $R \neq R_{0 i}$ ip this region,

$$
\begin{align*}
V_{2}= & -\int_{\infty}^{R_{0}} E_{R 1} d R-\int_{R_{o}^{\prime}}^{R} E_{R 2} d R \\
& =\left.V_{1}\right|_{R=R_{o}}-\frac{Q}{4 \pi \epsilon} \int_{R_{o}^{i}}^{R} \frac{1}{R^{2}} d R \\
& \vdots Q \tag{3-105}\\
= & \frac{1}{4 \pi \epsilon_{0}}\left[\left(1-\frac{1}{\epsilon_{r}}\right) \frac{1}{R_{o}}+\frac{1}{\epsilon_{r} R}\right]
\end{align*}
$$

c) $R<R_{i}$

Since the medium in this region is the same as that in the region $R>R_{o}$, the application of Gauss's law yields the same expressions for E_{R}, D_{R}, and P_{R} in both regions:

$$
\begin{aligned}
& E_{R 3}=\frac{Q}{4 \pi \epsilon_{0} R^{2}} \\
& D_{R 3}=\frac{Q}{4 \pi R^{2}} \\
& P_{R 3}=0 .
\end{aligned}
$$

To nind \dot{v}_{3}, we must add to V_{2} at $R=R_{i}$ the negative line integral of $E_{R 3}$:

$$
\begin{align*}
V_{3} & =\left.V_{2}\right|_{R=R_{i}}-\int_{R_{i}}^{R} E_{R 3} d R \\
& =\frac{Q}{4 \pi \epsilon_{0}}\left[\left(1-\frac{1}{\epsilon_{r}}\right) \frac{1}{R_{o}}-\left(1-\frac{1}{\epsilon_{r}}\right) \frac{1}{R_{i}}+\frac{1}{R}\right] . \tag{3-106}
\end{align*}
$$

The variations of $\epsilon_{0} E_{R}$ and D_{R} versus R are plotted in Fig. 3-20(b). The difference ($D_{R}-\epsilon_{0} E_{R}$) is P_{R} and is shown in Fig. 3-20(c). The plot for V in Fig. 3-20(d) is a composite graph for V_{1}, V_{2}, and V_{3} in the three regions. We note that D_{R} is a continuous curve exhibiting no sudden changes in going from one medium to another and that P_{R} exists only in the dielectric region. It is instructive to compare Figs. 3-20(b) and 3-20(d) with, respectively, Figs. 3-18(b) and 3-18(c) of Example 3-11.

From Eqs. $(3-83)$ and $(3-84)$ we find

$$
\begin{align*}
\left.\rho_{P S}\right|_{R=R_{i}} & =\left.\mathrm{P} \cdot\left(-\mathrm{a}_{R}\right)\right|_{R=R_{i}}=-\left.\mathrm{P}_{R 2}\right|_{R=R_{i}} \\
& =-\left(1-\frac{1}{\epsilon_{r}}\right) \frac{Q}{4 \pi R_{i}^{2}} \tag{3-107}
\end{align*}
$$

on the inner shell surface;

$$
\begin{align*}
\left.\rho_{p s}\right|_{R=R_{o}} & =\left.\mathrm{P} \cdot \mathrm{a}_{R}\right|_{R=R_{o}}=\left.P_{R 2}\right|_{R=R_{o}} \\
& =\left(1-\frac{1}{\epsilon_{r}}\right) \frac{Q}{4 \pi R_{o}^{2}} \tag{3-108}
\end{align*}
$$

on the outer sheil surface; and

$$
\begin{align*}
\rho_{R} & =-\nabla \cdot P \\
& =-\frac{1}{R^{2}} \cdot \partial R^{-} \cdot\left(R^{2} P_{R 2}\right)=0 \tag{3-109}
\end{align*}
$$

Equations (3-107), (3-108), and $(3-109)$ indicate that there is no net polarization volume charge inside the dielectric shell. However, negative polarization surface charges exist on the inner surface; positive polarization surface charges, on the outer

Table 3-1 Dielegtrif Strengths of Some Common Materials

Material is	Dielectric Sirengill (V / m)
Air (atmospheric pressure)	3×10^{6}
Mineral oil	15×10^{6}
Polystyrene $\quad \therefore$	1 $20 \times 10^{\circ}$
Rubber	25×10^{6}
Glass	30×10^{6}
Mica	$200 \times 10^{\circ}$

surface. These surface charges produce an electric field intensity that is directed radially inward, thus reducing the E field in region 2 due to the point charge $+Q$ at the center.

3-8.1 Dielectric Strength

We have explained that an qeetric field causes small displacements of the bound charges in a dielectric material, resulting in polarization. If the electric field is very strong, it will pull electrons completely out of the mecules, causing permanent dislocations in the molecular structure. Free charges will appear. The material will become conducting, and large currents may resilt. This phenomenon is called a dielectric breakdown. The maximum electric field $\frac{1}{2} n$ tensity that a dielectric material can withstand without breakdown is the dielecticic stiength of the material. The approximate dielectric strengths of some common substances are given in Table 3-1. The dielectric strength of a materal must not be confused with its dielectric constant.

A convenient number to remember is that the didectric streneth of air at the atmospheric pressure is 3 kV /nme. When the electrice field intensity exceeds this value, air breaks down. Massive ienization takes' place, and sparking (corona discharge) follows. Charge tends to concentrate at sharp goints. In view of Eq. (3-67), the electric field intensity in the immediate vicinity:of sharp points is higher than that at points on a surface with a small curvature. This is the principle upon which a lightning arrester works. Disgharge through the sharp points of a lightning arrester prevents damaging discharges through nearby objects. The fact that the electric field intensity tends to be higher at a point near the sufface of a charged conductor with a larger curvature is illytrated in the following example.
Example 3-12 Consider two spherical conductors wifh radii b_{1} and $b_{2}\left(b_{2}>b_{1}\right)$, which are connected by a conducting wire. The distange of separation between the conductors is assumed to be yery, large compated to b_{2} so that the charges on the spherical conductors may beiconsidered as uniformly distributed. A total charge Q

Fig. 3-21 Two connected conducting spheres
(Example 3-12).
is deposited on the spheres. Find (a) the charges on the two spheres, and (b) the electric field intensities at the sphere surfaces.

Solution

a) Refer to Fig. 3-21. Since the spherical conductors are at the same potential, we have

$$
\frac{Q_{1}}{4 \pi \epsilon_{0} b_{1}}=\frac{Q_{2}}{4 \pi \epsilon_{0} b_{2}}
$$

or

$$
\frac{Q_{1}}{Q_{2}}=\frac{b_{1}}{b_{2}} .
$$

Hence the charges on the spheres are directly proportional to their radii. But, since

$$
Q_{1}+Q_{2}=Q
$$

we find

$$
Q_{1}=\frac{b_{1}}{b_{1}+b_{2}} Q \quad \text { and } \quad Q_{2}=\frac{b_{2}}{b_{1}+b_{2}} Q .
$$

b) The electric field intensities at the surfaces of the two conducting spheres are

$$
E_{1 n}=\frac{Q_{1}}{4 \pi \epsilon_{0} b_{1}^{2}} \quad \text { and } \quad E_{2 n}=\frac{Q_{2}}{4 \pi \epsilon_{0} b_{2}^{2}},
$$

so

$$
\frac{E_{1 n}}{E_{2 n}}=\left(\frac{b_{2}}{b_{1}}\right)^{2} \frac{Q_{1}}{Q_{2}}=\frac{b_{2}}{b_{1}} .
$$

The electric field intensities are therefore inversely proportional to the radii, being higher at the surface of the smaller sphere which has a larger curvature.

3-9 BOUNDARY CONDITIONS FOR ELECTROSTATIC FIELDS

Electromagnetic problems often involve media with different physical properties and require the knowledge of the relations of the field quantities at an interface between two media. For instance, we may wish to determine how the \mathbf{E} and \mathbf{D} vectors

Fig. 3-22 An interface between twó media.
change in crossing an interface. We already know the boundary conditions that must be satisfied at a conductor-free space interface. These copditions have been given in Eqs. (3-66) and (3-67). We now consider an interface between two general media shown in Fig. 3-22.

Let us construct a small path $a b c d a$ with sides, $a b$ and $c d$ in media 1 and 2 respectively, both being parallel to the interface and equal to Δw, Equation (3-8), which is assumed to be valid for regions containing discontitiuous medja, is applied to this path. ${ }^{\dagger}$ If we let sides $b c=d a \rightarrow \Delta h$ approach zero, their contributions to the line integral of E around the path can beinieglected. We have

Therefore

$$
\oint_{a b c d a} \mathbf{E} \cdot d \ell=\mathbf{E}_{1}^{\prime} \cdot \Delta \mathbf{t}+\mathbf{E}_{2}^{\prime} \cdot(-\Delta \mathbf{w})=E_{1} \Delta w-E_{2 q} \Delta w=0 .
$$

which states that the tangential camponent of an \mathbf{E} field is continuous across an interface. Eq. (3-110) simplifies to $\mathrm{EE}(3-66)$ if one of the media is a conductor. When media 1 and 2 are dielectrios pith permittivities ϵ_{1} and ϵ_{2} respectively, we have

$$
\begin{equation*}
\frac{D_{11}}{\epsilon_{1}}=\frac{D_{2 t}}{\epsilon_{2}} \tag{3-111}
\end{equation*}
$$

In order to find a relation between the normal components of the fields at a
pillbox, we have

$$
\begin{align*}
\oint_{S} \mathbf{D} \cdot d \mathbf{s} & =\left(\mathbf{D}_{1} \cdot \mathbf{a}_{n 2}+D_{2} \cdot \mathbf{a}_{n 1}\right) \Delta S \\
& =a_{n 2} \cdot\left(\mathbf{D}_{1}-D_{2}\right) \Delta S \\
& =\rho_{s} \Delta S, \tag{3-112}
\end{align*}
$$

where we have used the relation $\mathbf{a}_{n 2}=-\mathbf{a}_{n 1}$. Unit vectors $\mathbf{a}_{n 1}$ and $\mathbf{a}_{n 2}$ are, respectively, outward unit normals to media 1 and 2. From Eq. (3-112) we obtain

$$
\begin{equation*}
\mathbf{a}_{n 2} \cdot\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)=\rho_{s} \tag{3-113a}
\end{equation*}
$$

or

$$
\begin{equation*}
D_{1 n}-D_{2 n}=\rho_{s} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{3-113~b}
\end{equation*}
$$

at must n given a media
: respecwhis
: to this the line
un interr. When we have (3-111) alds $\stackrel{T}{a}$
bottom . and 5) to the ग. 936 -945,
where the reference unit normal is outward from medium 2.
Eq. (3-113) states that the normal component of \mathbf{D} field is discontinuous across an interface where a surface charge exists-the amount of discontinuity being equal to the surface charge density. If medium 2 is a conductor, $\mathrm{D}_{2}=0$ and Eq. (3-113b) becomes

$$
\begin{equation*}
D_{1 n}=\epsilon_{1} E_{1 n}=\rho_{s}, \tag{3-114}
\end{equation*}
$$

which simplifies to Eq. (3-67) when medium i is free space.
When two dielectrics are in contact with no free charges at the interface, $\rho_{s}=0$, we have

$$
\begin{equation*}
D_{1 n}=D_{2 n} \tag{3-115}
\end{equation*}
$$

or

$$
\begin{equation*}
\epsilon_{1} E_{1 n}=\epsilon_{2} E_{2 n} . \tag{3-110}
\end{equation*}
$$

Recapitulating, we find the boundary conditions that must be satisfied for static electric fields are as follows:

$$
\begin{array}{|ll|}
\hline \text { Tangential components, } & E_{1 t}=E_{2 t} ; \tag{3-110}\\
\text { Normal components, } & \mathbf{a}_{n 2} \cdot\left(\mathbf{D}_{1}-\mathbf{D}_{2}\right)=\rho_{s} \\
\hline
\end{array}
$$

Example 3-13. A lucite sheet $\left(\epsilon_{r}=3.2\right)$ is introduced perpendicularly in a uniform electric field $\mathbf{E}_{o}=\mathbf{a}_{x} E_{o}$ in free space. Determine $\mathbf{E}_{i}, \mathbf{D}_{i}$, and \mathbf{P}_{i} inside the lucite.

Solution: We assume that the introduction of the lucite sheet does not disturb the original uniform electric field \mathbf{E}_{0}. The sittation is depicted in Fig. 3-23. Since the interfaces are perpendicular to the electric field, only the normal field components need be considered. No free charges exist.

Fle. 3-23 A fuetey |heet in a uniform electric ficld (Example 3-13).

Boundary condition $\mathrm{Eq}(3-1,14)$ at the left interface gives

$$
\mathbf{D}_{i}=\mathbf{a}_{x} D_{i}=\mathbf{a}_{x} D_{0}
$$

or

$$
\mathrm{D}_{i}=\mathrm{a}_{\boldsymbol{x}} \epsilon_{0} E_{o} ;
$$

There is no change in electric flux density across the interface. The electric field intensity inside the lugite sheet iş

$$
F_{i}=\frac{1}{\epsilon} \mathbf{D}_{i}=\frac{1}{\epsilon_{0} \epsilon_{r}} \mathbf{D}_{i}=m_{x}^{\prime} \frac{\xi_{p}}{3,2}
$$

The polarization vector is zero outside the lucite sheet $\left(\mathbf{P}_{o}=0\right)$. Inside the sheet,

$$
\begin{aligned}
\mathbf{P}_{i} & =\mathbf{p}_{i}+\epsilon_{0} \mathbf{E}_{i}=\mathbf{a}_{x}\left(1 \frac{1}{3.2}\right) \epsilon_{0} E_{0} \\
& =\mathbf{a}_{0} 0.6875 \epsilon_{0} E_{0} \quad\left(C / \mathrm{m}^{2}\right)
\end{aligned}
$$

Clearly, a similar application of the boundary condition Eq. (3-114) on the right interface will yield the prigipal \mathbb{t}_{d}^{d} and \mathbf{D}_{o} in theffres space on the right of the lucite sheet. Does the solution of this problem chany if the original electric fied is not uniform, that is, if $\mathbf{E}_{o}=a_{x} E(y)^{\prime} ?$

Fig. 3-24 Bodundary conditions at the interface betweep two dielectric media (Examplile 3-4).

 by a charge-free boundary as shown in Fig. 3-24. The electric field intensity in medium 1 at the point P_{1} has a magnitude E_{1} and makes an angle α_{1} with the normal. Determine the magnitude and direction of the electric feld intensity at point P_{2} in medium 2 .

Solution: Two ëquations are needed to solve for two unknowns $E_{2 t}$ and $E_{2 n}$. After $E_{2 t}$ and $E_{2 n}$ have been found, E_{2} and α_{2} will follow directly. Using Eqs. (3-110) and (3-115), we have
and

$$
\begin{align*}
E_{2} \sin \alpha_{2} & =E_{1} \sin \alpha_{1} \tag{3-117}\\
\epsilon_{2} E_{2} \cos \alpha_{2} & =\epsilon_{1} E_{1} \cos \alpha_{1} \tag{3-118}
\end{align*}
$$

Division of Eq. (3-117) by Eq. $(3-118)$ gives

$$
\begin{equation*}
\frac{\tan \alpha_{2}}{\tan \alpha_{1}}=\frac{\epsilon_{2}}{\epsilon_{1}} \tag{3-119}
\end{equation*}
$$

The magnitude of E_{2} is
he right
ne lucite
d is not

$$
\begin{align*}
E_{2}= & \sqrt{E_{2 i}^{2}+E_{2 n}^{2}}=\sqrt{\left(E_{2} \sin \alpha_{2}\right)^{2}+\left(E_{2} \cos \alpha_{2}\right)^{2}} \\
= & {\left[\left(E_{1} \sin \alpha_{1}\right)^{2}+\left(\frac{\epsilon_{1}}{\epsilon_{2}} E_{1} \cos \alpha_{1}\right)^{2}\right]^{1 / 2} } \\
& \dot{E_{2}}=E_{1}\left[\sin ^{2} \alpha_{1}+\left(\frac{\epsilon_{1}}{\epsilon_{2}} \cos \alpha_{1}\right)^{2}\right]^{1 / 2} \tag{3-120}
\end{align*}
$$

By examining Fig. 3-24, can you tell whether ϵ_{1} is larger or smaller than ϵ_{2} ?

3-10 CAPACITANCE AND CAPACITORS

From Section 3-6 we understand that a conductor in a static electric field is an equipotential body and that charges deposited on a conductor will distribute themselves on its surface in such a way that the électric field inside vanishes. Suppose the potential due to a charge Q is V. Obviously, increasing the total charge by some factor k would merely increase the surface charge density ρ_{s} everywhere by the same factor, without, affecting the charge distribution because the conductor remains an equipotential body in a static situation. We may conclude from Eq. (3-57) that the potential of an isolated conductor is directly proportional to the total charge on it. This may also bee seen from the fact that increasing V by a factor of k increases $\mathbf{E}=$ $-\nabla V$ by a factor of k. But, from Eq. (3-67), $\mathbf{E}=\mathbf{a}_{n} \rho_{s} / \epsilon_{0}$; it follows that ρ_{s} and consequently the total charge Q will also increase by a factor of k. The ratio Q / V therefore
remains unchanged. We write

$$
\begin{equation*}
Q=C V \tag{3-121}
\end{equation*}
$$

where the constant of proportionality C is called the capacitance of the isolated conducting body. The capacitance is the electric charge that must be added to the body per unit increase in its electric potential. Its SI unit is coulomb per volt, or farad (F).

Of considerable importance in practice is the capacitor which consists of two conductors separated by free space or a dielectric medium. The conductors may be of arbitrary shapes as in Fig. 3-25. When a DC voltage source is connected between the conductors, a charge transfer occurs, resulting in a charge $+Q$ on one conductor and $-Q$ on the other. Several electric field lines originating from positive charges and terminating on negative charges are shown in Fig. 3-25. Note that the field lines are perpendicular to the conductor surfaces, which are equipotential surfaces. Equation (3-121) applies here if V is taken to mean the potential difference between the two conductors, V_{12}. That is,

$$
\begin{equation*}
C=\frac{Q}{V_{12}} \quad(\mathrm{~F}) \tag{3-122}
\end{equation*}
$$

The capacitance of a capacitor is a physical property of the two-conductor system. It depends on the geometry of the conductors and on the permittivity of the medium between them; it does not depend on either the charge Q or the potential difference V_{12}. A capacitor has a capacitance even when no voltage is applied to it and no free charges exist on its conductors. Capacitance C can be determined from Eq. (3-122) by either (1) assuming a V_{12} and determining Q in terms of V_{12}, or (2) assuming a Q and determining V_{12} in terms of Q. At this stage, since we have not yet

Fig. 3-25 A two-conductor capacitor.
studied the methods for solving boundary-value problems (which will be taken up in Chapter 4), we find C by the second method. The procedure is as follows:

1. Choose an appropriate coordinate system for the given geometry.
2. Assume charges $+Q$ and $-Q$ on the conductors.
3. Find E from Q by Eq. (3-114), Gauss's. law; or other relations.
4. Find V_{12} by evaluating

$$
V_{12}=-\int_{2}^{1} \mathrm{E} \cdot d \ell
$$

from the conductor carrying $-Q$ to the other carrying $+Q$.
5. Find C by taking the ratio Q / V_{12}.

Example 3-15 A parallel-plate capacitor consists of two parallel conducting plates of area S separated by a uniform distance d. The space between the plates is filled with a dielectric of a constant permittivity ϵ. Determine the capacitance.

Solution: A cross section of the capacitor is shown in Fig. 3-26. It is obvious that the appropriate coordinate system to use is the Cartesian coordinate system. Following the procedure outlined above, we put charges $+Q$ and $-Q$ on the upper and lower conducting plates respectively. The charges are assumed to be uniformly distributed over the conducting plates with surface densities $+\rho_{s}$ and $-\rho_{s}$, where

$$
\rho_{s}=\frac{Q}{S}
$$

From Eq. (3-114), we have

$$
\mathbf{E}=-\mathbf{a}_{y} \frac{\rho_{s}}{\epsilon}=-\mathbf{a}_{y} \frac{Q}{\epsilon S},
$$

which is constant within the dielectric if the fringing of the electric field at the edges of the plates is neglected. Now

$$
V_{12}=-\int_{y=0}^{y=d} \mathbf{E} \cdot d \ell=-\int_{0}^{d}\left(-\mathbf{a}_{y} \frac{Q}{\epsilon S}\right) \cdot\left(\mathbf{a}_{y} d y\right)=\frac{Q}{\epsilon S} d
$$

Fig. 3-26 Cross section of a parallel-plate capacitor (Example 3-15).

Therefore, for a parallel-plate capacitor,

$$
\begin{equation*}
C_{F}=\frac{Q}{V_{12}}=\epsilon \frac{S}{d} \tag{3-123}
\end{equation*}
$$

which is independent of Q or V_{12}.
For this problem we could have started by assuming a potential difference V_{12} between the upper and lower plates. The electric field intensity between the plates is uniform and equals

$$
\mathbf{E}=-\mathbf{a}_{y} \frac{V_{12}}{d} .
$$

The surface charge densities at the upper and lower conducting plates are $+\rho_{s}$ and - ρ_{s}, respectively, where, in view of Eq. (3-67),

$$
\rho_{s}=\epsilon E_{y}=\epsilon \frac{V_{12}}{d}
$$

Therefore, $Q=\rho_{s} S=(\epsilon S / d) V_{12}$ and $C=Q / V_{12}=\epsilon S / d$, as before.
Example 3-16 A cylindrical capacitor consists of an inner conductor of radius a and an outer conductor whose inner radius is b. The space between the conductors is filled with a dielectric of permittivity ϵ, and the length of the capacitor is L. Detcrmine the capacitance of this capacitor.

Solution: We use cylindrical coordinates for this problem. First we assume charges $+Q$ and $-Q$ on the surface of the inner conductor and the inner surface of the outer conductor, respectively. The \mathbf{E} field in the dielectric can be obtained by applying Gauss's law to a cylindrical Gaussian surface within the dielectric $a<r<b$. (Note that Eq. (3-114) gives only the normal component of the E field at a conductor surface. Since the conductor surfaces are not planes here, the \mathbf{E} field is not constant in the dielectric and Eq. (3-114) cannot be used to find \mathbf{E} in the $a<r<b$ region.) Referring to Fig. 3-27, we have

$$
\begin{equation*}
\mathbf{E}=\mathbf{a}_{r} E_{r}=\mathbf{a}_{r} \frac{Q}{2 \pi \epsilon L r} . \tag{3-124}
\end{equation*}
$$

Fig. 3-27. A cylindrical capacitor
(Example 3-16).

$$
\begin{align*}
& \text { Again we neglect the fringing effect of the field thear the edges of the conductors. The } \\
& \text { potential difference between the inner and outer conductors is } \\
& V_{a b}=-\int_{r=b}^{r=a} \mathbf{E} \cdot d \ell=-\int_{b}^{a}\left(a_{r} \frac{Q}{2 \pi \in L r}\right) \cdot\left(\mathbf{a}_{r} d r\right) \\
& =\frac{Q}{2 \pi \epsilon L} \ln \left(\frac{b}{a}\right) . \tag{3-125}
\end{align*}
$$

Therefore, for a cylindrical capacitor,

$$
\begin{equation*}
C=\frac{Q}{V_{a b}}=\frac{2 \pi \epsilon L}{\ln \left(\frac{b}{a}\right)} \tag{3-126}
\end{equation*}
$$

We could not solve this problem from an assumed $V_{a b}$ because the electric field is not uniform between the inner and outer conductors. Thus we would not know how to express E and Q in terms of $V_{a b}$ until we learned how to solve such a boundaryvalue problem.

Example 3-17 A spherical capacitor consists of an inner conducting sphere of radius R_{i} and an outer conductor with a spherical inner wall of radius R_{0}. The space in-between is filled with a dielectric of permittivity ϵ. Determine the capacitance.

Solution: Assume chiarges $+Q$ and $-Q$, respectively, on the inner and outer conductors of the spherical capacitor in Fig. 3-28. Applying Gauss's law to a spherical Gaussian surface with radius $R\left(R_{i}<R<R_{v}\right)$, we have

$$
\begin{gathered}
\mathbf{E}=\mathbf{a}_{\mathrm{R}} E_{R}=\mathbf{a}_{R} \frac{Q}{4 \pi \epsilon R^{2}} \\
V=-\int_{R_{0}}^{R_{1}} \mathbf{E} \cdot\left(\mathbf{a}_{\mathrm{R}} d R\right)=-\int_{R_{o}}^{R_{i}} \frac{Q}{4 \pi \epsilon R^{2}} d R=\frac{Q}{4 \pi \epsilon}\left(\frac{1}{R_{i}}-\frac{1}{R_{o}}\right) .
\end{gathered}
$$

Fig. 3-28 A spherical capacitor (Example 3-17).

Fig. 3-29 Series connection of capacitors.

Therefore, for a spherical capacitor,

$$
\begin{equation*}
C=\frac{Q}{V}=\frac{4 \pi \epsilon}{\frac{1}{R_{i}}-\frac{1}{R_{0}}} . \tag{3-127}
\end{equation*}
$$

3-10.1 Series and Parallel Connections of Capacitors

Capacitors are often combined in various ways in electric circuits. The two basic ways are series and parallel connections. In the series, or head-to-tail. connection shown in Fig. 3-29, the external terminals are from the first and last capacitors only. When a potential difference or electrostatic voltage V is applied, charge cumulations on the conductors connected to the external terminals are $+Q$ and $-Q$. Charges will be induced on the internally connected conductors such that $+Q$ and $-Q$ will appear on each capacitor independently of its capacitance. The potential differences across the individual capacitors are $Q / C_{1}, Q / C_{2}, \ldots, Q / C_{n}$, and

$$
V=\frac{Q}{C_{s r}}=\frac{Q}{C_{1}}+\frac{Q}{C_{2}}+\cdots+\frac{Q}{C_{n}}
$$

where $C_{s r}$ is the equivalent capacitance of the series-connected capacitors. We have

$$
\begin{equation*}
\frac{1}{C_{s r}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\cdots+\frac{1}{C_{n}} . \tag{3-128}
\end{equation*}
$$

In the parallel connection of capacitors, the external terminals are connected to the conductors of all the capacitors as in Fig. 3-30. When a potential difference V is applied to the terminals, the charge cumulated on a capacitor depends on its capacitance. The total charge is the sum of all the charges.

$$
\begin{aligned}
Q & =Q_{1}+Q_{2}+\cdots+Q_{n} \\
& =C_{1} V+C_{2} V+\cdots+C_{n} V=
\end{aligned}
$$

[^14]Fig. 3-30 Parallel connection of capacitors.

Therefore the equivalent capacitance of the parallel-connected capacitors is

$$
\begin{equation*}
C_{11}=C_{1}+C_{2}+\cdots+C_{n} . \tag{3-129}
\end{equation*}
$$

We note that the formula for the equivalent capacitance of series-connected capacitors is similar to that for the equivalent resistance of parallel-connected resistors and that the formula for the equivalent capacitance of parallel-connected capacitors is similar to that for the equivalent resistance of series-connected resistors. Can you explain this?

Example 3-18 Four capacitors $C_{1}=1 \mu \mathrm{~F}, C_{2}=2 \mu \mathrm{~F}, C_{3}=3 \mu \mathrm{~F}$, and $C_{4}=4 \mu \mathrm{~F}$ are connected as in Fig. 3-31. A DC voltage of 100 V is applied to the external terminals $a-b$. Determine the following: (a) the total equivalent capacitance between terminals $a-b$; (b) the charge on each capacitor; and (c) the potential difference across each capacitor.

Fig. 3-31 A combination of capacitors (Example 3-18).

116 STATIC ELECTRIC FIELDS / 3

Solution
a) The equivalent capacitance C_{12} of C_{1} and C_{2} in series is

The combination of C_{12} in parallel with C_{3} gives

$$
C_{123}=C_{12}+C_{3}=\frac{11}{3}(\mu \mathrm{~F})
$$

The total equivalent capacitance $C_{a b}$ is then

$$
C_{a b}=\frac{C_{123} C_{4}}{C_{123}+C_{4}}=\frac{44}{23}=1.913(\mu \mathrm{~F}) .
$$

b) Since the capacitances are given, the voltages can be found as soon as the charges have been determined. We have four unknowns: Q_{1}, Q_{2}, Q_{3}, and Q_{4}. Four equations are needed for their determination.

Series connection of C_{1} and $C_{2}: \quad Q_{1}=Q_{2}$.
Kirchhoff's voltage law, $V_{1}+V_{2}=V_{3}: \quad \frac{Q_{1}}{C_{1}}+\frac{Q_{2}}{C_{2}}=\frac{Q_{3}}{C_{3}}$.
Kirchhoff's voltage law, $V_{3}+V_{4}=100: \frac{Q_{3}}{C_{3}}+\frac{Q_{4}}{C_{4}}=100$.
Series connection at d :

$$
Q_{2}+Q_{3}=Q_{4}
$$

Using the given values of C_{1}, C_{2}, C_{3}, and C_{4} and solving the equations, we obtain

$$
\begin{aligned}
Q_{1}=Q_{2} & =\frac{800}{23}=34.8(\mu \mathrm{C}) \\
Q_{3} & =\frac{3600}{23}=156.5(\mu \mathrm{C}) \\
Q_{4} & =\frac{4400}{23}=191.3(\mu \mathrm{C})
\end{aligned}
$$

c) Dividing the charges by the capacitances, we find

$$
\begin{aligned}
& V_{1}=\frac{Q_{1}}{C_{1}}=34.8(\mathrm{~V}) \\
& V_{2}=\frac{Q_{2}}{C_{2}}=17.4(\mathrm{~V}) \\
& V_{3}=\frac{Q_{3}}{C_{3}}=52.2(\mathrm{~V}) \\
& V_{4}=\frac{Q_{4}}{C_{4}}=47.8(\mathrm{~V})
\end{aligned}
$$

These results can be checked by verifying that $V_{1}+V_{2}=V_{3}$ and that $V_{3}+V_{4}=$ 100 (V).
the charges Four equa;. we obtain

$$
V_{3}+V_{4}=
$$

3-11 ELECTROSTATIC ENERGY AND FORCES

In Section 3-5 we indicated that electric potential at a point in an electric field is the work requifed to bring a unit positive charge from infinity (at reference zeropotential) to that point. In order to bring a charge Q_{2} (slowly, so that kinetic energy and radiation effects may be neglected) from infinity against the field of a charge Q_{1} in free space to a distance R_{12}, the amount of work required is

$$
\begin{equation*}
W_{2}=Q_{2} V_{2}=Q_{2} \frac{Q_{1}}{4 \pi \epsilon_{0} R_{12}} \tag{3-130}
\end{equation*}
$$

Because electrostatic fields are conservative, \dot{W}_{2} is indepencent of the path followed by Q_{2}. Another form of Eq. (3-130) is

$$
\begin{equation*}
W_{2}=Q_{1} \frac{Q_{2}}{4 \pi \epsilon_{0} R_{12}}=Q_{1} V_{1} \tag{3-131}
\end{equation*}
$$

This work is stored in the assembly of the two charges as potential energy. Combining Eqs. (3-130) and (3-131), we can write

$$
\begin{equation*}
W_{2}=\frac{1}{2}\left(Q_{1} V_{1}+Q_{2} V_{2}\right) . \tag{3-132}
\end{equation*}
$$

Now suppose another charge Q_{3} is brought from.infinity to a point that is R_{13} from Q_{1} and R_{23} from Q_{2}; an additional work is required that equals

$$
\begin{equation*}
\Delta W=Q_{3} V_{3}=Q_{3}\left(\frac{Q_{1}}{4 \pi \epsilon_{0} R_{13}}+\frac{Q_{2}}{4 \pi \epsilon_{0} R_{23}}\right) \tag{3-133}
\end{equation*}
$$

The sum of ΔW in Eq. (3-133) and W_{2} in Eq. (3-130) is the potential energy, W_{3}, stored in the assenbly of the three charges Q_{1}, Q_{2}, and Q_{3}. That is,

$$
\begin{equation*}
W_{3}=W_{2}+\Delta W=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{Q_{1} Q_{2}}{R_{12}}+\frac{Q_{1} Q_{3}}{R_{13}}+\frac{Q_{2} Q_{3}}{R_{23}}\right) . \tag{3-134}
\end{equation*}
$$

We can rewrite W_{3} in the following form:

$$
\begin{align*}
W_{3}= & \frac{1}{2}\left[Q_{1}\left(\frac{Q_{2}}{4 \pi \epsilon_{0} R_{12}}+\frac{Q_{3}}{4 \pi \epsilon_{0} R_{13}}\right)+Q_{2}\left(\frac{Q_{1}}{4 \pi \epsilon_{0} R_{12}}+\frac{Q_{3}}{4 \pi \epsilon_{0} R_{23}}\right)\right. \\
& \left.+Q_{3}\left(\frac{Q_{1}}{4 \pi \epsilon_{0} R_{13}}+\frac{Q_{2}}{4 \pi \epsilon_{0} R_{23}}\right)\right] \\
= & \frac{1}{2}\left(Q_{1} V_{1}+Q_{2} V_{2}+Q_{3} V_{3}\right) . \tag{3-135}
\end{align*}
$$

In Eq. (3-135), V_{1}, the potential at the position of Q_{1}, is caused by charges Q_{2} and Q_{3}; it is different from the V_{1} in Eq. (3-131) in the two-charge case. Similarly, V_{2} and V_{3} are the potentials, respectively, at Q_{2} and Q_{3} in the three-charge assembly.

Extending this procedure of bringing in additional charges, we arrive at the following general expression for the potential energy of a group of N discrete point
charges at rest. (The purpose of the subscript e on W_{e} is to denote that the energy is of an electric nature.) We have

$$
\begin{equation*}
W_{e}=\frac{1}{2} \sum_{k=1}^{N} Q_{k} V_{k} \quad(\mathrm{~J}) \tag{3-136}
\end{equation*}
$$

where V_{k}, the electric potential at Q_{k}, is caused by all the other charges and has the following expression:

$$
\begin{equation*}
V_{k}=\frac{1}{4 \pi \epsilon_{0}} \sum_{\substack{j=1 \\(j \neq k)}}^{N} \frac{Q_{i}}{R_{j k}} . \tag{3-137}
\end{equation*}
$$

Two remarks are in order here. First, W_{e} can be negative. For instance, W_{2} in Eq. (3-130) will be negative if Q_{1} and Q_{2} are of opposite signs. In that case, work is done by the field (not against the field) established by Q_{1} in moving Q_{2} from infinity. Second, W_{e} in Eq. (3-136) represents only the interaction energy (mutual energy) and does not include the work required to assemble the individual point charges themselves (self-energy).

Example 3-19 Find the energy required to assemble a uniform sphere of charge of radius b and volume charge density ρ.

Solution: Because of symmetry, it is simplest to assume that the sphere of charge is assembled by bringing up a succession of spherical layers of thickness $d R$. Let the uniform volume charge density be ρ. At a radius R shown in Fig. 3-32, the potential is

$$
V_{R}=\frac{Q_{R}}{4 \pi \epsilon_{0} R},
$$

where Q_{R} is the total charge contained in a sphere of radius R :

$$
Q_{R}=p_{3}^{4} \pi R^{3} .
$$

Fig. 3-32 Assembling a uniform sphere of charge (Example 3-19).

Equation (3-139) shows that the energy is directly proportional to the square of the total charge and inversely proportional to the tadius. The sphere of charge in Fig. 3-32 could be a cloud of electrons, for instance.

For a continuous charge distribution of density ρ the formula for W_{e} in Eq. (3-136) for discrete charges must be modified. Without going through a separate proof, we replace Q_{k} by $\rho d v$ and the summation by an integration and obtain

$$
\begin{equation*}
W_{e}=\frac{1}{2} \int_{V}, \rho V d v \tag{3-140}
\end{equation*}
$$

In Eq. (3-140), V is the potential at the point where the volume charge density is p, and V^{\prime} is the volume of the region where ρ exists.

Example 3-20 Solve the probiem in Example 3-19 by using Eq. (3-140).
Solution: In Example 3-19 we solved the problem of assembling a sphere of charge by bringing up a succession of spherical layers of a differential thickness. Now we assume that the sphere of charge is already in place. Since ρ is a constant, it can be taken out of the integral sign. For a spherically symmetrical problem,

$$
\begin{equation*}
W_{e}=\frac{\rho}{2} \int_{v} V d v=\frac{\rho}{2} \int_{0}^{b} V 4 \pi R^{2} d R, \tag{3-141}
\end{equation*}
$$

where V is the potential at a point R from the center. To find V at R, we must find the negative of the line integral of \mathbf{E} in two regions: (1) $\mathbf{E}_{1}=\mathfrak{a}_{R} E_{R 1}$ from $R=\infty$ to
$R=b$, and (2) $\mathbf{E}_{2}=\mathbf{a}_{R} E_{R 2}$ from $R=b$ to $R=0$. We have

$$
\mathbf{E}_{R 1}=\mathbf{a}_{R} \frac{Q}{4 \pi \epsilon_{0} R^{2}}=\mathbf{a}_{R} \frac{\rho b^{3}}{3 \epsilon_{0} R^{2}} \quad R \geq b
$$

and

$$
\mathbf{E}_{R 2}=\mathbf{a}_{R} \frac{Q_{R}}{4 \pi \epsilon_{0} R^{2}}=\mathbf{a}_{R} \frac{\rho R}{3 \epsilon_{0}}, \quad 0<R \leq b .
$$

Consequently, we obtain

$$
\begin{align*}
V & =-\int_{\infty}^{R} \mathbf{E} \cdot d \mathbf{R}=-\left[\int_{\infty}^{b} E_{R 1} d R+\int_{b}^{R} E_{R 2} d R\right] \\
& =-\left[\int_{\infty}^{b} \frac{\rho h^{3}}{3 \epsilon_{0} R^{2}} d R+\int_{b}^{R} \frac{\rho R}{3 \epsilon_{0}} d R\right] \\
& =\frac{\rho}{3 \epsilon_{0}}\left(b^{2}+\frac{b^{2}}{2}-\frac{R^{2}}{2}\right)=\frac{\rho}{3 \epsilon_{0}}\left(\frac{3}{2} b^{2}-\frac{R^{2}}{2}\right) . \tag{3-142}
\end{align*}
$$

Substituting Eq. (3-142) in Eq. (3-141), we get

$$
W_{e}=\frac{\rho}{2} \int_{0}^{b} \frac{\rho}{3 \epsilon_{0}}\left(\frac{3}{2} b^{2}-\frac{R^{2}}{2}\right) 4 \pi R^{2} d R=\frac{4 \pi \rho^{2} b^{3}}{15 \epsilon_{0}},
$$

which is the same as the result in Eq. (3-138).
Note that W_{c} in Eq. (3-140) includes the work (self-energy) required to assemble the distribution of macroscopic charges, because it is the energy of interaction of every infinitesimal charge element with all other infinitesimal charge elements. As a matter of fact, we have used Eq. (3-140) in Example 3-20 to find the self-energy of a uniform spherical charge. As the radius b approaches zero, the self-energy of a (mathematical) point charge of a given Q is infinite (see Eq. 3-139). The self-energies of point charges Q_{k} are not included in Eq. (3-136). Of course, there are, strictly, no point charges inasmuch as the smallest charge unit, the electron, is itself a distribution of charge.

3-11.1 Electrostatic Energy in Terms of Field Quantities

In Eq. (3-140), the expression of electrostatic energy of a charge distribution contains the source charge density ρ and the potential function V. We frequently find it more convenient to have an expression of W_{e} in terms of field quantities \mathbf{E} and/or \mathbf{D}, without knowing ρ explicitly. To this end, we substitute $\nabla \cdot \mathbf{D}$ for ρ in $\mathrm{Eq} .(3-140)$:

$$
\begin{equation*}
W_{e}=\frac{1}{2} \int_{V^{\prime}}(\nabla \cdot \mathbf{D}) V d v . \tag{3-143}
\end{equation*}
$$

Now, using the vector identity (from Problem P.2-18)

$$
\begin{equation*}
\nabla \cdot(V \mathrm{D})=V \nabla \cdot \mathrm{D}+\mathrm{D} \cdot \nabla V \tag{3-144}
\end{equation*}
$$

we can write Eq. (3-143) as

$$
\begin{align*}
W_{e} & =\frac{1}{2} \int_{V^{\prime}} \nabla \cdot(V \mathbf{D}) d v-\frac{1}{2} \int_{V} \mathbf{D} \cdot \nabla V d v \\
& =\frac{1}{2} \oint_{S}, V \mathbf{D} \cdot \mathbf{a}_{n} d s+\frac{1}{2} \int_{V}, \mathbf{D} \cdot \mathbf{E} d v \tag{3-145}
\end{align*}
$$

where the divergence theorem has been used to change the first volume integral into a closed surface integral and \mathbf{E} has been substituted for $-\nabla V$ in the second volume integral, Since V^{\prime} can be any volume that includes all the charges, we may choose it to be a very large sphere with radius R. As we let $R \rightarrow \infty$, electric potential V and the magnitude of electric displacement \dot{B} fall off at least as fast as, respectively, $1 / R$ and $1 / R^{2} .^{\dagger}$ The trea of the bounding surface S^{\prime} increases as R^{2}. Hence the surface integral in Eq. (3-145) decreases at least as fast as $1 / R$ and will vanish as $R \rightarrow \infty$. We are then left with only the second integral on the right side of Eq. (3-145).

$$
\begin{equation*}
W_{e}=\frac{1}{2} \int_{V}, \mathrm{D} \cdot \mathrm{E} d v \tag{3-146a}
\end{equation*}
$$

Using the relation $\mathbf{D}=\epsilon \mathrm{E}$ for a linear mediun, Eq. (3-146a) can be written in two other forms:

$$
\begin{equation*}
W_{e}=\frac{1}{2} \int_{V} \epsilon E^{2} d v \tag{3-146b}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{e}=\frac{1}{2} \int_{V^{\prime}} \frac{D^{2}}{\epsilon} d v \tag{3-146c}
\end{equation*}
$$

We can always define an electrostatic energy density w_{e} mathematically, such that its volume integral equals the total electrostatic energy:

$$
\begin{equation*}
W_{e}=\int_{V}, w_{e} d v . \tag{3-147}
\end{equation*}
$$

We can, therefore, write
or
or

$$
\begin{equation*}
w_{e}=\frac{1}{2} \mathbf{D} \cdot \mathbf{E} \quad\left(\mathrm{~J} / \mathrm{m}^{3}\right) \tag{3-148a}
\end{equation*}
$$

on contains ind it more $\mathrm{an} \curvearrowright \mathrm{D}$, q. (3-140):
(3.43)
(3-144)

[^15]
122 STATIC ELECTRIC FIELD $3 / 3$

Fig. 3-33 A charged parallelplate capacitor (Example 3-21).

However, this definition of energy density is artificial because a physical justification has not been found to localize energy with an electric field; all we know is that the volume integrals in Eqs. (3-146a, b, c) give the correct total electrostatic energy.

Example 3-21 In Fig. 3-33, a parallei-plate capacitor of area S and separation d is charged to a voltage V. The permittivity of the dielectric is ϵ. Find the stored electrostatic energy.

Solution: With the DC source (batteries) connected as shown, the upper and lower plates are charged positive and negative, respectively. If the fringing of the field at the edges is neglected, the electric field in the dielectric is uniform (over the plate) and constant (across the dielectric), and has a magnitude

$$
E=\frac{V}{d} .
$$

Using Eq. (3-146b), we have

$$
W_{e}=\frac{1}{2} \int_{V^{\prime}} \epsilon\left(\frac{V}{d}\right)^{2} d v=\frac{1}{2} \epsilon\left(\frac{V}{d}\right)^{2}(S d)=\frac{1}{2}\left(\epsilon \frac{S}{d}\right) V^{2} .
$$

The quantity in the parentheses of the last expression, $\epsilon S / d$, is the capacitance of the parallel-plate capacitor (see Eq. 3-123). So,

$$
\begin{equation*}
W_{e}=\frac{1}{2} C V^{2} \quad \text { (J). } \tag{3-149a}
\end{equation*}
$$

Since $Q=C V$, Eq. (3-149a) can be put in two other forms:

$$
\begin{equation*}
W_{e}=\frac{1}{2} Q V \quad \text { (J) } \tag{3-149b}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{e}=\frac{Q^{2}}{2 C} \tag{3-149c}
\end{equation*}
$$

It so happens that Eqs. ($3-149 \mathrm{a}, \mathrm{b}, \mathrm{c}$) hold true for any two-conductor capacitor (see Problem P.3-35).

3-11.2 Electrostatic Forces

Coulomb's law governs the force between two point charges. In a more complex 'system of charged B'odies, using Coulomb's law to determine the force on one of the bodies that is caused by the charges on other bodies would be very tedious. This would be so even in the simple case of finding the force between the plates of a charged parallel-plate capacitor. We will now discuss a method for calculating the force on an object if a charged system from the electrostatic energy of the system. This method is based on the principle of virtual displacement. We will consider two cases: (1) that of an. isolated system of bodies with fixed charges, and (2) that of a system of conducting bodies with fixed potentials.

System of Bodies with Fixed Charges We consider an isolated system of charged conducting, as well as dielectric, bodies separated from one another with no connection to the outside world. The charges on the bodies are constant. Imagine that the electric forces have displaced one of the bodies by a differential distance $d \ell$ (a virtual displacement). The mechanical work done by the system would be

$$
\begin{equation*}
d W=\mathbf{F}_{Q} \cdot d \ell \tag{3-150}
\end{equation*}
$$

where F_{Q} is the total electric force acting on the body under the condition of constant charges. Since we have an isolated system with no external supply of energy, this mechanical work must be done at the expense of the stored electrostatic energy: that is,

$$
\begin{equation*}
d W=-d W_{u}=\mathrm{F}_{Q} \cdot d \ell \tag{3-151}
\end{equation*}
$$

Noting from Eq. (2-81)in Section 2:-5 that the differential change of a scalar resulting from a position change $d \ell$ is the dot product of the gradient of the scalar and $l \ell$, we write

$$
\begin{equation*}
d W_{e}=\left(\nabla W_{e}\right) \cdot d \ell \tag{3-152}
\end{equation*}
$$

Since $d \ell$ is arbitrary, comparison of Eqs. (3-151) and (3-152) leads to

$$
\begin{equation*}
\mathbf{F}_{Q}=-\nabla W_{e}^{\prime} \quad(\mathbf{N}) \tag{3-153}
\end{equation*}
$$

Equation (3-153) is a very simple formula for the calculation of \mathbf{F}_{Q} from the electrostatic energy of the system. In Cartesian coordinates, the component forces are

$$
\begin{align*}
& \left(F_{Q}\right)_{x}=-\frac{\partial W_{e}}{\partial x} \tag{3-154a}\\
& \left(F_{Q}\right)_{y}=-\frac{\partial W_{e}}{\partial y} \tag{3-154b}\\
& \left(F_{Q}\right)_{z}=-\frac{\partial W_{e}}{\partial z} \tag{3-154c}
\end{align*}
$$

If the body under consideration is constrained to rotate about an axis, say the z-axis, the mechanical work done by the system for a virtual angular displacement $d \phi$ would be

$$
\begin{equation*}
d W=\left(T_{Q}\right)_{z} d \phi \tag{3-155}
\end{equation*}
$$

where $\left(T_{Q}\right)_{z}$ is the z-component of the torque acting on the body under the condition of constant charges. The foregoing procedure will lead to

$$
\begin{equation*}
\left(T_{Q}\right)_{z}=-\frac{\partial W_{e}}{\partial \phi} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{3-156}
\end{equation*}
$$

System of Conducting Bodies with Fixed Potentials Now consider a system where conducting bodies are held at fited potentiais through connections to such external sources as batteries. Uncharged dielectric bodies may also be present. A displacement $d \ell$ by a conducting body would result in a change in total electrostatic energy and require the sources to transfer charges to the conductors in order to keep them at their fixed potentials. If a charge $d Q_{k}$ (which may be positive-or negative) is added to the k th conductor that is maintained at potential V_{k}, the work done or energy supplied by the sources is $V_{k} d Q_{k}$. The total energy supplied by the sources to the system is

$$
\begin{equation*}
d W_{s}=\sum_{k} V_{k} d Q_{k} \tag{3-157}
\end{equation*}
$$

The mechanical work done by the system as a consequence of the virtual displacement is

$$
\begin{equation*}
d W=\mathbf{F}_{V} \cdot d \ell \tag{3-158}
\end{equation*}
$$

where \mathbf{F}_{V} is the electric force on the conducting body under the condition of constant potentials. The charge transfers also change the electrostatic energy of the system by an amount $d W_{e}$, which, in view of Eq. (3-136), is

$$
\begin{equation*}
d W_{e}=\frac{1}{2} \sum_{k} V_{k} d Q_{k}=\frac{1}{2} d W_{s} . \tag{3-159}
\end{equation*}
$$

Conservation of energy demands that

$$
\begin{equation*}
d W+d W_{e}=d W_{s} \tag{3-160}
\end{equation*}
$$

Substitution of Eqs. $(3-157),(3-158)$, and $(3-159)$ in Eq. $(3-160)$ gives

$$
\begin{aligned}
\mathbf{F}_{V} \cdot d \ell & =d W_{e} \\
& =\left(\nabla W_{e}\right) \cdot d \ell
\end{aligned}
$$

or

$$
\begin{equation*}
\mathbf{F}_{V}=\nabla W_{e} \quad(\mathrm{~N}) \tag{3-161}
\end{equation*}
$$

xis, say the
splacement splacement a condition
icm where h external placement nergy and p them at f) i. ided or margy ce the (3-157)
displace-
if constant he system
(-160)

Comparison of Eqs. $(3-161)$ and $(3-153)$ reveals that the only difference between the formulas for the electric forces in the two cases is in the sign. It is clear that, if the conducting body is constrained to rotate about the z-axis, the z-component of the electric torque will be

$$
\begin{equation*}
\left(T_{V}\right)_{z}=\frac{\partial W_{e}}{\partial \phi} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{3-162}
\end{equation*}
$$

which differs front Eq. (3-156) also only by a sign change.
Example 3-22 Determine the force on the conducting plates of a charged parallelplate capacitor. Theplates have an area S and are separated in air by a disture x.

Solution: We solve the problem in two ways: (a) by assuming fixed charges; and then (b) by assuming fixed potentials. The fringing of field around the edges of the plates will be neglected.
a) Fixed charges: With fixed charges $\pm Q$ on the plates, an electric field intensity $E_{x}=Q /\left(\epsilon_{0} S\right)=V / x$ exists in the air berween the plates regardless of their separation (unchanged by a yirtual displacement). From Eq. (3-149b),

$$
W_{e}=\frac{1}{2} Q V=\frac{1}{2} Q E_{x} x,
$$

where Q and E_{x} are constants. Using Eq. (3-154a), we obtain

$$
\begin{equation*}
\left(F_{Q}\right)_{x}=-\frac{\hat{\partial}}{\hat{c} x}\left(\frac{1}{2} Q E_{x} x\right)=-\frac{1}{2} Q E_{x}=-\frac{Q^{2}}{2 \epsilon_{0} S}, \tag{3-163}
\end{equation*}
$$

where the negative signs indicate that the force is opposite to the direction of increasing x. It is an attractive force.
b) Fixed potentials: With fixed potentials it is more convenient to use the expression in Eq. (3-149a) for W_{c}. Capacitance C for the parallel-plate air capacitor is $\epsilon_{0} S / x$. We have, from Eq. (3-161),

$$
\begin{equation*}
\left(F_{V}\right)_{x}=\frac{\partial W_{e}}{\lambda x}=\frac{\partial}{\partial x}\left(\frac{1}{2} C V^{2}\right)=\frac{V^{2}}{2} \frac{\partial}{\partial x}\left(\frac{\epsilon_{0} S}{x}\right)=-\frac{\epsilon_{0} S V^{2}}{2 x^{2}} \tag{3-164}
\end{equation*}
$$

How different are $\left(F_{Q}\right)_{x}$ in Eq. (3-163) and $\left(F_{V}\right)_{x}$ in Eq. (3-164)? Recalling the relation

$$
Q=C V=\frac{\epsilon_{0} S V}{x},
$$

we find

$$
\begin{equation*}
\left(F_{Q}\right)_{x}=\left(F_{V}\right)_{x} . \tag{3-165}
\end{equation*}
$$

The force is the same in both cases, in spite of the apparent sign difference in the formulas as expressed by Eqs. (3-153) and (3-161). A little reflection on the physical problem will convince us that this must be true. Since the charged capacitor has fixed dimensions, a given Q will result in a fixed V, and vice versa. Therefore there is
a unique force between the plates regardless of whether Q or V is given, and the force certainly does not depend on virtual displacements. A change in the conceptual constraint (fixed Q or fixed V) cannot change the unique force between the plates.

The preceding discussion holds true for a general charged two-conductor capacitor with capacitance C. The electrostatic force F, in the direction of a virtual displacement $d \ell$ for fixed charges is

$$
\begin{equation*}
\left(F_{Q}\right)_{c}=-\frac{\partial W_{e}}{\partial \ell}=-\frac{\partial}{\partial \ell}\left(\frac{Q^{2}}{2 C}\right)=\frac{Q^{2}}{2 C^{2}} \frac{\partial C}{\partial \ell} . \tag{3-166}
\end{equation*}
$$

For fixed potentials,

$$
\begin{equation*}
\left(F_{V}\right)_{c}=\frac{\partial W_{c}}{\hat{\partial t}}=\frac{\partial}{\partial \ell}\left(\frac{1}{2} C V^{2}\right)=\frac{V^{2}}{2} \frac{\partial C}{\partial t}=\frac{Q^{2}}{2 C^{2}} \frac{\partial C}{\partial t} . \tag{3-167}
\end{equation*}
$$

It is clear that the forces calculated from the two procedures, which assumed different constraints imposed on the same charged capacitor, are equal.

REVIEW QUESTIONS

R.3-1 Write the differential form of the fundamental postulates of electrostatics in free space.
R.3-2 Under what conditions will the electric field intensity be both solenoidal and irrotationa!?
R.3-3 Write the integral form of the fundamental postulates of electrostatics in free space, and state their meaning in words.
R.3-4 When the formula for the electric field intensity of a point charge, Eq. (3-12), was derived,
a) why was it necessary to stipulate that q is in a boundless free space?
b) why did we not construct a cubic or a cylindrical surface around y ?
R.3-5 In what ways does the electric field intensity vary with distance for
a) a point charge?
b) an electric dipole?
R.3-6 State Coulomb's law.
R.3-7 State Gauss's law. Under what conditions is Gauss's law especially useful in determining the electric field intensity of a charge distribution?
R.3-8 Describe the ways in which the electric field intensity of an infinitely long, straight line charge of uniform density varies with distance?
R.3-9 Is Gauss's law useful in finding the E field of a finite linc charge'? Explain.
R.3-10 See Example 3-5, Fig. 3-8. Couid a cylindrical pillbox with circular top and bottom faces be chosen as a Gaussian surface? Explain.
R.3-11 Make a two-dimensional sketch of the electric field lines and the equipotential lines of a point charge.

R.3-33 What is the expression for the electrostatic energy of an assembly of four discrete point charges?
R.3-34 What is the expression for the electrostatic energy of a continuous distribution of charge in a volume? on a surface? along a line?
R.3-35 Provide a mathematical expression for electrostatic energy in terms of E and/or D.
R.3-36 Discuss the meaning and use of the principle of virtual displacement.
R.3-37 What is the relation between the force and the stored energy in a system of stationary charged objects under the condition of constant charges? under the condition of fixed potentials?

PROBLEMS

P.3-1 Refer to Fig. 3-3.

a) Find the relation between the angle of arrival, α, of the electron beam at the screen and the deflecting electric field intensity E_{d}.
b) Find the relation between w and L such that $d_{1}=d_{n} / 20$.
P.3-2 The cathode-ray oscillograph (CRO) shown in Fig. 3 ? is used to measure the voltage applied to the parallel deflection plates.
a) Assuming no breakdown in insulation, what is the maximum voltage that can be measured if the distance of separation between the plates is h ?
b) What is the restriction on L if the diameter of the screen is D ?
c) What can be done with a fixed geometry to double the CRO's maximum measurable voltage?
P.3-3 Calculate the electric force between the electron and nucleus of a hydrogen atom, assuming they are separated by a distance $5.28 \times 10^{-11}(\mathrm{~m})$.
P.3-4 Two point charges, Q_{1} and Q_{2}, are located at $(1,2,0)$ and $(2,0,0)$, respectively. Find the relation between Q_{1} and Q_{2}, such that the total force on a test charge at the point $P(-1,1,0)$ will have
a) no x-component,
b) no y-component.
P.3-5 Two very small conducting spheres, each of a mass $1.0 \times 10^{-4}(\mathrm{~kg})$ are suspended at a common point by very thin nonconducting threads of a length $0.2(\mathrm{~m})$. A charge Q is placed on each sphere. The electric force of repulsion separates the spheres, and an equilibrium is reached when the suspending thread makes an angle of 10°. Assuming a gravitational force of $9.80(\mathrm{~N} / \mathrm{kg})$ and a negligible mass for the threads, find Q.
P.3-6 A line charge of uniform density ρ_{ℓ} in free space forms a semicircle of radius b. Determine the magnitude and direction of the electric field intensity at the center of the semicircle.
P.3-7 Three uniform line charges- $\rho_{\ell 1}, \rho_{\ell 2}$, and $\rho_{\ell 3}$, each of length L-form an equilateral triangle. Assuming $\rho_{\ell 1}=2 \rho_{\ell 2}=2 \rho_{\ell 3}$, determine the electric field intensity at the center of the triangle.

P.3-18 The polarization in a dielectric cube of side L centered at the origin is given by $\mathbf{P}=$ $P_{0}\left(\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z\right)$.
a) Determine the surface and volume bound-charge densities.
b) Show that the total bound charge is zero.
P.3-19 Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization \mathbf{P} exists.
P.3-20 Solve the following problems:
a) Find the breakdown voltage of a parallel-plate capacitor, assuming that conducting plates are $50(\mathrm{~mm})$ apart and the medium between them is air.
b) Find the breakdown voltage if the entire space between the conducting plates is filled with plexiglass, which has a dielectric constant 3 and a dielectric strength $20(\mathrm{kV} / \mathrm{mm})$.
c) If a $10-(\mathrm{mm})$ thick plexiglass is inserted between the plate.s, what is the maximum voltage that can be applied to the plates without a breakdown?
P.3-21 Assume that the $z=0$ plane separates two lossless dielectric regions with $\dot{\epsilon}_{r 1}=2$ and $\epsilon_{r 2}=3$. If we know that \mathbf{E}_{1} in region 1 is $\mathbf{a}_{x} 2 y-\mathbf{a}_{3} 3 x+\mathbf{a}_{z}(5+z)$, what do we also know about E_{2} and D_{2} in region 2? Can we determine E_{2} and D_{2} at any point in region 2? Explain.
P.3-22 Determine the boundary conditions for the tangential and the normal components of \mathbf{P} at an interface between two perfect diclectric media with dielectric constants $\epsilon_{r 1}$ and $\epsilon_{r 2}$.
P.3-23 What are the boundary conditions that must be satisfied by the electric potential at an interface between two perfect dielectrics with dielectric constants $\epsilon_{r 1}$ and $\epsilon_{r 2}$?
P.3-24 Dielectric lenses can be used to collimate electromagnetic fields. In Fig. 3-34, the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E_{1} at point $P\left(r_{o}, 45^{\circ}, z\right)$ in region 1 is $\mathbf{a}_{r} 5-\mathbf{a}_{\phi} 3$, what must be the dielectric constant of the lens in order that E_{3} in region 3 is parallel to the x-axis?

Fig. 3-34 Dielectric lens. (Problem P.3-24).
P.3-25 The space between a parallel-plate capacitor of area S is filled with a dielectric whose permittivity varies linearly from ϵ_{1} at one plate $(y=0)$ to ϵ_{2} at the other piate $(y=d)$. Neglecting fringing effect, find the capacitance.
P.3-26 Consider the earth as a conducting sphere of radius 6.37 (Mm).
a) Detcrmine its capacitance.
b) Determine the maximum charge that can exist on it without causing a breakdown of the air surrounding it.
P.3-27 Determine the capacitance of an isolated conducting sphere of radius b that is coated with a dielectric layer of uniform thickness d. The dielectric has an electric susceptibility χ_{e}.
P.3-28 A capacitor consists of two concentric spHerical shells of radii R_{i} and R_{0}. The space between them is filled with a dielectric of relative permittivity ϵ_{r} from R_{i} to $b\left(R_{i}<b<R_{0}\right)$ and another dielectric of relative permittivity $2 \epsilon_{\mathrm{r}}$ from b to R_{o}.
a) Determine E and D everywhere in terms of an applied voltage V^{\prime}.
b) Determine the capacitance.
P.3-29 Assume that the outer conductor of the cylindrical capacitor in Example 3-16 is grounded, and the inner conductor is maintained at a potential V_{0}.
a) Find the electtic field intensity, $\mathbf{E}(a)$, at the surface of the inner conductor.
b) With the ifmer radius, b, of the outer conductor fixed, find a so that $E(a)$ is minimized.
c) Find this minimum $E(a)$.
d) Determine the capacitance under the conditions of part (b).
P.3-30 The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_{i} and r_{o} respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constant\$ of the dielectrics are $\epsilon_{r 1}$ for $r_{i}<r<b$ and $\epsilon_{r_{2}}$ for $b<r<r_{0}$. Determine its capacitance per unit length.
P.3-31 A cylindrical capacitor of length L consists of coaxial conducting surfaces of radii r_{i} and $r_{1 \prime}$. Two dielectric media of different dielectric constants $\epsilon_{r 1}$ and $\epsilon_{r 2}$ fill the space between the conducting surfaces as shown in Fig. 3-35. Determine its capacitance.

Fig. 3-35 A cylindrical capacitor with two dielectric media (Problem P.3-31).

P3-32 A capacitor consists of two coaxial metallic cylindrical surfaces of a length $30(\mathrm{~mm})$ and radii $5(\mathrm{~mm})$ and $7(\mathrm{~mm})$. The dielectric material between the surfaces has a relative permittivity $\epsilon_{r}=2+(4 / r)$, where r is measured in mm. Determine the capacitance of the capacitor.
stric whose Neglecting
P.3-33 Calculate the amount of electrostatic energy of a uniform sphere of charge with radius b and volume charge density ρ stored in the following regions:
a) inside the sphere,
b) outside the sphere.

Check your results with those in Example 3-19.
P.3-34 Find the electrostatic energy stored in the region of space $R>b$ around an electric dipole of moment \mathbf{p}.
P.3-35 Prove that Eqs. (3-149) for stored electrostatic energy hold true for any two-conductor capacitor.
P.3-36 A parallel-plate capacitor of width w, length L, and separation d is partially filled with a dielectric medium of dielectric constant ϵ_{r}, shown in Fig: 3-36. A battery of V_{0} volts is connected between the plates.
a) Find \mathbf{D}, E, and ρ_{s} in each region.
b) Find distance x such that the electrostatic energy stored in each region is the same.

Fig. 3-36 A parallel-plate capacitor (Problem P.3-36).
P.3-37 Using the principle of virtual displacement, derive an expression for the force between two point charges $+Q$ and $-Q$ separated by a distance x in free space.
P.3-38 A parallel-plate capacitor of width w. length L, and separation d has a solid dielectric slab of permittivity ϵ in the space between the plates. The capacitor is charged to a voltage V_{0} by a battery, as indicated in Fig. 3-37. Assuming that the dielectric slab is withdrawn to the position shown, determine the force acting on the slab
a) with the switch closed,
b) after the switch is first opened.

Fig. 3-37 A partially filled parallel-plate capacitor (Problem P.3-38).

wh radius
n electric
-conductor
filled with a olts is cons the same. ce between
d diclectric atage V_{0} by he position

4 / Solution of Electrostatic Problems

4-1 INTRODUCTION

Electrostatic problems are those which deal with the effects of electric charges at rest. These problems can present themselves in several different ways according to what is initially known. The solution usually calls for the determination of electric potential, electric field intensity, and/or electric charge distribution. If the charge distribution is given; both the electric potential and the electric field intensity can be found by the formulas developed in Chapter 3. In many practical problems, however, the exact charge distribution is not known everywhere, and the formulas in Chapter 3 cannot be applied directly for finding the potential and field intensity. For instance, if the charges at certain diserete points in space and the potentials of some conducting bodies are given, it is rather difficult to find the distribution of surface charges on the conducting bodies and/or the electric field intensity in space. When the conducting bodies have boundaries of a simple geometry, the method of images that be used to great advantage. This method will be discussed in Section 4-4.

In another type of problem, the potentials of all conducting bodies may be known, and we wish to find the potential and field intensity in the surrounding space as well as the distribution of surface charges on the conducting boundaries. Differential equations must be solved subject to the appropriate boundary conditions. The techniques for solving partial differential equations in the various coordinate systems will be discussed in Sections 4-5 through 4-7.

4-2 POISSON'S AND LAPLÁCE'S EQUÄTIONS

In Section 3-8, we pointed out that Eqs. (3-93) and (3-5) are the two fundamental governing differential equations for clectrostatics in any medium. These equations are repeated below for convenience.

$$
\begin{array}{ll}
\text { Eq. }(3-93): & \nabla \cdot \mathbf{D}=\rho \\
\text { Eq. }(3-5): & \cdot \nabla \times \mathbf{E}=0
\end{array}
$$

The irrotational nature of E indicated by Eq. (4-2) enables us to define a scalar electric potential V, as in Eq. (3-38).

$$
\text { Eq. }(3-38): \quad \quad \mathbf{E}=-\nabla V
$$

In a linear and isotropic medium, $\mathbf{D}=\epsilon \mathbf{E}$, and Eq. (4-1) becomes

$$
\begin{equation*}
\nabla \cdot \epsilon \mathrm{E}=\rho . \tag{4-4}
\end{equation*}
$$

Substitution of Eq. (4-3) in Eq. (4-4) yields

$$
\begin{equation*}
\nabla \cdot(\epsilon \nabla V)=-\dot{\rho}, \tag{4-5}
\end{equation*}
$$

where ϵ can be a function of position. For a simple mediuns that is, for a medium that is also homogeneous, ϵ is a constant and can then be taken out of the divergence operation. We have

$$
\begin{equation*}
\nabla^{2} V=-\frac{\rho}{\epsilon} . \tag{4-6}
\end{equation*}
$$

In Eq. (4-6), we have introduced a new operator, V^{2}, the Laplacian operator, which stands for "the divergence of the gradient of," or $\nabla \cdot \nabla$. Equation (4-6) is known as Poisson's equation; it states that the Laplacian (the divergence of the gradient) of V equals $-\rho / \epsilon$ for a simple medium, where ϵ is the permittivity of the medium (which is a constant) and ρ is the volume charge density (which may be a function of space coordinates).

Since both divergence and gradient operations involve first-order spatial derivatives, Poisson's equation is a second-order partial differential equation that holds at every point in space where the second-order derivatives exist. In Cartesian coordinates,

$$
\nabla^{2} V=\nabla \cdot \nabla V=\left(\mathbf{a}_{x} \frac{\partial}{\partial x}+\mathbf{a}_{y} \frac{\partial}{\partial y}+\mathbf{a}_{z} \frac{\partial}{\partial z}\right) \cdot\left(\mathbf{a}_{x} \frac{\partial V}{\partial x}+\mathbf{a}_{y} \frac{\partial V}{\partial y}+\mathbf{a}_{z} \frac{\partial V}{\partial z}\right) ;
$$

and Eq. (4-6) becomes

$$
\begin{equation*}
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=-\frac{\rho}{\epsilon} \quad\left(\mathrm{V} / \mathrm{m}^{2}\right) \tag{4-7}
\end{equation*}
$$

Similarly, by using Eqs. (2-86) and (2-102), we can easily verify the following expressions for $\nabla^{2} V$ in cylindrical and spherical coordinates.

Cylindrical coordinates:

$$
\begin{equation*}
\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\hat{\sigma}^{2} V}{\partial z^{2}} \tag{4-8}
\end{equation*}
$$

ir electric
$(4-3)$

1 medium iivergence
\qquad

1or. v....ch known as adient; of um (which n of space :ial derivaat holds at an coordi-
$\left.\begin{array}{l}\prime \\ z\end{array}\right)$

Howis x-

Spherical coordinates:

$$
\begin{equation*}
\nabla^{2} V=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{R^{2} \sin ^{2} \theta} \frac{\partial^{2} V}{\partial \phi^{2}} \tag{4-9}
\end{equation*}
$$

The solution of Poisson's equation in three dimensions subject to prescribed boundary conditions is, in general, not an easy task.

At points in a simple medium where there is no free charge, $\rho=0$ and Eq. (4-6) reduces to

$$
\begin{equation*}
\nabla^{2} V=0 \tag{4-10}
\end{equation*}
$$

which is known as Laplace's equation. Laplace's equation occupies a very important position in electromagnetics. It is the governing equation for problems involving a set of conductors, stich as capacitors, maintained at different potentials. Once V is found from Eq. (4-10), E can be determined from $-\nabla V$, and the charge distribution on the conductor surfaces can be determined from $\rho_{s}=\epsilon E_{n}$ (Eq. 3-67).

Example 4-1 The two plates of a parallel-plate capacitor are separated by a distance d and maintained at potentials 0 and V_{0}, as shown in Fig. 4-1. Assuming negligible fringing effect at the edges, determine (a) the potential at any point between the plates, and (b) the surface charge densities at the plates.

Solution:
a) Laplace's equation is the governing equation for the potential between the plates since $\rho=0$ there Ignoring the fringing effect of the electric field is tantamount to assuming that the field distribution between the plates is the same as though the plates were infiritely large and that there is no variation of V in the x and z directions. Equation ($4-7$) then simplifies to

$$
\begin{equation*}
\frac{a^{2} \ddot{v}}{y^{2}}=0 \tag{4-11}
\end{equation*}
$$

where $d^{2} / d y^{2}$ is used instead of $\hat{o}^{2} / \partial y^{2}$, since y is the only space variable.

Fig. 4-1 A parallel-plate capacitor (Example 4-1).

Integration of Eq. (4-11) with respect to y gives

$$
\frac{d V}{d y}=C_{1},
$$

where the constant of integration C_{1} is yet to be determined. Integrating again, we obtain

$$
\begin{equation*}
V=C_{1} y+C_{2} . \tag{4-12}
\end{equation*}
$$

Two boundary conditions are required for the determination of the two constants of integration:

$$
\begin{array}{ll}
\text { At } y=0, & V=0 \\
\text { At } y=d, & V=V_{0} . \tag{4-13b}
\end{array}
$$

Substitution of Eqs. (4-13a) and (4-13b) in Eq. (4-12) yields immediately $C_{1}=$ V_{0} / d and $C_{2}=0$. Hence the potential at any point y between the plates is. from Eq. (4-12),

$$
\begin{equation*}
V=\frac{V_{0}}{d} y . \tag{4-14}
\end{equation*}
$$

The potential increases linearly from $y=0$ to $y=d$.
b) In order to find the surface charge densities, we must first find \mathbf{E} at the conducting plates at $y=0$ and $y=d$. From Eqs. (4-3) and (4-14), we have

$$
\begin{equation*}
\mathbf{E}=-\mathbf{a}_{y} \frac{d V}{d y}=-\mathbf{a}_{y} \frac{V_{0}}{d}, \tag{4-15}
\end{equation*}
$$

which is a constant and is independent of y. Note that the direction of \mathbf{E} is opposite to the direction of increasing V. The surface charge densities at the conducting plates are obtained by using Eq. (3-67),

$$
r_{a}-\mathbf{a}_{n} \cdot \mathbf{H}-{\underset{\epsilon}{\prime}}_{\rho}^{\prime}
$$

At the lower plate,

$$
\mathbf{a}_{n}=\mathbf{a}_{y}, \quad E_{n c}=-\frac{V_{0}}{d}, \quad \rho_{s \ell}=-\frac{\epsilon V_{0}}{d} .
$$

At the upper plate,

$$
\mathbf{a}_{n}=-\mathbf{a}_{y}, \quad E_{n u}=\frac{V_{0}}{d}, \quad \rho_{s u}=\frac{\epsilon V_{0}}{d} .
$$

Electric field lines in an electrostatic field begin from positive charges and end in negative charges.
g again, (4-12) onstants
dy $C_{1}=$ is, from $(4,1)$ ducting
opposite nducting
; and end
Example 4-2 Detetmine the E field both inside and outside a spherical cloud of electrons with a uniform volume charge density $\rho=-\rho_{0}$ for $0 \leq R \leq b$ and $\rho=0$ for $R>b$ by solving Poisson's and Laplace's equations for V.

Solution: We recall that this problem was solved in Chapter 3 (Example 3-6) by applying Gaus's's law. We now use the same problem to illustrate the solution of one-dimensional Poisson's and Laplace's equations. Since there are no variations in θ and ϕ directions; we are only dealing with functions of R in spherical coordinates.
a) Inside the cloud,

$$
0 \leq R \leq b, \rho-\rho_{0}
$$

In this region, Poisson's equation $\left(\nabla^{2} V_{i}-\rho / \epsilon_{0}\right)$ holds. Dropping $\partial / \partial \theta$ and $\partial / \partial \phi$ terms from Eq. (4-9), we have
which reduces to

$$
\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{d V_{i}}{\partial R}\right)=\frac{\rho_{0}}{\epsilon_{0}}
$$

which reduces to

$$
\begin{equation*}
\frac{\partial}{\partial R}\left(R^{2} \frac{d V_{i}}{d R}\right)=\frac{\rho_{0}}{\epsilon_{0}} R^{2} \tag{4-16}
\end{equation*}
$$

Integration of Eq. (4-16) gives

$$
\begin{equation*}
\frac{d V_{i}}{d R}=\frac{\rho_{0}}{3 \epsilon_{0}} R+\frac{C_{1}}{R^{2}} \tag{4-17}
\end{equation*}
$$

The electric field intensity inside the electron cloud is

$$
\mathrm{E}_{i}=-\nabla V_{i}=-\mathbf{a}_{R}\left(\frac{d V_{i}}{d R}\right)
$$

Since \mathbf{E}_{i} cannot be infinite at $R=0$, the integration constant C_{1} in Eq. (4-17) must vanish. We obtain

$$
\begin{equation*}
\mathbf{E}_{i}=-\mathbf{a}_{k} \frac{\rho_{0}}{3 \epsilon_{0}} R, \quad 0 \leq R \leq b \tag{4-18}
\end{equation*}
$$

b) Outside the cloud,

$$
R \geq b, \rho=0
$$

Laplace's equation holds in this region. We have $\nabla^{2} V_{0}=0$ or

$$
\begin{equation*}
\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{d V_{o}}{d R}\right)=0 \tag{4-19}
\end{equation*}
$$

Integrating Eq. ($4-19$), we obtain

$$
\begin{equation*}
\frac{d V_{o}}{d R^{*}}=\frac{C_{2}}{R^{2}} \tag{4-20}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{E}_{o}=-\nabla V_{o}=-\mathbf{a}_{R} \frac{d V_{o}}{d R}=-\mathbf{a}_{R} \frac{C_{2}}{R^{2}} . \tag{4-21}
\end{equation*}
$$

The integration constant C_{2} can be found by equating \mathbf{E}_{o} and $\mathbf{E}_{\mathbf{i}}$ at $R=b$, where there is no discontinuity in medium characteristics.

$$
\frac{C_{2}}{b^{2}}=\frac{\rho_{0}}{3 \epsilon_{0}} b,
$$

from which we find

$$
\begin{equation*}
C_{2}=\frac{\rho_{0} b^{3}}{3 \epsilon_{0}} \tag{4-22}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}_{o}^{\prime}=-\mathbf{a}_{R} \frac{\rho_{0} b^{3}}{3 \epsilon_{0} R^{2}}, \quad R \geq b \tag{4-23}
\end{equation*}
$$

Since the total charge contained in the clectron cloud is

$$
Q=-\rho_{0} \frac{4 \pi}{3} b^{3}
$$

Equation (4-23) can be written as

$$
\begin{equation*}
\mathbf{E}_{o}=\mathbf{a}_{R} \frac{Q}{4 \pi \epsilon_{0} R^{2}}, \tag{4-24}
\end{equation*}
$$

which is the familiar expression for the electric field intensity at a point R from a point charge Q.

Further insight to this problem can be gained by examining the potential as a function of R. Integrating Eq. (4-17), remembering that $C_{1}=0$, we have

$$
\begin{equation*}
V_{i}=\frac{\rho_{0} R^{2}}{6 \epsilon_{0}}+C_{1}^{\prime} . \tag{4-25}
\end{equation*}
$$

It is important to note that C_{1}^{\prime} is a new integration constant and is not the same as C_{1}. Substituting Eq. (4-22) in Eq. (4-20) and integrating, we obtain

$$
\begin{equation*}
V_{o}=-\frac{\rho_{0} b^{3}}{3 \epsilon_{0} R}+C_{2}^{\prime} \tag{4-26}
\end{equation*}
$$

However, C_{2}^{\prime} in Eq. (4-26) must vanish since V_{o} is zero at infinity $(R \rightarrow \infty)$. As electrostatic potential is continuous at a boundary, we determine C_{1}^{\prime} by equating V_{i} and V_{o} at $R=b$:

$$
\frac{\rho_{0} b^{2}}{6 \epsilon_{0}}+C_{1}^{\prime}=-\frac{\rho_{0} b^{2}}{3 \epsilon_{0}}
$$

4-3 UNIQUENESS OF :

ELECTROSTATIC SOLUTIONS

$$
V_{i}=-\frac{\rho_{0}}{3 \epsilon_{0}}\left(\frac{3 b^{2}}{2}-\frac{R^{2}}{2}\right) .
$$

and, from Eq. (4-25),

We see that V_{i} in Eq. (4-28) is the same as V in Eq. (3-142), with $\rho=-\rho_{0}$.

In the wo relatively simple examples in the last section, we obtained the solutions by direct integration. In more complicated situations other methods of solution must be used. Before these methods are discussed, it is important to know that a solution of Poisson's equation (of which Laplace's equation is a special case) that satisfies the given boundary conditions is a unique solution. This statement is called the uniqueness theorem. The implication of the uniqueness theorem is that a solution of an electrostatic problem with its boundary conditions is the only possible solution irrespective of the method by which the solution is obtained. A solution obtained even by intelligent guessing is the only correct solution. The importance of this theorem will be appreciated when we discuss the method of images in Section 4-4.

To prove the uniqueness theorem, suppose a volume τ - is bounded outside by a surface S_{o}, which may be a surface at infinity. Inside the closed surface S_{0} there are a number of charged conducting bodies with surfaces $S_{1}, S_{2}, \ldots, S_{n}$ at specified potentials, as depicted in the two-dimensional Fig. 4-2. Now assume that, contrary to the uniqueness theorem, there are two solutions, V_{1} and V_{2}, to Poisson's equation in τ :

$$
\begin{align*}
\nabla^{2} V_{1} & =-\frac{\rho}{\epsilon} \tag{4-29a}\\
\nabla^{2} V_{2} & =-\frac{\rho}{\epsilon} \tag{4-29b}
\end{align*}
$$

Fig. 4-2 .Surface S_{o} enclosing volume τ with conducting bodies.

Also assume that both \dot{V}_{1} and V_{2} satisfy the same boundary conditions on $S_{1}, S_{2}, \ldots, S_{n}$ and S_{0}. Let us try to define a new difference potential

$$
\begin{equation*}
V_{d}=V_{1}-V_{2} . \tag{4-30}
\end{equation*}
$$

From Eqs. (4-29a) and (4-29b), we see that V_{d} satisfies Laplace's equation in τ

$$
\begin{equation*}
\nabla^{2} V_{d}=0 . \tag{4-31}
\end{equation*}
$$

On conducting boundaries the potentials are specified and $V_{d}=0$.
Recalling the vector identity (Problem 2-18),

$$
\begin{equation*}
\nabla \cdot(f \mathbf{N})=f \nabla \cdot \mathrm{~A}+\mathrm{A} \cdot \nabla f \tag{4-32}
\end{equation*}
$$

and letting $f=V_{d}$ and $\mathrm{A}=\nabla V_{d}$ we have

$$
\begin{equation*}
\nabla \cdot\left(V_{d} \nabla V_{d}\right)=V_{d} \nabla^{2} V_{d}+\left|\nabla V_{d}\right|^{2}, \tag{4-33}
\end{equation*}
$$

where, because of Eq. (4-31), the first term on the right side vanishes. Integration of Eq. (4-33) over a volume τ yields

$$
\begin{equation*}
\int_{S}\left(V_{d} \nabla V_{d}\right) \cdot \mathbf{a}_{n} d s=\int_{\tau}\left|\nabla V V_{d}\right|^{2} d v \tag{4-34}
\end{equation*}
$$

where \mathbf{a}_{n} denotes the unit normal outward from τ. Surface S consists of S_{o} as well as S_{1}, S_{2}, \ldots, and S_{n}. Over the conducting boundaries, $V_{d}=0$. Over the large surface S_{o}, which encloses the whole system, the surface integral on the left side of Eq. (4-34) can be evaluated by considering S_{o} as the surface of a very large sphere with radius R. As R increases, both V_{1} and V_{2} (and therefore also V_{d}) fall off as $1 / R$; consequently, ∇V_{d} falls off as $1 / R^{2}$, making the integrand $\left(V_{d} \nabla V_{d}\right)$ fall off as $1 / R^{3}$. The surface area S_{o}, however, increases as R^{2}. Hence the surface integral on the left side of Eq. (4-34) decreases as $1 / R$ and approaches zero at infinity. So must also the volume integral on the right side. We have

$$
\begin{equation*}
\int_{\tau}\left|\nabla V_{d}\right|^{2} d v=0 \tag{4-35}
\end{equation*}
$$

Since the integrand $\left|\nabla V_{d}\right|^{2}$ is nonnegative everywhere, Eq. (4-35) can be satisfied only if $\left|\nabla V_{d}\right|$ is identically zero. A vanishing gradient everywhere means that V_{d} has the same value at all points in τ as it has on the bounding surfaces, $S_{1}, S_{2}, \ldots, S_{n}$, where $V_{d}=0$. It follows that $V_{d}=0$ throughout the volume τ. Therefore $V_{1}=V_{2}$, and there is only one possible solution.

It is easy to see that the uniqueness theorem holds if the surface charge distributions ($\rho_{s}=\epsilon E_{n}=-\epsilon \partial V / \partial n$), rather than the potentials, of the conducting bodies are specified. In such a case, ∇V_{d} will be zero, which in turn, makes the left side of Eq. (4-34) vanish and leads to the same conclusion. In fact, the uniqueness theorem applies even if an inhomogeneous dielectric (one whose permittivity varies with position) is present. The proof, however, is more involved and will be omitted here.

4. The potential function is even with respect to the x and z coordinates; that is,
and

$$
V(x, y, z)=V(-x, y, z)
$$

$$
V(x, y, z)=V(x, y,-z) .
$$

It does appear difficult to construct a solution for V that will satisfy all of these conditions.

From another point of view, we may reason that the presence of a positive charge Q at $y=d$ would induce negative charges on the surface of the conducting plane, resulting in a surface charge density ρ_{s}. Hence the potential at points above the conducting plane would be

$$
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0} \sqrt{x^{2}+(y-d)^{2}+z^{2}}}+\frac{1}{4 \pi \epsilon_{0}} \int_{s} \frac{\rho_{s}}{R_{1}} d s
$$

where R_{1} is the distance from $d s$ to the point under consideration and S is the surface of the entire conducting plane. The trouble here is that ρ_{s} must first be determined from the boundary condition $V^{F}(x, 0, z)=0$. Moreover, the indicated surface integral is difficult to evaluate even after p_{s} has been determined at every point on the conducting plane. In the following subsections, we demonstrate how the method of images greatly simplifies these problems.

4-4.1 Point Charge and Conducting Planes

The problem in Fig. 4-3(a) is that of a positive point charge, Q, located at a distance d above a large plane conductor that is at zero potential. If we remove the conductor and replace it by an image point charge $-Q$ at $y=-d$, then the potential at a point $P(x, y, z)$ in the $y>0$ region is

$$
\begin{equation*}
V(x, y, z)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{+}}-\frac{1}{R_{-}}\right), \tag{4-37}
\end{equation*}
$$

where

$$
\begin{aligned}
& R_{+}=\left[x^{2}+(y-d)^{2}+z^{2}\right]^{1 / 2}, \\
& R_{-}=\left[x^{2}+(y+d)^{2}+z^{2}\right]^{1 / 2} .
\end{aligned}
$$

It is easy to prove by direct substitution (Problem P.4-5a) that $V(x, y, z)$ in Eq. (4-37) satisfies the Laplace's equation in Eq. (4-36), and it is obvious that all four conditions listed after Eq. (4-36) are satisfied. Therefore Eq. (4-37) is a solution of this problem; and, in view of the uniqueness theorem, it is the only solution.

Electric field intensity \mathbf{E} in the $y>0$ region can be found easily from $-\nabla V$ with Eq. (4-37). It is exactly the same as that between two point charges, $+Q$ and $-Q$,

l of these

1 positive mducting nts above

1e surface termined e integral thonicti... of listanced onductor it a point
q. (4-37)
nd ns rourrm.
∇V with nd $-Q$,

$$
\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3},
$$

spaced a distance $2 d$ apart. A few of the field lines are shown in Fig. 4-3(b). The solution of this electrostatic problem by the method of images is extremely simple; but it must be emphasized that the image charge is located ourside the region in which the field is to be determined. In this problem the point charges $+Q$ and $-Q$ cannot be used to calculate the V or \mathbf{E} in the $y<0$ region. As a matter of fact, both V and E are zero in the $y<0$ region. Can you explain that?

It is readily seen that the electric field of a line charge ρ_{ℓ} above an infinite conducting plane can be found from p_{c} and its image $-\rho_{t}$ (with the conducting plane removed).

Example 4-3 1 positive point charge Q is focated at distances d_{1} and d_{2}, respectively, from two grounded perpendicular conducting half-planes, as shown in Fig. 4-4(a). Determine the force on Q caused by the charges induced on the planes.

Solution: A formal solution of Poisson's equation, subject to the zero-potential boundary condition at the conducting half-planes, would be quite difficult. Now an image charge $-Q$ in the fourth quadrant would make the potential of the horizontal half-plane (but not that of the vertical half-plane) zero. Similarly, an image charge $-Q$ in the second quadrant would make the potential of the vertical half-plane (but not that of the thbrizontal plane) zero. But if a third image charge $+Q$ is added in the third quadrant, we see from symmetry that the image-charge arrangement in Fig. 4-4(b) satisfies the zero-potential boundary condition on both half-planes and is electrically equivalent to the physical arrangement in Fig. 4-4(a).

Negative surface charges will be induced on the half-planes, but their effect on Q can be determined from that of the three image charges. Referring to Fig. 4-4(c), we have, for the net force on Q,
where

$$
\begin{aligned}
& \mathbf{F}_{1}=-\mathbf{a}_{y} \frac{Q^{2}}{4 \pi \epsilon_{0}\left(2 d_{2}\right)^{2}}, \\
& \mathbf{F}_{2}=-\mathbf{a}_{x} \frac{Q^{2}}{4 \pi \epsilon_{0}\left(2 d_{1}\right)^{2}}, \\
& \mathbf{F}_{3}=\frac{Q^{2}}{4 \pi \epsilon_{0}\left[\left(2 d_{1}\right)^{2}+\left(2 d_{2}\right)^{2}\right]^{3 / 2}}\left(\mathbf{a}_{x} 2 d_{1}+\mathbf{a}_{y} 2 d_{2}\right) .
\end{aligned}
$$

Therefore,

$$
\mathbf{F}=\frac{Q^{2}}{16 \pi \epsilon_{0}}\left\{\mathbf{a}_{x}\left[\frac{d_{1}}{\left(d_{1}^{2}+d_{2}^{2}\right)^{3 / 2}}-\frac{1}{d_{1}^{2}}\right]+\mathbf{a}_{y}\left[\frac{d_{2}}{\left(d_{1}^{2}+d_{2}^{2}\right)^{3 / 2}}-\frac{1}{d_{2}^{2}}\right]\right\} .
$$

The electric potential and electric field intensity at points in the first quadrant and the surface charge density induced on the two half-planes can also be found from the system of four charges.

4-4.2 Line Charge and Parallel Conducting Cylinder

We now consider the problem of a line charge $\rho_{\ell}(\mathrm{C} / \mathrm{m})$ located at a distance d from the axis of a parallel, conducting, circular cylinder of radius a. Both the line charge and the conducting cylinder are assumed to be infinitely long. Figure 4-5(a) shows a cross section of this arrangement. Preparatory to the solution of this problem by the method of images, we note the following: (1) The image must be a parallel line charge inside the cylinder in order to make the cylindrical surface at $r=a$ an equipotential surface. Let us call this image line charge ρ_{i}. (2) Because of symmetry with respect to the line $O P$, the image line charge must lie somewhere along $O P$, say at point P_{i}, which is at a distance d_{i} from the axis (Fig. 4-5b). We need to determine the two unknowns, ρ_{i} and d_{i}.

Fig. 4-5 Cross section of line charge and its image in a parallel conducting circular cylinder.
ant and nd from

As a first approach, let us assume that

$$
\begin{equation*}
\rho_{i}=-\rho_{\ell} \tag{4-38}
\end{equation*}
$$

At this stage, Eq. (4-38) is just a trial solution (an intelligent guess), and we are not sure that it will hold true. We will, on the one hand, proceed with this trial solution until we find that it filis to satisfy the boundary conditions. On the other hand, if Eq. (4-38) leads to a dolution that does satisfy dll boundary conditions, then by the uniqueness theorem it is the only solution. Our next job will be to see whether we can determine d_{i}.

The electric potential at a distance r from a line charge of density ρ_{ρ}, can be obtained by integrating the electric field intensity \mathbf{E} given in Eq. (3-36).

$$
\begin{align*}
V & =-\int_{r_{0}}^{r} E_{\mathrm{r}} d r=-\frac{\rho_{e}}{2 \pi \epsilon_{0}} \int_{r_{0}}^{r} \frac{1}{r} d r \\
& =\frac{\rho_{r}}{2 \pi \epsilon_{0}} \ln \frac{r_{0}}{r} . \tag{4-39}
\end{align*}
$$

Note that the reference point for zero potential, r_{0}, cannot be at infinity because setting $r_{0}=\infty$ in Eq. (4-39) would make V infinite everywhere else. Let us leave r_{0} unspecified for the time being. The potential at a point on or outside the cylindrical surface is obtained by adding the contributions of ρ_{ϵ} and ρ_{i}. In particular, at a point M on the cylindrical surface shown in Fig. 4-5(b), we have

$$
\begin{align*}
V_{M} & =\frac{\rho_{\epsilon}}{2 \pi \epsilon_{0}} \ln \frac{r_{0}}{r}-\frac{\rho_{\epsilon}}{2 \pi \epsilon_{0}} \ln \frac{r_{0}}{r_{i}} \\
& =\frac{\rho_{t}}{2 \pi \epsilon_{0}} \ln \frac{r_{i}}{r} \tag{4-40}
\end{align*}
$$

In Eq. (4-40) we have chosen, for simplicity, a point equidistant from ρ_{ε} and ρ_{i} as the reference point for zero potential so that the $\ln r_{0}$ terms cancel. Otherwise, a constant term should be included in the right side of Eq. (4-40), but it would not affect what follows. Equipotential surfaces are specified by

$$
\begin{equation*}
\frac{r_{i}}{r}=\text { Constant. } \tag{4-41}
\end{equation*}
$$

If an equipotential surface is to coincide with the cylindrical surface $(\overline{O M}=a)$, the point P_{i} must be located in such a way as to make triangles $O M P_{:}$and $O P M$ similar. Note that these two ttiangles already have one common angle, $\angle M O P_{i}$. Point P_{i} should be chosen to make $\angle O M P_{i}=\angle O P M$. We have

$$
\frac{\overline{P_{i} M}}{\overline{P M}}=\frac{\overline{O P_{i}}}{\overline{O M}}=\frac{\overline{O M}}{\overline{O P}}
$$

or

$$
\begin{equation*}
\frac{r_{t}}{r}=\frac{d_{i}}{a_{i}}=\frac{a}{d}=\text { Constant } \tag{4-42}
\end{equation*}
$$

From Eq. (4-42) we see that if

$$
\begin{equation*}
d_{i}=\frac{a^{2}}{d} \tag{4-43}
\end{equation*}
$$

the image line charge $-\rho_{\ell}$, together with ρ_{ℓ}, will make the dashed cylindrical surface in Fig. 4-5(b) equipotential. As the point M changes its location on the dashed circle, both r_{i} and r will change; but their ratio remains a constant that equals a / d. Point P_{i} is called the inverse point of P with respect to a circle of radius a.

The image line charge - ρ, can then replace the cylindrical conducting surface, and V and \mathbf{E} at any point outside the surface can be determined from the line charges ρ_{ℓ} and $-\rho_{\ell}$. By symmetry, we find that the parallel cylindrical surface surrounding the original line charge ρ_{ϵ} with radius a and its axis at a distance d_{i} to the right of P is also an equipotential surface. This observation enables us to calculate the capacitance per unit length of an open-wire transmission line consisting of two parallel conductors of circular cross section.

Example 4-4 Determine the capacitance per unit length between two long, parallel, circular conducting wires of radius a. The axes of the wires are separated by a distance D.

Solution: Refer to the cross section of the two-wire transmission line shown in Fig. $4-6$. The equipotential surfaces of the two wircs can be considered to have been generated by a pair of line charges ρ_{ℓ} and $-\rho_{\ell}$ separated by a distance $\left(D-2 d_{i}\right)=$ $d-d_{i}$. The potential difference between the two wires is that between any two points on their respective wires. Let subscripts 1 and 2 denote the wires surrounding the equivalent line charges ρ_{ℓ} and $-\rho_{\ell}$ respectively. We have, from E'qs. (4-40) and (4-42),

$$
V_{2}=\frac{\rho_{\ell}}{2 \pi \epsilon_{0}} \ln \frac{a}{d} .
$$

Fig. 4-6 Cross section of two-wire transmission line and equivalent line charges (Example 4-4).

$$
V_{1}=-\frac{\rho_{e}}{2 \pi \epsilon_{0}} \ln \frac{a}{d}
$$

Hence the capacitarite per unit length is
al surface ied circle, i/d. Point g surface, te charges rounding right of P 1e capacio parallel
s. pa. lel, atec a
shown in have been) $-2 d_{i}$) $=$ two points unding the 4-40) and

$$
\begin{align*}
& C=\frac{\rho_{l}}{V_{1}-V_{2}}=\frac{\pi \epsilon_{0}}{\ln (d / a)}, \tag{4-44}\\
& d=D-d_{i}=D-\frac{a^{2}}{d},
\end{align*}
$$

where

$$
\begin{equation*}
d=\frac{1}{2}\left(D+\sqrt{D^{2}-4 a^{2}}\right) . \tag{4-45}
\end{equation*}
$$

Using Eq. (4-45) in Eq. (4-44), we have

$$
\begin{equation*}
C=\frac{\pi \epsilon_{0}}{\ln \left[(D / 2 a)+\sqrt{(D / 2 a)^{2}-1}\right]} \quad(\mathrm{F} / \mathrm{m}) . \tag{4-46}
\end{equation*}
$$

Since

$$
\ln \left[x+\sqrt{x^{2}-1}\right]=\cosh ^{-1} x
$$

for $x>1$, Eq. (4-46) can be written alternatively as

$$
\begin{equation*}
C=\frac{\pi \epsilon_{0}}{\cosh ^{-1}(D / 2 a)} \quad \quad(\mathrm{F} / \mathrm{m}) \tag{4-47}
\end{equation*}
$$

4-4.3 Point Charge ầnd Cbnducting Sphere

The method of images can also be applied to solve the electrostatic problem of a point charge in the presence of a spherical conductor. Referring to Fig. 4-7(a) where a positive point charge Q is located at a distance d from the center of a grounded conducting sphere of radius $a(a<d)$, we now proceed to find the V and E at points external to the sphete. By reason of symmetry, we expect the image charge Q_{i} to be a negative poift charge situated inside the splere and on the line joining 0 and Q. Let it be at a distince d_{i} from O. It is obvipus that Q_{i} cannot be equal to $-Q$, since $-Q$ and the orizinal Q do not make the spherical surface $R=a$ a zero-potential surface as required. (What would the zero-potential surface be if $Q_{i}=-Q$?) We must, therefore, treat both d_{i} and Q_{i} as unknowns.

[^16]148 SOLUTION OF EX ECTROSTATIC PROBLEMS / 4

Fig. 4-7 Point charge and its image in a grounded sphere.

In Fig. 4-7(b) the conducting sphere has been replaced by the image point charge Q_{i}, which makes the potential at all points on the spherical surface $R=a$ zero. At a typical point M, the polential caused by Q and Q_{i} is
which requires

$$
\begin{equation*}
V_{M}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{Q}{r}+\frac{Q_{i}}{r_{i}}\right)=0, \tag{4-48}
\end{equation*}
$$

$$
\begin{equation*}
\frac{r_{i}}{r}=-\frac{Q_{i}}{Q}=\text { Constant } . \tag{4-49}
\end{equation*}
$$

Noting that the requirement or the ratio r_{i} / r is the same as that in Eq. (4-41), we conclude from Eqs. (4-42), (4-43), and (4-49) that

$$
-\frac{Q_{i}}{Q}=\frac{a}{d}
$$

or

$$
\begin{equation*}
Q_{i}=-\frac{a}{d} Q \tag{4-50}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i}=\frac{a^{2}}{d} . \tag{4-51}
\end{equation*}
$$

The point Q_{i} is, thus, the inverse point of Q with respect to a circle of radius a. The V and \mathbf{E} of all points external to the grounded sphere can now be calculated from the V and E caused by the two point charges Q and $-a Q / d$.

Example 4-5 A point charge Q is at a distance d from the center of a grounded conducting sphere of radius $a(a<d)$. Determine (a) the charge distribution induced on the surface of the sphere, and (b) the total charge induced on the sphere.

age point ace $R=a$
$(4-9)$
(4-41), we
(4-50)
(4-51)
ius The dfror the
grounded n induced

Fig. 4-8 Diagram for computing induced charge distribution (Example 4-5)

Solution: The physicdl problem is that shown in Fig. 4-7(a). We solve the problem by the method of images and replace the grounded sphere by the image charge $Q_{i}=$ $-u Q / d$ at a distance $d=u^{2} / d$ from the center of the sphere, as shown in Fig. 4-8. The electric potential V at an arbitrary point $P(R, 0)$ is

$$
\begin{equation*}
V(R, \theta)=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{Q}}-\frac{a}{d R_{Q_{i}}}\right) \tag{4-52}
\end{equation*}
$$

where, by the law of cosines,
and

$$
\begin{equation*}
R_{Q}=\left[R^{2}+d^{2}-2 R d \cos \theta\right]^{1 / 2} \tag{4-52a}
\end{equation*}
$$

$$
\begin{equation*}
R_{Q_{i}}=\left[R^{2}+\left(\frac{a^{2}}{d}\right)^{2}-2 R\left(\frac{d^{2}}{d}\right) \cos \theta\right]^{1 / 2} \tag{4-52b}
\end{equation*}
$$

Note that θ is measured from the line $O Q$. The R-component of the electric field intensity, E_{R}, is

$$
\begin{equation*}
E_{R}(R, \theta)=-\frac{\partial V(R, \theta)}{\partial R} \tag{4-53}
\end{equation*}
$$

Using Eq. (4-52) in Eq. (4-53), we have

$$
\begin{align*}
E_{R}(R, \theta)= & \frac{Q}{4 \pi \epsilon_{0}}\left\{\frac{R-d \cos \theta}{\left(R^{2}+d^{2}-2 R d \cos \theta\right)^{3 / 2}}\right. \\
& \left.-\frac{a\left[R-\left(a^{2} / d\right) \cos \theta\right]}{d\left[R^{2}+\left(a^{2} / d\right)^{2}-2 R\left(a^{2} / d\right) \cos \theta\right]^{3 / 2}}\right\} \tag{4-54}
\end{align*}
$$

a) In order tofind the induced surface charge on the sphere, we set $R=a$ in Eq. (4-54) and evaluate

$$
\begin{equation*}
\rho_{s}=\epsilon_{0} E_{R}(a, \theta) \tag{4-55}
\end{equation*}
$$

which yields the following after simplification:

$$
\begin{equation*}
\rho_{s}=-\frac{Q\left(d^{2}-a^{2}\right)}{4 \pi a\left(a^{2}+d^{2}-2 a d \cos \theta\right)^{3 / 2}} \tag{4-56}
\end{equation*}
$$

Eq. (4-56) tells us that the induced surface charge is negative and that its magnitude is maximum at $\theta=0$ and minimum at $\theta=\pi$, as expected.
b) The total charge induced on the sphere is obtained by integrating ρ_{s} over the surface of the sphere. We have

$$
\begin{align*}
& \text { Total induced charge }=\oint \rho_{s} d s \\
&=\int_{0}^{2 \pi} \int_{0}^{\pi} \rho_{s} a^{2} \sin \theta d \theta d \phi \tag{4-57}\\
&=-\frac{a}{d} Q=Q_{i} .
\end{align*}
$$

We note that the total induced charge is exactly equal to the image charge Q_{i} that replaced the sphere. Can you explain this?

If the conducting sphere iselectrically neutral and is not grounded, the image of a point charge Q at a distance d from the center of the sphere would still be Q_{i} at d_{i} given, respectively, by Eqs. (4-50) and (4-51) in order to make the spherical surface $R=a$ equipotential. However, an additional point charge

$$
Q^{\prime}=-Q_{i}=\frac{a Q}{d}
$$

at the center would be needed to make the net charge on the replaced sphere zero. The electrostatic problem of a point charge Q in the presence of an electrically neutral sphere can then be solved as a problem with three point charges: Q^{\prime} at $R=0$, Q_{i} at $R=a^{2} / d$, and Q at $R=d$.

4-5 BOUNDARY-VALUE PROBLEMS IN CARTESIAN COORDINATES

We have seen in the preceding section that the method of images is very useful in solving certain types of electrostatic problems involving free charges near conducting boundaries that are geometrically simple. However, if the problem consists of a system of conductors maintained at specified potentials and with no free charges, it cannot be solved by the method of images. This type of problem requires the solution of Laplace's equation. Example 4-1 was such a problem where the electric potential was a function of only one coordinate. Of course, Laplace's equation applied to three dimensions is a partial differential equation, where the potential is, in general, a function of all three coordinates. We will now develop a method for solving threedimensional problems where the boundaries, over which the potential or its normal derivative is specified, coincide with the coordinate surfaces of an orthogonal, curvilinear coordinate system. In such cases the solution can be expressed as a product of three one-dimensional functions, each depending separately on one coordinate variable only. The procedure is called the method of separation of variables.

: mage of Ibe 2 , at :al surface
here zero. lectrically at $R=0$,
, useful in onducting isists of a charges, it le șolution : potential ad to three ral , a funcing threeits nal nal, p $^{-1}$ produr of coordinate 3.

Note that each of the three terms on the iffte side of Eq. (4-60) is a function of only one coordinate variable and that only ordinary cerivatives are involved. In order for Eq. (4-60) to be satisfited for all values of x, y, z, eacn oit the three terms must be a constant. For instance, if we differentiate Eq. (4-60) with tespect to x, we have

$$
\begin{equation*}
=\frac{d}{d x}\left[\frac{1}{X(x)} \frac{d^{2} X(x)}{d x^{2}}\right]=0 \tag{4-61}
\end{equation*}
$$

since the other two terms are independent of x. Equation (4-61) requires that

$$
\begin{equation*}
\frac{1}{X(x)} \frac{d^{2} X(x)}{d x^{2}}=-k_{x}^{2}, \tag{4-62}
\end{equation*}
$$

where k_{x}^{2} is a constant of integration to be determined from the boundary conditions of the problem. The negative sign on the right side of Eq. (4-62) is arbitrary, just as the square sign on k_{x} is arbitrary. The separation constant k_{x} can be a real or an imaginary number. If k_{x} is imaginary, k_{x}^{2} is a negative real number, making $-k_{x}^{2}$ a positive real number. It is convenient to rewrite Eq. (4-62) as

$$
\begin{equation*}
\frac{d^{2} X(x)}{d x^{2}}+k_{x}^{2} X(x)=0 . \tag{4-63}
\end{equation*}
$$

In a similar manner, we have

$$
\begin{equation*}
\frac{d^{2} Y(y)}{d y^{2}}+k_{y}^{2} Y(y)=0 \tag{4-64}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} Z(z)}{d z^{2}}+k_{z}^{2} Z(z)=0 \tag{4-65}
\end{equation*}
$$

where the separation constants k_{y} and k_{z} will, in general, be different from k_{x}; but, because of Eq. (4-60), the following condition must be satisfied:

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=0 . \tag{4-66}
\end{equation*}
$$

Our problem has now been reduced to finding the appropriate solutions $-X(x)$, $Y(y)$, and $Z(z)$-from the second-order ordinary differential equations, respectively, Eqs. (4-63), (4-64), and (4-65). The possible solutions of Eq. (4-63) are known from our study of ordinary differential equations with constant coefficients. They are listed in Table 4-1. That the listed solutions satisfy Eq. (4-63) is easily verified by direct substitution. The specified boundary conditions will determine the choice of the proper form of the solution and of the constants A and B or C and D. The solutions of Eqs. (4-64) and (4-65) for $Y(y)$ and $Z(z)$ are entirely similar.

Table 4-1 Possible Solutions of $X^{\prime \prime}(x)+k_{x}^{2} X(x)=0$

k_{x}^{2}	$k^{\prime} k_{x}$	$X(x)$	Exponential forms ${ }^{\dagger}$ of $X(x)$
0	0	$A_{0} x+B_{0}$	
+	k	$A_{1} \sin k x+B_{1} \cos k x$	$C_{1} e^{j k x}+D_{1} e^{-j k x}$
-	$j k$	$A_{2} \sinh k x+B_{2} \cosh k x$	$C_{2} e^{k x x}+D_{2} e^{-k x}$

[^17]Fig. 4-9 Cross-sectionkl figure for Example 4-6. The plane electrodes are infinite in z-direction.

Example 4-6 Tẅo grounded, semi-infinite, parallel-plane electrodes are separated by a distance b). A third electrode perpendicular to both is maintained at a constant potential V_{0} (see Fig. 4-9). Determine the potential distribution in the region enclosed by the electrodes.

Solution: Referring to the coordinates in Fig. 4-9, we write down the boundary conditions for the pqtential function $V(x, y, z)$ as follows.

With V independent of z :
In the x-direction: $\quad V(x, y, z)=V(x, y)$.

$$
\begin{align*}
V(0, y) & =V_{0} \tag{4-67b}\\
V(\infty, y) & =0 . \tag{4-67c}\\
V(x, 0) & =0 \tag{4-67d}\\
V(x, b) & =0 .
\end{align*}
$$

In the y-direction:

Condition (4-67a) implies $k_{z}=0$ and, from Table 4-1,

$$
\begin{equation*}
Z(z)=B_{0} . \tag{4-68}
\end{equation*}
$$

The constant A_{0} vanishes because Z is independent of z. From Eq. (4-66), we have

$$
\begin{equation*}
k_{y}^{2}=-k_{x}^{2}=k^{2}, \tag{4-69}
\end{equation*}
$$

where k is a real number. This choice of k implies that k_{x} is imaginary and that k_{y} is real. The-use of $k_{t}=j k$, together with the condition of Eq. (4-67c), requires us to choose the exponehtially decreasing form for $X(x)$, which is

$$
\begin{equation*}
X(x)=D_{2} e^{-k x} . \tag{4-70}
\end{equation*}
$$

In the y-directioft, $k_{y}=k$. Condition (4-67d) indicates that the proper choice for $Y(y)$ from Table 4-1 is

$$
\begin{equation*}
Y(y)=A_{1} \sin k y . \tag{4-71}
\end{equation*}
$$

Combining the solutions given by Eqs. (4-68), (4-70), and (4-71) in Eq. (4-59), we obtain

$$
\begin{align*}
V_{n}(x, y) & =\left(B_{0} D_{2} A_{1}\right) e^{-k x} \sin k y \\
& =C_{n} e^{-k x} \sin k y, \tag{4-72}
\end{align*}
$$

where the arbitrary constant C_{n} has been written for the product $B_{0} D_{2} A_{1}$.
Now, of the five boundary conditions listed in Eqs. (4-67a) through (4-67e), we have used conditions (4-67a), (4-67c), and (4-67d). In order to meet condition (4-67e), we require

$$
\begin{equation*}
V_{n}(x, b)=C_{n} e^{-k x} \sin k b=0, \tag{4-73}
\end{equation*}
$$

which can be satisfied, for all values of x, only if

$$
\sin k b=0
$$

or

$$
k b=n \pi
$$

or

$$
\begin{equation*}
k=\frac{11 \pi}{b}, \quad n=1,2,3, \ldots \tag{4-74}
\end{equation*}
$$

Therefore, Eq. (4-72) becomes

$$
\begin{equation*}
V_{n}(x, y)=C_{n} e^{-n \pi x / b} \sin \frac{n \pi}{b} y . \tag{4-75}
\end{equation*}
$$

Question: Why are 0 and negative integral values of n not included in Eq. (4-74)?
We can readily verify by direct substitution that $V_{n}(x, y)$ in Eq. (4-75) satisfies the Laplace's equation (4-58). However, $V_{n}(x, y)$ alone cannot satisfy remaining boundary condition (4-67b) at $x=0$ for all values of y from 0 to b. Using the technique of expanding an arbitrary function within a specified interval into a Fourier series, we form the infinite sum

$$
\begin{align*}
V(0, y) & =\sum_{n=1}^{\infty} V_{n}(0, y)=\sum_{n=1}^{\infty} C_{n} \sin \frac{n \pi}{b} y \\
& =V_{0}, \quad 0<y<b . \tag{4-76}
\end{align*}
$$

In order to evaluate the coefficients C_{n}, we multiply both sides of Eq. (4-76) by $\sin \frac{m \pi}{b} y$ and integrate the products from $y=0$ to $y=b$:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{0}^{b} C_{n} \sin \frac{n \pi}{b} y \sin \frac{m \pi}{b} y d y=\int_{0}^{b} V_{0} \sin \frac{m \pi}{b} y d y \tag{4-77}
\end{equation*}
$$

The integral on the right side of Eq. (4-77) is easily evaluated:

$$
\int_{0}^{b} V_{0} \sin \frac{m \pi}{b} y d y= \begin{cases}\frac{2 b V_{0}}{m \pi}, & \text { if } m \text { is odd } \tag{4-78}\\ 0, & \text { if } m \text { is even }\end{cases}
$$

$4-5 \%$ BOUNDARY-VALUE PROBLEMS IN CARTESIAN COORDINATE

(4-59), we

зुh (4-67e), t condition
(4.74)
(4-75)
q. (4-74)?
5) satisfies
remaining technique rier series,

Each integral on the left side of Eq. (4-77) is

$$
\begin{align*}
\int_{0}^{b} C_{n} \sin \frac{n \pi}{b} y \sin \frac{m \pi}{b} y d y & =\frac{C_{n}}{2} \int_{0}^{b}\left[\cos \frac{(n-m) \pi}{b} y-\cos \frac{(n+m) \pi}{b} y\right] d y \\
& = \begin{cases}C_{n} b, & \text { lf } m=n \\
0, & \text { If } m \neq n .\end{cases} \tag{4-79}
\end{align*}
$$

Substituting Eqs. $(4-98)$ and $(4-79)$ in Eq. $(4-7 \%)$, we obtain

$$
C_{n}= \begin{cases}\frac{4 V_{0}}{n \pi}, & \text { if } n \text { is odd } \tag{4-80}\\ 0, & \text { if } n \text { is even. }\end{cases}
$$

The desired potential distribution is, then, a superposition of $V_{n}(x, y)$ in Eq. $(4-75) .{ }^{+}$

$$
\begin{align*}
V(x, y)= & \sum_{n=1}^{\infty} C_{n} e^{-n \pi x / b} \sin \frac{n \pi}{b} y \\
= & \frac{4 V_{0}}{\pi} \sum_{n=\mathrm{odd}}^{x} \frac{1}{n} e^{-n \pi x / b} \sin \frac{n \pi}{b} y \tag{+-81}\\
& n=1,3,5, \ldots \\
& x>0 \text { and } 0<y<b .
\end{align*}
$$

Equation (4-81) is a rather complicated expression to plot in two dimensions; but, since the amplitude of the sine terms in the series decreases very rapidly as n increases, only the first fe v terms are needed to obtain a good approximation. Several equipotential lines atte sketched in Fig. 4-9.

Example 4-7 Constder the region enclosed on three sides by the grounded conducting planes showh in Fig. 4-10. The end plate on the left has a constant potential V_{0}. All planes are assum.d to be infinite in extent in the z-direction. Determine the potential distribution within this region.

Solution: The boutdary conditions for the potential function $V(x, y, z)$ are as follows.

With V independent of z :

$$
\begin{equation*}
V(x, y, z)=\dot{V}(x, \dot{y}) . \tag{4-82a}
\end{equation*}
$$

In the x-direction:

$$
\begin{align*}
& V(0, y)=V_{0} \tag{4-82b}\\
& V(a, y)=0 . \tag{4-82c}
\end{align*}
$$

[^18]

Fig. 4-10 Cross-sectional figure for Example 4-7.

In the y-direction:

$$
\begin{align*}
& V(x, 0)=0 \tag{4-82d}\\
& V(x, b)=0 . \tag{4-82e}
\end{align*}
$$

Condition (4-82a) implies $k_{z}=0$ and, from Table 4-1,

$$
\begin{equation*}
Z(z)=B_{0} . \tag{4-83}
\end{equation*}
$$

As a consequence, Eq. (4-66) reduces to

$$
\begin{equation*}
k_{y}^{2}=-k_{x}^{2}=k^{2}, \tag{4-84}
\end{equation*}
$$

which is the same as Eq. (4-69) in Example 4-6.
The boundary conditions in the y-direction, Eqs. (4-82d) and Eq. (4-82e), are the same as those specified by Eqs. (4-67d) and (4-67e). To make $V(x, 0)=0$ for all values of x between 0 and $a, Y(0)$ must be zero, and we have

$$
\begin{equation*}
Y(y)=A_{1} \sin k y, \tag{4-85}
\end{equation*}
$$

as in Eq. (4-71). However, $X(x)$ given by Eq. (4-70) is obviously not a solution here, because it does not satisfy the boundary condition ($4-82 \mathrm{c}$). In this case, it is convenient to use the general form for $k_{x}=j k$ given in the third column of Table $4-1$. (The exponential solution form given in the last column could be used as well, but it would not be as convenient because it is not as easy to see the condition under which the sum of two exponential terms vanishes at $x=a$ as it is to make a sinh term zero. This will be clear presently.) We have

$$
\begin{equation*}
X(x)=A_{2} \sinh k x+B_{2} \cosh k x . \tag{4-86}
\end{equation*}
$$

A relation exists between the arbitrary constants A_{2} and B_{2} because of the boundary condition in Eq. (4-82c), which demands that $X(a)=0$; that is,

$$
0=A_{2} \sinh k a+B_{2} \cosh k a
$$

or

$$
B_{2}=-A_{2} \cdot \frac{\sinh k a}{\cosh k a} .
$$

From Eq. (4-86), we have

$$
\begin{gathered}
\dot{X}(x)=A_{2}\left[\sinh k x-\frac{\sinh k a}{\cosh k a} \cosh k x\right] \\
\\
\frac{1}{\cosh k a}[\operatorname{Acosh} k a \sinh k x-\sinh k a \cosh k x]
\end{gathered}
$$

$$
\begin{equation*}
=A_{3} \sinh k(x-a), \tag{4-87}
\end{equation*}
$$

where A_{3} has been written for $A_{2} / \cosh \mathrm{ka}$. It is evident that Eq. (4-87) satisfies the condition $X(a)=0$. Whath experience, we should be able to write the solution given in Eq. (4-87) directly, without the steps leading to it, as only a shift in the argument of the sinh function is heeded to make it vanish at $x=a$.

Collecting Eqs. $\left(4 \frac{23}{}\right),(4-85)$ and (4-87), we obtain the product solution

$$
\begin{align*}
V_{n}(x, y) & =B_{0} A_{1} A_{3} \sinh k(x-a) \sin k y \\
& =C_{n}^{\prime} \sinh \frac{n \pi}{b}(x-a) \sin \frac{n \pi}{b} y, \quad n=1,2,3, \ldots, \tag{4-88}
\end{align*}
$$

where $C_{n}^{\prime}=B_{0} A_{1} A_{3}$, and k has been set to equal $n \pi / b$ in order to satisfy boundary condition (4-82e).

We have now used all of the boundary conditions except Eq. (4-82b), which may be satisfied by a Fourier-series expansion of $V(0, y)=V_{0}$ over the interval from $y=0$ to $y=b$. We hdle

$$
\begin{equation*}
v_{0}=\sum_{n=1}^{\mathrm{P}_{1}} v_{n}(0, y)=-\ldots \sum_{n=1}^{m} c_{n}^{\prime \prime} \sinh ^{n} \frac{1 \pi}{b} a \sin \frac{n \pi}{b} b, \quad 0<y<b . \tag{4-89}
\end{equation*}
$$

We note that Eq. (4-89) is of the same form as Eq. (4-76), except that C_{n} is replaced by $-C_{n}^{\prime} \sinh (n \pi a / b)$. The values for the coefficient C_{n}^{\prime} can then be written down from Eq. (4-80).

$$
C_{n}^{\prime}= \begin{cases}-\frac{4 V_{0}}{n \pi \sinh (n \pi a / b)}, & \text { if } n \text { is odd } \tag{4-90}\\ 0, & \text { if } n \text { is even. }\end{cases}
$$

The desired potential distribution withene enclosed region in Fig. 4-10 is a summation of $V_{n}(x, y)$ in Eq. (4-88):

$$
\begin{align*}
& V(x, y)=\sum_{n=1}^{\infty} C_{n}^{\prime} \sin \frac{m \pi}{h}(x-a) \sin \frac{n \pi}{b} y \\
& =\frac{4 V_{0}}{\pi} \sum_{n=\text { odd }} \frac{\sinh [\pi(a-x) / b]}{n} \sin \frac{n \pi}{b} y, \tag{4-91}\\
& \quad n=1,3,5, \ldots, \tag{1}\\
& \quad \quad 0<x<a ; \text { and } 0<y<b .
\end{align*}
$$

4-6 BOUNDARY-VALUE PROBLEMS IN CYLINDRICAL COORDINATES

For problems, with circular cylindrical boundaries we write the governing equations in the cylindrical coordinate system. Laplace's equation for scalar electric potential V in cylindrical coordinates is, from Eq. (4-8),

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0 \tag{4-92}
\end{equation*}
$$

A general solution of Eq. (4-92) requires the knowledge of Bessel functions, which we do not discuss in this textbook. In situations where the lengthwise dimension of the cylindrical geometry is large compared to its radius, the associated field quantities may be considered to be approximately independent of z. In such cases, $\hat{o}^{2} V / \bar{c} z^{2}=0$ and Eq. (4-92) becomes a two-dimensional equation:

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} V}{\partial \phi^{2}}=0 \tag{4-93}
\end{equation*}
$$

Applying the method of separation of variables, we assume a product solution

$$
\begin{equation*}
V(r, \phi)=R(r) \Phi(\phi), \tag{4-94}
\end{equation*}
$$

where $R(r)$ and $\Phi(\phi)$ are, respectively, functions of r and ϕ only. Substituting solution (4-94) in Eq. (4-93) and dividing by $R(r) \Phi(\phi)$, we have

$$
\begin{equation*}
\frac{r}{R(r)} \frac{d}{d r}\left[r \frac{d R(r)}{d r}\right]+\frac{1}{\Phi(\phi)} \frac{d^{2} \Phi(\phi)}{d \phi^{2}}=0 \tag{4-95}
\end{equation*}
$$

In Eq. (4-95) the first term on the left side is a function of r only, and the second term is a function of ϕ only. (Note that ordinary derivatives have replaced partial derivatives.) For Eq. (4-95) to hold for all values of r and ϕ, each term must be a constant and be the negative of the other. We have

$$
\begin{equation*}
\frac{r}{R(r)} \frac{d}{d r}\left[r \frac{d R(r)}{d r}\right]=k^{2} \tag{4-96}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\Phi(\phi)} \frac{d^{2} \Phi(\phi)}{d \phi^{2}}=-k^{2} \tag{4-97}
\end{equation*}
$$

where k is a separation constant.
Equation (4-97) can be rewritten as

$$
\begin{equation*}
\frac{d^{2} \Phi(\phi)}{d \phi^{2}}+k^{2} \Phi(\phi)=0 \tag{4-98}
\end{equation*}
$$

This is of the same form as Eq. (4-63), and its solution can be any one of those listed in Table 4-1. For circular cylindrical configurations, potential functions and therefore
$\Phi(\phi)$ are periodic in ϕ and the hyperbolic functions do not apply. In fact, if the range of ϕ is unrestricted, k thust be an integer. Let k equal n. The appropriate solution is
equations potential
which we on of the juantities $V / \hat{\partial} z^{2}=0$
(4-93)
(4)
solution
a second 1 partial iust be a
se listed zerefore

$$
\begin{equation*}
\Phi(\phi)=A_{\phi} \sin n \phi+B_{\phi} \cos n \phi, \tag{4-99}
\end{equation*}
$$

where A_{ϕ} and B_{ϕ} are atbitrary constants.
We now turn our Attention to Eq. (4-96), which can be rearranged as

$$
\begin{equation*}
r^{2} \frac{d^{2} R(r)}{d r^{2}}+r \frac{d R(r)}{d r}-n^{2} R(r)=0 \tag{4-100}
\end{equation*}
$$

where integer n has bien written for k, implying a 2π-range for ϕ. The solution of Eq. (4-100) is

$$
\begin{equation*}
R(r)=A_{r} r^{r}+B_{r} r^{-n} . \tag{4-101}
\end{equation*}
$$

This can be verified $4 y$ direct substitution. Taking the product of the solutions in (4-99) and (4-101), obtain a general solution of the z-independent Laplace's equation (4-93) for cltcular cylindrical regions with an unrestricted range for ϕ :

$$
\begin{align*}
V_{n}(r, \phi)= & r^{n}\left(A_{n} \sin n \phi+B_{n} \cos n \phi\right) \\
& +r^{-n}\left(A_{n}^{\prime} \sin n \phi+B_{n}^{\prime} \cos n \phi\right), \quad n \neq 0 . \tag{4-102}
\end{align*}
$$

Depending on the bolindary conditions, the complete solution of a problem may be a summation of the terms in Eq. (4-102). It is iseful to note that, when the region of interest includes the cylindrical axis where $r=0$, the terms containing the r^{-n} factor cannot exist. On the other hand, if the region of interest includes the point at infinity, the terms cofitaining the r^{n} factor cannot exist, since the potential must be zero as $r \rightarrow \infty$.

When the potentilal is not a function of $\phi, k=0$ and Eq. (4-98) becomes

$$
\begin{equation*}
\frac{d^{2} \Phi(\phi)}{d \phi^{2}}=0 \tag{4-103}
\end{equation*}
$$

The general solution of Eq. (4-103) is $\Phi(\phi)=A_{0} \phi+B_{0}$. If there is no circumferential variation, A_{0} vanishes, ${ }^{\dagger}$ and we have

$$
\begin{equation*}
\Phi(\phi)=B_{0}, \quad k=0 . \tag{4-104}
\end{equation*}
$$

The equation for $R(r)$ also becomes simpler when $k=0$. We obtain from Eq. (4-96)
which has a solution

$$
\begin{equation*}
\frac{d}{d r}\left[r \frac{d R(r)}{d r}\right]=0 \tag{4-105}
\end{equation*}
$$

$$
\begin{equation*}
R(r)=C_{0} \ln r+D_{0}, \quad k=0 . \tag{4-106}
\end{equation*}
$$

[^19]

Fig. 4-11 Cross section of a coaxial cable (Example 4-8).

The product of Eqs. $(4-104)$ and $(4-106)$ gives a solution that is independent of either z or ϕ :

$$
\begin{equation*}
V(r)=C_{1} \ln r+C_{2} \tag{4-107}
\end{equation*}
$$

where the arbitrary constants C_{1} and C_{2} are determined from boundary conditions.

Example 4-8 Consider a very long coaxial cable. The inner conductor has a radius a and is maintained at a potential V_{0}. The outer conductor has an inner radius b and is grounded. Determine the potential distribution in the space between the conductors.

Solution: Figure 4-11 shows a cross section of the coaxial cable. We assume no z-dependence and, by symmetry, also no ϕ-dependence $(k=0)$. Therefore, the electric potential is a function of r only and is given by Eq. (4-107).

The boundary conditions are

$$
\begin{align*}
& V(b)=0 \tag{4-108a}\\
& V(a)=V_{0} . \tag{4-108b}
\end{align*}
$$

Substitution of Eqs. (4-108a) and (4-108b) in Eq. (4-107) leads to two relations:

$$
\begin{align*}
& C_{1} \ln b+C_{2}=0 \tag{4-109a}\\
& C_{1} \ln a+C_{2}=V_{0} \tag{4-109b}
\end{align*}
$$

Expressions C_{1} and C_{2} are readily determined:

$$
C_{1}=-\frac{V_{0}}{\ln (b / a)}, \quad C_{2}=\frac{V_{0} \ln b}{\ln (b / a)}
$$

Therefore, the potential distribution in the space $a \leq r \leq b$ is

$$
\begin{equation*}
V(r)=\frac{V_{0}}{\ln (b / a)} \ln \left(\frac{b}{r}\right) \tag{4-110}
\end{equation*}
$$

Obviously, equipotential surfaces are coaxial cylindrical surfaces.

of either
(4-107)
nditions.
; a radius
rad
ween \quad ne
isume tho ie electric
tions:
(4-109a)

$\%$

(4-110)
Fig. 4-12 Cross section of split circular cylinder and equipotential lines (Example 4-9).

Example 4-9 An illfinitely long, thin, conducting circular tube of radius b is split in two halves. The upper half is kept at a potential $V=V_{0}$ and the lower half at $V=$ - V_{0}. Determine the potential distribution both inside and outside the tube.

Solution: A cross section of the split circular tube is shown in Fig. 4-12. Since the tube is assumed to be infinitely long, the potential is independent of z and the twodimensional Laplace's equation (4-93) applies. The boundary conditions are:

$$
V(b, \phi)=\left\{\begin{align*}
V_{0}, & \text { for } 0<\phi<\pi \tag{4-108a}\\
-V_{0}, & \text { for } \pi<\phi<2 \pi .
\end{align*}\right.
$$

These conditions are plotted in Fig. 4-13. Obviously $V(r, \phi)$ is an odd function of ϕ. We shall determine $V(r, \phi)$ inside and outside the tube separately.
a) Inside the tube,

$$
r<b .
$$

Fig. 4-13 Boundary condition for Example 4-9.

Because this region includes $r=0$, terms containing the r^{-n} factor cannot exist. Moreover, since $V(r, \phi)$ is an odd function of ϕ, the appropriate form of solution is, from Eq. (4-102),

$$
\begin{equation*}
V_{n}(r, \phi)=A_{n} r^{n} \sin n \phi \tag{4-112}
\end{equation*}
$$

However, a single such term does not satisfy the boundary conditions specified in Eq. (4-111). We form a series solution

$$
\begin{align*}
V(r, \phi) & =\sum_{n=1}^{\infty} V_{n}(r, \phi) \\
& =\sum_{n=1}^{\infty} A_{n} r^{n} \sin n \phi, \tag{4-113}
\end{align*}
$$

and require that Eq. (4-111) be satisfied at $r=b$. This amounts to expanding the rectangular wave (period $=2 \pi$), shown in Fig. 4-13, into a Fourier sine series.

$$
\sum_{n=1}^{\infty} A_{n} b^{n} \sin n \phi=\left\{\begin{align*}
V_{0}, & \text { for } 0<-\mid \lll \pi \tag{4-114}\\
-V_{0}, & \text { for } \pi<\phi<2 \pi
\end{align*}\right.
$$

The coefficients A_{n} can be found by the method illustrated in Example 4-6. As a matter of fact, because we already have the result in Eq. (4-80), we can directly write

$$
A_{n}= \begin{cases}\frac{4 V_{0}}{n \pi b^{n}}, & \text { if } n \text { is odd } \tag{4-115}\\ 0, & \text { if } n \text { is even }\end{cases}
$$

The potential distribution inside the tube is obtained by substituting Eq. (4-115) in Eq. (4-113).

$$
\begin{equation*}
V(r, \phi)=\frac{4 V_{0}}{\pi} \sum_{n=\text { ovd }}^{\infty} \frac{1}{n}\left(\frac{r}{b}\right)^{n} \sin n \phi, \quad r<b . \tag{4-116}
\end{equation*}
$$

b) Outside the tube,

$$
r>b .
$$

In this region, the potential must decrease to zero as $r \rightarrow \infty$. Terms containing the factor r^{n} cannot exist, and the appropriate form of solution is

$$
\begin{align*}
V(r, \phi) & =\sum_{n=1}^{\infty} V_{n}(r, \phi) \\
& =\sum_{n=1}^{\infty} B_{n} r^{-n} \sin n \phi . \tag{4-117}
\end{align*}
$$

4-7 BOUNDARY-VALUE ROBLEMS IN SPHERICAL COORDINATES

The general solution of Laplace's equation in spherical coordinates is a very involved procedure, so we will limit our discussion to cases where the electric potential is independent' of the azimuthal angle ϕ. Even with this limitation we will need to introduce some new functions. From Eq. (4-9) we have

$$
\begin{equation*}
\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)+\frac{1}{R^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)=0 . \tag{4-121}
\end{equation*}
$$

Applying the method of separation of variables, we assume a product solution

$$
\begin{equation*}
V(R, \theta)=\Gamma(R) \Theta(\theta) \tag{4-122}
\end{equation*}
$$

Substitution of this solution in Eq. (4-121) yields, after rearrangement,

$$
\begin{equation*}
\frac{1}{\Gamma(R)} \frac{d}{d R}\left[R^{z} \cdot \frac{d \Gamma(R)}{d R}\right]+\frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]=0 \tag{4-123}
\end{equation*}
$$

In Eq. (4-123) the first term on the left side is a function of R only, and the second term is a function of θ only. If the equation is oo hold for all values of R and θ, each term
must be a constant and be the negative of the other. We write

$$
\begin{equation*}
\frac{1}{\Gamma(R)} \frac{d}{d R}\left[R^{2} \frac{d \Gamma(R)}{d R}\right]=k^{2} \tag{4-124}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{\Theta(\theta) \sin \theta} \frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]=-k^{2} \tag{4-125}
\end{equation*}
$$

where k is a separation constant. We must now solve the two second-order, ordinary differential equations ($4-124$), and ($4-125$).

Equation (4-124) can be rewritten as

$$
\begin{equation*}
R^{2} \frac{d^{2} \Gamma(R)}{d R^{2}}+2 R \frac{d \Gamma(R)}{d R}-k^{2} \Gamma(R)=0, \tag{4-126}
\end{equation*}
$$

which has a solution of the form

$$
\begin{equation*}
\Gamma_{n}(R)=A_{n} R^{n}+B_{n} R^{-(n+1)} . \tag{4-127}
\end{equation*}
$$

In Eq. (4-127), A_{n} and B_{n} are arbitrary constants, and the foltowing relation between n and k can be verified by substitution:

$$
\begin{equation*}
n(n+1)=k^{2}, \tag{4-128}
\end{equation*}
$$

where $n=0,1,2, \ldots$ is a positive integer.
With the value of k^{2} given in Eq. (4-128), we have, from Eq. (4-125),

$$
\begin{equation*}
\frac{d}{d \theta}\left[\sin \theta \frac{d \Theta(\theta)}{d \theta}\right]+n(n+1) \Theta(\theta) \sin \theta=0 \tag{4-129}
\end{equation*}
$$

which is a form of Legendre's equation. For problems involving the full range of 0 , from 0 to π, the solutions to Legendre's equation (4-129) are called Legendre functions, usually denoted by $P(\cos \theta)$. Since Legendre functions for integral values of n are polynomials in $\cos 0$, they are also called Legendre polynomials. We write

$$
\begin{equation*}
\Theta_{n}(\theta)=P_{n}(\cos \theta) . \tag{4-130}
\end{equation*}
$$

Table 4-2 lists the expressions for Legendre polynomials ${ }^{\dagger}$ for several values of n.
Combining solutions (4-127) and (4-130) in Eq. (4-122), we have, for spherical boundary-value problems with no azimuthal variation,

$$
\begin{equation*}
V_{n}(R, \theta)=\left[A_{n} R^{n}+B_{n} R^{-(n+1)}\right] P_{n}(\cos \theta) . \tag{4-131}
\end{equation*}
$$

Depending on the boundary conditions of the given problem, the complete solution may be a summation of the terms in Eq. (4-131). We illustrate the application of

[^20]
between
(4-129)
ne of θ, functions, of n are $(4-130)$ Les of n. spherical
 : solus. cation of following example.

Example 4-10 An uncharged conducting sphere of radius b is placed in an initially uniform electric field $\mathbf{E}_{0}=\mathbf{a}_{2} E_{0}$. Determine (a) the potential distribution $V(R, \theta)$ and (b) the electric field intensity $\mathrm{E}(R . \theta)$ after the introduction of the sphere.

Solution: After the conducting sphere is introduced into the electric field, a separaion and redistribution of charges will take place in such a way that the surface of the sphere is maintained equipotential. The electric field intensity within the sphere is zero. Outside the sphere the field lines will intersect the surface normally, and the field intensity at points very far away from the sphere will not be affected appreciably. The geometry of thisizproblem is depicted in Fig. 4-14. The potential is, obviously, independent of the azilifuthal angle ϕ, and the solution obtained in this section applies.

Fig. 4-14 Conducting sphere in a uniform electric field (Example 4-10).
a) To determine the potential distribution $V(R, \theta)$ for $R \geq b$, we note the following boundary conditions:

$$
\begin{align*}
& V(b, \theta)=0^{+} \tag{4-132a}\\
& V(R, \theta)=-E_{0} z=-E_{0} R \cos \theta, \quad \because \text { for } R \gg b . \tag{4-132b}
\end{align*}
$$

Equation (4-132b) is a statement that the original E_{0} is not disturbed at points very far away from the sphere. By using Eq. (4-131), we write the general solution as

$$
\begin{equation*}
V(R, \theta)=\sum_{n=0}^{\infty}\left[A_{n} R^{n}+B_{n} R^{-(n+1)}\right] P_{n}(\cos \theta), \quad R \geq b \tag{4-133}
\end{equation*}
$$

However, in view of Eq. (4-132b), all A_{n} except A_{1} must vanish, and $A_{1}=-E_{0}$. We have, from Eq. (4-133) and Table 4-2,

$$
\begin{align*}
V(R, \theta) & =-E_{0} R P_{1}(\cos \theta)+\sum_{n=0}^{\infty} B_{n} R^{-(n+1)} P_{n}(\cos \theta) \\
& =B_{0} R^{-1}+\left(B_{1} R^{-2}-E_{0} R\right) \cos \theta+\sum_{n=2}^{\infty} B_{n} R^{-(n+1)} P_{n}(\cos \theta), \quad R \geq b \tag{4-134}
\end{align*}
$$

Actually the first term on the right side of Eq. (4-134) corresponds to the potential of a charged sphere. Since the sphere is uncharged, $B_{0}=0$, and Eq. (4-134) becomes

$$
\begin{equation*}
V(R, \theta)=\left(\frac{B_{1}}{R^{2}}-E_{0} R\right) \cos \theta+\sum_{n=2}^{\infty} B_{n} R^{-(n+1)} P_{n}(\cos \theta), \quad R \geq b \tag{4-135}
\end{equation*}
$$

Now applying boundary condition (4-132a) at $R=b$, we require

$$
0=\left(\frac{B_{1}}{b^{2}}-E_{0} b\right) \cos \theta+\sum_{n=2}^{\infty} B_{n} b^{-(n+1)} P_{n}(\cos \theta),
$$

from which we obtain

$$
B_{1}=E_{0} b^{3}
$$

and

$$
B_{n}=0, \quad n \geq 2 .
$$

[^21]\square
+

y

REVIEW QUESTIONS
167

We have, frally, trom Eq. (4-135),

$$
\begin{equation*}
\frac{y}{4}(R, \theta)=-E_{0}\left[1-\left(\frac{b}{R}\right)^{3}\right] R \cos \theta, \quad R \geq b \tag{4-136}
\end{equation*}
$$

b) The electric fielt intensity $\mathbf{E}(R, \theta)$ for $R \geq b$ can be easily determined from $-\nabla V(R, \theta)$:

$$
\begin{equation*}
\mathbf{E}(R, \theta)=\mathbf{a}_{R} E_{R}^{\prime}+\mathbf{a}_{\theta} E_{\theta}, \tag{4-137a}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{R}=-\frac{\partial V}{\partial R}=E_{0}\left[1+2\left(\frac{b}{R}\right)^{3}\right] \cos \theta, \quad R \geq b \tag{4-137b}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{\theta} \neq-\frac{\partial V}{R \partial \theta}=-E_{0}=\left[1-\left(\frac{b}{R}\right)^{3}\right] \sin \theta, \quad R \geq b \tag{4-137c}
\end{equation*}
$$

The surface charge density on the sphere can be found by noting

$$
\begin{equation*}
\rho_{s}(\theta)=\epsilon_{0} E_{\left.R\right|_{R=b}}=3 \epsilon_{0} E_{0} \cos \theta \tag{4-138}
\end{equation*}
$$

which is proportlonal to $\cos \theta$, being zero at $\theta=\pi / 2$. Some equipotential and field lines are sketched in Fig. 4-14.

In this chapter we have discussed the analytical solution of electrostatic problems by the method of images and by direct solution of Laplace's equation. The method of images is useful when charges exist near conducting bodies of a simple and compatible geometry: a point charge near a conducting sphere or an infinite conducting plane; and a line chatge neat a parallel conducting cylinder or a paralle conducting plane. The soldiout of Laplace's equation by the method of separation of variables requires that the boundaries coincide with coordinate surfaces. These requirements restrict the usefulnềssiof both methods. In practical problems we are often faced with more complicated boundaries, which are not amenable to neat analytical solutions. In such cases, we must resort to approximate graphical or numerical methods. These methods are beyond the scope of this book. ${ }^{+}$

REVIEW QUESTIONS
R.4-1 Write Póisson's equation in vector notation
a) for a simple medium,
b) for a lincir and isotropic, but inbomogencous medium.
R.4-2 Repeat lih Cartesian coordinates both parts of R.4-1.
\qquad
${ }^{\dagger}$ See, for instance, B. D. Popović, Introductory Engineering Electromagnetics, Addison-Wesley Publishing Co. (1971), Chapter 5.

R.4-3 Write Laplace's equation for a simple medium

a) in vector notation,
b) in Cartesian coordinates.
R.4-4 If $\nabla^{2} U=0$, why does it not follow that U is identically zero?
R.4-5 A fixed voltage is connected across a parallel-plate capacitor.
a) Does the electric field intensity in the space between the plates depend on the permittivity of the medium?
b) Does the electric flux density depend on the permittivity of the medium?

Explain.
R.4-6 Assume that fixed charges $+Q$ and $-Q$ are deposited on the plates of an isolated parallelplate capacitor.
a) Does the electric field intensity in the space between the plates depend on the permittivity of the medium?
b) Does the electric fiux density depend on the permittivity of the medium?

Explain.
R.4-7 Why is the electrostatic potential continuous at a boundary?
R.4-8 State in words the uniqueness theorem of electrostatics.
R.4-9 What is the image of a spherical cloud of electrons with respect to an infinite conducting plane?
R.4-10 Why cannot the point at infinity be used as the point for the zero reference potential for an infinite line charge as it is for a point charge? What is the physical reason for this difference?
R.4-11 What is the image of an infinitely long line charge of density ρ_{ι} with respect to a parallel conducting circular cylinder?
R.4-12 Where is the zero-potential surface of the two-wire transmission line in Fig. 4-6?
R.4-13 In finding the surface charge induced on a grounded sphere by a point charge, can we set $R=a$ in Eq. (4-52) and then evaluate ρ_{s} by $-\epsilon_{0} \partial V(a, \theta) / \partial R$? Explain.
R.4-14 What is the method of separation of variables? Under what conditions is it useful in solving Laplace's equation?
R.4-15 What are boundary-value problems?
R.4-16 Can all three separation constants (k_{x}, k_{y}, and k_{z}) in Cartesian coordinates be real? Can they all be imaginary? Explain.
R.4-17 Can the separation constant k in the solution of the two-dimensional Laplace's equation (4-97) be imaginary?
R.4-18 What should we do to modify the solution in Eq. (4-110) for Example 4-8 if the inner conductor of the coaxial cable is grounded and the outer conductor is kept at a potential V_{0} ?
R.4-19 What should we do to modify the solution in Eq. (4-116) for Example 4-9 if the conducting circular cylinder is split vertically in two halves, with $V=V_{0}$ for $-\pi / 2<\phi<\pi / 2$ and $V=-V_{0}$ for $\pi / 2<\phi<3 \pi / 2$?
R.4-20 Can functions $V_{1}(R, \theta) \stackrel{=}{=} C_{1} R \cos \theta$ and $V_{2}(R, \theta)=C_{2} R^{-2} \cos \theta$, where C_{1} and C_{2} are arbitrary constants, be sblutions of Laplace's equatiot in spherical coordinates? Explain.

PROBLEMS

vermittivity
ed parallel: xermittivily
otential for diference? o a paralle! $4-6$? rge, can we it useful in e real? Can

if the inner ritial V_{0} ?
I if the con: $1<\pi / 2$ and
P.4-1 The upper and lower conducting plates of a large parallel-plate capacitor are separated by a distance d and malhtained at potentials V_{0} and 0 respectively. A dielectric slab of dielectric constant ϵ_{r} and uniform thickness $0.8 d$ is placed over the lower plate. Assuming negligible fringing effect, determine
a) the potential afid electric field distribution in the dielectric slab,
b) the potential athd electric field distribution it the air space between the dielectric slab and the upper plate,
c) the surface chatge densities on the upper and lower plates.
P.4-2 Prove that the scalar potential V in Eq. (3-56) satisfies Poisson's equation; Eq. (4-6).
P.4-3 Prove that a potential function satisfying Laplace's equation in a given region possesses no maximum or minimum within the region.
P.4-4 Verify that

$$
V_{1}=C_{1} / R \quad \text { and } \quad V_{2}=C_{2} z /\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}
$$

where C_{1} and C_{2} are arbitrary constants, are solutions of Laplace's equation.
P.4-5 Assume a point charge Q above an infinite conducting plane at $y=0$.
a) Prove that $V(x, y, z)$ in Eq. (4-37) satisfies Laplace's equation if the conducting plane is maintained at zero potential.
b) What should thit expression for $V(x, y, z)$ be if the conducting plane has a nonzero potential V_{0} ?
c) What is the eletrostatic force of attraction between the charge Q and the conducting plane?
P.4-6 Assume that spalce between the inner and outer conductors of a long coaxial cylindrical structure is filled with aft electron cloud having a volume density of charge $\rho=A / r$ for $a<r<b$, where a and b are, respetively, the radii of the inner and outer conductors. The inner conductor is maintained at a potential V_{0}, and the outer conductor is grounded. Determine the potential distribution in the regidn $a<r<b$ by solving Poisson's equation.
P.4-7 A point charge Q exists at a distance d above a large grounded conducting plane. Determine
a) the surface chatge density ρ_{s},
b) the total charge induced on the conducting pias.
P.4-8 Determine the systems of image chestit that will replace the conducting boundaries that are maintained at zero potential for
a) a point charge Q located between two large, grounded, parallel conducting planes as shown in Fig. 4-15(a);
b) an infinite line charge ρ_{i} located midway between two large, intersecting conducting planes forming a 60 -degree angle, as shown in Fig. 4-15(b).

(a) Point charge between grounded parallel planes.

(b) Line charge between grounded intersecting planes.

Fig. 4-15 Diagrams for Problem P.4-8.
P.4-9 Two infinitely long, parallel line charges with line densities ρ_{ℓ} and $-\rho_{\ell}$ are located at

$$
z=+\frac{b}{2} \text { and } z=-\frac{b}{2}
$$

respectively. Find the equations for the equipotential surfaces, and sketch a typical pair.
P.4-10 Determine the capacitance per unit length of a two-wire transmission line with parallel conducting cylinders of different radii a_{1} and a_{2}, their axes being separated by a distance D (where $D>a_{1}+a_{2}$).
P.4-11 A straight conducting wire of radius a is parallel to and at height h from the surface of the earth. Assuming that the earth is perfectly conducting, determine the capacitance per unit length between the wire and the earth.
P.4-12 A point charge Q is located inside and at distance d from the center of a grounded spherical conducting shell of radius b (where $b>d$). Use the method of images to determine
a) the potential distribution inside the shell,
b) the charge density ρ_{s} induced on the inner surface of the shell.
P.4-13 Two dielectric media with dielectric constants ϵ_{1} and ϵ_{2} are separated by a plane boundary at $x=0$, as shown in Fig. 4-16. A point charge Q exists in medium 1 at distance d from the boundary.
a) Verify that the field in medium 1 can be obtained from Q and an image charge $-Q_{1}$, both acting in medium 1.

Fig. 4-16 Image charges in dielectric media (Problem P.4-13).
b) Verify that the field in medium 2 can be obtained from Q and an image charge $+Q_{2}$, both acting in mediurif 2 .
c) Determine Q_{1} and Q_{2} (Hint: Consider neighboring points P_{1} and P_{2} in media 1 and 2 respectively and require the continuity of the tangential component of the E-field and of the normal componeht of the D-field.)
P.4-14 In what way shoutd we hodify the solution in Eq. (4-91) for Example 4-7 if the boundary conditions on the top, bottoin, and right planes in Fig. 4-10 are $\partial V / \partial n=0$?
P.4-15 In what way should we modify the solution in Eq. (4-91) for Example 4-7 if the top, bottom, and left planes in Fig: 4-10 are grounded $(V=0)$ and an end plate on the right is maintained at a constant potential V_{0} ?
P.4-16 Consider the rectangulat region shown in Fig. 4. 10 as the cross section of an enctosure formed by four conducting plates. The iefland right plates are grounded, and the top and botom phates are mathtained at constaht potentials V_{1} and V_{2} respectively. Determine the potential distribution inside the enclosure;
P.4-17 Consider a metallic rectangular box with sides a and b and height c. The side walls and the bottom surface are grounded. The top surface is isolated and kept at a constant potential V_{0}. Determine the potential disttibution inside the box.
P.4-18 An infinitely long, thin, conducting circular cylinder of radius b is split in four quartercylinders, as shown in Fig. 4-17. The quarter-cylinders in the second and fourth paadrans are grounded, and those in the first and hird puadrants ate kepe 41 prentiats l_{0} and $-V_{0}$ eespectively. Determine the potential distribution both inside and outside the cylinder.

Fig. 4-17 Cross section of long circular cylinder split in four quarters (Problem P.4-18).
P.4-19 A long, grounded conducting cylinder of radius b is placed along the z-axis in an initially uniform electric field $\mathrm{E}_{0}=\mathbf{a}_{x} E_{0}$. Determine potential distribution $V(r, \phi)$ and electric field intensity $\mathbf{E}(r, \phi)$ outside the cylinder.
P.4-20 A long dielectric cylinder of tadius b and dielectric constant ϵ_{r} is placed along the z-axis in an initially uniform electric field $\mathbf{E}_{0}=\mathbf{a}_{x} \mathbf{E}_{0}$. Determine $V(r, \phi)$ and $\mathbf{E}(r, \phi)$ both inside and outside the dielectric cylinder.
P.4-21 Rework Example 4-10, assuming $V(b, \theta)=V_{0}$ in, Eq. (4-132a).
P.4-22 A dielectric sphere of radius b and dielectric constant ϵ_{r} is placed in an initially uniform electric field, $\mathrm{E}_{0}=\mathrm{a}_{\mathrm{z}} E_{0}$, in air. Determine $V(R, \theta)$ and $\mathrm{E}(R, \theta)$ both inside and outside the dielectric sphere.

5 / Steady Electric Currents

5-1 INTRODUCTION

In Chapters 3 and 4 we dealt with electrostatic problems, field problems associated with electric charges at rest. We now consider the charges in motion that constitute current flow. There are several types of electric currents caused by the motion of free charges. ${ }^{\dagger}$ Conduction currents in conductors and semiconductors are caused by drift motion of conduction electrons and/or holes; electrolytiecturents are the result of migration of positive and negative ions; and convection currents result from motion of electrons and/or ions in a vacumm. In this chapter we shall pay special attention to conduction currents that are governed by Ohm's law. We will proceed from the point form of Ohm's law that relates current density and electric field intensity and obtain the $V=I R$ relationship in circuit theory. We will also introduce the concept of electromotive force and derive the familiar Kirchhoff's voltage law. Using the principle of conservation of charge, we will show how to obtain a point relationship between current and charge densities, a relationship called the equation of continuity from which Kirchhoff's current law follows.

When a current flows across the interface between two media of different conductivities, certain boundary conditions must be satisfied, and the direction of current flow is changed. We will discuss these boundary eonditions. We will also show that for a homogencous conducting medium, the current density can be expressed as the gradient of a scalar field, which satisfies Laplace's equation. Hence, an analogous situation exists between steady-current and electrostatic fields that is the basis for mapping the potential distribution of an electrostatic problem in an electrolytic tank.

The electrolyte in an electrolytic tank is essentially a liquid medium with a low conductivity, usually a diluted salt solution. Highly conducting metallic electrodes are inserted in the solution. When a voltage or potential difference is applied to the electrodes, an electric field is established within the solution, and the molecules of the electrolyte are decomposed into oppositely charged ions by a chemical process called electrolysis. Positive ions move in the direction of the electric field, and negative

[^22]
ions move in a direction opposite to the field, both contributing to a current-flow in the direction of the field. An experimental model kan be set up in an electrolytic tank, with electrodes ofproper geometrical shapes simulating the boundaries in electrostatic problems. The ffeasured potential distribution it the electrolyte is then the solution to Laplace's equation for difficult-to-solve analytic problems having complex boundaries in a homogeneous medium.

Convection currefits are the result of the motion of positively or negatively charged particles in a acuum or rarefied gas. Familiar examples are electron beams in a cathode-ray tube and the vlolent motions of charged particles in a thunderstorm. Convection curtents, the result of hydrodynamic motion involving a mass transport, are not governed by dhm's law.

The mechanism of conduction currents is different from that of both electrolytic currents and convection currehts. In their normal state, the atoms of a conductor occupy regular positions in a crystalline structure. The atoms consist of positively charged nuclei surrounded by electrons in a shell-like arrangement. The electrons in the inner shells are tightly bound to the nuclei and are not free to move away. The electrons in the outermost shells of a conductor atom do not completely fill the shells: they are valence or conduction electrons, and are only very loosely bound to the nuctei. These latter electrons may wander from one atom to another in a random manner. The atoms, on the dverage, remain electrically neutral, and there is no net drift motion of electrons. When an external electric field is applied on a conductor, an organized motion of the conduction electrons will result, producing an electric current. The average drift velocity of the electrons is very low (on the order of 10^{-5} or $10^{-4} \mathrm{~m} / \mathrm{s}$) even for very good conductors, because they collide with the atoms in the course of their thotion, dissipating part of their kinetic energy as heat. Even with the drift motion of conduction electrons, a conductor remains electrically neutral. Electric forces prevent excess electrons from accumulating at any point in a conductor. We will show analytically that the charge density in a conductor decreases exponentially with time. In a good conductor the charge density diminishes extremely rapidly toward zero as the state of equilibrium is approached.

5-2 CURRENT DENSITY AND OHM'S LAW

Consider the steady motion of one kind of charge carriers, each of charge q (which is negative for electrons), across an element of surface Δs with a velocity \mathbf{u}, as shown in Fig. 5-1. If N is the flumber of charge carriers per unit volume, then in time Δt each charge carrier moves a distance $u \Delta t$, and the amount of charge passing through the surface Δs is

$$
\begin{equation*}
\Delta Q=N q \mathbf{u} \cdot \mathbf{a}_{n} \Delta s \Delta t \quad \text { (C) } \tag{5-1}
\end{equation*}
$$

Since current is the tlme rate of change of charge, we have

$$
\begin{equation*}
\Delta I=\frac{\Delta Q}{\Delta t}=N q \mathbf{u} \cdot \mathbf{a}_{n} \Delta s=N q \mathbf{u} \cdot \Delta \mathbf{s} \quad \text { (A) } \tag{5-2}
\end{equation*}
$$

Fig. 5-1 Conduction current due to drift motion of charge carriers across a surface.

In Eq. (5-2), we have written $\Delta \mathbf{s}=\mathbf{a}_{n} \Delta s$ as a vector quantity. It is convenient to define a vector point function, polume current density, or simply current density, \mathbf{J}, in amperes per square meter,

$$
\begin{equation*}
\mathbf{J}=N q \mathbf{u} \quad\left(\mathrm{~A} / \mathrm{m}^{2}\right) ; \tag{5-3}
\end{equation*}
$$

so that Eq. (5-2) can be written as

$$
\begin{equation*}
\Delta I=\mathbf{J} \cdot \Delta \mathbf{s} \tag{5-4}
\end{equation*}
$$

The total current I flowing through an arbitrary surface S is then the flux of the J vector through S :

$$
\begin{equation*}
I=\int_{S} \mathbf{J} \cdot d \mathbf{s} \quad(\mathrm{~A}) \tag{5-5}
\end{equation*}
$$

Noting that the product $N q$ is in fact charge per unit volume, we may rewrite Eq. (5-3) as

$$
\begin{equation*}
\mathbf{J}=\rho \mathbf{u} \quad\left(\mathrm{A} / \mathrm{m}^{2}\right), \tag{5-6}
\end{equation*}
$$

which is the relation between the convection current density and the velocity of the charge carrier.

In the case of conduction currents there may be more than one kind of charge carriers (electrons, holes, and ions) drifting with different velocities. Equation (5-3) should be generalized to read

$$
\begin{equation*}
\mathbf{J}=\sum_{i} N_{i} q_{i} \mathbf{u}_{i} \quad\left(\mathrm{~A} / \mathrm{m}^{2}\right) \tag{5-7}
\end{equation*}
$$

As indicated in Section 5-1, conduction currents are the result of the drift motion of charge carriers under the influence of an applied electric field. The atoms remain neutral ($\rho=0$). It can be justified analytically that for most conducting materials
pvenient to all density, $(5-3)$

$$
\overbrace{4)}
$$

ux of the J nay rewrite
ocity of the d of charge ration (5-3)

It motion of oms remain ig materials

Fig. 5-2 Homogeneous conductor with a constant cross section.
terminals land 2 is ${ }^{\dagger}$

$$
V_{12}=E l
$$

or

$$
\begin{equation*}
E=\frac{V_{12}}{l} \tag{5-10}
\end{equation*}
$$

The total current is

$$
\begin{gather*}
I=\int \mathbf{J} \cdot d \mathbf{s}=J S \\
J=\frac{I}{S} \tag{5-11}
\end{gather*}
$$

Using Eqs. (5-10) and (5-11) in Eq. (5-8), we obtain

$$
\frac{I}{S}=\sigma \frac{V_{12}}{\ell}
$$

or

$$
\begin{equation*}
V_{12}=\left(\frac{\ell}{\sigma S}\right) I=R I \tag{5-12}
\end{equation*}
$$

which is the same as Eq. (5-9). From Eq. (5-12) we have the formula for the resistance of a straight piece of homogeneous material of a uniform cross section for steady current (DC).

$$
\begin{equation*}
R=\frac{\ell}{\sigma S} \quad(\Omega) \tag{5-13}
\end{equation*}
$$

We could have started with Eq. (5-9) as the experimental Ohm's law and applied it to a homogeneous conductor of length ℓ and uniform cross-section S. Using the formula in Eq. (5-13), we could derive the point relationship in Eq. (5-8).

Example 5-1 Determine the DC resistance of $1(\mathrm{~km})$ of wire having a $1-(\mathrm{mm})$ radius (a) if the wire is made of.copper, and (b) if the wire is made of aluminum.

Solution: Since we are dealing with conductors of a uniform cross section, Eq. (5-13) applies.
a) For copper wire, $\sigma_{\mathrm{cu}}=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m})$:

$$
\ell=10^{3}(\mathrm{~m}), \quad S=\pi\left(10^{-3}\right)^{2}=10^{-6} \pi\left(\mathrm{~m}^{2}\right) .
$$

We have

$$
R_{c u}=\frac{\ell}{\sigma_{c u} S}=\frac{10^{3}}{5.80 \times 10^{7} \times 10^{-6} \pi}=5.49(\Omega) .
$$

[^23]d applied it Using the 1.
mm) radius
i, Eq. (5-13)
b) For aluminum wre, $\sigma_{a l}=3.54 \times 10^{7}(\mathrm{~S} / \mathrm{m})$:
$$
R_{a l}=\frac{\ell}{\sigma_{a l} S}=\frac{\sigma_{c u}}{\sigma_{a t}} R_{c u}=\frac{5.80}{3.54} \times 5.49=8.99(\Omega) .
$$

The conductance G, or the reciprocal of resistance, is useful in combining resistances in parallel:

From circuit theory the know the following:
a) When resistancel R_{1} and R_{2} are connected in series (same current), the total . resistance R is

$$
\begin{equation*}
R_{s r}=R_{1}+R_{2} \tag{5-15}
\end{equation*}
$$

b) When resistances R_{1} and R_{2} are connected in parallel (same voltage), we have

$$
\begin{equation*}
\frac{1}{R_{| |}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \tag{5-16a}
\end{equation*}
$$

or

$$
\begin{equation*}
G_{\|}=G_{1}+G_{2} . \tag{5-16b}
\end{equation*}
$$

5-3 ELECTROMOTIVE FGRCE AND KIRCHHOFF'S VOLTAGE LAW

In Section 3-2 we pbinted out that static electric field is conservative and that the scalar line integral of static electric intersity around any closed path is zero; that is,

$$
\begin{equation*}
\oint_{c} \mathbf{E} \cdot d \ell=0 \tag{5-17}
\end{equation*}
$$

For an ohmic material $\mathbf{J}=\sigma \mathbf{E}$, Eq. (5-17) becomes

$$
\begin{equation*}
\oint_{C} \frac{1}{\alpha} \mathbf{J} \cdot d \ell=0 . \tag{5-18}
\end{equation*}
$$

Equation (5-18) tellis'us that a steady current cannot be maintained in the same direction in a closed circuit by an electrostatic field. A steady current in a circuit is the result of the motion of charge carriers, which, in their paths, collide with atoms and dissipate energy in the circuit This energy must cóme from a nonconservative field, since a charge carrier completing a closed circuit in a conservative field neither gains nor

Fig. 5-3. Electric fields inside an electric battery.
loses energy. The source of the nonconservative field may be electric batteries (conversion of chemical energy to ,electric energy), electric generators (conversion of mechanical energy to electric energy), thermocouples (conversion of thermal energy to electric energy), photovoltaic cells (conversion of light energy to electric energy), or other devices. These electrical energy sources, when connected in an electric circuit, provide a driving force for the charge carriers. This force manifests itself as an equivalent impressed electric field intensity \mathbf{E}_{i}.

Consider an electric battery with electrodes 1 and 2, shown schematically in Fig. 5-3. Chemical action creates a cumulation of positive and negative charges at electrodes 1 and 2 respectively. These charges give rise to an electrostatic field intensity \mathbf{E} both outside and inside the battery. Inside the battery, \mathbf{E} must be equal in magnitude and opposite in direction to the nonconservative E_{i} produced by chemical action, since no current flows in the open-circuited battery and the net force acting on the charge carriers must vanish. The line integral of the impressed field intensity \mathbf{E}_{i} from the negative to the positive electrode (from electrode 2 to electrode 1 in Fig. 5-3) inside the battery is customarily called the electromotive force ${ }^{\dagger}$ (emf) of the battery. The SI unit for emf is volt, and an emf is not a force in newtons. Denoted by \mathscr{V}, the electromotive force is a measure of the strength of the nonconservative source. We have

$$
\begin{equation*}
\mathscr{Y}=\int_{2}^{1} \mathbf{E}_{i} \cdot d \ell=-\int_{\substack{\text { Inside } \\ \text { the source }}}^{1} \mathbf{E} \cdot d \ell \tag{5-19}
\end{equation*}
$$

The conservative electrostatic field intensity E satisfies Eq. (5-17).

[^24]Combining Eqs. $(5-19)$ and (5-20), we have

$$
\begin{gather*}
\mathscr{V}=\int_{1}^{\text {Outside }} \begin{array}{c}
2 \\
\text { the source } \\
\vdots
\end{array} \mathbf{E}^{0} d \ell \tag{5-21}\\
\mathscr{V}=V_{12}=V_{1}-V_{2} .
\end{gather*}
$$

or

In Eqs. (5-21) and $(5-22)$ we have expressed the emf of the source as a line integral of the conservative \mathbf{E} and interpreted it as a veltage rise. In spite of the nonconservative nature of E_{i}, the emf can be expressed as a potential difference between the positive and negative termiffals. This was what we did in arriving at Eq. $(5-10)$.

When a resistot in the form of Fig. $5-2$ is connected between terminals 1 and 2 . of the battery, completing the circuit, the total electric field intensity (electrostatic E caused by charge cumulation, as well as impressed E_{i} caused by chemical action) must be used in the point form of Ohm's law. We have, instead of Eq. (5-8),

$$
\begin{equation*}
\mathbf{J}=\sigma\left(\mathbf{E}+\mathbf{E}_{i}\right), \tag{5-23}
\end{equation*}
$$

where \mathbf{E}_{i} exists inside the battery only, while has a nonzero value both inside and outside the source. From Eq. (5-23), we obtain

$$
\begin{equation*}
\mathrm{E}+\mathrm{E}_{i}=\frac{\mathbf{J}}{\sigma} \tag{5-24}
\end{equation*}
$$

The scalar line integtal of Eq. (5-24) around the closed circuit yields, in view of Eqs. (5-17) and (5-19),

$$
\begin{equation*}
\mathscr{F}=\oint_{C}\left(\mathbf{E}+\mathbf{E}_{\mathrm{i}}\right) \cdot d \ell=\oint_{C} \frac{1}{\sigma} \mathbf{J} \cdot d \ell . \tag{5-25}
\end{equation*}
$$

Equation (5-25) should be compared to Eq. (5-18), which holds when there is no source of nonconservative field. If the resistor has a conductivity σ, length ℓ, and uniform cross-section $S, J=I / S$ and the right side of Eq. $(5-25)$ becomes RI. We have ${ }^{\dagger}$

$$
\begin{equation*}
\mathscr{V}=R I \tag{5-26}
\end{equation*}
$$

If there are more than zne source of elechmative force and more than one resistor (including the internal resistances of the sources) in the closed path, we generalize Eq. (5-26) to

$$
\begin{equation*}
\sum_{j} V_{j}=\sum_{i k} R_{k} I_{k} \tag{5-27}
\end{equation*}
$$

[^25]Equation (5-27) is an expression of Kirchhoff s voltage law. It states that around a closed path in an electric circuit the algebraic sum of the emf's (voltage rises) is equal to the algebraic sum of the voltage drops across the resistances. It applies to any closed path in a network. The direction of tracing the path can be arbitrarily assigned, and the currents in the different resistances need not be the same. Kirchhoff's voltage law is the basis for loop analysis in circuit theory.

5-4 EQUATION OF CONTINUITY AND KIRCHHOFF'S CURRENT LAW

The principle of conservation of charge is one of the fundamental postulates of physics. Electric charges may not be created or destroyed; all charges either at rest or in motion must be accounted for at all times. Consider an arbitrary volume V bounded by surface S. A net charge Q exists within this region. If a net current I flows across the surface ont of this region, the charge in the volume must decreese at a rate that equals the current. Conversely, if a net current flows across the surface into the region, the charge in the volume must increase at a rate equal to the current. The current leaving the region is the total outward flux of the current density vector through the surface S. We have

$$
\begin{equation*}
I=\oint_{S} \mathbf{J} \cdot d \mathbf{s}=-\frac{d Q}{d t}=-\frac{d}{d t} \int_{V} \rho d v \tag{5-28}
\end{equation*}
$$

Divergence theorem, Eq. (2-107), may be invoked to convert the surface integral of \mathbf{J} to the volume integral of $\nabla \cdot \mathbf{J}$. We obtain, for a stationary volume,

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{J} d v=-\int_{V} \frac{\partial \rho}{\partial t} d v . \tag{5-29}
\end{equation*}
$$

In moving the time derivative of ρ inside the volume integral, it is necessary to use partial differentiation because ρ may be a function of time as well as of space coordinates. Since Eq. (5-29) must hold regardless of the choice of V, the integrands must be equal. Thus, we have.

$$
\begin{equation*}
\nabla \cdot \mathbf{J}=-\frac{\partial \rho}{\partial t} \quad\left(\mathrm{~A} / \mathrm{m}^{3}\right) \tag{5-30}
\end{equation*}
$$

This point relationship derived from the principle of conservation of charge is called the equation of continuity.

For steady currents, charge density does not vary with time, $\partial \rho / \hat{\partial}_{\iota}=0$. Equation (5-30) becomes

$$
\begin{equation*}
\nabla \cdot \mathbf{J}=0 . \tag{5-31}
\end{equation*}
$$

Thus, steady electric currents are divergenceless or solenoidal. Equation (5-31) is a point relationship and holds also at points where $\rho=0$ (no flow source). It means
around a 1) is equal my closed med, and s voltage
f physics. est or in bounded xs across rate that le region, e current oug (5-28) tegral of
ry to use pace cotegrands
is called
ミquá
n (5-31)
It means those of electrostatitiel fiel intensity that orighthate and end on charges. Over any enclosed surface, Eq. (5-31) leads to the following integral form:

$$
\begin{equation*}
\oint_{S} J \cdot d s=0 \tag{5-32}
\end{equation*}
$$

which can be written as

$$
\begin{equation*}
\sum_{j} I_{j}=0 \quad(\mathrm{~A}) \tag{5--33}
\end{equation*}
$$

Equation (5-33) is anfexpression of Kirchitoff's current law. It states that the algebraic sum of all the currents.flowing out of a junction in an electric circuit is zero. ${ }^{\dagger}$ Kirchhoff's current law is the basis for node analysis in circuit theory.

In Section 3-6 we stated that charges introduced in the interior of a conductor will move to the cortductor surface and redistribute themselves in such a way as to make $\rho=0$ and $\mathbf{E}=0$ inside under equilibrium conditions. We are now in a position to prove this statement and to calculate the time it takes to reach an equilibrium. Combining Ohm's ldw, Eq. (5-8), with the equation of continuity and assuming a constant σ, we have

$$
\begin{equation*}
\sigma \mathrm{V} \cdot \mathrm{E}=-\frac{\partial \rho}{\partial t} . \tag{5-34}
\end{equation*}
$$

In a simple medium, $\nabla \cdot \dot{E}=\rho / \epsilon$ and Eq, $(5-34)$ becomes

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\sigma}{\epsilon} \rho=0 \tag{5-35}
\end{equation*}
$$

The solution of Eq. $(3-34)$ is

$$
\begin{equation*}
\rho=\rho_{0} e^{-(\sigma / \varepsilon)} \quad\left(\mathrm{C} / \mathrm{m}^{3}\right) \tag{5-36}
\end{equation*}
$$

where ρ_{0} is the initial charge density at $t=0$. Both ρ and ρ_{0} can be functions of the space coordinates, and Eq. $(5-36)$ says that the charge density at a given location will decrease with time exponentially. An initial charge density ρ_{0} will decay to $1 / e$ or 36.8% of its value in a time equal to

$$
\begin{equation*}
\tau=\frac{\epsilon}{a} \quad \vdots \tag{5-37}
\end{equation*}
$$

The time constant τ is called the relarath the For a good conductor such as copper- $\sigma=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m}), \epsilon \cong \epsilon_{0}=8.85 \times 10^{-12}(\mathrm{~F} / \mathrm{m})-\tau$ equals $1.52 \times$ $10^{-19}(\mathrm{~s})$, a very short time indeed. The transient time is so brief that for all practical

[^26]purposes p can be considered zero in the interior of a conductor-see Eq. (3-64) in Section 3-6. The relaxation time for a good insulator is not infinite, but can be hours or days.

5-5 POWER DISSIPATION AND JOULE'S LAW

In section 5-1 we indicated that under the influence of an electric field, conduction electrons in a conductor undergo a drift motion macroscopically. Microscopically these electrons collide with atoms on lattice sites. Energy is thus transmitted from the electric field to the atoms in thermal vibration. The work Δw done by an electric field \mathbf{E} in moving a charge q a distance ΔC is $q \mathrm{E} \cdot(\Delta C)$, which corresponds to a power

$$
\begin{equation*}
\dot{p}=\lim _{\Delta t \rightarrow 0} \frac{\Delta w}{\Delta t}=q \mathbf{E} \cdot \mathbf{u}, \tag{5-38}
\end{equation*}
$$

where u is the drift velocity. The total power delivered to all the charge carriers in a volume $d v$ is

$$
d P=\sum_{i} p_{i}=\mathrm{E} \cdot\left(\sum_{i} N_{i} q_{i} \mathbf{u}_{i}\right) d \bar{d}
$$

which, by virtue of Eq. (5-7), is

$$
d P=\mathbf{E} \cdot \mathbf{J} d v
$$

or

$$
\begin{equation*}
\frac{d P}{d v}=\mathbf{E} \cdot \mathbf{J} \quad\left(\mathrm{W} / \mathrm{m}^{3}\right) \tag{5-39}
\end{equation*}
$$

Thus the point function $\mathbf{E} \cdot \mathbf{J}$ is a power density under steady-current conditions. For a given volume V, the total electric power converted into heat is

$$
\begin{equation*}
P=\int_{V} \mathbf{E} \cdot \mathbf{J} d v \quad(\mathbf{W}) \tag{5-40}
\end{equation*}
$$

This is known as Joule's law. (Note that the SI unit for P is watt, not joule, which is the unit for energy or work.) Equation (5-39) is the corresponding point relationship.

In a conductor of a constant cross section, $d v=d s d \ell$, with $d \ell$ measured in the direction J. Equation (5-40) can be written as

$$
P=\int_{L} E d \ell \int_{S} J d s=V I
$$

where I is the current in the conductor. Since $V=R I$, we have

$$
\begin{equation*}
P=I^{2} R \quad \text { (W). } \tag{5-41}
\end{equation*}
$$

Equation (5-41) is, of course, the familiar expression for ohmic power representing the heat dissipated in resistance R per unit time:

5-6 BOUNDARY CONDITIONS FOR CURRENT DENSITY

When current obliquely crosses an interface between two media with different conductivities, the cufrent density vector changes both in direction and in magnitude. A set of boundary conditions can be derived for \mathfrak{J} in a way similar to that used in Section 3-9 for obtaining the boundary conditions for \mathbf{D} and \mathbf{E}. The governing equations for steady current density \boldsymbol{J} in the absence of nonconservative energy sources are
Governing Equations for Steady Current Density

Differential Form	I'tegral Form
$\nabla \cdot \mathbf{J}=0$	$\oint_{s} \mathbf{J} \cdot d \mathbf{s}=0$
	$\mathbf{V} \times\left(\frac{\mathbf{J}}{\sigma}\right)=0$

The divergence equation is the same as Eq. (5-31), and the curl equation is obtained by combining Ohn's law ($J=\sigma E$) with $\nabla \times \mathbf{E}=0$. By applying Eqs. (5-42) and $(5-43)$ at the interface between two ohmic media with conductivities σ_{1} and σ_{2}, we obtain the boundary conditions for the normat and tangential components of \mathbf{J}.

Without actually constructing a pillbox at the interface as was done in Fig. 3-22. we know from Section 3-9 that the normat component of a divergenceless vector field is continuous. Hence; ftom $\nabla \cdot \mathrm{J}=0$, we have

$$
\begin{array}{ll}
J_{1 n}=J_{2 n} & \left(\mathrm{~A} / \mathrm{m}^{2}\right) \tag{5-44}\\
\hline
\end{array}
$$

Similarly, the tangentipl compontent of a cirt-free vector field is continuous across an interface. We conclude from $\nabla \times(\mathbf{J} / \sigma)=0$ that

$$
\begin{equation*}
\frac{J_{12}}{J_{2 t}}=\frac{\sigma_{1}}{\sigma_{2}} . \tag{5-45}
\end{equation*}
$$

Equation (5-45) states that the ratio of the tangential components of \mathbf{J} at two sides of an interface is equal to the ratio of the conductivities.

Exdmple 5-2 Two conducting media with conductivities σ_{1} and σ_{2} are separated by an interface, as shown in Fig. 5-4. The steady current density in medium 1 at point P_{1} has a magnitude J_{1} and makes an angle α_{1} with the normal. Determine the magnitude and direction of the current density at point P_{2} in medium 2.

184 STEADY ELECTRIC CURRENTS / 5

Fig. 5-4 Boundary conditions at interface between two conducting media (Example 5-2).

Solution: Using Eqs. (5-44) and (5-45), we have

$$
\begin{equation*}
J_{1} \cos \alpha_{1}=J_{2} \cos \alpha_{2} \tag{5-46}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{2} J_{1}^{*} \sin \alpha_{1}=\sigma_{1} J_{2} \sin \alpha_{2} \tag{5-47}
\end{equation*}
$$

Division of Eq. $(5-47)$ by Eq. $(5-46)$ yiclds

$$
\begin{equation*}
\frac{\tan \alpha_{2}}{\tan \alpha_{1}}=\frac{\sigma_{2}}{\sigma_{1}} \tag{5-48}
\end{equation*}
$$

If medium 1 is a much better conductor than medium $2\left(\sigma_{1} \gg \sigma_{2}\right.$ or $\left.\sigma_{2} / \sigma_{1} \rightarrow 0\right), \alpha_{2}$ approaches zero and J_{2} emerges almost perpendicular to the interface (normal to the surface of the good conductor). The magnitude of J_{2} is

$$
\begin{aligned}
J_{2} & =\sqrt{J_{2 t}^{2}+J_{2 n}^{2}}=\sqrt{\left(J_{2} \sin \alpha_{2}\right)^{2}+\left(J_{2} \cos \alpha_{2}\right)^{2}} \\
& =\left[\left(\frac{\sigma_{2}}{\sigma_{1}} J_{1} \sin \alpha_{1}\right)^{2}+\left(J_{1} \cos \alpha_{1}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

or

$$
\begin{equation*}
J_{2}=J_{1}\left[\left(\frac{\sigma_{2}}{\sigma_{1}} \sin \alpha_{1}\right)^{2}+\cos ^{2} \alpha_{1}\right]^{1 / 2} \tag{5-49}
\end{equation*}
$$

By examining Fig. 5-4, can you tell whether medium 1 or medium 2 is the better conductor?

For a homogeneous conducting medium, the differential form of Eq. (5-43) simplifies to

$$
\begin{equation*}
\nabla \times \mathbf{J}=0 \tag{5-50}
\end{equation*}
$$

From Section 2-10 we know that a curl-free vector field can be expressed as the gradient of a scalar potential field. Let us write

$$
\begin{equation*}
J=-\nabla \psi \tag{5-51}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{2} \psi=0 \tag{5-52}
\end{equation*}
$$

A problem in steadyturrent flow can therefore be solved by determining $\psi(\mathrm{A} / \mathrm{m}) ~_{\text {a }}$. from Eq. (5-52), subject to appropriate boundary conditions and then by finding J from its negative gradient in exactly the same way as a problem in electrostatics is solved. As a matter of fact; ψ and electrostatic potential are simply related: $\psi=\sigma V$. As indicated in Section $5-1$, this similarity between electrostatic and steady-current fields is the basis for using an electrolytic tank to map the potential distribution of difficult-to-solve electrostatic boundary-value problems. ${ }^{\dagger}$

When a steady current flows across the boundary between two different lossy dielectrics (diclectrics with, permitivities ϵ_{1} and ϵ_{2} and finite conductivities σ_{1} and σ_{2}), the tangential componem of the electric field is continuous across the interface as usual; that is, $E_{2 t}=E_{1 \text { t }}$, which is equivalent to Eq. (5-45). The normal component of the electric field, however, must simultaneously satisfy both Eq. (5-44) and Eq. (3-113). We require

$$
\begin{align*}
J_{1 n}=J_{2 n} & \rightarrow \sigma_{1} E_{1 n}=\sigma_{2} E_{2 n} \tag{5-53}\\
D_{1 n}-D_{2 n}=\rho_{s} & \rightarrow \epsilon_{1} E_{1 n}-\epsilon_{2} E_{2 n}=\rho_{s}, \tag{5-54}
\end{align*}
$$

where the reference uhit normal is outward from medium 2. Hence, unless $\sigma_{2} / \sigma_{1}=$ $\epsilon_{2} / \epsilon_{1}$, a surface charge must exist at the interface. From Eqs. (5-53) and (5-54), we find

$$
\begin{equation*}
\rho_{s}=\left(\epsilon_{1} \frac{\sigma_{2}}{\sigma_{1}}-\epsilon_{2}\right) E_{2 n}=\left(\epsilon_{1}-\epsilon_{2} \frac{\sigma_{1}}{\sigma_{2}}\right) E_{1 n} \tag{5-55}
\end{equation*}
$$

Again, if medium 2 is a much better conduc̣tor than medium $1\left(\sigma_{2} \gg \sigma_{1}\right.$ or $\left.\sigma_{1} / \sigma_{2} \rightarrow 0\right)$, Eq. (5-55) becomes approximately

$$
\begin{equation*}
\rho_{s}=\epsilon_{1} E_{1 n}=D_{1 n}, \tag{5-56}
\end{equation*}
$$

which is the same as Eq. (3-114).
Example 5-3 An emf \mathscr{V} is, applied across a parallel-plate capacitor of area S. The space between the conductive plates is filled with two different lossy dielectrics of thicknesses d_{1} and d_{2}, permittivities ϵ_{1} and ϵ_{2}, and conductivities σ_{1} and σ_{2} respectively. Determine (a) the current density between the plates, (b) the electric field intensities in both dielectrics, and (c) the surface charge densities on the plates and at the interface.

[^27]

Fig. 5-5 Parallel-plate capacitor with two lossy dielectrics (Example 5-3).

Solution: Refer to Fig. 5-5.
a) The continuity of the normal component of \mathbf{J} assures that the current densities and, therefore, the currents in both media are the same. By Kirchhoff's voltage law we have

Hence,

$$
\mathscr{V}=\left(R_{1}+R_{2}\right) I=\left(\frac{d_{1}}{\sigma_{1} S}+\frac{d_{2}}{\sigma_{2} S}\right) \dot{I}
$$

$$
\begin{equation*}
J=\frac{I}{S}=\frac{\mathscr{V}}{\left(d_{1} / \sigma_{1}\right)+\left(d_{2} / \sigma_{2}\right)}=\frac{\sigma_{1} \sigma_{2} \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad\left(\mathrm{~A} / \mathrm{m}^{2}\right) \tag{5-57}
\end{equation*}
$$

b) To deternine the electric field intensities E_{1} and E_{2} in both media, two equations are needed. Neglecting fringing effeet at the edges of the plates, we have
and

$$
\begin{equation*}
\mathscr{V}=E_{1} d_{1}+E_{2} d_{2} \tag{5-58}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{1} E_{1}=\sigma_{2} E_{2} \tag{5-59}
\end{equation*}
$$

Equation (5-59) comes from $J_{1}=J_{2}$. Solving Eqs. (5-58) and (5-59), we obtain

$$
\begin{equation*}
E_{1}=\frac{\sigma_{2} \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad(\mathrm{~V} / \mathrm{m}) \tag{5-60}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2}=\frac{\sigma_{1} \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad(\mathrm{~V} / \mathrm{m}) \tag{5-61}
\end{equation*}
$$

c) The surface charge densities on the upper and lower plates can be determined by using Eq. (5-56):

$$
\begin{align*}
& \rho_{s 1}=\epsilon_{1} E_{1}=\frac{\epsilon_{1} \sigma_{2} \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{5-62}\\
& \rho_{s 2}=-\epsilon_{2} E_{2}=-\frac{\epsilon_{2} \sigma_{1} \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{5-63}
\end{align*}
$$

The negative sign in Eq. (5-63) comes about because \mathbf{E}_{2} and the outward normal at the lower plate are in opposite directions.
\therefore Equation $(5-55)$ can be used to find the surface charge density at the interface of the dielectrics. We have

$$
\begin{align*}
\rho_{s i} & =\left(\epsilon_{2} \frac{\sigma_{1}}{\sigma_{2}}-\epsilon_{1}\right) \frac{\sigma_{2} \not r}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \\
& =\frac{\left(\epsilon_{2} \sigma_{1}-\epsilon_{1} \sigma_{2}\right) \mathscr{V}}{\sigma_{2} d_{1}+\sigma_{1} d_{2}} \quad\left(\mathrm{C} / \mathrm{m}^{2}\right) \tag{5-64}
\end{align*}
$$

From these results, we see that $\rho_{s 2} \neq-\rho_{s 1}$, but that $\rho_{s 1}+\rho_{s 2}+\rho_{s i}=0$.
In Example 5-3 we encounter a situation where both static charges and a steady current exist. As we shall see in Chapter $6 ;$ a steady current gives rise to a steady magnetic field. We have, then, both a static electric field and a steady magnetic field. They constitute an electromagnetostatic field. The electric and magnetic fields of an electromagnetostatic fleld are coupled through the constitutive relation $\mathbf{J}=\sigma \mathbf{E}$ of the conducting medium.

5-7 RESISTANCE CALCULATIONS
In Section 3-10 we discussed the procedure for finding the capacitance between two conductors separated by a dielectric medium. These conductors may be of arbitrary shapes, as was shown in Fig. 3-25, which is reproduced here as Fig. 5-6. In terms of electric field quantities, the basic formula for capacitance can be written as

$$
\begin{equation*}
C=\frac{Q}{V}=\frac{\oint_{S} \mathbf{D} \cdot d \mathbf{s}}{-\int_{L} \mathbf{E} \cdot d \ell}=\frac{\oint_{S} \epsilon \mathbf{E} \cdot d \mathbf{s}}{-\int_{L} \mathbf{E} \cdot d \ell} \tag{5-65}
\end{equation*}
$$

where the surface intepral in the numerator is carried out over a surface enclosing the positive conductor, and the line integral in the denominator is from the negative (lower potential) conductor to the positive (higher potential) conductor (see Eq. 5-21).
ained by
! normal

Fig. 5-6 Two conductors in a lossy dielectric medium.

When the dielectric medium is lossy (having a small but nonzero conductivity), a current will flow from the positive to the negative conductor and a current-density field will be established in the medium. Ohm's law, $\mathbf{J}=\sigma \mathbf{E}$, ensures that the streamlines for J and E will be the same in an isotropic medium. The resistance between the conductors is

$$
\begin{equation*}
R=\frac{V}{I}=\frac{-\int_{L} \mathbf{E} \cdot d \ell}{\oint_{S} \mathbf{J} \cdot d \mathbf{s}}=\frac{-\int_{L} \mathbf{E} \cdot d \ell}{\oint_{S} \sigma \mathbf{E} \cdot d \mathbf{s}}, \tag{5-66}
\end{equation*}
$$

where the line and surface integrals are taken over the same L and S as those in Eq. (5-65). Comparison of Eqs. $(5-65)$ and (5-66) shows the following interesting relationship:

$$
\begin{equation*}
R C=\frac{\dot{C}}{G}=\frac{\epsilon}{\sigma} \tag{5-67}
\end{equation*}
$$

Equation (5-67) holds if ϵ and σ of the medium have the same space dependence or if the medium is homogeneous (independent of space coordinates). In these cases, if the capacitance between two conductors is known, the resistance (or conductance) can be obtained directly from the ϵ / σ ratio without recomputation.

Example 5-4 Find the leakage resistance per unit length (a) between the inner and outer conductors of a coaxial cable that has an inner conductor of radius a, an outer conductor of inner radius b, and a medium with conductivity σ; and (b) of a parallelwire transmission line consisting of wires of radius a separated by a distance D in a medium with conductivity σ.

Solution

a) The capacitance per unit length of a coaxial cable has been obtained from Eq. (3-126) in Example 3-16.

$$
C_{1}=\frac{2 \pi \epsilon}{\ln (b / a)} \quad(\mathrm{F} / \mathrm{m}) .
$$

Hence the leakage resistance per unit length is, from Eq. (5-67),

$$
\begin{equation*}
R_{1}=\frac{\epsilon}{\sigma}\left(\frac{1}{C_{1}}\right)=\frac{1}{2 \pi \sigma} \ln \left(\frac{b}{a}\right) \quad(\Omega / \mathrm{m}) \tag{5-68}
\end{equation*}
$$

The conductance per unit length is $G_{1}=1 / R_{1}$.

It is is conde hold. ' circum
 ent-density he streametween the

1ose in Eq. interesting
∞
idencrar or if zase: he nec) can be

2 inner and a, an outer fa parallelince D in a d from Eq.
b) For the parallel-wire transmission line, Eq. (4-47) in Example 4-4 gives the capacitance per unit length.

$$
C_{1}^{\prime}=\frac{\pi \epsilon}{\cosh ^{-1}\left(\frac{D}{2 a}\right)} \quad(\mathrm{F} / \mathrm{m}) .
$$

Therefore, the leakage resistance per unit length is, without further ado,

$$
\begin{align*}
R_{1}^{\prime} & =\frac{\sigma}{\sigma}\left(\frac{1}{C_{1}^{\prime}}\right)=\frac{1}{\pi \sigma} \cdot \cosh ^{-1}\left(\frac{D}{2 a}\right) \\
& =\frac{1}{\pi \sigma} \ln \left[\frac{D}{2 a}+\sqrt{\left(\frac{D}{2 a}\right)^{2}-1}\right] \quad(\Omega / \mathrm{m}) . \tag{5-69}
\end{align*}
$$

The conductance per unit length is $G_{1}=1 / R_{1}$.
It must be emphasized here that the resistance between the conductors for a length ℓ of the coaxidl cable is R_{1} / ℓ, not ℓR_{1}; similarly, the leakage resistance of a length ℓ of the parallel-wire transmission line is R_{1}^{\prime} / ℓ, not ℓR_{1}^{\prime}. Do you know why?

In certain situations, electrostatic and steady-current problems are not exactly analogous, even when the geometrical configurations are the same. This is because current flow can be confined strictly within a conductor (which has a bery large a compared to that of the surrounding medium), whereas electric flux usually cannot be contained within a dielectric slab of finite dimensions. The range of the dielectric constant of available materials is very limited (see Appendix B-3i, and the fluxfringing around conductor edges makes the computation of capacitance less accurate.

The procedure for computing the resistance of a piece of conducting material between specified equipotential surfaces (or terminals) is as follows:

1. Choose an appropriate coordinate system for the given geometry.
2. Assume a potential difference V_{0} between conductor terminals.
3. Find electric field iutensity \mathbf{E} within the conductor. (lf the material is homogeneous, having a constant conductivity, the general method is to solve Laplace"s equation $\nabla^{2} V=0$ for V in the chosen coordinate system, and then obtain $\mathrm{E}=-\nabla V$.
4. Find total current

$$
I=\int_{\mathbf{S}} \mathbf{J} \cdot d \mathbf{s}=\int \sigma \mathbf{E} \cdot d \mathbf{s},
$$

where S is the cross-sectional area over whig, I flows.
5. Find resistance R by taking the ratio V_{0} / l.

It is important to note that if the conducting material is inhomogeneous and if the conductivity is a function of space coordinates, Laplace's equation for V does not hold. Can you explain why and indicate how \mathbf{E} can be determined under these circumstances?

When the given geometry is such that \mathbf{J} can be determined easily from a total current I, we may start the solution by assuming an I. From I, \mathbf{J} and $\mathbf{E}=\mathbf{J} / \sigma$ are found. Then the potential difference V_{0} is determined from the relation

$$
V_{0}=-\int \mathbf{E}^{\prime} \cdot d \ell,
$$

where the integration is from the low-potential terminal to the high-potential terminal. The resistance $R=V_{0} / I$ is independent of the assumed I, which will be canceled in the process.

Example 5-5 A conducting material of uniform thickness h and conductivity σ has the shape of a quarter of a flat circular washer, with inner radius a and outer radius b, as shown in Fig. 5-7. Determine the resistance between the end faces.

Solution: Obviously the appropriate coordinate system to use for this problem is the cylindrical coordinate system. Following the foregoing procedure, we first assume a potential difference V_{0} between the end faces, say $V=0$ on the end face at $y=0$, and $V=V_{0}$ on the end face at $x=0$. We are to solve Laplace's equation in V subject to the following boundary conditions:

$$
\begin{array}{lll}
V=0 & \text { at } & \phi=0 \\
V=V_{0} & \text { at } & \phi=\pi / 2 . \tag{5-70b}
\end{array}
$$

Since potential V is a function of ϕ only, Laplace's equation in cylindrical coordinates simplifies to

$$
\begin{equation*}
\frac{d^{2} V}{d \phi^{2}}=0 . \tag{5-71}
\end{equation*}
$$

The general solution of Eq. (5-71) is

$$
V=c_{1} \phi+c_{2}
$$

which, upon using the boundary conditions in Eqs. (5-70a) and (5-70b), becomes

$$
\begin{equation*}
V=\frac{2 V_{0}}{\pi} \phi \tag{5-72}
\end{equation*}
$$

Fig. 5-7 A quarter of a flat circular washer (Example 5-5).

In a total $=\mathrm{J} / \sigma$ are

$$
\begin{align*}
\mathbf{J} & =\sigma \mathbf{E}=-a \nabla V \\
& =-\mathbf{a}_{\phi} \sigma \frac{\partial V}{r \partial \phi}=-\mathbf{a}_{\phi} \frac{2 \sigma V_{0}}{\pi r} \tag{5-73}
\end{align*}
$$

The total current I can be found by integrating J over the $\phi=\pi / 2$ surface at which $d s=-\mathbf{a}_{\phi} h d r$. We have

$$
\begin{align*}
I=\int_{S} \mathbf{J} \cdot d \mathbf{s} & =\frac{2 \sigma V_{0}}{n} h \int_{a}^{b} \frac{d r}{r} \\
& =\frac{2 \sigma h V_{0}}{\pi} \ln \frac{b}{a} \tag{5-74}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
R=\frac{V_{0}}{I}=\frac{\pi}{2 \sigma h \ln (b / a)} \tag{5--75}
\end{equation*}
$$

Note that, for this problem, it is not convenient to begin by assuming a total current I because it is not obvious how \mathbf{J} varies with r for a given I. Without \mathbf{J}, \mathbf{E} and V_{0} cannot be determined.

REVIEW QUEStIons

R.5-1 Explain the difference between conduction and convection currents.
R.5-2 Explain the operation of an electrolytic tank. In what ways do electrolytic currents differ from conduction and convection currents?
R.5-3 What is the point form for Ohm's law?
R.5-4 Define conductivity. What is its SI unit?
R.5-5 Why does the tesistance formula in Eq. (5-13) require that the material be homogeneous and straight and that it have a uniform cross section?
R.5-6 Prove Eqs. (5-15) and (5-16b).
R.5-7 Define electrothotive force in words.
R.5-8 What is the difference between impressed and electrostatic field intensities?
R.5-9 State Kirchhof's voltage law in words.
R.5-10 What are the characteristics of an ideal voltage source?
R.5-11 Can the currefits in different branches (resistors) of a closed loop in an electric network flow in opposite directlons? Explain.
R.5-12 What is the physical significance of the equation of continuity?
R.5-13 State Kirchhoff's current law in words.
R.5-14 What are the characteristics of an ideal current source?

R.5-15 Define relaxation time.

R.5-16 In what ways should Eq. (5-34) be modified when σ is a function of space coordinates?
R.5-17 State Joule's law. Express the power dissipated in a volume
a) in terms of \mathbf{E} and σ,
b) in terms of \mathbf{J} and σ.
R.5-18 Does the relation $\nabla \times \mathbf{J}=0$ hold in a medium whose conductivity is not constant? Explain.
R.5-19 What are the boundary conditions of the normal and tangential components of steady current at the interface of two media with different conductivities?
R.5-20 What is the basis of using an electrolytic tank to map the potential distribution of elecrostatic boundary-value problems?
R.5-21 What is the relation between the resistance and the capacitance formed by two conductors immersed in a lossy dielectric medium that has permittivity ϵ and conductivity σ ?
R.5-22 Under what situations will the relation between R and C in R.5-21 be only approximately correct? Give a specific example.

PPOOBLEMS

P.5-1 Starting with Ohm's law as expressed in Eq. (5-12) applied to a resistor of length ℓ, conductivity σ, and uniform cross-section S, verify the point form of Ohm's law represented by Eq. (5-8).
P.5-2 A long, round wire of radius a and conductivity σ is coated with a material of conductivity 0.1σ.
a) What must be the thickness of the coating so that the resistance per unit length of the uncoated wire is reduced by 50% ?
b) Assuming a total currenț I in the coated wire, find \mathbf{J} and E in both the core and the coating material.

Fig. 5-8 A network problem (Problem P.5-3).
P.5-3 Find the current and the heat dissipated in each of the five resistors in the network shown in Fig. 5-8 if

$$
R_{1}=\frac{1}{3}(\Omega), \quad R_{2}=20(\Omega), \quad R_{3}=30(\Omega), \quad R_{4}=8(\Omega), \quad R_{5}=10(\Omega),
$$

and if the source is añ idelal DC voltage generator of $0.7(\mathrm{~V})$ with its positive polarity at terminal 1. What is the total resistance seen by the sourceat terminal pair 1-2?
P.5-4 Solve problem P.5-3, assuming the source is an ideal current generator that supplies a direct current of 0.7 (A) out of terminal 1.
P.5-5 Lightning strikes a lossy dielectric sphere- $\epsilon=1.2 \epsilon_{0}, \sigma=10(\mathrm{~S} / \mathrm{m})$-of radius $0.1(\mathrm{~m})$ at time $t=0$, depositing uniformly in the sphere a tothl charge $1(\mathrm{mC})$. Determine, for all t,
t constant?
a) the electric fied intensity both inside and outside the sphere,
b) the current denslly in the sphere.

P.5-6 Refor to Problem P.S-S.

a) Calculate the time it takes for the charge density in the sphere to diminish to 1% of its initial value.
b) Calculate the change in the electrostatic energy stored in the sphere as the charge density diminishes from the nitial value to 1% of its value. What happens to this energy?
c) Determine the elect:ostatic energy stored in the space outside the sphere. Does this energy change with time?
P.5-7 A DC voltage of $6(\mathrm{~V})$ applied to the ends of $1(\mathrm{~km})$ of a conducting wire of $0.5(\mathrm{~mm})$ radius results in a current of $1 / 6(\mathrm{~A})$. Find
a) the conductivity of the wire,
b) the electric field Intensity in the wire,
c) the power dissipated in the wire.
P.5-8 Refer to Example 5-3.
a) Draw the equivalent circuit of the two-layer, parallel-plate capacitor with lossy dielectrics, and identify the magnitude of each component.
b) Determine the pbwer dissipated in the capacitor.
P.5-9 An emf \mathscr{Y} is appliec across a cylindrical capacitor of length L. The radii of the inner and outer conductors are a and b respectively. The space between the conductors is filled with two different lossy dielectrics having, respectively, permittivity ϵ_{1} and conductivity σ_{1} in the region $a<r<c$, and permittivity ϵ_{2} and conductivity σ_{2} in the region $c<r<b$. Determine
a) the current density in each region,
b) the surface charge dersities on the inner and outer conductors and at the interface between the two dielectrics.
P.5-10 Refer to the flat quarter-circular washer in Example 5-5 and Fig. 5-7. Find the resistance between the curved sides.
P.5-11 Determine the resistance between concentic spherical surfaces of radii R_{1} and $R_{2}\left(R_{1}<R_{2}\right)$, assuming that a material of conductivity $\sigma=\sigma_{0}(1+k / R)$ fills the space between them. (Note: Laplace's equation for V does not apply here.)
P.5-12 A homogeneous material of uniform conductivity σ is shaped like a truncated conical block and defined in spherical coordinates by

$$
R_{1} \leq R \leq R_{2} \quad \text { and } \quad 0 \leq \theta \leq \theta_{0} .
$$

Determine the resistance between the $R=R_{1}$ and $R=R_{2}$ surfaces.
P.5-13 Redo problem P.5-12, assuming that the truncated conical block is composed of an inhomogeneous material with a nonuniform conductivity $\sigma(R)=\sigma_{0} R_{1} / R$, where $R_{1} \leq R \leq R_{2}$.
P.5-14 Two conducting spheres of radii b_{1} and b_{2} that have a very high conductivity are immersed in a poorly conducting medium (for example, they are buried very deep in the ground) of conductivity σ and permittivity ϵ. The distance, d, between the spheres is very large compared with the radii. Determine the resistance between the conducting spheres. Hint: Find the capacitance between the spheres by following the procedure in Section 3-10 and using Eq. (5-67).
P.5-15 Justify the statement that the steady-current probiem associated with a conductor buried in a poorly conducting medium near a plane boundary with air, as shown in Fig. 5-9(a), can be replaced by that of the conductor and its image, both immersed in the poorly conducting medium as shown in Fig. 5-9(b).

P.5-16 A ground connection is made by burying a hemispherical conductor of radius 25 (mm) in the earth with its base up, as shown in Fig. 5-10. Assuming the earth conductivity to be $10^{-6} \mathrm{~S} / \mathrm{m}$, find the resistance of the conductor to far-away points in the ground.

Fig. 5-10 Hemispherical conductor in ground (Problem P.5-16).
P.5-17 Assume a rectangular conducting sheet of conductivity σ, width a, and height b. A potential difference V_{0} is applied to the side edges, as shown in Fig. 5-11. Find
a) the potential distribution
b) the current density everywhere within the sheet. Hint: Solve Laplace's equation in Cartesian coordinates subject to appropriate boundary conditions.
sed of an $: R \leq R_{2}$. immersed d) of consared with apacitance 1.

conductor

 ig. 5-9(a), zonductingady
em with a
Iry
$-15)$.
tius 25 (mm) ctivity to be

Fig. 5-11 A conducting sheet (Problem P.5-17).
P.5-18 A uniform curreft density $\mathrm{J}=\mathbf{a}_{x} J_{0}$ flows in a very large block of homogeneous material of conductivity σ. A hole of radius b is drilled in the material. Assuming no variation in the z-direction, find the new current density \mathbf{J}^{\prime} in the cothducting material. Hint: Solve Laplace's equation in cylindrical cbordinates and note that V approaches $-\left(J_{0} r / \sigma\right) \cos \phi$ as $r \rightarrow \infty$.

6 / Static Magnetic Fields

6-1 INTRODUCTION

In Chapter 3 we dealt with static electric fields caused by electric charges at rest. We saw that electric field intensity \mathbf{E} is the only fundamental vector field quantity required for the study of electrostatics in free space. In a material medium, it is convenient to define a second vector field quantity, the electric flux density D , to account for the effect of polarization. The following two equations form the basis of the electrostatic model:

$$
\begin{align*}
& \nabla \cdot \mathbf{D}=p \tag{6-1}\\
& \nabla \times \mathbf{E}=0 . \tag{6-2}
\end{align*}
$$

The electrical property of the medium determines the relation between D and E . If the medium is linear and isotropic, we have the simple constitutive relation $D=\epsilon E$.

When a small test charge q is placed in an electric field \mathbf{E}, it experiences an electric force \mathbf{F}_{e}, which is a function of the position of q. We have

$$
\begin{equation*}
\mathbf{F}_{e}=q \mathbf{E} \quad(\mathrm{~N}) \tag{6-3}
\end{equation*}
$$

When the test charge is in motion in a magnetic field (to be defined presently), experiments show that it experiences another force, F_{m}, which has the following characteristics: (1) The magnitude of F_{m} is proportional to q; (2) the direction of \mathbf{F}_{m} at any point is at right angles to the velocity vector of the test charge as well as to a fixed direction at that point; and (3) the magnitude of F_{m} is also proportional to the component of the velocity at right angles to this fixed direction. The force \mathbf{F}_{m} is a magnetic force; it cannot be expressed in terms of \mathbf{E} or \mathbf{D}. The characteristics of F_{m} can be described by defining a new vector field quantity, the magnetic flux density \mathbf{B}, that specifies both the fixed direction and the constant of proportionality. In SI units, the magnetic force can be expressed as
ts at rest. 1 quantity . it is cono account sis of the (6-1) 2)
) and E. If $m \mathrm{D}=\epsilon \mathrm{E}$. riences an 1
tly), experi; characterf F_{m} at any s to a fixed to the com; a magnetic $\vdots F_{m}$ can be sity P that SI ur. , the
where $\mathbf{u}(\mathrm{m} / \mathrm{s})$ is the :velocity vector, and \mathbf{B} is measured in webers per square meter $\left(\mathrm{Wb} / \mathrm{m}^{2}\right)$ or teslas $(\mathrm{T}){ }^{\dagger}$ The total electromagretic force on a charge q is, then, $\mathbf{F}=\mathbf{F}_{e}+\mathbf{F}_{m}$; that is

$$
\begin{equation*}
\mathbf{F}=q(\mathbf{E}+\mathbf{u} \times \mathbf{B}) \quad(\mathbf{N}), \tag{6-5}
\end{equation*}
$$

which is called Lorehtz's force equation. Its validity has been unquestionably established by experiments. We may consider F_{e} / q for a small q as the definition for electric field intensity E (as we did in Eq. 3-2) and $F_{m} / q=\mathbf{u} \times \mathbf{B}$ as the defining relation for magnetic flux density B. Alternatively, we may consider Lorentz's force equation as a fundantental postulate of our electromagnetic model; it cannot be derived from other postulates.

We begin the studdy of static magnetic fields in free space by two postulates specifying the divergence and the curl of \mathbf{B}. From the solenoidal character of \mathbf{B}, a vector magnetic potential is defined, which is shown to obey a vector Poisson's equation. Next we derive the Biot-Savart law, which can be used to determine the magnetic field of a curfent-carrying circuit. The postulated curl relation leads directly to Ampère's circuital law which is particularly useful when symmetry exists.

The macroscopic effest of magnetic materials in a magnetic field can be studied by defining a magnetization vector. Here we introduce a fourth vector field quantity, the magnetic field intensity H. From the relation between B and H, we define the permeability of the material, following which we discuss magnetic circuits and the microscopic behavior: of magnetic materials. We then examine the boundary conditions of \mathbf{B} and \mathbf{H} at the interface of two different magnetic media; self- and mutual inductances; and magnetio energy, forces, and torques.

6-2 FUNDAMENTAL POSTULATES OF MAGNETOSTATICS IN FREE SFACE

To study magnetostatlcs (iteady magnetic fields) in free space, we need only consider the magnetic flux density rector, \mathbf{B}. The two fundamental postulates that specify the divergence and the curl of \mathbf{B} in free space are

[^28]In Eq. (6-7), μ_{0} is the permeability of free space

$$
\mu_{0}=4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m})
$$

(see Eq. 1-9), 'and \mathbf{J} is the current density. Since the divergence of the curl of any vector field is zero (see Eq. 2-137), we obtain from Eq. (6-7)

$$
\nabla \cdot \mathbf{J}=0
$$

which is consistent with Eq. (5-31) for steady currents.
Comparison of Eq. (6-6) with the analogous equation for electrostatics in free space, $\nabla \cdot \mathbf{E}=\rho / \epsilon_{0}$ (Eq. 3-4), leads us to conclude that there is no magnetic analogue for electric charge density ρ. Taking the volume integral of Eq. (6-6) and applying divergence theorem, we have

where the surface integral is carried out over the bounding surface of an arbitrary volume. Comparing Eq. (6-8) with Eq. (3-7), we again deny the existence of isolated magnetic charges. There are no magnetic flow sources, and the magnetic flux lines always close upon themselves. Equation (6-8) is also referred to as an expression for the law of conservation of magnetic fux, because it states that the total outward magnetic flux through any closed surface is zero.

The traditional designation of north and south poles in a permanent bar magnet does not imply that an isolated positive magnetic charge exists at the north pole and a corresponding amount of isolated negative magnetic charge exists at the south pole. Consider the bar magnet with north and south poles in Fig. 6-1(a). If this magnet is cut into two segments, new south and north poles appear and we have two shorter magnets as in Fig. 6-1(b). If each of the two shorter magnets is cut again into two segments, we have four magnets, each with a north pole and a south pole as in Fig. $6-1(\mathrm{c})$. This process could be continued until the magnets are of atomic dimensions; but each infinitesimally small magnet would still have a north pole and a south pole.

(a)

(b)

(c)

Fig. 6-1 Successive division of a bar magnet.

where the path C for the line integral is the contour bounding the surface S, and I is the total current through S. The sense of tracing C and the direction of current flow follow the right-hand rule. Equation (6-9) is a form of Ampere's circuital law, which states that the circulation of the magnetic fux density in free space around any closed path is equal to μ_{0} times the total current flowing through the surface bounded by the path. Ampere's circuital law is very useful in determining the magnetic flux density B caused by a current I when there is a closed path C around the current such that the magnitute of B is constant over the path.

The following is asumary of the two fundamental postulates of magnetostatics in free space:

Postulates of Magnetostatics in Free Space	
Differential Form	Integral Form
$\nabla \times \mathbf{B}=0$	$\oint_{S} \mathbf{B} \cdot d \mathbf{s}=0$
$\mathbf{V} \times \mathbf{B}=\mu_{0} \mathbf{J}$	$\oint_{C} \mathbf{B} \cdot d \ell=\mu_{0} I$

Example 6-1 An infinitely long, straight conductor with a circular cross section of radius b carries a steady current I. Determine the magnetic flux density both inside and outside the conductor.

Solution: First we note that this is a problem with cylindrical symmetry and that Ampere's circuital law can be used to advantage. If we align the conductor along the z-axis, the magnetic flux density \mathbf{B} will be ϕ-directed and will be constant along any

Fig. 6-2 Cross section of a straight circular conductor carrying a current I out of paper (Example 6-1).
circular path around the z-axis. Figure $6-2$ shows a cross section of the conductor and the two circular paths of integration, C_{1} and C_{2}, inside and outside, respectively, the current-carrying conductor. Note again that the directions of C_{1} and C_{2} and the direction of I follow the right-hand rule. (When the fingers of the right hand follow the directions of C_{1} and C_{2}, the thumb of the right hand points to the direction of I.)
a) Inside the conductor:

$$
\begin{gathered}
\mathbf{B}_{1}=\mathbf{a}_{\phi} B_{\phi 1}, \quad d \ell=\mathbf{a}_{\phi} r_{1} d \phi \\
\oint_{C_{1}} \mathbf{B}_{1} \cdot d \ell=\int_{0}^{2 \pi} B_{\phi 1} r_{1} d \phi=2 \pi r_{1} B_{\phi 1} .
\end{gathered}
$$

The current through the area enclosed by C_{1} is

$$
I_{1}=\frac{\pi r_{1}^{2}}{\pi b^{2}} I=\left(\frac{r_{1}}{b}\right)^{2} I .
$$

Therefore, from Ampère's circuital law,

$$
\begin{equation*}
\mathbf{B}_{1}=\mathbf{a}_{\phi} B_{\phi 1}=\mathbf{a}_{\phi} \frac{\mu_{0} r_{1} I}{2 \pi b^{2}}, \quad r_{1} \leq b . \tag{6-10}
\end{equation*}
$$

b) Outside the conductor:

$$
\begin{gathered}
\mathbf{B}_{2}=\mathbf{a}_{\phi} B_{\phi 2}, \quad d \ell=\mathbf{a}_{\phi} r_{2} d \phi \\
\oint_{C_{2}} \mathbf{B}_{2} \cdot d \ell=2 \pi r_{2} B_{\phi 2}
\end{gathered}
$$

Path C_{2} outside the conductor encioses the total current I. Hence,

$$
\begin{equation*}
\mathbf{B}_{2}=\mathbf{a}_{\phi} B_{\phi 2}=\mathbf{a}_{\phi} \frac{\mu_{0} I}{2 \pi r_{2}}, \quad r_{2} \geq b . \tag{6-11}
\end{equation*}
$$

Examination of Eqs. ($6-10$) and ($6-11$) reveals that the magnitude of \mathbf{B} increases linearly with r_{1} from 0 until $r_{1}=b$, after which it decreases inversely with r_{2}.

Example 6-2 Determine the magnetic flux density inside a closely wound toroidal coil with an air core having N turns and carrying a current $/$. The toroid has a mean radius b and the radius of each turn is a.

Fig. 6-3 Current-carrying toroidal coil (Example 6-2).

Solution: Figure 6-3 depicts the geometry of this problem. Cylindrical symmerry ensures that \mathbf{B} has onily a ϕ-component and is constant along any circular path about the axis of the toroid' We construct a cirçular contour C with radius r as shown. For $(b-a)<r<b+a$. Eq. (6-9) leads directly to

$$
\oint \mathbf{B} \cdot d \ell=2 \pi \cdot B_{\phi}=\mu_{0} N I,
$$

where we have assumed that the toroid has an air core with permeability μ_{0}. Therefore,

$$
\begin{equation*}
\mathbf{B}^{\prime}=\mathbf{a}_{\phi} \mathbf{B}_{\phi}=\mathbf{a}_{\phi} \frac{\mu_{0} N I}{2 \pi r}, \quad(b-a)<r<(b+a) . \tag{6-12}
\end{equation*}
$$

It is apparent that $\mathbf{B}=0$ for $r<(b-a)$ and $r>(b+a)$, since the net total current enclosed by a contour constructed in these two regions is zero.

Example 6-3 Determine the magnetic flux density inside an infinitely long solenoid with an air core having n closely wound turns per unit length and carrying a current l.

Solution: This problem can be solved in two ways.
a) As a direct application of Ampère's circuital law. It is clear that there is no magnetic field outside of the solenoid. To determine the B-field inside we construct a rectangular contour C of length L that is partially inside and partially outside the solenoid. By reason of symmetry; the \mathbf{B}-field inside must be parallel to the axis. Applying Ampère's circuital law, we have
or

$$
B L=\mu_{0} n L I
$$

$$
\begin{equation*}
B=\mu_{0} n I . \tag{6-13}
\end{equation*}
$$

Fig. 6-4 Current-carrying long solenoid (Example 6-3).
The direction of \mathbf{B} goes from right to left, conforming to the right-hand rule with respect to the direction of the current I in the solenoid, as indicated in Fig. 6-4.
b) A.s a special case of toroid. The straight solenoid may be regarded as a special case of the toroidal coil in Example 6-2 with an infinite radius ($b \rightarrow \infty$). In such a case, the dimensions of the cross section of the core are very small compared with b, and the magnetic flux density inside the core is approximately constant. We have, from Eq. (6-12).

$$
B=\mu_{0} \cdot\left(\frac{N}{2 \pi b}\right) I=\mu_{0} n I
$$

which is the same as Eq. (6-13). The ϕ-directed B in Fig. 6-2 now goes from right to left, as was shown in Fig. 6-3.

6-3 VECTOR MAGNETIC POTENTIAL
The divergence-free postulate of \mathbf{B} in $E q \cdot(6-6), \nabla \cdot \mathbf{B}=0$, assures that \mathbf{B} is solenoidal. As a consequence, \mathbf{B} can be expressed as the curl of another vector field, say \mathbf{A}, such that (see Identity II, Eq. (2-137), in Section 2-10)

$$
\begin{equation*}
B=\nabla \times A \tag{6-14}
\end{equation*}
$$

The vector field \dot{A} so defined is called the vector magnetic potential. Its SI unit is weber per meter (Wb / m). Thus, if we can find \mathbf{A} of a current distribution, \mathbf{B} can be obtained from A by a differential (or curl) operation. This is quite similar to the introduction of the scalar electric potential V for the curl-free E in electrostatics (Section 3-5), and the obtaining of E from the relation $E=-\nabla V$. However, the definition of a vector requires the specification of both its curl and its divergence. Hence Eq. (6-14) alone is not sufficient to define A; we must still specify its divergence.

How do we choose $\nabla \cdot{ }^{\circ}$ A ? Before we answer this question, let us take the curl of B in Eq. $(6-14)$ and substitute it in Eq. $(6-7)$. We have

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{A}=\mu_{0} \mathbf{J} \tag{6-15}
\end{equation*}
$$

rule with
Fig. 6-4.
a special
In such
smpared
:onstrat.
es from
enoidal. A. such
unit is can be to the ustif ver, wè rgence.
rge..
curl of
(6-15)

Here we digress to introduce a formula for the curl curl of a vector:

$$
\begin{align*}
& \quad \nabla \times \nabla \times A=\nabla(\nabla \cdot A)-\nabla^{2} A \tag{6-16a}\\
& \quad \boldsymbol{V}^{2} A=\nabla(\nabla \cdot A)-\nabla \times \nabla \times A . \tag{6-16b}
\end{align*}
$$

or

Equation $(6-16 \mathrm{a})^{\dagger}$ or $(6-16 \mathrm{~b})$ can be regarded as the definition of $\nabla^{2} \mathrm{~A}$, the Laplacian of A. For Cartesian coordinates, it can be readily verified by direct substitution (Problem P.6-10) that

$$
\begin{equation*}
\nabla^{2} A=a_{x} \nabla^{2} A_{x}+a_{y} \nabla^{2} A_{y}+a_{z} \nabla^{2} A_{z} \tag{6-17}
\end{equation*}
$$

Thus for Cartesian caordinates, the Laplacian of a vector field \mathbf{A} is another vector field whose componahts are the Laplacian (the divergence of the gradient) of the corresponding components of \mathbf{A}. This, however, is not true for other coordinate systems.

We now expand $\nabla \times \nabla \times \mathrm{A}$ in Eq. $(6-15)$ according to Eq. $(6-16 a)$ and obtain

$$
\begin{equation*}
\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J} . \tag{6-18}
\end{equation*}
$$

With the purpose of simplifying Eq. (6-18) to the greatest extent possible, we choose*

$$
\begin{equation*}
\nabla \cdot A=0 \tag{6-19}
\end{equation*}
$$

and Eq. (6-18) becomes

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=-\mu_{0} \mathrm{~J} \tag{6-20}
\end{equation*}
$$

This is a vector Poisson's equation. In Cartesian coordinates, Eq. (6-20) is equivalent to three scalar Poisson's equations:

$$
\begin{align*}
& \nabla^{2} A_{x}=-\mu_{0} J_{x}, \tag{6-21a}\\
& \nabla^{2} A_{y}=-\mu_{0} J_{y}, \tag{6-21b}\\
& \nabla^{2} A_{z}=-\mu_{0} J_{z} . \tag{6-21c}
\end{align*}
$$

Each of these three equations is mathematically the same as the Poisson's equation, Eq. (4-6), in electrostatics. In free space, the equation

$$
\cdots \quad \nabla^{2} V=-\frac{\rho}{\epsilon_{0}}
$$

[^29]has a particular solution (see Eq. 3-56),
$$
V=\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\rho}{R} d v^{\prime}
$$

Hence the solution for Eq. (6-21a) is

$$
A_{x}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{J_{x}}{R} d v^{\prime} .
$$

We can write similar solutions for A_{y} and A_{z}. Combining the three components, we have the solution for Eq. (6-20):

$$
\begin{equation*}
\mathbf{A}=\frac{\dot{\mu}_{0}}{4 \pi} \int_{V} \cdot \mathbf{J} d v^{\prime} \quad(\mathrm{Wb} / \mathrm{m}) . \tag{6-22}
\end{equation*}
$$

Equation (6-22) enables us to find the vector magnetic potential A from the volume current density \mathbf{J}. The magnetic flux density \mathbf{B} can then be obtained from $\nabla \times \mathbf{A}$ by differentiation, in a way similar to that of obtaining the static electric field \mathbf{E} from $-\nabla V$.

Vector potential A relates to the magnetic flux Φ through a given area S that is bounded by contour C in a simple way:

$$
\begin{equation*}
\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{s} \tag{6-23}
\end{equation*}
$$

The SI unit for magnetic flux is weber (Wb), which is equivalent to tesla-square meter ($\mathrm{T} \cdot \mathrm{m}^{2}$). Using Eq. (6-14) and Stokes's theorem, we have

$$
\begin{equation*}
\Phi=\int_{S}(\nabla \times \mathbf{A}) \cdot d \mathrm{~s}=\oint_{C} \mathbf{A} \cdot d \ell \quad(\mathrm{~Wb}) \tag{6-24}
\end{equation*}
$$

6-4 BIOT-SAVART'S LAW AND APPLICATIONS

In many applications we are interested in determining the magnetic field due to a current-carrying circuit. For a thin wire with cross-sectional area $S, d v^{\prime}$ equals $S d \ell^{\prime}$, and the current flow is entirely along the wire. We have

$$
\begin{equation*}
\mathbf{J} d v^{\prime}=J S d \ell^{\prime}=I d \ell^{\prime} \tag{6-25}
\end{equation*}
$$

and Eq. (6-22) becomes

$$
\begin{equation*}
\mathrm{A}=\frac{\mu_{0} I}{4 \pi} \oint_{\mathrm{c}^{\prime}} \frac{d \ell^{\prime}}{R} \quad(\mathrm{~Wb} / \mathrm{m}) \tag{6-26}
\end{equation*}
$$

where a circle has been put on the integral sign because the current I must flow in
a closed path, ${ }^{\dagger}$ whicty is designated C^{\prime}. The magnetic flux density is then

$$
\begin{align*}
\mathbf{B}=\nabla \times \mathbf{A} & =\nabla \times\left[\frac{\mu_{0} I}{4 \pi} \oint_{C^{\prime}} \frac{d \ell^{\prime}}{R}\right] \\
& =\frac{\mu_{0} I}{4 \pi} \oint_{C^{\prime}} \nabla \times\left(\frac{d \ell^{\prime}}{R}\right) . \tag{6-27}
\end{align*}
$$

onents, we
(6-22)
ie volume V× \times by $S t$ is
la-square (6-24)
due to a als $S d \ell^{\prime}$,

It is very important to note in Eq. (6-27) that the unprimed curl operation implies differentiations with respect to the space coordinates of the field point, and that the integral operation is with respect to the primed source coordinates. The integrand in Eq. (6-27) can be expanded into two terms by using the following identity (see Problem P.2-26):

$$
\begin{equation*}
\vee \times(f \mathrm{G})=f \nabla \times \mathbf{G}+(\nabla f) \times \mathbf{G} . \tag{6-28}
\end{equation*}
$$

We have, with $f=1 / R$ and $\mathrm{G}=d \ell^{\prime}$,

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \oint_{C^{\prime}}\left[\frac{1}{R} \nabla \times d \ell^{\prime}+\left(\nabla \frac{1}{R}\right) \times d \ell^{\prime}\right] . \tag{6-29}
\end{equation*}
$$

Now, since the unprimed and primed coordinates are independent, $\nabla \times d \ell^{\prime}$ equals 0 , and the first term on the right side of Eq. (6-29) vanishes. The distance R is measured from $d \ell^{\prime}$ at $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ to the field point at (x, y, z). Thus we have

$$
\begin{align*}
\frac{1}{R} & =\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-1 / 2} ; \\
\nabla\left(\frac{1}{R}\right) & =\mathbf{a}_{x} \frac{\partial}{\partial x}\left(\frac{1}{R}\right)+\mathbf{a}_{y} \frac{\partial}{\partial y}\left(\frac{1}{R}\right)+\mathbf{a}_{=} \frac{\partial}{\partial z}\left(\frac{1}{R}\right) \\
& =-\frac{\mathbf{a}_{x}\left(x-x^{\prime}\right)+\mathbf{a}_{y}\left(y-y^{\prime}\right)+\mathbf{a}_{z}\left(z-z^{\prime}\right)}{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{3 / 2}} \\
& =-\frac{\mathbf{R}}{R^{3}}=-\mathbf{a}_{R} \frac{1}{R^{2}}, \tag{6-30}
\end{align*}
$$

where a_{R} is the unit vector directed from the source point to the field point. Substituting Eq. (6-30) in Eq. $(6-29)$, we get

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \oint_{C^{\prime}} \frac{d \ell^{\prime} \times \mathbf{a}_{R}}{R^{2}} \quad \text { (T). } \tag{6-31}
\end{equation*}
$$

Equation $(6=31)$ is known as Biot-Savart's law. It is a formula for determining B caused by a current I in a closed path C^{\prime}, and is obtained by taking the curl of \mathbf{A} in Eq. (6-26). Sometimes it is convenient to write Eq. (6-31) in two steps.

[^30]\[

$$
\begin{equation*}
\mathrm{B}=\oint_{c^{\prime}} d \mathbf{B} \quad(\mathrm{~T}), \tag{6-32}
\end{equation*}
$$

\]

with

$$
\begin{equation*}
d \mathbf{B}=\frac{\mu_{0} I}{4 \pi}\left(\frac{d \ell^{\prime} \times \mathbf{a}_{R}}{R^{2}}\right) \quad \text { (T) } \tag{6-33a}
\end{equation*}
$$

which is the magnetic flux density due to a current element $I d \ell^{\prime}$. An alternative and sometimes more convenient form for Eq. (6-33a) is

$$
\begin{equation*}
d \mathbf{B}=\frac{\mu_{1} I\binom{d C^{\prime} \times \mathbf{R}}{R^{3}} \quad(\mathrm{~T}) .}{4 \pi} \tag{6-33b}
\end{equation*}
$$

Comparison of Eq. (6-31) with Eq. (6-9) will reveal that Biot-Savart law is, in general, more difficult to apply than Ampère's circuital law. However, Ampère's circuital law is not useful for determining from I in a circuit if a closed path cannot be found over which \mathbf{B} has a constant magnitude.

Example 6-4 A direct current I flows in a straight wire of length $2 L$. Find the magnetic flux density \mathbf{B} at a point located at a distance r from the wire in the bisecting plane: (a) by determining the vector magnetic potential A first, and (b) by applying Biot-Savart's law.

Solution: Currents exist only in closed circuits. Hence the wire in the present problem must be a part of a current-carrying loop with several straight sides. Since we do not know the rest of the circuit, Ampère's circuital law cannot be used to advantage. Refer to Fig. 6-5. The current-carrying line segment is aligned with the z-axis. A typical element on the wire is

$$
d \ell^{\prime}=\mathbf{a}_{z} \mathrm{~d} z^{\prime} .
$$

The cylindrical coordinates of the field point P are $(r, 0,0)$.

Fig. 6-5 Current-carrying straight wire (Example 6-4).
ttive and
(w is, in apires
risecting applying
problem edo not vantage. -axis. A
a) By finding \mathbf{B} from $\nabla \times \mathbf{A}$. Substituting $R=\sqrt{z^{\prime 2}+r^{2}}$ into Eq. (6-26), we have

$$
\begin{align*}
\mathbf{A} & =\mathbf{a}_{z} \frac{\mu_{0} I}{4 \pi} \int_{-L}^{L} \frac{d z^{\prime}}{\sqrt{z^{\prime 2}+r^{2}}} \tag{6-32}\\
& =\left.\mathbf{a}_{z} \frac{\mu_{0} I}{4 \pi}\left[\ln \left(z^{\prime}+\sqrt{z^{\prime 2}+r^{2}}\right)\right]\right|_{-L} ^{L} \tag{6-33a}\\
& =\mathbf{a}_{z} \frac{\mu_{0} I}{4 \pi} \ln \frac{\sqrt{L^{2}+r^{2}}+L}{\sqrt{L^{2}+r^{2}}-L} \tag{6-34}
\end{align*}
$$

Thereforc,

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A}=\nabla \times\left(\mathbf{a}_{z} A_{z}\right)=\mathbf{a}_{r} \frac{1}{r} \frac{\partial A_{z}}{\partial \phi}-\mathbf{a}_{\phi} \frac{\partial A_{z}}{\partial r} . \tag{6-33~b}
\end{equation*}
$$

Cylindrical symmetry around the wire assures that $\hat{\partial} A_{z} / \partial \phi=0$. Thus,

$$
\begin{align*}
\mathrm{B} & =-\mathbf{a}_{\phi} \frac{\partial}{\partial r}\left[\frac{\mu_{0} I}{4 \pi} \ln \frac{\sqrt{L^{2}+r^{2}}+L}{\sqrt[4]{L^{2}+r^{2}-L}}\right] \\
& =\mathbf{a}_{\phi} \frac{\mu_{0} I L}{2 \pi r \sqrt{L^{2}+r^{2}}} . \tag{6-35}
\end{align*}
$$

When $r \ll L$, Eq. (6-35) reduces to

$$
\begin{equation*}
\mathbf{B}_{\phi}=\mathbf{a}_{\phi} \frac{\dot{\mu_{0}} I}{2 \pi r} \tag{6-36}
\end{equation*}
$$

which is the expression for \mathbf{B} at a point located at a distance r from an infinitely long, straight wire carrying current I.
b) By applying Biot-Savart's law. From Fig. 6-5, we see that the distance vector from the source element $d z^{\prime}$ to the field point P is

$$
\begin{gathered}
\mathrm{R}=\mathbf{a}_{\mathrm{r}} r-\mathrm{a}_{z} z^{\prime} \\
d \ell^{\prime} \times \mathrm{R}=\mathbf{a}_{\mathrm{z}} d z^{\prime} \times\left(\mathbf{a}_{\mathrm{r}} r-\mathbf{a}_{z} z^{\prime}\right)=\mathrm{a}_{\phi} r d z^{\prime} .
\end{gathered}
$$

Substitution in Eq. (6-33b) gives

$$
\begin{aligned}
\mathbf{B}=\int d \dot{\mathbf{B}} & =\mathbf{a}_{\phi} \frac{\mu_{0} I}{4 \pi} \int_{-L}^{L} \frac{r d z^{\prime}}{\left(z^{\prime 2}+r^{2}\right)^{3 / 2}} \\
& =\mathbf{a}_{\phi} \frac{\mu_{0} I L}{2 \pi r \sqrt{L^{2}+r^{2}}},
\end{aligned}
$$

which is the same as Eq. (6-35).
Example 6-5 Find the magnetic flux density at the center of a square loop, with side w carrying a direct current I.

$$
: V
$$

Fig. 6-6 Square loop carrying current I (Example 6-5).

Solution: Assume the loop lies in the $x y$-plane, as shown in Fig. 6-6. The magnetic flux density at the center of the square loop is equal to forer times that caused by a single side of length w. We have, by setting $L=r=w / 2$ in Eq. (6-35),

$$
\begin{equation*}
\mathbf{B}=\mathbf{a}_{=} \frac{\mu_{0} I}{\sqrt{2} \pi w} \times 4=\mathbf{a}_{=} \frac{2 \sqrt{2} \mu_{0} I}{\pi w}, \tag{6-37}
\end{equation*}
$$

where the direction of \mathbf{B} and that of the current in the loop follow the right-hand rule.
Example 6-6 Find the magnetic flux. density at a point on the axis of a circular loop of radius b that carries a direct current I.

Solution: We apply Biot-Savart's law to the circular loop shown in Fig. 6-7.

$$
\begin{aligned}
d \ell^{\prime} & =\mathbf{a}_{\phi} b d \phi^{\prime} \\
\mathbf{R} & =\mathbf{a}_{z} z-\mathbf{a}_{\mathrm{r}} b \\
R & =\left(z^{2}+b^{2}\right)^{1 / 2}
\end{aligned}
$$

Again it is important to remember that \mathbf{R} is the vector from the source eiement $d \ell^{\prime}$ to the field point P. We have

$$
\begin{aligned}
d \ell^{\prime} \times \mathbf{R} & =\mathbf{a}_{\phi} b d \phi^{\prime} \times\left(\mathbf{a}_{z} z-\mathbf{a}_{\mathbf{r}} b\right) \\
& =\mathbf{a}_{\mathrm{r}} b z d \phi^{\prime}+\mathbf{a}_{z} b^{2} d \phi^{\prime}
\end{aligned}
$$

Fig. 6-7 A circular loop carrying current I (Example 6-6).

Because of cylindrical symmetry, it is easy to see that the \mathbf{a}_{r}-component is canceled by the contribution of the element located diametrically opposite to $d \ell^{\prime}$, so we need only consider the a_{i}-component of this cross product.

We write, from Eq. (6-31),

$$
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \int_{0}^{2 \pi} \mathbf{a}_{=} \frac{b^{2} d \phi^{\prime}}{\left(z^{2}+b^{2}\right)^{3 / 2}}
$$

or

6-5 / THE MAGNETIC DIPOLE

6-5 THE MAGNETIC DIPOLE

We begin this section with an example.
Example 6-7 Find the magnetic flux density at a distant point of a small circular loop of radius b that carries current I.

Solution: It is apparent from the statement of the problem that we are interested in determining \mathbf{B} at a point whose distance, R, from the center of the loop satisfies the relation $R \gg b$; that being the case, we may make certain simplifying approximations.

We select the center of the loop to be the origin of spherical coordinates. as shown in Fig. 6-8. The soutce coordinates are primed. We first find the vector magnetic potential \mathbf{A} and then determine \mathbf{B} by $\nabla \times \mathbf{A}$.

$$
\begin{equation*}
\mathrm{A}=\frac{\mu_{0} I}{4 \pi} \oint_{C^{\prime}} \frac{d \ell^{\prime}}{R_{1}} \tag{6-39}
\end{equation*}
$$

Fig. 6-8 A small circular loop carrying current I (Example 6-7).

Equation (6-39) is the same as Eq. (6-26), except for one important point: R in Eq. (6-26) denotes the distance between the source element $d \ell^{\prime}$ at P^{\prime} and the field point P; but it must be replaced by R_{1} in accordance with the notation in Fig. 6-8. Because of symmetry, the magnetic field is obviously independent of the angle ϕ of the field point. We pick $P(R, 0, \pi / 2)$ in the $y z$-plane.

Another point of importance is that $\mathbf{a}_{\phi^{\prime}}$ at $d \ell^{\prime}$ is not the same as \mathbf{a}_{ϕ} at point P. In fact, \mathbf{a}_{ϕ} at P, shown in Fig. 6-8 is $-\mathbf{a}_{x}$, and

$$
\begin{equation*}
d \ell^{\prime}=\left(-\mathbf{a}_{x} \sin \phi^{\prime}+\mathbf{a}_{y} \cos \phi^{\prime}\right) b d \phi^{\prime} . \tag{6-40}
\end{equation*}
$$

For every $I d \ell^{\prime}$ there is another symmetrically located differential current element on the other side of the y-axis that will contribute an equal amount to \mathbf{A} in the $-\mathbf{a}_{x}$ direction, but will cancel the contribution of $I d \ell^{\prime}$ in the \mathbf{a}_{y} direction. Equation (6-39) can be written as

$$
\mathbf{A}=-\mathbf{a}_{x} \frac{\mu_{0} I}{4 \pi} \int_{0}^{2 \pi} \frac{b \sin \phi^{\prime}}{R_{\mathrm{l}}} d \phi^{\prime}
$$

or

$$
\begin{equation*}
\mathbf{A}=\mathbf{a}_{\phi} \frac{\mu_{0} I l}{2 \pi} \int_{-\pi / 2}^{\pi / 2} \frac{\sin \phi^{\prime}}{R_{1}} d \phi^{\prime} \tag{6-41}
\end{equation*}
$$

The law of cosines applied to the traingle $O P P^{\prime}$ gives

$$
R_{1}^{2}=R^{2}+b^{2}-2 b R \cos \psi
$$

where $R \cos \psi$ is the projection of R on the radius $O P^{\prime}$, which is the same as the projection of $O P^{\prime \prime}\left(O P^{\prime \prime}=R \sin \theta\right)$ on $O P^{\prime}$. Hence,

$$
R_{1}^{2}=R^{2}+b^{2}-2 b R \sin 0 \sin \phi^{\prime}
$$

and

$$
\frac{1}{R_{1}}=\frac{1}{R}\left(1+\frac{b^{2}}{R^{2}}-\frac{2 b}{R} \sin 0 \sin \phi^{\prime}\right)^{-1 / 2} .
$$

When $R^{2} \gg b^{2}, b^{2} / R^{2}$ can be neglected in comparison with 1.

$$
\begin{align*}
\frac{1}{R_{1}} & \cong \frac{1}{R}\left(1-\frac{2 b}{R} \sin \theta \sin \phi^{\prime}\right)^{-1 / 2} \\
& \cong \frac{1}{R}\left(1+\frac{b}{R} \sin \theta \sin \phi^{\prime}\right) . \tag{6-42}
\end{align*}
$$

Substitution of Eq. (6-42) in Eq. $(6-41)$ yichds

$$
\mathbf{A}=\mathbf{a}_{\phi} \frac{\mu_{0} I b}{2 \pi \mathrm{R}} \int_{-\pi / 2}^{\pi / 2}\left(1+\frac{b}{R} \sin \theta \sin \phi^{\prime}\right) \sin \phi^{\prime} d \phi^{\prime}
$$

or

$$
\begin{equation*}
\mathbf{A}=\mathbf{a}_{\phi} \frac{\mu_{0} I b^{2}}{4 R^{2}} \sin \theta . \tag{6-43}
\end{equation*}
$$

oint: R in d the field 1 Fig. 6-8. angle ϕ of
it point P.
lement on : the $-a_{x}$ ion $(6-39)$
ne as the
$(6-43)$

The magnetic flux density is $\mathbf{B}=\nabla \times \mathbf{A}$. Equation (2-127) can be used to find

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} I b^{2}}{4 R^{3}}\left(\mathbf{a}_{R} 2 \cos \theta+\mathbf{a}_{\theta} \sin \theta\right) \tag{6-44}
\end{equation*}
$$

which is our answer.
At this point we recognize the similarity between Eq. (6-44) and the expression for the electric field intensity in the far field of an electrostatic dipole as given in Eq. (3-49). To examine the similarity further, we rearrange Eq. (6-43) as

$$
\mathbf{A}=\mathbf{a}_{\phi ;} \frac{\mu_{0}\left(I \pi b^{2}\right)}{4 \pi R^{2}} \sin \theta
$$

or

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0} \mathbf{m} \times \mathbf{a}_{R}}{4 \pi R^{2}} \quad(\mathrm{~Wb} / \mathrm{m}), \tag{6-45}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{m}=\mathrm{a}_{z} I \pi b^{2}=\mathrm{a}_{z} I S=\mathrm{a}_{z} m \quad\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right) \tag{6-46}
\end{equation*}
$$

is defined as the maynetic dipole moment, which is a vector whose magnitude is the product of the current in and the area of the loop and whose direction is the direction of the thumb as the fingers of the right hand follow the direction of the current. Comparison of Eq. (6-45) with the expression for the scalar electric potential of an electric dipole in Eq. (3-48),

$$
\begin{equation*}
V=\frac{p \cdot a_{R}}{4 \pi \epsilon_{0} R^{2}} \tag{6-47}
\end{equation*}
$$

reveals that, for the two cases, A is analogous to V. We call a small current-carrying loop a magnetic dipole. The analogous quantities are as follows:

In a similar manner we can also rewrite Eq. (6-44) as

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0} n}{4 \pi R^{3}}\left(\mathbf{a}_{R} 2 \cos \dot{\theta}+\mathbf{a}_{0} \sin \theta\right) \quad(\mathrm{T}) \tag{6-49}
\end{equation*}
$$

Except for the change of p to m, Eq. (6-48) has the same form as Eq. (3-49) does for the expression for E at a distant point of an electric dipole. Hence, the magnetic flux lines of a magnetic dipole lying in the $x y$-plane will have the same form as that of the electric field lines of an electric dipole positioned along the z-axis. These lines have been sketched as dashed lines in Fig. 3-14. One essential difference is that the electric field lines of an electric dipole start from the positive charge $+q$ and terminate on the negative charge $-q$, whereas the magnetic flux lines close upon themselves. ${ }^{\dagger}$

6-5.1 Scalar Magnetic Potential

In a current-free region $\mathbf{J}=0$, Eq. (6-7) becomes

$$
\begin{equation*}
\nabla \times \mathbf{B}=0 . \tag{6-4}
\end{equation*}
$$

The magnetic flux density \mathbf{B} is then curl-free and can be expressed as the gradient of a scalar field. Let

$$
\begin{equation*}
\mathbf{B}=-\mu_{0} \nabla V_{m}, \tag{6-50}
\end{equation*}
$$

where V_{m} is called the scalar magnetic potential (expressed in amperes). The negative sign in Eq. $(6-50)$ is conventional (see the definition of the scalar electric potential V in Eq. $3-38$), and the permeability of free space μ_{0} is simply a proportionality constant. Analogous to Eq. (3-40), we can write the scalar magnetic potential difference between two points, P_{2} and P_{1}, in free space as

$$
\begin{equation*}
V_{m 2}-V_{m 1}=-\int_{P_{1}}^{P_{2}} \frac{1}{\mu_{0}} \mathbf{B} \cdot d \ell \tag{6-51}
\end{equation*}
$$

If there were magnetic charges with a volume density $\rho_{m}\left(\mathrm{~A} / \mathrm{m}^{2}\right)$ in a volume V^{\prime}, we would be able to find V_{m} from

$$
\begin{equation*}
V_{m}=\frac{1}{4 \pi} \int_{v^{\prime}} \frac{\rho_{m}}{R} d v^{\prime} \quad(\Lambda) \tag{6-52}
\end{equation*}
$$

The magnetic flux density B could then be determined from Eq. (6-50). However, isolated magnetic charges have never been observed experimentally; they must be considered fictitious. Nevertheless, the consideration of fictitious magnetic charges in a mathematical (not physical) model is expedient both to the discussion of some magnetostatic relations in terms of our knowledge of electrostatics and to the establishment of a bridge between the traditional magnetic-pole viewpoint of magnetism and the concept of microscopic circulating currents as sources of magnetism.

The magnetic field of a small bar magnet is the same as that of a magnetic dipole. This can be verified experimentally by observing the contours of iron filings around a magnet. The traditional understanding is that the ends (the north and south poles)

[^31]does for ictic flux s that of ese lines that the rminate aselves. ${ }^{\dagger}$
(6.49) dient of
$(6-50)$
7egr otenual ion it dilter-$(6-51)$ ume V^{\prime}, $(6-52)$ owever, must be arges in of some e estabgnetism
dip, aroty-
in porns

Problem tiangular

6-6 / MAGNET MTION AND EQUIVALENT CURRENT DENSITIES

of a permanent magnet are the location of, respectively, positive and negative magnetic charges. For a bar magnet, the fictitious magnetic charges $+q_{m n}$ and $-q_{m}$ are assumed to be separated by a distance d and to form an equivalent magnetic dipole of moment

$$
\begin{equation*}
\mathrm{m}=q_{m}{ }^{\mathrm{d}}=\mathbf{a}_{n} I S \tag{6-53}
\end{equation*}
$$

The scalar magnetic potential V_{m} caused by this magnetic dipole can then be found by following the procedure used in subsection 3-5.1 for finding the scalar electric potential that is caused by an electric dipole. We obtain, as in Eq. (3-48),

$$
\begin{equation*}
V_{m}=\frac{\mathbf{m} \cdot \mathbf{a}_{R}}{4 \pi R^{2}} \tag{6-54}
\end{equation*}
$$

Substitution of Eq. $(6 \cdots 54) \mathrm{in} \mathrm{Eq} .(6-50)$ yields the same B as given in Eq. $(6-48)$.
We note that the expressions of the scalar magnetic potential V_{m} in Eq. (6-54) for a magnetic dipole are exactly analogous to those for the scalar electric potential V in Eq. (6-47) for an electric dipole: the likeness between the vector magnetic potential A (in Eq. 6-45) and V in Eq. (6-47) is not as exact. However, since magnetic charges do not exist in practical problems, V_{m} must be determined from a given current distribution. This determination is usually not a simple process. Moreover the curlfree nature of \mathbf{B} indicated in Eq. (6-49), from which the scalar magnetic potential V_{m} is defined, holds only at points with no currents. In a region where currents exist. the magnetic field is not conservaite, and the scalar magnetic potential is not a singlevalued function; hence the magnetic potential difference evaluated by Eq. (6-51) depends on the path of integration. Fpr these reasons, we will use the circulating-current-and-vector-potential approach, instead of the fictitious magnetic-charge-and-scalar-potential appfoach. for the study of magnetic fields in magnetic materials. We ascribe the macroscopic properties of a bar magnet to circulating atomic currents (Ampèrian currents) caused by orbiting and spinning electrons.

6-6 MAGNETIZATION AND EQUJVALENT CURRENT DENSITIES

According to the elementary atomic model of matter, all materials are composed of atoms, each with a positively charged nucleus and a number of orbiting negatively charged electrons. The orbiting electrons cause circulating currents and form microscopic magnetic dipoles. In addition, both the electrons and the nucleus of an atom rotate (spin) on their own axes with certain magnetic dipole moments. The magnetic dipole moment of a spinning nucleus is usually negligible compared to that of an orbiting or spinning electron because of the much larger mass and lower angular velocity of the nucleds. A complete understanding of the magnetic effects of materials requires a knowledge of quantum mechanics. (We give a qualitative description of the behavior of different kinds of magnetic materials later in Section 6-9.)

In the absence of an external magnetic field, the magnetic dipoles of the atoms of most materials (except permanent magnets) have random orientations, resulting
in no net magnetic moment. The application of an external magnetic field causes both an alignment of the magnetic moments of the spinning electrons and an induced magnetic moment due to a change in the orbital motion of electrons. In order to obtain a formula for determining the quantitative change in the magnetic flux density caused by the presence of a magnetic material, we let m_{k} be the magnetic dipole moment of an atom. If there are n atoms per unit volume, we define a magnetization vector, M, as

$$
\begin{equation*}
\mathbf{M}=\lim _{\Delta v \rightarrow 0} \frac{\sum_{k=1}^{n \Delta v} \mathbf{m}_{k}}{\Delta v} \quad(\mathbf{A} / \mathrm{m}), \tag{6-55}
\end{equation*}
$$

which is the volume density of magnietic dipole moment. The magnetic dipole moment $d \mathbf{m}$ of an elemental volume $d v^{\prime}$ is $d \mathbf{m}=\mathbf{M} d v^{\prime}$ that, according to Eq. (6-45), will produce a vector magnetic potential

$$
\begin{equation*}
d \mathbf{A}=\frac{\mu_{0} \mathbf{M} \times \mathbf{a}_{R}}{4 \pi R^{2}} d v^{\prime} . \tag{6-56}
\end{equation*}
$$

Using Eq. (3-78), we can writc Eq. (6-56) as

$$
d \mathbf{A}=\frac{\mu_{0}}{4 \pi} \mathbf{M} \times \nabla^{\prime}\left(\frac{1}{R}\right) d v^{\prime}
$$

Thus,

$$
\begin{equation*}
\mathbf{A}=\int_{V^{\prime}} d \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}}, \mathbf{M} \times \nabla^{\prime}\left(\frac{1}{R}\right) d v^{\prime} \tag{6-57}
\end{equation*}
$$

where V^{\prime} is the volume of the magnetized material.
We now use the vector identity in Eq. (6-28) to write

$$
\begin{equation*}
\mathbf{M} \times \nabla^{\prime}\left(\frac{1}{R}\right)=\frac{1}{R} \nabla^{\prime} \times \mathbf{M}-\nabla^{\prime} \times\left(\frac{\mathbf{M}}{R}\right) \tag{6-58}
\end{equation*}
$$

and expand the right side of Eg. (6-57) into two terms:

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\nabla^{\prime} \times \mathbf{M}}{R} d v^{\prime}-\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \nabla^{\prime} \times\left(\frac{\mathbf{M}}{R}\right) d v^{\prime} \tag{6-59}
\end{equation*}
$$

The following vector identity (see Problem P. 6-14) enables us to change the volume integral of the curl of a vector into a surface integral.

$$
\begin{equation*}
\int_{V^{\prime}} \nabla^{\prime} \times \mathrm{F} d v^{\prime}=-\oint_{S^{\prime}} \mathrm{F} \times d \mathrm{~s}^{\prime}, \tag{6-60}
\end{equation*}
$$

where \mathbf{F} is any vector with continuous first derivatives. We have, from Eq. (6-59)

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{v^{\prime}} \frac{\nabla^{\prime} \times \mathbf{M}}{R} d v^{\prime}+\frac{\mu_{0}}{4 \pi} \oint_{s^{\prime}} \frac{\mathbf{M} \times \mathbf{a}_{n}^{\prime}}{R} d s^{\prime}, \tag{6-61}
\end{equation*}
$$

ses both induced order to : density : dipole tization
,
noment 75), will
where a_{n}^{\prime} is the unit outward normal vector from $d s^{\prime}$ and S^{\prime} is the surface bounding the volume V^{\prime}.

A comparison of the expressions on the right side of Eq. (6-61) with the form of A in Eq. (6-22), exprêsed in terms of volume current density \mathbf{J} suggests that the effect of the magnetization vector is equivalent to both a volume current density

$$
\begin{equation*}
\mathrm{J}_{m}=\nabla \times \mathrm{M} \quad,\left(\mathrm{~A} / \mathrm{m}^{2}\right) \tag{6-62}
\end{equation*}
$$

and a surface current density

$$
\begin{equation*}
\mathbf{J}_{m s}=\mathbf{M} \times \mathbf{a}_{n} \quad(\mathrm{~A} / \mathrm{m}) \tag{6-63}
\end{equation*}
$$

In Eqs. (6-62) and (6-63) we have omitted the primes on ∇ and \mathbf{a}_{n} for simplicity, since it is clear that both refer to the coordinates of the source point where the magnetization vector M exists. However, the primes should be retained when there is a possibility of confusing the coordinates of the source and field points.

The problem of findng the magnetic flux density 3 caused by a given volume density of magnetic dipole moment M is then reduced to finding the equivalent magnetization current densities \mathbf{J}_{m} and $\mathbf{J}_{m s}$ by using Eqs. (6-62) and (6-63), determining A from Eq. (6-61), and then obtaining B from the curl of A. The externally applied magnetic field, if it also exists, must be accounted for separately.

The mathematical derivation of Eqs. (6-62) and (6-63) is straightforward. The equivalence of a volume density of magnetic dipole moment to a volume current density and a surface current density can be appreciated qualitatively by referring to Fig. 6-9 where a cross section of a magnetized material is shown. It is assumed that an externally applied magnetic field has caused the atomic circulating currents to align with it, thereby magnetizing the material. The strength of this magnetizing

Fig. 6-9 A cross section - of a magnetized material.
effect is measured by the magnetization vector \mathbf{M}. On the surface of the material, there will be a sufface current density $\mathbf{J}_{\mathbf{m},}$, whose direction is correctly given by that of the cross product $\mathbf{M} \times \mathbf{a}_{n}$. If \mathbf{M} is uniform inside the material, the currents of the neighboring atomic dipoles that flow in opposite directions will cancel everywhere, leaving no net currents in the interior. This is predicted by Eq. (6-62), since the space derivatives (and therefore the curl) of a constant \mathbf{M} vanish. However, if \mathbf{M} has space variations, the internal atomic currents do not completely cancel, resulting in a net volume current density $\mathbf{J}_{\boldsymbol{m}}$. It is possible to justify the quantitative relationships between \mathbf{M} and the current densities by deriving the atomic currents on the surface and in the interior. But as this additional derivation is really not necessary and tends to be tedious, we will not attempt it here.

Example 6-8 Determine the magnetic flux density on the axis of a uniformly magnetized circular cylinder of a magnetic material. The cylinder hás a radius b, length L, and axial magnetization \mathbf{M}.

Solution: In this problem concerning a cylindrical bar magnet, let the axis of the magnetized cylinder coincide with the z-axis of a cylindrical coordinate system, as shown in Fig. 6-10. Since the magnetization \mathbf{M} is a constant within the magnet, $\mathbf{J}_{m}=\boldsymbol{\nabla}^{\prime} \times \mathbf{M}=0$, and there is no equivalent volume current density. The equivalent magnetization surface current density on the side wall is

$$
\begin{align*}
\mathbf{J}_{m s} & =\mathbf{M} \times \mathbf{a}_{n}^{\prime}=\left(\mathbf{a}_{z} M\right) \times \mathbf{a}_{r} \\
& =\mathbf{a}_{\phi} M \tag{6-64}
\end{align*}
$$

The magnet is then like a cylindrical sheet with a lineal current density of $M(\mathrm{~A} / \mathrm{m})$. There is no surface current on the top and bottom faces. In order to find \mathbf{B} at $P(0,0, z)$, we consider a differential length $d z^{\prime}$ with a current $\mathrm{a}_{\phi} M d z^{\prime}$ and use Eq. $(6-38)$ to

Fig. 6-10 A uniformly magnetized circular cylinder (Example 6-8).
aterial; by that ; of the , where, e space s space 1 g in a jnships surface ditends
formly dius b,
; of the
naguet, :ival
obtain
and

$$
d \mathbf{B}=a_{=} \frac{\mu_{0} M b^{2} d z^{\prime}}{2\left[\left(z-z^{\prime}\right)^{2}+b^{2}\right]^{3 / 2}}
$$

$$
\begin{align*}
\mathbf{B}=\int d \mathbf{B} & =\mathbf{a}_{z} \int_{0}^{L} \frac{\mu_{0} M b^{2} d z^{\prime}}{2\left[\left(z-z^{\prime}\right)^{2}+b^{2}\right]^{3 / 2}} \\
& =\mathbf{a}_{z} \frac{\mu_{0} M}{2}\left[\frac{z}{\sqrt{z^{2}+b^{2}}}-\frac{z-L}{\sqrt{(z-L)^{2}+b^{2}}}\right] \tag{6-65}
\end{align*}
$$

6-7 MAGNETIC FIELD INTENSITY AND RELATIVE PERMEABILITY

Because the application of an external magnetic fied causes both an alignment of the internal dipole moments and an induced magnetic moment in a magnetic material. we expect that the resultant magnetic flux density in the presence of a magnetic material will be different from its value in free space. The macroscopic effect of magnetization can be studied by incorporating the equivalent volume current density, J_{m} in Eq. (6-62), into the basic curl equation, Eq. (6-7). We have

$$
\frac{1}{\dot{\mu}_{0}} \nabla \times \mathbf{B}=\mathbf{J}+\mathbf{J}_{m} \Rightarrow \mathbf{J}+\nabla \dot{0} \mathbf{M}
$$

or

$$
\begin{equation*}
\nabla \times\left(\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}\right)=\mathbf{J} \tag{6-66}
\end{equation*}
$$

We now define a new fundamental field quantity, the magnetic field intensity, \mathbf{H}, such that

$$
\begin{equation*}
\mathbf{H}=\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M} \quad(\mathrm{A} / \mathrm{m}) \tag{6-67}
\end{equation*}
$$

The use of the vector \mathbf{H} enables us to write a curl equation relating the magnetic field and the distribution of free currents in any medium. There is no need to deal explicitly with the magnetization vector M or the equivalent volume current density J_{m}. Combining Eqs. (6-66) and (6-67), we obtain the new equation

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J} \tag{6-68}
\end{equation*}
$$

where $\mathbf{J}\left(\mathrm{A} / \mathrm{m}^{2}\right)$ is the volume density of free current. Equations (6-6) and (6-68) are the two fundamental governing differential equations for magnetostatics in any
medium. The permeability of free space, μ_{0}, does not appear explicitly in these two equations.

The corresponding integral form of Eq. $(6-68)$ is obtained by taking the scalar surface integral of both sides.

$$
\begin{equation*}
\int_{S}(\nabla \times \mathbf{H}) \cdot d \mathbf{s}=\int_{S} \mathbf{J} \cdot d \mathbf{s} \tag{6-69}
\end{equation*}
$$

or, according to Stokes's theorem,

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot d \ell=I \tag{6-70}
\end{equation*}
$$

where C is the contour (closed path) bounding the surface S, and I is the total current passing through S. The relative directions of C and current flow I follow the righthand rule. Equation ($6-70$) is another form of Ampere's circuital law: It states that the circulation of the magnetic field intensity around any closed path is equal to the free current flowing through the surface bounded ly the path, As we indicated in Section 6-2, Ampère's circuital law is most useful in determining the magnetic field caused by a current when cylindrical symmetry exists-that is, when there is a closed path around the current over which the magnetic field is constant.

When the magnetic properties of the medium are linear and isotropic, the magnetization is directly proportional to the magnetic field intensity:

$$
\begin{equation*}
\mathbf{M}=\chi_{m} \mathbf{H}, \tag{6-71}
\end{equation*}
$$

where $\%_{m}$ is a dimensionless quantity called magnetic susceptibility. Substitution of Eq. (6-71) in Eq. (6-67) yields

$$
\begin{align*}
\mathbf{B} & =\mu_{0}\left(1+\chi_{m}\right) \mathbf{H} \\
& =\mu_{0} \mu_{r} \mathbf{H}=\mu \mathbf{H} \quad\left(\mathrm{Wb} / \mathrm{m}^{2}\right) \tag{6-72a}
\end{align*}
$$

or

$$
\begin{equation*}
\mathbf{H}=\frac{1}{\mu} \mathbf{B} \quad(\mathrm{~A} / \mathrm{m}) \tag{6-72b}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{r}=1+\chi_{m}=\frac{\mu}{\mu_{0}} \tag{6-73}
\end{equation*}
$$

is another dimensionless quantity known as the relative permeability of the medium.

Fig. 6-11 Coil on ferromagnetic toroid with air gap (Example 6-9).

The parameter $\mu=\mu_{0} \mu_{r}$ is the absolute permeability (or, sometimes. just permeability) of the medium and is measured in $\mathrm{H} / \mathrm{m} ; \chi_{m}$, and therefore μ_{r}, can be a function of space coordinates. For a simple medium - linear, isotropic, and homogencous -χ_{m} and μ_{r} are constants.

The permeability of , nost materials is very close to that of free space $\left(\mu_{0}\right)$. For ferromagnetic materials such as iron, nickel, and cobalt. μ_{r} could be very large (50-5000, and up to 10^{6} or more for special alloys); the permeability depends not only on the magnitude of \boldsymbol{H} but also on the previous history of the material. Section 6-9 contains some qualiative discussions of the macroscopic behavior of magnetic materials.

Example 6-9 Assume that N turns of wire are wound around a toroidal core of a ferromagnetic material with permeability μ. The core has a mean radius r_{o}, a circular cross section of radius $a\left(a \ll r_{g}\right)$, and a narrow air gap of length γ_{g}, as shown in Fig. 6-11. A steady current $I_{\text {" }}$, flows in the wire. Determine (a) the magnetic flux density, B_{f}, in the ferromagnetic core; (b) the magnetic field intensity, H_{f}, in the core; and (c) the magnetic field intensity, H_{g}, in the air gap.

Solution

a) Applying Ampète's circuital law, Eq. $(6-70)$, around the circular contour C, which has a mean radius r_{o}, we have

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot d \ell=N I_{0} . \tag{6-74}
\end{equation*}
$$

If the leakage is neglected, the same total fux will how in both the ferromagnetic core and in the air gap. If the fringing effect of the llux in the ar gap is atso neglected, the magnetic flux density B in both the core and the air gap will also be

- the same. However, because of the different permeabilities, the magnetic field intensities in both parts will be different. We have

$$
\begin{equation*}
\mathbf{B}_{f}=\dot{\mathbf{B}}_{g}=\mathbf{a}_{\phi} B_{f} . \tag{6-75}
\end{equation*}
$$

In the ferromagnetic core,

$$
\begin{equation*}
\mathbf{H}_{f}=\mathbf{a}_{\phi} \frac{B_{f}}{\mu} ; \tag{6-76}
\end{equation*}
$$

and, in the air gap,

$$
\begin{equation*}
\mathbf{H}_{g}=\mathbf{a}_{\phi} \frac{B_{f}}{\mu_{0}} . \tag{6-77}
\end{equation*}
$$

Substituting Eqs. (6-75), (6-76), and (6-77) in Eq. (6-74), we obtain

$$
\frac{B_{f}}{\mu}\left(2 \pi r_{o}-\zeta_{g}\right)+\frac{B_{f}}{\mu_{0}} \ell_{g}=N I_{o}
$$

and

$$
\begin{equation*}
\mathbf{B}_{f} \doteq \mathbf{a}_{\phi} \frac{\mu_{0} \mu N I_{o}}{\mu_{0}\left(2 \pi r_{o}-\ell_{g}\right)+\mu t_{g}} . \tag{6-78}
\end{equation*}
$$

b) From Eqs. (6-76) and (6-78) we get

$$
\begin{equation*}
\mathbf{H}_{f}=\mathbf{a}_{\phi} \frac{\mu_{0} N I_{o}}{\mu_{0}\left(2 \pi r_{o}-\ell_{g}\right)+\mu \ell_{g}} . \tag{6-79}
\end{equation*}
$$

c) Similarly, from Eqs. $(6-77)$ and $(6-78)$. we have

$$
\begin{equation*}
H_{g}=\mathbf{a}_{\phi} \frac{{ }_{\phi} N I_{o}}{\mu_{0}\left(2 \pi r_{o}-\ell_{g}\right)+\mu \ell_{g}} . \tag{6-80}
\end{equation*}
$$

Since $H_{g} / H_{f}=\mu / \mu_{0}$, the magnetic field intensity in the air gap is much stronger than that in the ferromagnetic core.
Why do you think the condition $a \ll r_{o}$ is stipulated in this problem?

6-8 MAGNETIC CIRCUITS

The problem in Example 6-9 is, essentially, one of a magnetic circuit in which the current applied to the winding causes a magnetic flux to flow.in the ferromagnetic core and the air gap in series. We define the line integral of magnetic field intensity around a closed path,

$$
\oint_{\mathrm{C}} \mathrm{H} \cdot d \ell,
$$

as magnetomotive force, ${ }^{\dagger}$ mmf. Its SI unit is ampere (A); but, because of Eq. (6-74), mmf is frequently measured in ampere-turns $(\mathrm{A} \cdot \mathrm{t})$. An mmf is not a force measured in newtons.

Assume $\mathscr{V}_{m}=N I_{o}$ denotes a magnetomotive force that causes a magnetic flux, Φ, to flow in a magnetic circuit. If the radius of the cross section of the core is much

[^32]smaller than the mean radius of the toroid, the magnetic flux density \mathbf{B} in the core is approximately conistant, and
\[

$$
\begin{equation*}
\Phi \cong B S, \tag{6-81}
\end{equation*}
$$

\]

where S is the cross-sectional area of the corc. Combination of Eqs. (6-81) and (6-78) yields

$$
\begin{equation*}
\Phi=\frac{N I_{n}}{\left(2 \pi r_{0}-\ell_{g}\right) / \mu S+\ell_{g} / \mu_{0} S} . \tag{6-82}
\end{equation*}
$$

Equation (6-82) can be rewritten

$$
\begin{equation*}
\Phi=\frac{\mathscr{Y}_{m}}{\mathscr{R}_{j}+\mathscr{R}_{g}}, \tag{6-83}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathscr{R}_{f}=\frac{2 \pi r_{n}-\ell_{q}}{\mu S}=\frac{l_{f}}{\mu S} \tag{6-84}
\end{equation*}
$$

where $\ell_{f}=2 \pi r_{o}-\ell_{\mathrm{y}}$ is the length of the ferromagnetic core, and

$$
\mathscr{R}_{g}=\frac{t_{g}}{\mu_{0} S} .
$$

Both $\%_{f}$ and , $_{y}$ have the same form as the formula, Eq. (5-13), for the DC resistance of a stragh piece of honogencous material with a uniform cross section S. Both are called reluctance: \mathscr{K}_{f}, of the ferromagnetic core; and \mathscr{K}_{n}, of the air gap. The SI unit for reluctance is reciprocal henry $\left(\mathrm{H}^{-1}\right)$. The fact that Eqs. (6-84) and ($6-85$) are as they are, even though the core is not straight, is a consequence of assuming that B is approximately constant over the core cross section.

Equation (6-83) is analogous to the expression for the current I in an electric circuit, in which an ideal voltage source of emf \mathscr{V} is connected in series with two resistances R_{f} and R_{g} :

$$
\begin{equation*}
I=\frac{\psi}{R_{f}+R_{g}} . \tag{6-86}
\end{equation*}
$$

The analogous maghetic and electric circuits are shown in Figs. 6-12(a) and (o)

Fig. 6-12 Equivalent magnetic circuit and analogous electric circuit for toroidal coil with air gap in Fig. 6-11.
respectively. Magnetic circuits can, by analogy, be analyzed by the same techniques we have used in analyzing electric circuits. The analogous quantities are

Magnetic Circuits	Electric Circuits
mmf, $\mathscr{Y}_{m}(=N I)$	emf, $\mathscr{\not}$
magnetic flux, Φ	electric. current, I
reluctance, \mathscr{R}	resistance, R
permeability, μ	conductivity, σ

In spite of this convenient likeness, an exact analysis of magnetic circuits is inherently very difficult to achieve.

First, it is very difficult to account for leakage fluxes, fluxes that stray or leak from the main flux paths of a magnetic circuit. For the toroidal coil in Fig. 6-11, leakage flux paths encircle every turn of the winding; they partially transverse the space around the core, as illustrated, because the permeability of air is not zero. (There is little need for considering leakage currents outside the conducting paths of electric circuits that carry direct currents. The reason is that the conductivity of air is practically zero compared to that of a good conductor.)

A second difficulty is the fringing effect that causes the magnetic flux lines at the air gap to spread and bulge. ${ }^{\dagger}$ (The purpose of specifying the "narrow air gap" in Example 6-9 was to minimize this fringing effect.)

A third difficulty is that the permeability of ferromagnetic materials is dependent on the magnetic field intensity; that is, \mathbf{B} and \mathbf{H} have a nonlinear relationship. (They may not even be in the same direction.) The problem of Example 6-9, which assumes a given μ before either \mathbf{B}_{c} or \mathbf{H}_{c} is known, is therefore not a realistic one.

In a practical problem, the $B-H$ curve of the ferromagnetic material, such as that shown later in Fig. 6-15, should be given. The ratio of B to H is obviously not a constant, and B_{f} can be known only when H_{f} is known. So how does one solve the problem? Two conditions must be satisfied. First, the sum of $H_{g} t_{g}$ and $H_{f^{\prime}}{ }_{f}$ must equal the total $\mathrm{mmf}^{\mathrm{N}} I_{o}$:

$$
\begin{equation*}
H_{g} \ell_{g}+H_{f} l_{f}=N I_{o} . \tag{6-87a}
\end{equation*}
$$

[^33]uits is or leak 6-11, se y : pat vity ..
at the $a p$ " in
indent They sumes
uch as ily not : solve $H_{s} l_{s}$

1-87a)
a of the e line:' rrectio.

Second, if we assume no leakage flux, the total flux Φ in the ferromagnetic core and in the air gap must be the same, or $B_{f}=B_{g}:^{\dagger}$

$$
\begin{equation*}
B_{f}=\mu_{0} H_{g} . \tag{6-87b}
\end{equation*}
$$

Substitution of Eq. $(6-87 \mathrm{~b})$ in Eq. $(6-87 \mathrm{a})$ yields an equation relating B_{f} and H_{j} in the core:

$$
\begin{equation*}
B_{f}+\mu_{0} \frac{\ell_{f}}{\ell_{g}} H_{f}=\frac{\mu_{0}}{\ell_{g}} N I_{0} \tag{6-88}
\end{equation*}
$$

This is an equation for a straight line in the $B-H$ plane with a negative slope $-\mu_{0} \ell_{f} / \ell_{g}$. The intersection of this line and the given $B-H$ curve determines the operating point. Once the operating point has been found, μ and H_{f} and all other quantities can be obtained.

The similarity between Eqs. $(6-83)$ and $(6-86)$ can be extended to the writing of two basic equations for raagnetic circuits that correspond to Kirchhoffs voltage and current laws for electric circuits. Similar to Kirchhoff's voltage law in Eq. (5-27), we may write, for any closed path in a magnetic circuit,

$$
\begin{equation*}
\sum_{j} N_{i} l_{j}=\sum_{k} M_{k}()_{k} \tag{6--89}
\end{equation*}
$$

Equation (6-89) states that around a closed path in a magnetic circuit the algebraic sum of ampere-turns is equal to the algebraic sum of the products of the reluctances and fluxes.

Kirchhoff's current law for a junction in an electric circuit, Eq. (5-33), is a consequence of $\nabla \cdot \mathbf{J}=0$. Similarly, the fundamental postulate $\mathbf{V} \cdot \mathbf{B}=0$ in Eq. $(6-6)$ leads to Eq. (6-8). Thus we have

$$
\begin{equation*}
\sum_{j} \Phi_{j}=0, \tag{6-90}
\end{equation*}
$$

which states that the algebraic sum of all the magnetic fluxes flowing out of a junction in a magnetic circuit is zero. Equations $(6-89)$ and $(6-90)$ form the bases for, respectively, the loop and node, analysis of magnetic circuits.

Example 6-10 Consider the magnetic circuit in Fig. 6-13(a). Steady currents I_{1} and I_{2} flow in windings of, respectively; N_{1} and N_{2} turns on the outside legs of the

[^34]
224 STATIC MÁGNETIC FIELDS / 6

(a) Magnetic core with current-carrying windings.

(b) Magnetic circuit for loop analysis.

Fig. 6-13 A magnetic circuit (Example 6-10).
ferromagnetic core. The core has a cross-sectional area S_{c} and a permeability μ. Determine the magnetic flux in the center leg.

Solution: The equivalent magnetic circuit for loop analysis is shown in Fig. 6-13(b). Two sources of mmf's, $N_{1} I_{1}$ and $N_{2} I_{2}$, are shown with proper polarities in series with reluctances A_{1} and $: T_{2}$ respectively. This is obviously a two-loop network. Since we are determining magnetic llux in the center leg $P_{1} P_{2}$, it is expedient to choose the two loops in such a way that only one loop flux $\left(\Phi_{1}\right)$ flows through the center leg. The reluctances are computed on the basis of average path lengths. These are, of course, approximations. We have

$$
\begin{align*}
& \mathscr{R}_{1}=\frac{\ell_{1}}{\mu S_{c}} \tag{6-91a}\\
& \mathscr{R}_{2}=\frac{t_{2}}{\mu S_{c}} \tag{6-91b}\\
& \mathscr{R}_{3}=\frac{\ell_{3}}{\mu S_{c}} . \tag{6-91c}
\end{align*}
$$

The two loop equations are, from Eq. (6-89),
Loop 1:

$$
\begin{equation*}
N_{1} I_{1}=\left(\mathscr{M}_{1}+\mathscr{R}_{3}\right) \Phi_{1}+\mathscr{R}_{1} \Phi_{2} \tag{6-92}
\end{equation*}
$$

Loop 2:

$$
\begin{equation*}
N_{1} I_{1}-N_{2} I_{2}=\mathscr{R}_{1} \Phi_{1}+\left(\mathscr{R}_{1}+\mathscr{R}_{2}\right) \Phi_{2} \tag{6-93}
\end{equation*}
$$

Solving these simultaneous equations, we obtain

$$
\begin{equation*}
\Phi_{1}=\frac{\mathscr{R}_{2} N_{1} I_{1}-\mathscr{R}_{1} N_{2} I_{2}}{\mathscr{R}_{1} \mathscr{R}_{2}+\mathscr{R}_{1} \mathscr{R}_{3}+\mathscr{R}_{2} \mathscr{R}_{3}}, \tag{6-94}
\end{equation*}
$$

which is the desired answer.

Actually since the magnetic fluxes and therefore the magnetic flux densities in the three legs are different, different permeabilities should be used in computing the reluctances in Eqs. $(6-91 a),(6-91 b)$ and $(6-91 \mathrm{c})$. But the value of permeability, in turn, depends on the magnetic flux density. The only way to improve the accuracy of the solution, provided the $B-H$ curve of the core material is given, is to use a procedure of successive approximation. For instance, Φ_{1}, Φ_{2}, and Φ_{3} (and therefore B_{1}, B_{2}, and B_{3}) are first solved with an assumed μ and reluctances computed from the three parts of Eq! $(6-91)$. From B_{1}, B_{2}, and B_{3} the corresponding μ_{1}, μ_{2}, and μ_{3} can be found from the $B-H$ curve. These will modify the reluctances. A second approximation for B_{1}, B_{2}; and B_{3} is then obtained with the modified reluctances. From the new flux dênsities, new permeabilities and new reluctances are determined. This procedure is repeated until further iterations bring little changes in the computed values.
sbility μ.

(6-91a)

6-9 BEHAVIOR OF MAGNET!C MATERIALS

In Eq. $(6-71)$, Section $6-7$, we described the macroscopic magnetic property of a linear, isotropic medium by defining the magnetic susceptibility χ_{m}, a dimensionless coefficient of proportionality between magnetization \mathbf{M} and magnetic field intensity H. The relative permeability μ_{r} is simply $1+\chi_{m}$. Magnetic materials can be roughly classified into three main groups in accordance with their μ_{r} values. A materiai is said to be

Diamagnetic, if $\mu_{r} \lesssim 1: \alpha_{m}$ is a very small negative number).
Paramagnetic, if $\mu_{r} \gtrsim 1$ (χ_{m} is a very small positive number).
Ferromagnetic, if $\mu_{r} \gg 1$ (χ_{m} is a large positive number).
As mentioned before, a thorough understanding of microscopic magnetic phenomena requires a knowledge of quantum mechanics. In the following we give a qualitative description of the behavior of the various types of magnetic materials based on the classical atomic model.

In a dianagnetic material the net magnetic moment due to the orbital and spinning motions of the electrons in any particular atom is zero in the absence of an externally applied magnetic field. As predicted by Eq. (6-4), the application of an external magnetic field to this material produces a force on the orbiting electrons, causing a perturbation in the angular velöcities. As a consequence, a net magnetic moment is created. This is a process of induced magnetization. According to Lenz's law of electromagnetic induction (Section 7-2), the induced magnetic moment always opposes the applied field, thus reducing the magnetic flux density. The macroscopic effect of this process is equivalent to that of a negative magnetization that can be described by a negative magnetic susceptibility. This effect is usually very small, and χ_{m} for most known diamagnetic materials (bismuth, copper, lead, mercury, germanium, silver, gold, diamond) is in the order of -10^{-5}.

Diamagnetism arises mainly from the orbital motion of the electrons within an atom and is present in all materials. In most materials it is too weak to be of any practical importance. The diamagnetic effect is masked in paramagnetic and ferromagnetic materials. Diamagnetic materials exhibit no permanent magnetism, and the induced magnetic moment disappears when the applied field is withdrawn.

In some materials the magnetic moments due to the orbiting and spinning electrons do not cancel completely, and the atoms and molecules have a net average magnetic moment. An externally applied magnetic field, in addition to causing a very weak diamagnetic effect, tends to align the molecular magnetic moments in the direction of the applied field, thus increasing the magnetic flux density. The macroscopic effect is, then, equivalent to that of a positive magnetization that is described by a positive magnetic susceptibility. The alignment process is, however, impeded by the forces of random thermal vibrations. There is little coherent interaction and the increase in magnetic flux density is quite small. Materials with this behavior are said to be paramergnetic: Paramagnetic materials gencrally have very small positive values of magnetic suscepthitity, in the order of 10 " for ahmmum, mannesium. titanium, and tungsten.

Paramagnetism arises mainly from the magnetic dipole moments of the spinning electrons. The alignment forces, acting upon molecular dipoles by the applied field, are counteracted by the deranging effects of thermal agitation. Unlike diamagnetism. which is essentially independent of temperature, the paramagnetic effect is temperature dependent, being stronger at lower temperatures where there is less thermal collision.

The magnetization of ferromagnetic materials can be many orders of magnitude larger than that of paramagnetic substances. (See Appendix B-5 for typical values of relative permittivity.) Ferromagnetism can be explained in terms of magnetized domains. According to this model, which has been experimentally comfimed, a ferromagnetic material (such as cobalt, nickel, and iron) is composed of many small domains, their linear dimensions ranging from a few microns to about 1 mm . These domains, each containing about 10^{15} or 10^{16} atoms, are fully magnetized in the sense that they contain aligned magnetic dipoles resulting from spinning electrons even in the absence of an applied magnetic field. Quantum theory asserts that strong coupling forces exist between the magnetic dipole moments of the atoms in a domain, holding the dipole moments in parallel. Between adjacent domains there is a transition region about 100 atoms thick called a domain wall. In an unmagnetized state, the magnetic moments of the adjacent domains in a ferromagnetic material have different directions, as exemplified in Fig. 6-14 by the polycrystalline specimen shown. Viewed as a.whole, the random nature of the orientations in the various domains results in no net magnetization.

When an external magnetic field is applied to a ferromagnetic material, the walls of those domains having magnetic moments aligned with the applied field move in such a way as to make the volumes of those domains grow at the expense of other
thin an of any 4 ferrom, and An. pinning average using a s in the macro: scribed mpeded in and vior are positive : :esium,
m od fies. neti is temthermal gnitude I values metized med, a iy small i. These ae sense ns even strong jomain, ansition ate, the different sho :omans he wa... move in of other

Fig. 6-14 Domain structure of a polycrystalline ferromagnetic specimen.
domains. As a result, magnetic flux density is increased. For weak applied fields, say up to point P_{1} in Fig. $6-15$, domain-wall movements are reversible. But when an applied field becomes stronger (past P_{1}), domain-wall movements are no longer reversible, and domaln rotation toward the direction of the applied field will also occur. For example, if an applied field is reduced to zero at point P_{2}, the $B-H$ relationship will not follow the solid curve $P_{2} P_{1} 0$, but will go down from P_{2} to P_{2}^{\prime}, along the lines of the broken curve in the figure. This phenomenon of magnetization lagging behind the field producing it is called hysteresis, which is derived from a Greek word meaning "to lag." As the applied field becomes even much stronger (past P_{2} to P_{3}). domain-wall motion and domain rotation will cause essentially a total alignment of the microscopic magnatic moments with the applied field, at which point the magnetic material is said to have reached saturation. The curve $O P_{1} P_{2} P_{3}$ on the B I plane is called the mimal magne i aution carve.

If the applied maghetis field is reduced to zero from the value at P_{3}, the magnetic flux density does not go to zero but assumes the value at B_{r}. This value is called the residual or remanent flux density (in $\mathrm{Wb} / \mathrm{m}^{2}$) and is dependent on the maximum applied field intensity. The existence of a remanent flux density in a ferromagnetic material makes permanent magnets possible.

Fig. 6-15 Hysteresis loops in $B-H$ plane for ferromagnetic material.

In order to make the magnetic flux density of a specimen zero, it is necessary to apply a magnetic field intensity H_{c} in the opposite direction. This required H_{c} is called coersive force, but a more appropriate name is coersive field intensity (in A / m). Like B_{r}, H_{c} also depends on the maximum value of the applied magnetic field intensity.

It is evident from Fig. 6-15 that the $B-H$ relationship for a ferromagnetic material is nonlinear. Hence, if we write $\mathbf{B}=\mu \mathrm{H}$ as in Eq. (6-72a), the permeability μ itself is a function of the magnitude of \mathbf{H}. Permeability μ also depends on the history of the material's magnetization, since - even for the same \mathbf{H}-we must know the location of the operating point on a particular branch of a particular hysteresis loop in order to determine the value of μ exactly. In some applications a small alternating current may be superimposed on a large steady magnetizing current. The steady magnetizing field intensity locates the operating point, and the local slope of the hysteresis curve at the operating point determines the incremental permeability.

Ferromagnetic materials for use in electric generators, motors, and transformers should have a large magnetization for a very small applied field; they should have tall and narrow hysteresis loops. As the applied magnetic field intensity varies periodically between $\pm I_{\text {man }}$, the hysteresis foop is traced once per eyede. The area of the hysteresis loop corresponds to energy loss (hysteresis loss) per unit volume per cycle (Problem P. 6-21). Hysteresis loss is the energy lost in the form of heat in overcoming the friction encountered during domain-wall motion and domain rotation. Ferromagnetic materials, which have tall, narrow hysteresis loops with small loop areas, are referred to as "soft" materials; they are usually well-annealed materials with very few dislocations and impurities so that the domain walls can move easily.

Good permanent magnets, on the other hand, should show a high resistance to demagnetization. This requires that they be made with materials that have large coercive field intensities H_{c} and, hence, fat hysteresis loops. These materials are referred to as "hard" ferromagnetic materials. The coercive field intensity of hard ferromagnetic materials (such as Alnico alloys) can be $10^{5}(\mathrm{~A} / \mathrm{m})$ or more, whereas that for soft materials is usually $50(\mathrm{~A} / \mathrm{m})$ or less.

As indicated before, ferromagnetism is the result of strong coupling effects between the magnetic dipole moments of the atoms in a domain. Figure 6-16(a) depicts the atomic spin structure of a ferromagnetic material. When the temperature of a ferromagnetic material is raised to such an extent that the thermal energy exceeds the coupling energy, the magnetized domains become disorganized. Above this critical temperature, known as the curie temperature, a ferromagnetic material behaves like a paramagnetic substance. Hence, when a permanent magnet is heated above its curie temperature it loses its magnetization. The curie temperature of most ferromagnetic materials lies between a few hundred to a thousand degrees Celsius, that of iron being $770^{\circ} \mathrm{C}$.

Some elements, such as chromium and manganese, which are close to ferromagnetic elements in atomic number and are neighbors of iron in the periodic table, also have strong coupling forces between the atomic magnetic dipole moments;
cessary
:d H_{c} is n A/m). ttensity. naterial μ itself story of ow the sis 1 pop rnating steady
: of the irs.
formers
d have

- varies S? me per ac
atation.
all koop aterials
ceasily.
visance
carge
ials are
of hard
whereas
between victs the a ferroods the critical ives like novy ts st fer.uius. $1^{\text {- }}$
a) Eerroic table, oments;

4.

but their coupling forces produce antiparallel alignments of electron spins, as illustrated in Fig. 6-16(b). The spins alternate in direction from atom to atom and result in no net magnetic moment. A material possessing this property is said to be antiferromagnetic. Antiferromagnetism is also temperature dependent. When an antiferromagnetic material is heated above its curie temperature, the spin directions suddenly become random and the material becomes paramagnetic.

There is another class of magnetic materials that exhibit a behavior between ferromagnetism and antiferromagnetism. Here quantum mechanical effects make the directions of the magnetic moments in the ordered spin structure alternate and the magnitudes unequal, resulting in a net nonzero magnetic moment, as depicted in Fig. 6-16(c). These materials are said to be ferrimagnetic. Because of the partial cancellation, the maximum magnetic flux density attained in a ferrimagnetic substance is substantially lower than that in a ferromagnetic specimen. Typically, it is about $0.3 \mathrm{~Wb} / \mathrm{m}^{2}$, approximately one-tenth that for ferromagnetic substances.

Ferrites are a subgroup of ferrimagnetic material. One type of ferrites. called maynetic spinels, crystallize in a complicated spinel strucure and have the formula $\mathrm{XO} \cdot \mathrm{Fe}_{2} \mathrm{O}_{3}$, where X denotes a divalent metallic ion such as $\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Mn}, \mathrm{Mg}$, Zn, Cd, etc. These are ceramic-like compounds with very low conductivities, (for instance, 10^{-4} tol $(\mathrm{S} / \mathrm{m})$ compared with $10^{7}(\mathrm{~S} / \mathrm{m})$ for iron). Low conductivity limits eddy-current losses at high frequencies. Hence ferrites find extensive uses in such high-frequency and microwave applications as cores for FM antennas, high-frequency transformers, and phase shifters. Other ferrites include magnetic-oxide garnets, of which Yttrium-Iron-Gatret ("YIG," $\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$) is typical. Garnets are used in microw:ive multiport junctions.

6-10 BOUNDARY CONDITIONS FOR MAGNETOSTATIC FIELDS

In order to solve problems concerning magnetic fields in regions having media with different physical properties, it is necessary to study the conditions (boundary conditions) that \mathbf{B} and \mathbf{H} vectors must satisfy at the interfaces of different media. Using techniques similar to those employed in Section 3-9 to obtain the boundary conditions for electrostatic fields, we derive magnetostatic boundary conditions by applying the two fundamental governing equations, Eqs. (6-6) and (6-68), respectively, to a small pillbox and a small closed path which include the interface. From the divergenceless nature of the \mathbf{B} field in Eq. (6-6), $\boldsymbol{\nabla} \cdot \dot{\mathbf{B}}=0$, we may conclude directly, in light of past experience, that the normal component of \mathbf{B} is continuous across an interface; that is,

$$
\begin{equation*}
B_{1 n}=B_{2 n} \quad \text { (T). } \tag{6-95}
\end{equation*}
$$

For linear media, $\mathbf{B}_{1}=\mu_{1} \mathbf{H}_{1}$ and $\mathbf{B}_{2}=\mu_{2} \mathbf{H}_{2}$, Eq. (6-95) becomes

$$
\begin{equation*}
\mu_{1} H_{1 n}=\mu_{2} H_{2 n} \tag{6-96}
\end{equation*}
$$

The boundary condition for the tangential components of magnetostatic field is obtained from the integral form of the curl equation for $\mathrm{H}, \mathrm{Eq} .(6-70)$, which is repeated here for convenience:

$$
\begin{equation*}
\oint_{\mathrm{C}} \mathrm{H} \cdot d \ell=I \tag{6-97}
\end{equation*}
$$

We now choose the closed path $a b c d a$ in Fig. 6-17 as the contour C. Applying Eq. (6-97) and letting $b c=d a=\Delta h$ approach zero, we have

$$
\oint_{u b c d a} \mathbf{H} \cdot d \ell=\mathbf{H}_{1} \cdot \Delta \mathbf{w}+\mathbf{H}_{2} \cdot(-\Delta \mathbf{w})=J_{s n} \Delta w
$$

or

$$
\begin{equation*}
H_{1 t}-H_{2 t}=J_{s n} \quad(\mathrm{~A} / \mathrm{M}), \tag{6-98}
\end{equation*}
$$

where $J_{s n}$ is the surface current density on the interface normal to the contour C. The direction of $J_{s n}$ is that of the thumb when the fingers of the right hand follow

Fig. 6-17 Closed path about the interface of two media for determining the boundary condition of H_{t}.
dia with ry cona. Using ary conions by respecc. From onclude ntinuous

:ic field which is
the direction of the path. In Fig. 6-17, the positive direction of $J_{s n}$ for the chosen path is out of the paper. The following is a more concise expression of the boundary condition for the tangential components of \mathbf{H}, which includes both magnitude and direction relations (Problem P. 6-22).

$$
\begin{equation*}
\mathbf{a}_{n_{2}} \times\left(\mathbf{H}_{1}-\mathbf{H}_{2}\right)=\mathbf{J}_{s} \quad(\mathrm{~A} / \mathrm{m}) \tag{6-99}
\end{equation*}
$$

where $a_{n 2}$ is the outwatil unil normal frommedium 2 at the interface. Thus, the tangential component of the \mathbf{H} field is discontinuous across an interface where a surface current exists, the amount of discontinuity being determined by Eq. (6-99).

When the conductivities of both media are finite, currents are defined by volume current densities and free surface currents do not exist on the interface. Hence, \mathbf{J}_{s} equals zero, and the targential component of \mathbf{H} is continuous across the boundary of almost all physical medic! it is discontinuous only when an interface with an ideal perfect conductor or a superconductor is assumed.

Example 6-11 Two magnetic media with permeabilities μ_{1} and μ_{2} have a common boundary, as shown in Fir. 6-18. The magnetic field intensity in medium 1 at the point P_{1} has a magnitude H_{1} and makes an angle α_{1} with the normal. Determine the magnitude and the direction of the magnetic field intensity at point P_{2} in medium 2.

Solution: The desired unknown quantities are H_{2} and α_{2}. Continuity of the normal component of \mathbf{B} field requires, from Eq. $(6-96)$,

$$
\begin{equation*}
\mu_{2} H_{2} \cos \alpha_{2}=\mu_{1} H_{1} \cos \alpha_{1} \tag{6-100}
\end{equation*}
$$

Since neither of the media is a perfect conductor, the tangential component of H field is continuous. We have

$$
\begin{equation*}
H_{2} \sin \alpha_{2}=H_{1} \sin \alpha_{1} \tag{6-101}
\end{equation*}
$$

Division of Eq. $(6-101)$ by Eq. $(6-100)$ gives

$$
\begin{equation*}
\frac{\tan \alpha_{2}}{\tan \alpha_{1}}=\frac{\mu_{2}}{\mu_{1}} \tag{6-102}
\end{equation*}
$$

Fig. 6-18 Boundary conditions for magnetostatic field at an interface (Example 6-11).
or

$$
\alpha_{2}=\tan ^{-1}\left(\frac{\mu_{2}}{\mu_{1}} \tan \alpha_{1}\right)
$$

which describes the refraction property of the magnetic field. The magnitude of H_{2} is

$$
\begin{gather*}
H_{2}=\sqrt{H_{2 t}^{2}+H_{2 n}^{2}}=\sqrt{\left(H_{2} \sin \alpha_{2}\right)^{2}+\left(H_{2} \cos \alpha_{2}\right)^{2}} \\
H_{2}=H_{1}\left[\sin ^{2} \alpha_{1}+\left(\frac{\mu_{1}}{\mu_{2}} \cos \alpha_{1}\right)^{2}\right]^{1 / 2} \tag{6-104}
\end{gather*}
$$

We make three remarks here. First, Eqs. (6-102) and (6-104) are entirely similar to, respectively, Eqs. $(3-119)$ and ($3-120$) for the electric fields in dielectric mediaexcept for the use of permeabilities (instead of permittivities) in the case of magnetic fields. Second, if medium 1 is nonmagnetic (like air) and medium 2 is ferromagnetic (like iron), then $\mu_{2} \gg \mu_{1}$ and, from Eq. (6-102), α_{2} will be nearly ninety degrees. This means that for any arbitrary angle α_{1} that is not close to zero, the magnetic field in a ferromagnetic medium runs almost paralle to the interface. Third, if medium 1 is ferromagnetic and medium 2 is air $\left(\mu_{1} \gg \mu_{2}\right)$, then α_{2} will be nearly zero; that is, if a magnetic field originates in a ferromagnetic medium, the flux lines will emerge into air in a direction almost normal to the interface.

In current-free regions the magnetic flux density \mathbf{B} is irrotational and can be expressed as the gradient of a scalar magnetic potential V_{m}, as indicated in Section 6-5.1.

$$
\begin{equation*}
\mathbf{B}=-\mu \nabla V_{m} \tag{6-105}
\end{equation*}
$$

Assuming a constant μ, substitution of Eq. (6-105) in $\nabla \cdot \mathbf{B}=0$ (Eq. 6-6) yields a Laplace's equation in V_{m} :

$$
\begin{equation*}
\nabla^{2} V_{m}=0 \tag{6-106}
\end{equation*}
$$

Equation (6-106) is entirely similar to the Laplace's equation, Eq. (4-10), for the scalar electric potential V in a charge-free region. That the solution for Eq. $(6-106)$ satisfying given boundary conditions is unique can be proved in the same way as for Eq. (4-10) - see Section 4-3. Thus the techniques (method of images and method of separation of variables) discussed in Chapter 4 for solving electrostatic boundaryvalue problems can be adapted to solving analogous magnetostatic boundary-value problems. However, although electrostatic problems with conducting boundaries maintained at fixed potentials occur quite often in practice, analogous magnetostatic problems with constant magnetic-potential boundaries are of little practical importance. (We recall that isolated magnetic charges do not exist and that magnetic flux lines always form closed paths.) The nonlinearity in the relationship between \mathbf{B} and \mathbf{H} in ferromagnetic materials also complicates the analytical solution of boundaryvalue problems in magnetostatics.

6-11 INDUCTANCES AND INDUCTORS
$(6-103)$
\geq of H_{2} is
(6-104)
\because similar mediaamenctic magnetic ees. This otic $\sim d$:edium 1 ; th: orge mo

1 can be i in Sec-
yiêlds a

1, for the . (6-106) ay as for cthod of sundary-ary-value unc -s ctostatic il imp retic flux nn B and sundary-

Consider two neighboring closed loops, C_{1} and C_{2} bounding surfaces S_{1} and S_{2} respectively, as shown in Fig. 6-19. If a current I_{1} flows in C_{1}, a magnetic field B_{1} will be created. Some of the magnetic flux due to \mathbf{B}_{1} will link with C_{2} - that is, will pass through the surfice S_{2} bounded by C_{2}. Let us designate this mutual flux Φ_{12}. We have

$$
\begin{equation*}
\Phi_{12}=\int_{S_{2}} \mathbf{B}_{1}\left\ulcorner d \mathbf{s}_{2} \quad(\mathrm{~Wb})\right. \tag{6-107}
\end{equation*}
$$

From physics we know that a time-varying I_{1} (and therefore a time-varying Φ_{12}) will produce an induced electromotive force or voltage in C_{2} as a result of Faraday's law of electromagnetic induction. (We defer the discussion of Faraday's law until the next chapter.) Howevor, ψ_{12} exists even if I_{1} is a steady DC current.

From Biot-Savart law. Eq. $(6-31)$, we see that B_{1} is directly proportional to I_{1}; hence Φ_{12} is also proportional to I_{1}. We write

$$
\begin{equation*}
\Phi_{12}=L_{12} I_{1} \tag{6-108}
\end{equation*}
$$

where the proportionality constant L_{12} is called the mutual inductance between loops C_{1} and C_{2}, with SI unit henry (H). In case C_{2} has N_{2} turns, the flux linkage Λ_{12} due to Φ_{12} is

$$
\begin{equation*}
\Lambda_{12}=N_{2} \Phi_{12} \tag{6-109}
\end{equation*}
$$

and Eq. $(6-108)$ generalizes to

$$
\begin{equation*}
\Lambda_{12}=L_{12} I_{1} \quad(\mathrm{~Wb}) \tag{6-110}
\end{equation*}
$$

or

$$
\begin{equation*}
L_{12}=\frac{\Lambda_{12}}{I_{1}} \tag{6-111}
\end{equation*}
$$

Fig. 6-19 Two magnetically coupled loops.

234 STATIC MAGNETIC FIELDS / 6

The mutual inductance between two circuits is then the magnetic flux linkage with one circuit per unit current in the other. In Eq. (6-108), it is implied that the permeability of the medium does not change with I_{1}. In other words, Eq. $(6-108)$ and hence Eq. (6-111) apply only to linear media. A more general definition for L_{12} is

$$
\begin{equation*}
L_{12}=\frac{d \Lambda_{12}}{d I_{1}} \tag{6-112}
\end{equation*}
$$

Some of the magnetic flux produced by I_{1} links only with C_{1} itself, and not with C_{2}. The total flux linkage with C_{1} caused by I_{1} is

$$
\begin{equation*}
\Lambda_{11}=N_{1} \Phi_{11}>N_{1} \Phi_{12} . \tag{6-113}
\end{equation*}
$$

The self-inductance of loop C_{1} is defined as the magnetic fux linkage per, unit current in the loop itself; that is,

$$
\begin{equation*}
L_{11}=\frac{\Lambda_{11}}{I_{1}} \quad(\mathrm{H}) \tag{6-114}
\end{equation*}
$$

for a linear medium. In general,

$$
\begin{equation*}
L_{11}=\frac{d \Lambda_{11}}{d I_{1}} \quad(\mathrm{H}) \tag{6-115}
\end{equation*}
$$

The self-inductance of a loop or circuit depends on the geometrical shape and the physical arrangement of the conductor constituting the loop or circuit, as well as on the permeability of the medium. With a linear medium, self-inductance does not depend on the current in the loop or circuit. As a matter of fact, it exists regardless of whether the loop or circuit is open or closed, or whether it is near another loop or circuit.

A conductor arranged in an appropriate shape (such as a conducting wire wound as a coil) to supply a certain amount of self-inductance is called an inductor. Just as a capacitor can store electric energy, an inductor can storage magnetic encrgy, as we shall see in Section 6-12. When we deal with only one loop or coil, there is no need to carry the subscripts in Eq. (6-114) or Eq. (6-115), and inductance without an adjective will be taken to mean self-inductance. The procedure for determining the self-inductance of an inductor is as follows:

1. Choose an appropriate coordinate system for the given geometry.
2. Assume a current I in the conducting wire.
3. Find \mathbf{B} from I by Ampère's circuital law, Eq. (6-9), if symmetry exists; if not, Biot-Savart law, Eq. (6-31), must be used.

- with one meability nd hence s
(6-112)

I not with
it current $\left(r^{\circ} 4\right)$ (6-115)
e and the well as on does not ardess of \because loop or
re wound r. Just as rgy, as we :o need to $\mathrm{ad} \bigcirc \mathrm{e}$ re sen-in-
ts; if not,
4. Find the flux linking with each turn, Φ, from B by integration,

$$
\Phi=\int_{S} \mathbf{B} \mathrm{ds},
$$

where S is the area over which B exists and links with the assumed current.
5. Find the flux linkage Λ by multiplying Φ by the number of turns.
6. Find L by taking the ratio $L=\Lambda / I$.

Only a slight modification of this procedure is needed to determine the mutual inductance L_{12} between two circuits. After choosing an appropriate coordinate system, proceed as follows: Assume $I_{1} \rightarrow$ find $\mathbf{B}_{1} \rightarrow$ find Φ_{12} by integrating \mathbf{B}_{1} over surface $S_{2} \rightarrow$ find flux linkage $\Lambda_{12}=N_{2} \Phi_{12} \rightarrow$ find $L_{12}=\Lambda_{12} / I_{1}$.

Example 6-12 Assume N turns of wire are tightly wound on a toroidal frame of a rectangular cross section with dimensions as shown in Fig. 6-20. Then assuming the permeability of the medium to be μ_{0}, find the self-inductance of the toroidal coil.

Solution: It is clear that the cylindrical coordinate system is appropriate for this problem because the toroid is symmetrical about its axis. Assuming a current I in the conducting wire, we find, by applying Eq. (6-9) to a circular path with radius $r(a<r<b)$:

$$
\begin{gathered}
\mathbf{B}=\mathbf{a}_{\phi} B_{\phi} \\
d \ell=\mathbf{a}_{\phi} r d \phi \\
\dot{\varphi}_{C} \mathbf{B} \cdot d \ell=\int_{0}^{2 \pi} B_{\phi} r d \phi=2 \pi r B_{\phi} .
\end{gathered}
$$

This result is obtained because both B_{ϕ} and r are constant around the circular path C. Since the path encircles a total current NI, we have

$$
2 \pi r B_{\phi}=\mu_{0} N I
$$

Fig. 6-20 A closely wound toroidal -coil (Example 6-12).
and

$$
B_{\phi}=\frac{\mu_{0} N I}{2 \pi r}
$$

Next we find

$$
\begin{aligned}
\Phi & =\int_{S} \mathbf{B} \cdot d \mathbf{s}=\int_{S}\left(\mathbf{a}_{\phi} \frac{\mu_{0} N I}{2 \pi r}\right) \cdot\left(\mathbf{a}_{\phi} h d r\right) \\
& =\frac{\mu_{0} N I h}{2 \pi} \int_{a}^{b} \frac{d r}{r}=\frac{\mu_{0} N I h}{2 \pi} \ln \frac{b}{a}
\end{aligned}
$$

The flux linkage Λ is $N \Phi$ or

$$
\Lambda=\frac{\mu_{0} N^{2} I h}{2 \pi} \ln \frac{b}{a}
$$

Finally, we obtain

$$
\begin{equation*}
L=\frac{\Lambda}{I}=\frac{\mu_{0} N^{2} h}{2 \pi} \ln \frac{b}{a} \quad(\mathrm{H}) \tag{6-116}
\end{equation*}
$$

We note that the self-inductance is not a function of T for a constant medium permeability). The qualification that the coil be closely wound on the toroid is to minimize the linkage flux around the individual turns of the wire.

Example 6-13 Find the inductance per unit length of a very long solenoid with air core having n turns per unit length.

Solution: The magnetic flux density inside an infinitely long solenoid has been found in Example 6-3. For current I we have, from Eq. (6-13),

$$
B=\mu_{0} n I
$$

which is constant inside the solenoid. Hence,

$$
\begin{equation*}
\Phi=B A=\mu_{0} n S I \tag{6-117}
\end{equation*}
$$

where S is the cross-sectional area of the solenoid. The flux linkage per unit length is

$$
\begin{equation*}
\Lambda^{\prime}=n \Phi=\mu_{0} n^{2} S I \tag{6-118}
\end{equation*}
$$

Therefore the inductance per unit length is

$$
\begin{equation*}
L^{\prime}=\mu_{0} n^{2} S \quad(\mathrm{H} / \mathrm{m}) \tag{6-119}
\end{equation*}
$$

Equation (6-119) is an approximate formula, based on the assumption that the length of the solenoid is very much greater than the linear dimensions of its eross section. A more accurate derivation for the magnetic flux density and flux linkage per unit length near the ends of a finite solenoid will show that they are less than the values given, respectively, by Eqs. $(6-13)$ and (6-118). Hence, the total inductance of a finite solenoid is somewhat less than the values of L^{\prime}, as given in Eq. (6-119), muitiplied by the length.

The following is a significant observation about the results of the previous two examples: The self-inductance of wire-wound liductors is proportional to the square of the number of tufins.

Example 6-14 An air coaxial transmission linte has a solid inner conductor of radius a and a very thin outer conductor of inner radius b. Determine the inductance per unit length of the litite.

Solution: Refer to Fig. $6-21$. Assume that a current I flows in the inner conductor and returns via the duter conductor in the other direction. Because of the cylindrical symmetry, B has onlly a ϕ-component with different expressions in the two regions: (a) inside the inner conductor, and (b) between the inner and outer conductors. Also assume that the current I is uniformly distributed over the cross section of the inner conductor.
a) Inside the inner condustor,

From Eq. (6-10),

$$
0 \leq r \leq a
$$

$$
\begin{equation*}
\mathbf{B}_{1}=\mathbf{a}_{\phi} B_{\phi 1}=\mathbf{a}_{\phi} \frac{\mu_{0} r I}{2 \pi a^{2}} . \tag{5-120}
\end{equation*}
$$

b) Between the inner and outer conductors,

$$
a \leq r \leq b
$$

From Eq. (6-11),

$$
\begin{equation*}
\mathbf{B}_{2}=\mathbf{a}_{\phi} B_{\phi 2}=\mathbf{a}_{\phi} \frac{\mu_{0} I}{2 \pi r} \tag{5-121}
\end{equation*}
$$

Now consider an'annular ring in the inner conductor between radii r and $r+d r$. The current in a unit length of this annular ring is linked by the flux that can be obtained by integratitig Eqs. $(6-120)$ and $(6-121)$. We have

$$
\begin{align*}
d \Phi^{\prime} & =\int_{r}^{a} B_{\phi 1} d r+\int_{a}^{b} B_{\phi 2} d r \\
& =\frac{\mu_{0} I}{2 \pi a^{2}} \int_{r}^{a} r d r+\frac{\mu_{0} I}{2 \pi} \int_{a}^{b} \frac{d r}{r} \\
& =\frac{\mu_{0} I}{4 \pi a^{2}}\left(a^{2}-r^{2}\right)+\frac{\mu_{0} I}{2 \pi} \ln \frac{b}{a} . \tag{6-122}
\end{align*}
$$

Fig. 6-21 Two views of a coaxial transmission line (Example 6-14).

But the current in the annular ring is only a fraction $\left(2 \pi r d r / \pi a^{2}=2 r d r / a^{2}\right)$ of the total current $I .^{\dagger}$ Hence the flux linkage for this annular ring is

$$
\begin{equation*}
d \Lambda^{\prime}=\frac{2 r d r}{a^{2}} d \Phi^{\prime} \tag{6-123}
\end{equation*}
$$

The total flux linkage per unit length is

$$
\begin{aligned}
\Lambda^{\prime} & =\int_{r=0}^{r=a} d \Lambda^{\prime} \\
& =\frac{\mu_{0} I}{\pi a^{2}}\left[\frac{1}{2 a^{2}} \int_{0}^{a}\left(a^{2}-r^{2}\right) r d r+\left(\ln \frac{b}{a}\right) \int_{0}^{a} r d r\right] \\
& =\frac{\mu_{0} I}{2 \pi}\left(\frac{1}{4}+\ln \frac{b}{a}\right) .
\end{aligned}
$$

The inductance of a unit length of the coaxial transmission line is therefore

$$
\begin{equation*}
L^{\prime}=\frac{\Lambda^{\prime}}{I}=\frac{\mu_{0}}{8 \pi}+\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a} \quad(\mathrm{H} / \mathrm{m}) \tag{6-124}
\end{equation*}
$$

The first term $\mu_{0} / 8 \pi$ arises from the flux linkage internal to the solid inner conductor; it is known as the internal inductance per unit length of the inner conductor. The second term comes from the linkage of the flux that exists between the inner and the outer conductors; this term is known as the external inductance per unit length of the coaxial line.

Before we present some examples showing how to determine the mutual inductance between two circuits, we pose the following question about Fig. 6-19 and Eq. (6-111): Is the flux linkage with loop C_{2} caused by a unit current in loop C_{1} equal to the flux linkage with C_{1} caused by a unit current in C_{2} ? That is, is it true that

$$
\begin{equation*}
L_{12}=L_{21} ? \tag{6-125}
\end{equation*}
$$

We may vaguely and intuitively expect that the answer is in the affirmative "because of reciprocity." But how do we prove it? We may proceed as follows. Combining Eqs. (6-107), (6-109) and (6-111), we obtain

$$
\begin{equation*}
L_{12}=\frac{N_{2}}{I_{1}} \int_{\mathrm{s}_{2}} \mathbf{B}_{1} \cdot d \mathbf{s}_{2} . \tag{6-126}
\end{equation*}
$$

[^35]moductor; tor. The r and the length of
ral induc-5-19 and 1 loop C_{1} . is it true
: "because ombining
 (1) $)$ ion does not

But, in view of Eq. $(614), B_{1}$ can be written as the curl of a vector magnetic potential $A_{1}, B_{1}=\nabla \times A_{1}$. We: have

$$
\begin{align*}
L_{12} & =\frac{N_{2}}{I_{1}} \int_{S_{2}}\left(\nabla \times \mathbf{A}_{1}\right) \cdot d \mathbf{s}_{2} \\
& =\frac{N_{2}}{I_{1}} \oint_{C_{2}} \mathbf{A}_{1} \cdot d \ell_{2} . \tag{6-127}
\end{align*}
$$

Now, from Eq. $(6-26)$,

$$
\begin{equation*}
\mathrm{A}_{1}=\frac{\mu_{0} N_{1} I_{1}}{4 \pi} \oint_{\mathrm{C}_{1}} \frac{d P_{1}}{R} \tag{6-128}
\end{equation*}
$$

In Eqs. (6-127) and (6-128), the contour integrals are evaluated only once over the periphery of the loops C_{2} and C_{1} respectively-the effects of multiple turns having been taken care of separately by the factors N_{2} and N_{1}. Substitution of Eq. (6-128) in Eq. $(6-127)$ yields

$$
\begin{equation*}
L_{12}=\frac{\mu_{0} N_{1} N_{2}}{4 \pi} \oint_{C_{1}} \oint_{C_{2}} \frac{d \ell_{1} \cdot d \ell_{2}}{R} \tag{6-129a}
\end{equation*}
$$

where R is the distance between the differential lengths $\left\langle\ell_{1}\right.$ and $d \ell_{2}$. It is customary to write Eq. $(6-129$ a) as

$$
\begin{equation*}
L_{12}=\frac{\mu_{0}}{4 \pi} \oint_{C_{1}} \oint_{C_{2}} \frac{d \ell_{1} \cdot d \ell_{2}}{R} \quad(\mathrm{H}), \tag{6-129b}
\end{equation*}
$$

where N_{1} and N_{2} hilve been absorbed in the contour integrals over the circuits C_{1} and C_{2} from one end to the other. Equation ($6-129$ b) is the Neumann formula for mutual inductance. It is a general formula requiring the evaluation of a double line integral. For any given problem we always first look for symmetry conditions that may simplify the determination of flux linkage and mutual inductance without resorting to Eq. (6-129b) directly.

It is clear from Eq. ($6-129$ b) that mutual inductance is a property of the geometrical shape and the physical arrangement of coupled circuits. For a linear medium mutual inductance is proportional to the medium's permeability and is independent of the currents in the circuits. It is obvious that interchanging the subscripts 1 and 2 does not change the value of the double integral; hence an affirmative answer to the question posed in Eq. ($(6-125)$ follows. This is an important conclusion because it allows us to use the simpler of the two ways (finding L_{12} or L_{21}) to determine the mutual inductance. ${ }^{\dagger}$

[^36]

Fig. 6-22 A solenoid with two windings (Example 6-15).

Example 6-15 Two coils of turns N_{1} and N_{2} are wound concentrically on a straight nonmagnetic cylindrical core of radius a. The windings have lengths ℓ_{1} and ℓ_{2} respectively. Find the mutual inductance between the coils.

Solution: Figure 6-22 shows such a solenoid with two concentric windings. Assume current I_{1} flows in the inner coil. From Eq. (6-117) we find that the flux Φ_{12} in the solenoid core that links with the outer coil is

$$
\Phi_{12}=\mu_{0}\left(\frac{N_{1}}{\ell_{1}}\right)\left(\pi a^{2}\right) I_{1} .
$$

Since the outer coil has N_{2} turns, we have

$$
\Lambda_{12}=N_{2} \Phi_{12}=\frac{\mu_{0}}{\ell_{1}} N_{1} N_{2} \pi a^{2} I_{1} .
$$

Hence the mutual inductance is

$$
\begin{equation*}
L_{12}=\frac{\Lambda_{12}}{I_{1}}=\frac{\mu_{0}}{\ell_{1}} N_{1} N_{2} \pi a^{2} . \tag{H}
\end{equation*}
$$

Example 6-16 Determine the mutual inductance between a conducting triangular loop and a very long straight wire as shown in Fig. 6-23.

Solution: Let us designate the triangular loop as circuit 1 and the long wire as circuit 2. If we assume a current I_{1} in the triangular loop, it is difficult to find the magnetic flux density \mathbf{B}_{1} everywhere. Consequently, it is difficult to determine the mutual inductance L_{12} from Λ_{12} / I_{1} in Eq. (6-111). We can, however, apply Ampere's circuital law and readily write the expression for \mathbf{B}_{2} that is caused by a current I_{2} in the long straight wire.

$$
\begin{equation*}
\mathbf{B}_{2}=\mathbf{a}_{\phi} \frac{\mu_{0} I_{2}}{2 \pi r} . \tag{6-131}
\end{equation*}
$$

ly on a s ℓ_{1} and

Assume 12 ir
angular
wire as find? line the mp: $\operatorname{rent} I_{2}$
$(6-131)$

The flux linkàge $\Lambda_{21}=\Phi_{21}$ is
where

$$
\begin{equation*}
\Lambda_{21}=\int_{S_{1}} \mathbf{B}_{2} \cdot d \mathbf{s}_{1} \tag{6-132}
\end{equation*}
$$

$$
d \mathbf{s}_{1}=\mathbf{a}_{\phi} z_{1} d r
$$

Fig. 6-23 A conducting triangular loop And a long straight wire (Example 6-16).

The (6-133)

6-12 / MAGNETIC ENERGY
24" The relation between z and r is given by the equation of the hyporenuse of the triangle:

$$
\begin{align*}
z & =-[r-(d+b)] \tan 60^{\circ} \\
& =-\sqrt{3}[r-(d+b)] \tag{6-134}
\end{align*}
$$

Substituting Eqs. $(6-131),(6-133)$, and $(6-134)$ in Eq. $(6-132)$, we have

$$
\begin{aligned}
\Lambda_{21} & =-\frac{\sqrt{3} \mu_{0} I_{2}}{2 \pi} \int_{d}^{d+b} \frac{1}{r_{1}}[r-(d+b)] d r \\
& =\frac{\sqrt{3} \mu_{0} I_{2}}{2 \pi}\left[(d+b) \ln \left(1+\frac{b}{d}\right)-b\right]
\end{aligned}
$$

Therefore, the mutud inductance is

$$
\begin{equation*}
L_{21} \frac{\Lambda_{21}}{I_{2}}=\frac{\sqrt{3} \mu_{0}}{2 \pi}\left[(d+b) \ln \left(1+\frac{b}{d}\right)-b\right] \tag{H}
\end{equation*}
$$

6-12 MAGNETIC ENERGY

So far we have discussed self- and mutual Inductances in static terms. Because inductances depend on the geometrical shape and the physical arrangement of the conductors constituting the circuits, and, for a linear medium, are independent of the
currents, we were not concerned with nonsteady currents in the defining of inductances. However, we know that resistanceless inductors appear as short-circuits to steady (DC) currents; it is obviously necessary that we consider alternating currents when the effects of inductances on circuits and magnetic fields are of interest. A general consideration of time-varying electromagnetic fields (electrodynamics) will be deferred until the next chapter. For now we assume quasi-static conditions, which imply that the currents vary very slowly in time (are low of frequency) and that the dimensions of the circuits are very small compared to the wavelength. These conditions are tantamount to ignoring retardation and radiation effects, as we shall see when electromagnetic waves are discussed in Chapter 8.

In Section 3-11 we discussed the fact that work is required to assemble a group of charges and that the work is stored as electric energy. We certainly expect that work also needs to be expended in sending currents into conducting loops and that it will be stored as magnetic energy. Consider a single closed loop with a selfinductance L_{1} in which the current is initially zero. A current generator is connected to the loop, which increases the current i_{1} from zero to I_{1}. From physics we know that an electromotive force (emf) will be induced in the loop that opposes the current change. ${ }^{\dagger}$ An amount of work must be done to overcome this induced emf. Let $v_{1}=$ $L_{1} d i_{1} / d t$ be the voltage across the inductance. The work required is

$$
\begin{equation*}
W_{1}=\int v_{1} i_{1} d t=L_{1} \int_{0}^{1_{1}} i_{1} d i_{1}=\frac{1}{2} L_{1} I_{1}^{2} \tag{6-136}
\end{equation*}
$$

Since $L_{1}=\Phi_{1} / I_{1}$ for linear media, Eq. (6-136) can be written alternatively in terms of flux linkage as

$$
\begin{equation*}
W_{1}=\frac{1}{2} I_{1} \Phi_{1}, \tag{6-137}
\end{equation*}
$$

which is stored as magnetic energy.
Now consider two closed loops C_{1} and C_{2} carrying currents i_{1} and i_{2}, respectively. The currents are initially zero and are to be increased to I_{1} and I_{2}, respectively. To find the amount of work required, we first keep $i_{2}=0$ and increase i_{1} from zero to I_{1}. This requires a work W_{1} in loop C_{1}, as given in Eq. (6-136) or (6-137); no work is done in loop C_{2}, since $i_{2}=0$. Next we keep i_{1} at I_{1} and increase i_{2} from zero to I_{2}. Because of mutual coupling, some of the magnetic flux due to i_{2} will link with loop C_{1}, giving rise to an induced emf that must be overcome by a voltage $v_{21}=L_{21} d i_{2} / d t$ in order to keep i_{1} constant at its value I_{1}. The work involved is

$$
\begin{equation*}
W_{21}=\int v_{21} I_{1} d t=L_{21} I_{1} \int_{0}^{I_{2}} d i_{2}=L_{21} I_{1} I_{2} . \tag{6-138}
\end{equation*}
$$

At the same time, a work W_{22} must be done in loop C_{2} in order to counteract the induced emf and increase i_{2} to I_{2}.

$$
\begin{equation*}
W_{22}=\frac{1}{2} L_{2} I_{2}^{2} . \tag{6-139}
\end{equation*}
$$

[^37]finduccuits to zurrents erest. A ics) will s, which that the a condihall see a group cot that nd that a selfnnected ow hat curr ${ }^{-1}$ et v_{1} -$(6-136)$ in terms
ectively. :ely. To ro to I_{1}. work is o to I_{2}. $\operatorname{oop} C_{1}$, ${ }_{21} d i_{2} / d t$ $(6-120)$ nat the $(6-139)$

The total amount of work done in raising the currents in loops C_{1} and C_{2} from zero to I_{1} and I_{2}, respectively, is then the sum of $W_{11} W_{21}$, and W_{22}.

$$
\begin{align*}
W_{2} & =\frac{1}{2} L_{1} I_{1}^{2}+L_{21} I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2} \\
& =\frac{1}{2} \sum_{j=1}^{2} \sum_{k=1}^{2} L_{j k} I_{j} I_{k} . \tag{6-140}
\end{align*}
$$

Generalizing this result to a system of N lodps carrying currents $I_{1}, I_{2}, \ldots, I_{n}$, we obtain

$$
\begin{equation*}
W_{m}=\frac{1}{2} \sum_{j=1}^{N} \sum_{k=1}^{N} L_{j k} I_{j} I_{k} \tag{6-141}
\end{equation*}
$$

which is the energy stored in the magnetic field. For a current I flowing in a single inductor with inductance L, the stored magnetic energy is

$$
\begin{equation*}
W_{m}=\frac{1}{2} L I^{2} \quad(\mathrm{~J}) \tag{6-142}
\end{equation*}
$$

It is instructive to derive Eq. $(6-141)$ in an alternative way. Consider a typical k th loop of N magnetically coupled loops. Let v_{k} and i_{k}, be respectively, the voltage across and the current in the loop. The work done to the k th loop in time $d t$ is

$$
\begin{equation*}
d W_{k}=v_{k} i_{k} d t=i_{k} d \phi_{k} \tag{6-143}
\end{equation*}
$$

where we have used the relation $v_{k}=d \phi_{k} / d t$. Note that the change, $d \phi_{k}$, in the fux ϕ_{k} linking with the k th loop is the result of the changes of the currents in all the coupled loops. The differential work done to, or the differential magnetic energy stored in, the system is then:

$$
\begin{equation*}
d W_{m}=\sum_{k=1}^{N} d W_{k}=\sum_{k=1}^{N} i_{k} d \phi_{k} . \tag{6-144}
\end{equation*}
$$

The total stored energy is the integration of $d W_{m}$ and is independent of the manner in which the final values of the currents and fluxes are reached. Let us assume that all the currents and duxes are brought to their final values in concert by an equal fraction α that increases from 0 to 1 ; that is, $i_{k}=\alpha I_{k}$, and $\phi_{k}=\alpha \Phi_{k}$ at any instant of time. We obtain the total magnetie energy:
or

$$
W_{m}=\int d W_{m}=\sum_{k=1}^{N} I_{k} \mathbf{W}_{k} \int_{0}^{1} \alpha d \alpha
$$

$$
\begin{equation*}
W_{m}=\frac{1}{2} \sum_{k=1}^{N} I_{k} \Phi_{k} \tag{6-145}
\end{equation*}
$$

244

which simplifies to Eq. $(6-137)$ for $N=1$, as expected. Noting that, for linear media,

$$
\Phi_{k}=\sum_{j=1}^{N} L_{j k} I_{j},
$$

we obtain Eq. (6-141) immediately.

6-12.1 Magnetic Energy in Terms of Field Quantities

Equation (6-145) can be generalized to determine the magnetic energy of a continuous distribution of current within a volume. A single current-carrying loop can be considered as consisting of a large number, N, of contiguous filamentary current elements of closed paths C_{k}, each with a current ΔI_{k} flowing in an infinitesimal cross-sectional area Δa_{k}^{\prime} and linking with magnetic flux Φ_{k}.

$$
\begin{equation*}
\Phi_{k}=\int_{s_{k}} \mathbf{B} \cdot \mathbf{a}_{n} d s_{k}^{\prime}=\oint_{C_{k}} \mathbf{A} \cdot d \ell_{k}^{\prime}, \tag{6-146}
\end{equation*}
$$

where S_{k} is the surface bounded by C_{k}. Substituting Eq. ($6-146$) in Eq. (6-145), we have

$$
\begin{equation*}
W_{m}=\frac{1}{2} \sum_{k=1}^{N} \Delta I_{k} \oint_{C_{k}} \mathbf{A} \cdot d \ell_{k}^{\prime} . \tag{6-147}
\end{equation*}
$$

Now,

$$
\Delta I_{k} d \ell_{k}^{\prime}=J\left(\Delta a_{k}^{\prime}\right) d \ell_{k}^{\prime}=\mathbf{J} \Delta v_{k}^{\prime} .
$$

As $N \rightarrow \infty, \Delta v_{k}^{\prime}$ becomes $d v^{\prime}$ and the summation in Eq. (6-147) can be written as an integral. We have

$$
\begin{equation*}
W_{m}=\frac{1}{2} \int_{V} \mathbf{A} \cdot \cdot \mathbf{J} d v^{\prime} \tag{6-148}
\end{equation*}
$$

where V^{\prime} is the volume of the loop or the linear medium in which \mathbf{J} exists. This volume can be extended to include all space, since the inclusion of a region where $\mathbf{J}=0$ does not change W_{m}. Equation (6-148) should be compared with the expression for the electric energy W_{e} in Eq. (3-140).

It is often desirable to express the magnetic energy in terms of field quantities \mathbf{B} and \mathbf{H} instead of current density \mathbf{J} and vector potential \mathbf{A}. Making use of the vector identity,

$$
\nabla \cdot(\mathbf{A} \times \mathbf{H})=\mathbf{H} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{H}),
$$

(see Problem P.2-23), we have

$$
\dot{A} \cdot(\nabla \times \mathbf{H})=\mathbf{H} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{H})
$$

or

$$
\begin{equation*}
\mathbf{A} \cdot \mathbf{J}=\mathbf{H} \cdot \mathbf{B}-\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{H}) . \tag{6-149}
\end{equation*}
$$

tinuous be concments stional

Substitution of Eq. (8-149) in Eq. $(6-148)$, we obtain

$$
\begin{equation*}
W_{h}=\frac{1}{2} \int_{V^{\prime}} \mathbf{H} \cdot \dot{\mathbf{B}} d v^{\prime}-\frac{1}{2} \oint_{S^{\prime}}(\mathbf{A} \times \mathbf{H}) \cdot \mathbf{a}_{n} d s^{\prime} \tag{6-150}
\end{equation*}
$$

In Eq. (6-150) we have applied the divergence theorem, and S^{\prime} is the surface bounding V^{\prime}. If V^{\prime} is taken to be sufficiently large, the points on its surface S^{\prime} will be very far from the currents. At those far-away points, the contribution of the surface integral in Eq. (6-150) tends to zero because $|\mathrm{A}|$ falls off as $1 / R$ and $|\mathrm{H}|$ fatls off as $1 / R^{2}$, as can be seen from Eqs. $(6-22)$ and $(6-31)$ respectively. Thus, the magnitude of $(\mathbf{A} \times \mathrm{H})$ decreases as $1 / R^{3}$, whereas at the same time, the surface S^{\prime} increases only as R^{2}. When R approaches infinity, the surface integral in $\mathrm{Eq} .(6-150)$ vanishes. We have then

$$
\begin{equation*}
W_{m}=\frac{1}{2} \int_{V^{\prime}} \mathrm{H} \cdot \mathrm{~B} d v^{\prime} \tag{6-151a}
\end{equation*}
$$

Noting that $\mathbf{H}=\mathbf{B} / \mu$, we can write Eq. $(6-151$) in two aiternative forms:

$$
\begin{equation*}
W_{m}=\frac{1}{2} \int_{V^{\prime}} \frac{B^{2}}{\mu} d v^{\prime} \tag{6-151b}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{m}=\frac{1}{2} \int_{V^{\prime}} u H^{2} d v^{\prime} \tag{6-151c}
\end{equation*}
$$

The expressions in Eqs. $(6-151 \mathrm{a}),(6-151 \mathrm{~b})$, and $(6-151 \mathrm{c})$ for the magnetic energy W_{m} in a linear mediuif are analogous to those of electrostatic energy W_{e} in, respectively, Eqs. (3-146a), (3-146b), and (3-146c).

If we define a magnetic energy density, w_{m}, such that its volume integral equals the total magnetic energy

$$
\begin{equation*}
W_{m}=\int_{V}, w_{m} d v^{\prime}, \tag{6-152}
\end{equation*}
$$

we can write w_{m} in thitee different forms:
or

$$
\begin{equation*}
w_{m} \doteq \frac{1}{2} \mathbf{H} \cdot \mathbf{B} \quad\left(\mathrm{~J} / \mathrm{m}^{3}\right) \tag{0-153a}
\end{equation*}
$$

$$
w_{m}=\frac{B^{2}}{2 \mu} \quad\left(\mathrm{~J} / \mathrm{m}^{\mathrm{3}}\right)
$$

$$
\begin{equation*}
w_{m}=\frac{1}{2} \mu H^{2},\left(\mathrm{~J} / \mathrm{m}^{3}\right) \tag{6-153c}
\end{equation*}
$$

By using Eq. (6-142), we can often determine self-inductance more easily from stored magnetic energy calculated in terms of \mathbf{B} and/or \mathbf{H}, than from flux linkage.

We have

$$
\begin{equation*}
L=\frac{2 W_{m}}{I^{2}} \quad(\mathrm{H}) \tag{6-154}
\end{equation*}
$$

Example 6-17. By using stored magnetic energy, determine the inductance per unit length of an air coaxial transmission line that has a solid inner conductor of radius a and a very thin outer conductor of inner radius b.

Solution: This is the same problem as that in Example 6-14, where the self-inductance was determined through a consideration of flux linkages. Refer again to Fig. 6-21. Assume a uniform current 1 flows in the inner conductor and returns in the outerconductor. The magnetic energy per unit length stored in the inner conductor is, from Eqs. $(6-120)$ and (6-151b),

$$
\begin{align*}
W_{m 1}^{\prime} & =\frac{1}{2 \mu_{0}} \int_{0}^{a} B_{\phi 1}^{2} 2 \pi r d r \\
& =\frac{\mu_{0} I^{2}}{4 \pi a^{4}} \int_{0}^{a} r^{3} d r=\frac{\mu_{0} I^{2}}{16 \pi} \tag{6-155a}
\end{align*}
$$

The magnetic energy per unit length stored in the region between the inner and outer conductors is, from Eq. $(6-121)$ and $(6-151 \mathrm{~b})$,

$$
\begin{align*}
W_{m 2}^{\prime} & =\frac{1}{2 \mu_{0}} \int_{a}^{b} B_{\phi 2}^{2} 2 \pi r d r \\
& =\frac{\mu_{0} I^{2}}{4 \pi} \int_{a}^{b} \frac{1}{r} d r=\frac{\mu_{0} I^{2}}{4 \pi} \ln \frac{b}{a} \quad(\mathrm{~J} / \mathrm{m}) \tag{6-i55~b}
\end{align*}
$$

Therefore, from Eq. (6-154), we have

$$
\begin{aligned}
L^{\prime} & =\frac{2}{I^{2}}\left(W_{m 1}^{\prime}+W_{m 2}^{\prime}\right) \\
& =\frac{\mu_{0}}{8 \pi}+\frac{\mu_{0}}{2 \pi} \ln \frac{b}{a} \quad(\mathrm{H} / \mathrm{m}),
\end{aligned}
$$

which is the same as Eq. ($0-124$). The procedure used in this solution is comparatively simpler.

6-13 MAGNETIC FORCES AND TORQUES

In Section 6-1 we noted that a charge q moving with a velocity u in a magnetic field with flux density \mathbf{B} experiences a magnetic force \mathbf{F}_{m} given by Eq. (6-4), which is repeated below:

$$
\begin{equation*}
\mathbf{F}_{m}=q \mathbf{u} \times \mathbf{B} \quad(\mathrm{N}) . \tag{6-156}
\end{equation*}
$$

Let us consider an element of conductor $d \ell$ with a cross-sectional area S. If there are N charge carriers per uftit volume moving with a velocity \mathbf{u} in the direction of $d \ell$, then the magnetic force bn the differential element is

$$
\begin{align*}
d \mathbf{F}_{\text {in }} & =N q_{1} S|d| \mathbf{u} \times \mathbf{B} \\
& =N q_{1} S|\mathbf{u}| d \ell \times \mathbf{B}, \tag{6-157}
\end{align*}
$$

where q_{1} is the charge on each charge carrier. The two expressions in Eq. (6-157) are equivalent since u dhd $d \ell$ have the same direction. Now, since $N q_{1} S|u|$ equals the current in the conduder, we can write Eq. $(6-157)$ as

$$
\begin{equation*}
d \mathbf{F}_{m}=I d \ell \times \mathbf{B} \quad(\mathrm{N}) \tag{6-158}
\end{equation*}
$$

The magnetic force on a complete (closed) circuit of contour C that carries a current I in a magnetic field \mathbf{B} is then

$$
\begin{equation*}
\mathrm{F}_{m}=I \oint_{C} d \ell \times \mathrm{B} \quad(\mathrm{~N}) \tag{6-159}
\end{equation*}
$$

When we have two eircuits carrying currents I_{1} and I_{2} respectively, the situation is that of one current-carrying circuit in the magnetic field of the other. In the presence of the magnetic field B_{21}, which was caused by the current I_{2} in C_{2}, the force F_{21} on circuit C_{1} can be wrilten as

$$
\begin{equation*}
\therefore \quad F_{21}=I_{1} \oint_{i,} d P_{1} \times B_{21}, \tag{6-160a}
\end{equation*}
$$

where \mathbf{B}_{21} is, from the Biot-Savart law in Eq. (6-31),

$$
\begin{equation*}
\mathbf{B}_{21}=\frac{\mu_{0} I_{2}}{4 \pi} \oint_{\mathbf{C}_{2}} \frac{d \dot{\ell}_{2} \times \mathbf{a}_{R_{21}}}{R_{21}^{2}} \tag{6-160b}
\end{equation*}
$$

Combining Eqs. ($6-160 \mathrm{k}$) and ($6-160 \mathrm{~b}$), we obtain

$$
\begin{equation*}
\mathrm{F}_{21}=\frac{\mu_{0}}{4 \pi} I_{1} I_{2} \oint_{C_{1}} \oint_{C_{2}} \frac{d e_{1} \times\left(d \ell_{2} \times \mathbf{a}_{R_{22}}\right)}{R_{21}^{2}} \quad(\mathrm{~N}) \tag{6-161a}
\end{equation*}
$$

which is Ampère'slaw of force betwẹen two current-carrying circuits. It is an inversesquare relationship and should be compared with Coulomb's law of force in Eq. (3-17) between two stationary charges, the latter being much the simpler.

The force $\overline{F_{12}}$ on circuit C_{2}, in the presence of the magnetic field set up by the current I_{1} in circuit C_{1}, can be written from Eq. (6-161a) by interchanging the subscripts 1 and 2.

$$
\begin{equation*}
\mathbf{F}_{12}^{i}=\frac{\mu_{0}}{4 \pi} I_{2} I_{1} \oint_{\mathrm{C}_{2}} \oint_{C_{1}} \frac{d \ell_{2} \times\left(d \ell_{1} \times \mathrm{a}_{R_{12}}\right)}{R_{12}^{2}} \tag{6-161b}
\end{equation*}
$$

However, since $d \ell_{2} \times\left(d \ell_{1} \times \mathrm{a}_{R_{12}}\right) \neq-d \ell_{1} \times\left(d \ell_{2} \times \mathrm{a}_{R_{21}}\right)$, we inquire whether this means $\mathrm{F}_{21} \neq-\mathrm{F}_{12}$-that is, whether Newton's third law governing the forces of action and reaction fails here. Let us expand the vector triple product in the integrand of Eq. (6-161a) by the back-cab rule, Eq. (2-20).

$$
\begin{equation*}
\frac{d \ell_{1} \times\left(d \ell_{2} \times \mathbf{a}_{R_{21}}\right)}{R_{21}^{2}}=\frac{d \ell_{2}\left(d \ell_{1} \cdot \mathbf{a}_{R_{21}}\right)}{R_{21}^{2}}-\frac{\mathbf{a}_{R_{21}}\left(d \ell_{1} \cdot d \ell_{2}\right)}{R_{21}^{2}} . \tag{6-162}
\end{equation*}
$$

Now the double closed line integral of the first term on the right side of Eq. (6-162) is

$$
\begin{align*}
\oint_{C_{1}} \oint_{C_{2}} \frac{d \ell_{2}\left(d \ell_{1} \cdot \mathbf{a}_{R_{21}}\right)}{R_{21}^{2}} & =\oint_{\mathbf{C}_{2}} d \ell_{2} \oint_{C_{1}} \frac{d \ell_{1} \cdot \mathbf{a}_{R_{21}}}{R_{21}^{2}} \\
& =\oint_{C_{2}} d \ell_{2} \oint_{C_{1}} d \ell_{1} \cdot\left(-\nabla_{1} \frac{1}{R_{21}}\right) \\
& =-\oint_{C_{2}} d \ell_{2} \oint_{C_{1}} d\left(\frac{1}{R_{21}}\right)=0 \tag{6-163}
\end{align*}
$$

In Eq. (6-163) we have made use of Eq. $(2-81)$ and the relation $\mathbf{F}_{1}\left(1 / R_{21}\right)=-\mathbf{a}_{R_{21}} / R_{21}$. The closed line integral (with identical upper and lower limits) of $d\left(1 / R_{21}\right)$ around circuit C_{1} vanishes. Substituting Eq. (6-162) in Eq. $(6-161 a)$ and using Eq. ($6-163$), we get

$$
\begin{equation*}
\mathbf{F}_{21}=-\frac{\mu_{0}}{4 \pi} I_{1} I_{2} \oint_{C_{1}} \oint_{C_{2}} \frac{\mathbf{a}_{R_{21}}\left(d \ell_{1} \cdot d \ell_{2}\right)}{R_{21}^{2}}, \tag{6-164}
\end{equation*}
$$

which obviously equals $-F_{12}$, inasmuch as $\mathbf{a}_{R_{12}}=-\mathbf{a}_{R_{21}}$. It follows that Newton's third law holds here, as expected.

Example 6-18 Determine the force per unit length between two infinitely long parallel conducting wires carrying currents I_{1} and I_{2} in the same direction. The wires are separated by a distance d.

Solution: Let the wires lie- in the $y z$-plane and be parallel to the z-axis, as shown in Fig. 6-24. This problem is a straightforward application of Eq. (6-160a). Using F_{12}^{\prime} to denote the force per unit length on wire 2, we have

$$
\begin{equation*}
\mathbf{F}_{12}^{\prime}=I_{2}\left(\mathbf{a}_{z} \times \mathbf{B}_{12}\right), \tag{6-165}
\end{equation*}
$$

where \mathbf{B}_{12}, the magnetic flux density at wire 2 , set up by the current I_{1} in wire 1 , is constant over wire 2. Because the wires are assumed to be infinitely long and cylindrical symmetry exists, it is not necessary to use Eq. (6-160b) for the determination of \mathbf{B}_{12}. We apply Ampère's circuital law, and write, from Eq. ($6-11$),

$$
\begin{equation*}
\mathbf{B}_{12}=-\mathbf{a}_{x} \frac{\mu_{0} I_{1}}{2 \pi d} . \tag{6-166}
\end{equation*}
$$

.er this rces of egrand 6-162) -162) is

dy lpng

 he wiressown in ing F_{12}^{\prime} vire ${ }^{\text {r }}$ d cylinaná $(6-166)$

Fig. 6-24 Force bêtween two paralle! current-carrying wires (Example 6-18).

Substitution of Eq. $(6-166)$ in Eq. $(6-165)$ yields

$$
\begin{equation*}
\dot{\mathbf{F}}_{12}^{\prime}=-\mathbf{a}_{y} \frac{\mu_{0} I_{1} I_{2}}{2 \pi d} \quad,(\mathrm{~N} / \mathrm{m}) \tag{6-167}
\end{equation*}
$$

We see that the force on wire 2 pulls it toward wire 1 . Hence, the force between two wires carrying currents in the same direction is one of attraction (unlike the force between two charges of the same polarity, which is one of repulsion). It is trivial to prove that $\mathbf{F}_{21}^{\prime}=-\mathbf{F}_{12}^{\prime}=a_{y}\left(\mu_{0} I_{1} I_{2} / 2 \pi d\right)$ and that the force between two wires carrying currents in opposite directions is one of repulsion.

Let us now consider a small circular loop of radius b and carrying a current I in a uniform magnetic field of flux density \mathbf{B}. It is conivenient to resolve \mathbf{B} into two components, $\mathbf{B}=\mathbf{B}_{\perp}+\mathbf{B}_{\|!}$where \mathbf{B}_{\perp} and $\mathbf{B}_{\| l}$ are, respectively, perpendicular and parallel to the plane of the loop. As illustrated in Fig. 6-25a, the perpendicular component B_{\perp} tends to expand the loop (or contract it, if the direction of I is reversed), but \mathbf{B}_{\perp} exerts no net force to move the loop. The parallel component $\mathbf{B}_{\|}$produces an upward force

Fig. 6-25 A circular loop in a uniform magnetic field $\mathbf{B}=\mathrm{B}_{\perp}+\mathrm{B}_{\| \mid}$.

250 Static magnetic fields / 6

$d \mathrm{~F}_{1}$ (out from the paper) on element $d \ell_{1}$ and a downward force (into the paper) $d \mathrm{~F}_{2}=-d \mathrm{~F}_{1}$ on the symmetrically located element $d \ell_{2}$, as shown in Fig. 6-25b. Although the net force on the entire loop caused by $\mathbf{B}_{\| \mid}$is also zero, a torque exists that tends to rotate the loop about the x-axis in such a way as to align the magnetic field (due to I) with the external $\mathbf{B}_{| |}$field. The differential torque produced by $d \mathbf{F}_{1}$ and $d \mathbf{F}_{2}$ is

$$
\begin{align*}
d \mathrm{~T} & =\mathbf{a}_{x}(d F) 2 b \sin \phi \\
& =\mathbf{a}_{x}\left(I d \ell B_{\| \mid} \sin \phi\right) 2 b \sin \phi \\
& =\mathbf{a}_{x} 2 I b^{2} B_{\| \|} \sin ^{2} \phi d \phi, \tag{6-168}
\end{align*}
$$

where $d F=\left|d \mathbf{F}_{1}\right|=\left|d \mathbf{F}_{2}\right|$ and $d \ell=\left|d \ell_{1}\right|=\left|d \ell_{2}\right|=b d \phi$. The total torque acting on the loop is then

$$
\begin{align*}
\mathbf{T} & =\int d \mathbf{T}=\mathbf{a}_{x} 2 I b^{2} B_{\|} \int_{0}^{\pi} \sin ^{2} \phi d \phi \\
& =\mathbf{a}_{x} I\left(\pi b^{2}\right) B_{\|} . \tag{6-169}
\end{align*}
$$

If the definition of the magnetic dipole moment in Eq. ($6-44(6)$ is μ lised.

$$
\mathbf{m}=\mathbf{a}_{n} I\left(\pi b^{2}\right)=\mathbf{a}_{n} I S
$$

where a_{n} is a unit vector in the direction of the right thumb (normal to the plane of the loop) as the fingers of the right hand follow the direction of the current, we can write Eq. (6-169) as

$$
\begin{equation*}
\mathrm{T}=\mathrm{m} \times \mathrm{B} \quad(\mathrm{~N} \cdot \mathrm{~m}) . \tag{6-170}
\end{equation*}
$$

The vector \mathbf{B} (instead of $\left.\mathbf{B}_{\| \mid}\right)$is used in Eq. $(6-170)$ because $\mathbf{m} \times\left(\mathbf{B}_{\perp}+\mathbf{B}_{\| \mid}\right)=\mathbf{m} \times \mathbf{B}_{\| \mid}$. This is the torque that aligns the microscopic magnetic dipoles in magnetic materials and causes the materials to be magnetized by an applied magnetic field. It should be remembered that Eq. (6-170) does not hold if \mathbf{B} is not uniform over the currentcarrying loop.

Example 6-19 A rectangular loop in the $x y$-plane with sides b_{1} and b_{2} carrying a current I lies in a uniform magnetic field $\mathbf{B}=\mathbf{a}_{x} B_{x}+\mathbf{a}_{y} B_{y}+\mathbf{a}_{z} B_{z}$. Determine the force and torque on the loop.

Solution: Resolving B into perpendicular and parallel components \mathbf{B}_{\perp} and $\mathbf{B}_{\| \|}$, we have

$$
\begin{align*}
& \mathbf{B}_{1}=\mathbf{a}_{z} B_{z} \tag{6-171a}\\
& \mathbf{B}_{\| \mid}=\mathbf{a}_{x} B_{x}+\mathbf{a}_{y} B_{y} . \tag{6-171b}
\end{align*}
$$

Assuming the current flows in a clockwise direction, as shown in Fig. 6-26, we find that the perpendicular component $a_{z} B_{z}$ resilts in forces $I b_{1} B_{z}$ on sides (1) and (3) and

6-13.1 Forces and Torques in Terms of Stored Magnetic Energy

All current-carrying conductors and circuits experience magnetic forces when situated in a magnetic field. They are held in place only if mechanical forces, equal and opposite to the magnetic forces, exist. Except for special symmetrical cases (such as the case of the two infinitely long, current-carrying, parallel conducting wires in Example 6-18), determining the magnetic forces between current-carrying circuits by Ampère's law of force is a tedious task. We now examine an alternative method of finding magnetic forces and torques based on the principle of virtual displacement. This principle was used in Section 3-11.2 to determine electrostatic forces between charged conductors. Here consider two cases: first, a system of circuits with constant magnetic flux linkages; and, second, a system of circuits with constant currents.

System of Circuits with Constant Flux Linkages If we assume that no changes in flux linkages result from a virtual differential displacement d ℓ of one of the currentcarrying circuits, there will be no induced emf's and the sources will supply no energy to the system. The mechanical work, $\mathrm{F}_{\Phi} \cdot d \boldsymbol{d}$, done by the system is at the expense of a decrease in the stored magnetic energy, where F_{Φ} denotes the force under the constant flux condition. Thus,

$$
\begin{equation*}
\mathbf{F}_{\Phi} \cdot d \ell=-d W_{m}=-\left(\nabla W_{m}\right) \cdot d \ell \tag{6-175}
\end{equation*}
$$

from which we obtain

$$
\begin{equation*}
\mathbf{F}_{\Phi}=-\nabla W_{m} \quad(\mathrm{~N}) \tag{6-176}
\end{equation*}
$$

In Cartesian coordinates, the component forces arc

$$
\begin{align*}
& \left(F_{\Phi}\right)_{x}=-\frac{\partial W_{m}}{\partial x} \tag{6-177a}\\
& \left(F_{\Phi}\right)_{y}=-\frac{\partial W_{m}}{\partial y} \tag{6-177b}\\
& \left(F_{\Phi}\right)_{z}=-\frac{\partial W_{m}}{\partial z} \tag{6-177c}
\end{align*}
$$

If the circuit is constrained to rotate about an axis, say the z-axis, the mechanical work done by the system will be $\left(T_{\Phi}\right)_{z} d \phi$ and

$$
\begin{equation*}
\left(T_{\Phi}\right)_{z}=-\frac{\partial W_{m}}{\partial \phi} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{6-178}
\end{equation*}
$$

which is the z-component of the torque acting on the circuit under the condition of constant flux linkages.

Fig. 6-27 An electromagnet (Example 6-20). :

Example 6-20 Contsider the electromagnet in Fig. 6-27 where a current I in an N-turn coil produces a tlux 1 in the magnetic circuit. The cross-sectional area of the core is S. Determine the lifting force on the armature.

Solution: Let the armature take a virtual displacement $d y$ (a differential increase in y) and the source be adjusted to keep the flux Φ constant. A displacement of the armature changes only the length of the air gaps; consequently, the displacement changes only the magnetic energy stored in the two air gaps. We have. from Eq. (6-151b),

$$
\begin{align*}
d W_{\text {m }} & =d\left(W_{m}\right)_{\text {air }}=2\left(\frac{B^{2}}{2 \mu_{0}} S d y\right) \\
& =\frac{\Phi^{2}}{\mu_{0} S} d y . \tag{6-179}
\end{align*}
$$

An increase in the ait-gap length (a positive $d y$) increases the stored magnetic energy if Φ is constant. Using Eq. ($6-177 \mathrm{~b}$), we obtain

$$
\begin{equation*}
\mathbf{F}_{\Phi}=\mathbf{a}_{y}\left(F_{\Phi}\right)_{y}=-\mathbf{a}_{y} \frac{\Phi^{2}}{\mu_{0} S} \quad \text { (N). } \tag{6-180}
\end{equation*}
$$

Here, the negative sign indicates that the force tends to reduce the air-gap length; that is, it is a force of attraction. :

System of Circuits with Constant Currents In this case the circuits are connected to current sources that counteract the induced emf's resulting from changes in flux linkages that are caused by a virtual displacement $d \ell$. The work done or energy supplied by the sources is (see Eq. 6-144),

$$
\begin{equation*}
d W_{s}=\sum_{k} I_{k} d \Phi_{k} . \tag{6-181}
\end{equation*}
$$

This energy must be equal to the sum of the mechanical work done by the system $d W\left(d W=\mathrm{F}_{1} \cdot d \ell\right.$, where F_{1} denotes the force on the displaced circuit under the constant current condition) and the increase in the stored magnetic energy, $d W_{m}$. That is,

$$
\begin{equation*}
d W_{s}=d W+d W_{m} . \tag{6-182}
\end{equation*}
$$

From Eq. (6-145), we have

$$
\begin{equation*}
d W_{m}=\frac{1}{2} \sum_{k} I_{k} d \Phi_{k}=\frac{1}{2} d W_{s} \tag{6-183}
\end{equation*}
$$

Equations ($6-182$) and ($6-183$) combine to give

$$
\begin{aligned}
d W=\mathrm{F}_{I} \cdot d \ell & =d W_{m} \\
& =\left(\nabla W_{m}\right) \cdot d \ell
\end{aligned}
$$

or

$$
\begin{equation*}
\mathrm{F}_{l}=\mathrm{V} W_{m} \quad(\mathrm{~N}) \tag{6-184}
\end{equation*}
$$

which differs from the expression for F_{Φ} in Eq. (6-176). only by a sign change. If the circuit is constrained to rotate about the z-axis, the z-component of the torque acting on the circuit is

$$
\begin{equation*}
\left(T_{t}\right)_{z}=\frac{\partial W_{m}}{\partial \phi} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{6-185}
\end{equation*}
$$

The difference between the expression above and ($\left.T_{\Phi}\right)_{z}$ in Eq. $(6-178)$ is, again, only in the sign. It must be understood that, despite the difference in the sign, Eqs. (6-176) and $(6-178)$ should yield the same answers to a given problem as do Eqs. (6-184) and (6-185) respectively. The formulations using the method of virtual displacement under constant llux linkage and constant current conditions are simply two means of solving the same problem:

Let us solve the electromagnet problem in Example 6-20 assuming a virtual displacement under the constant-current condition. For this purpose, we express W_{m} in terms of the current I :

$$
\begin{equation*}
W_{m}=\frac{1}{2} L I^{2}, \tag{6-186}
\end{equation*}
$$

where L is the self-inductance of the coil. The flux, Φ, in the electromagnet is obtained by dividing the applied magnetomotive force ($N I$) by the sum of the reluctance of the core $\left(\mathscr{R}_{c}\right)$ and that of the two air gaps $\left(2 y / \mu_{0} S\right)$. Thus,

$$
\begin{equation*}
\Phi=\frac{N I}{\mathscr{R}_{\mathrm{c}}+2 y / \mu_{0} S} . \tag{6-187}
\end{equation*}
$$

$$
\begin{equation*}
L=\frac{N \Phi}{I}=\frac{N^{2}}{\mathscr{R}_{c}+2 y / \mu_{0} S} \tag{6-188}
\end{equation*}
$$

Combining Eqs. $\left(6{ }^{184}\right)$ and $(6-186)$ and using Eq. $(6-188)$, we obtain

$$
\begin{align*}
\mathbf{F}_{I}=\mathbf{a}_{y} \frac{I^{2}}{2} \frac{d L}{d y} & =-\mathbf{a}_{y} \frac{1}{\mu_{0} S}\left(\frac{N I}{R_{c}+2 y / \mu_{0} S}\right)^{2} \\
& =-\mathbf{a}_{y} \frac{\Phi^{2}}{\mu_{0} S} \quad(\mathrm{~N}) \tag{6-189}
\end{align*}
$$

which is exactly the same as the \mathbf{F}_{Φ} in Eq. (6-180).

6-13.2 Forces and Torques in Terms of Mutual Inductance

The method of virtual displacement for constant currents provides a powerful technique for determining the forces and torques between rigid current-carrying circuits. For two citcuits with currents I_{1} and I_{2}, self-inductances L_{1} and L_{2}, and mutual inductance L_{12}, the magnetic energy is, from Eq. (6-140),

$$
\begin{equation*}
W_{m}=\frac{1}{2} L_{1} I_{1}^{2}+L_{12} I_{1} I_{2}+\frac{1}{2} L_{2} I_{2}^{2} \tag{6-190}
\end{equation*}
$$

If one of the circuits is given a virtual displacement under the condition of constant currents, there would be a change in W_{m} and Eq. (6-184) applies. Substitution of Eq. $(6-190)$ in Eq. ($6-184$) yields

$$
\begin{equation*}
\mathrm{F}_{I}=I_{1} I_{2}\left(\nabla L_{12}\right) \tag{6-191}
\end{equation*}
$$

Similarly, we obtain from. Eq. ($6-185$),

$$
\begin{equation*}
\left(T_{I}\right)_{2}=I_{1} I_{2} \frac{\partial L_{12}}{\hat{\partial} \phi_{i}} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{6-192}
\end{equation*}
$$

Example 6-21 Determine the force between two coaxial circular coils of radii b_{1} and b_{2} separated by a distance d which is much larger than the radii $\left(d \gg b_{1}, b_{2}\right)$. The coils consist of N_{1} and N_{2} closely wound turns and carry currents I_{1} and I_{2} respectively.

Solution: This problem is rather a difficult one if we try to solve it with Ampere's law of force, as expressed in Eq. (6-161a). Therefore we will base our solution on Eq. (6-191). First, we determine the mutual inductance between the two coils. In

Fig. 6-28 Coaxial current-carrying circular loops (Example 6-21).

Example $6-7$ we found, in Eq. $(6-43)$, the.vector potential at a distant point, which was caused by a single-turn circular loop carrying a current I. Referring to Fig. 6-28 for this problem, at the point P on coil 2 we have \mathbf{A}_{12} due to current I_{1} in coil 1 with N_{1} turns as follows:

$$
\begin{align*}
\mathbf{A}_{12} & =\mathbf{a}_{\phi} \frac{\mu_{0} N_{1} I_{1} b_{1}^{2}}{4 R^{2}} \sin \theta \\
& =\mathbf{a}_{\phi} \frac{\mu_{0} N_{1} I_{1} b_{1}^{2}}{4 R^{2}}\left(\frac{b_{2}}{R}\right) \\
& =\mathbf{a}_{\phi} \frac{\mu_{0} N_{1} I_{1} b_{1}^{2} b_{2}}{4\left(z^{2}+b_{2}^{2}\right)^{3 / 2}} \tag{6-193}
\end{align*}
$$

In Eq. (6-193), z, instead of d, is used because we anticipate a virtual displacement, and z is to be kept as a variable for the time being. Using Eq. (6-193) in Eq. (6-24), we find the mutual flux.

$$
\begin{align*}
\Phi_{12} & =\oint_{C_{2}} \mathbf{A}_{12} \cdot d \ell_{2}=\int_{0}^{2 \pi} A_{12} b_{2} d \phi \\
& =\frac{\mu_{0} N_{1} I_{1} b_{1}^{2} b_{2}^{2} \pi}{2\left(z^{2}+b_{2}^{2}\right)^{3 / 2}} \tag{6-194}
\end{align*}
$$

The mutual inductance is then, from Eq. $(6-111)$,

$$
\begin{equation*}
L_{12}=\frac{N_{2} \Phi_{12}}{I_{1}}=\frac{\mu_{0} N_{1} N_{2} \pi b_{1}^{2} b_{2}^{2}}{2\left(z^{2}+b_{2}^{2}\right)^{3 / 2}} \tag{H}
\end{equation*}
$$

whic
6.2
coil 1
ment, ;-24),
-19..
-195)

$$
\begin{equation*}
\mathbf{F}_{12} \cong-\mathbf{a}_{z} \frac{3 \mu_{0} m_{1} m_{2}}{2 \pi d^{4}} \quad(\mathrm{~N}) \tag{6-196}
\end{equation*}
$$

where ($d^{2}+b_{2}^{2}$) has. been replaced approximately by d^{2}, and m_{1} and m_{2} are the magnitudes of the maghtetic moments of coils 1 and 2 respectively:

$$
m_{1}=N_{1} I_{1} \pi b_{1}^{2}, \quad m_{2}=N_{2} I_{2} \pi b_{2}^{2}
$$

The negative sign in Eq, $(6-196)$ indicates that F_{12} is a force of attraction for currents flowing in the same direction. This force diminishes very rapidly as the inverse fourth power of the distance of separation.

REVIEW QUESTIONS

R.6-1 What is the expression for the force on a test charge q that moves with veiocity \mathbf{u} in a magnetic field of flux density $\mathbf{B}_{\text {? }}$
R.6-2 Verify that tesla (T), the unit for magnetic flux density, is the same as volt-second per square meter $\left(\mathrm{V} \cdot \mathrm{s} / \mathrm{m}^{2}\right)$.
R.6-3 Write Lorentz's force equation.
R.6-4 Which postulate of magnetostatics denies the existence of isolated magnetic charges?
R.6-5 State the law of conservation of magnetic flux.
R.6-6 State Ampère's circuital law.
R.6-7 In applying Ampere's circuital law must the path of integration be circular? Explain.
R.6-8 Why cannot the B-field of an infinitely long, straight, current-carrying conductor have a component in the direction of the current?
R.6-9 Do the formulas for B, as derived in Eqs. $(6-10)$ and (6-11) for a round conductor, apply to a conductor having a square cross section of the same area and carrying the same current? Explain. -
R.6-10 In what manher does the B-field of an intinitely long straight filament carrying a direct current I vary with distance?
R.6-11 Can B-field exist In a good conductor? Explain.
R.6-12 Define in words vector magnetic potential A. What is its SI unit?
R.6-13 What is the relation between magnetic flux density B and vector magnetic potential \mathbf{A} ? Give an example of a situation where \mathbf{B} is zero and \mathbf{A} is not.
R.6-14 What is the relation between vector magnetic potential A and the magnetic flux through a given area?
R.6-15 State Biot-Savart's law.
R.6-16 Compare the usefulness of Ampère's circuital law and Biot-Savart's law in determining B of a current-carrying circuit.
R.6-17 What is a magnetic dipole? Define magnetic dipole moment.
R.6-18 Define scalar magnetic potential V_{m}. What is its SI unit?
R.6-19 Discuss the relative merits of using the vector and scalar magnetic potentials in magnetostatics.
R.6-20 Define magnetization vector. What is its SI unit?
R.6-21 What is meant by "equivalent magnetization current densities"? What are the SI units for $\nabla \times \mathbf{M}$ and $\mathbf{M} \times \mathbf{a}_{n}$?
R.6-22 Define magnetic field intensity vector. What is its SI unit?
R.6-23 Define magnetic susceptibility and relativè permeability. What are their SI units?
R.6-24 Does the magnetic field intensity due to a current distribution depend on the properties of the medium? Does the magnetic flux density?
R.6-25 Define magnetomotive force. What is its SI unit?
R.6-26 What is the reluctance of a piece of magnetic material of permeability μ, length ℓ, and a constant cross section S ? What is its SI unit?
R.6-27 An air gap is cut in a ferromagnetic toroidal core. The core is excited with an mmf of $N I$ ampere-turns. Is the magnetic field intensity in the air gap higher or lower than that in the core?
R.6-28 Define diamagnetic, paramagnetic, and ferromagnetic materials.
R.6-29 What is a magnetic domain?
R.6-30 Define remanent flux density and coercive field intensity.
R.6-31 Discuss the difference between soft and hard ferromagnetic materials.
R.6-32 What is curie temperature?
R.6-33 What are the characteristics of ferrites?
R.6-34 What are the boundary conditions for magnetostatic fields at an interface between two different magnetic media?
R.6-35 Explain why magnetic flux lines leave perpendicularly the surface of a ferromagnetic medium.

R.

s in mag.
: SI units
nits"
roperties
th ℓ, and
n mmf of nat in the
R.6-36 What boundary condition must the tangenttal components of magnetization satisfy at an interfacc? If region 2 is nonmagnetic, what is the relation between the surface current and the tangential component of \mathbf{M}_{1} ? .
R.6-37 Define (a) the mutual inductance between two circuits, and (b) the self-inductance of a single coil.
R.6-38 Explain how the self-inductance of a wire-wdund inductor depends on its number of turns.
R.6-39 In Example 6-14, would the answer be the same if the outer conductor is not "very thin"? Explain.
R.6-40 Give an expression of magnetic energy in terms of \mathbf{B} and/or \mathbf{H}.
R.6-41 Give the integral expression for the force on a closed circuit that carries a current I in a magnetic field B.
R.6-42 Discuss first the net force and then the net torque acting on a current-carrying circuit situated in a uniform magnetic field.
R.6-43 What is the relation between the force and the stored magnetic energy in a system of current-carrying circuits under the condition of constant flux linkages? Under the condition of constant currents?

PROBLEMS

P.6-1 A positive point charge q of mass m is injected with a velocity $\mathbf{u}_{0}=\mathbf{a}_{y} u_{0}$ into the $y>0$ region where a uniform magnetic fleld $\mathbf{B}=\mathbf{a}_{x} B_{0}$ exists. Obtain the equation of motion of the charge, and describe the path that the charge follows.
P.6-2 An electron is injected with a velocity $u_{0}=a_{y} \dot{u}_{0}$ into a region where both an electric field E and a magnetic field B exist. Describe the motion of the electron if
a) $\mathbf{E}=\mathbf{a}_{z} E_{0}$ and $\mathbf{B}=\mathbf{a}_{x} B_{0}$,
b) $\mathbf{E}=-\mathbf{a}_{2} E_{0}$ and $\mathbf{B}=-\mathbf{a}_{2} B_{0}$.

Discuss the effect of the relative magnitudes of E_{0} and B_{0} on the electron paths of (a) and (b).

!

P.6-3 A current I lows in the imer comduetor of an infinitely long cowial line and returns via the onter condugtor, The radius of the inner conductor is a, and the imer and outer radii of the
 $\operatorname{plot}|\mathbf{B}|$ versus r.
P.6-4 Determine the magnetic flux density at a point on the axis of a solenoid with radius b and length L, and with a curtent I in its N turns of closely wound coil. Show that the result reduces to that given in Eq. (6-13) when L approaches infinity.
P.6-5 Starting from the expression for vector magnetic potential A in Eq. (6-22), prove that

$$
\begin{equation*}
\mathbf{B}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\mathbf{J} \times \mathbf{a}_{\mathbf{R}}}{R^{2}} d v^{\prime} \tag{6-197}
\end{equation*}
$$

Furthermore, prove that $\nabla \cdot \mathbf{B}=0$.
\checkmark P.6-6 Two identical coaxial coils, each of N turns and radius b, are separated by a distance d, as depicted in Fig. 6-29. A current I fiows in each coil in the same direction.
a) Find the magnetic flux density $B=a_{x} B_{x}$ at a point midway between the coils.
b) Show that $d B_{x} / d x$ vanishes at the midpoint.
c) Find the relation between b and d such that $d^{2} B_{x} / d x^{2}$ also vanishes at the midpoint. Such a pair of coils are used to obtain an approximately uniform magnetic field in the midpoint region. They are known as Helmholtz coils.

Fig. 6-29 Helmholtz coils (Problems P.6-6).
V.6-7 A thin conducting wire is bent into the shape of a regular polygon of N sides. A current I flows in the wire. Show that the magnetic flux density at the center is

$$
\mathbf{B}=\mathbf{a}_{n} \frac{\mu_{0} N I}{2 \pi b} \tan \frac{\pi}{N}
$$

where b is the radius of the circle circumscribing the polygon and a_{n} is a unit vector normal to the plane of the polygon. Show also that as N becomes very large this result reduces to that given in Eq. $(6-38)$ with $z=0$.
P.6-8 Find the total magnetic flux through a circular toroid with a rectangular cross section of height h. The inner and outer radii of the toroid are a and b respectively. A current l flows in N turns of closely wound wire around the toroid. Determine the percentage of error if the flux is found by multiplying the cross-sectional area by the flux density at the mean radius.
P.6-9 In certain experiments it is desirable to have a region of constant magnetic flux density. This can be created in an off-center cylindrical cavity that is cut in a very long cylindrical conductor

\& current
ormal to s to that $\therefore \mathrm{mc}$ 11 ! howe It Hes as.
λ density. : onductor
carrying a uniform current density. Refer to the cross section in Fig. 6-30. The uniform axial current density is $J=$ and. Find the magnitude and dirction of B in the cylindrical cavity whose axis is displaced from that of the conducting part by a distance d. (Hint: Use principle of superposition and consider B in the cavity as that due to two long cylindrical conductors with radi b and a and current densities \mathbf{J} and $-\mathbf{J}$ respectively.)
P.6-10 Prove the following:
a) If Cartesian coordinates are used, Eq. (6) 17) for the Laplacian of a vector field holds.
b) If cylindrical coordinates are used, $V^{2} A \neq a_{r} V^{1} A_{r}+a_{\phi} V^{2} A_{\phi}+a_{z} V^{2} A_{z}$.
P.6-11 The magnetic flux density \mathbf{B} for an infinitely long cylindrical conductor has been found in Exampie 6-1. Determite the vector magnetic potentidal \mathbf{A} both inside and outside the conductor from the relation $B=V^{2} \times A$.
P.6-12 Starting from the expression of \mathbf{A} in $\mathrm{Eq}_{\mathrm{i}}(6-34)$ for the vector magnetic potential at a point in the bisecting plate of a straight wire of length $2 L$ that carries a current I :
a) Find \mathbf{A} at point $P(x, y, 0)$ in the bisecting plane of two parallel wires each of length 21 , located at $y= \pm d / 2$ and carrying equal and opposite currents, as shown in Fig. 6-31.
b) Find \mathbf{A} due to equal and opposite currents in a very long two-wire transmission line.
c) Find \mathbf{B} from \mathbf{A} in part (b), and check your answer against the result obtained by applying Ampère's circuital law.

Fig. 6-31 Parallel wires carrying equal and opposite currents
(Problem P.6-12).
P.6-13 For the small rectangular loop with sides a and b that carries a current 1 , shown in Fig. 6-32:
a) Find the vector magnetic potential \mathbf{A} at a distance point, $P(x, y, z)$. Show that it can be put in the form of Eq. (6-45).
b) Determine the magnetic flux density \mathbf{B} from \mathbf{A}, and show that it is the same as that given in Eq. (6-48).

Fig, 6-32 A small rectangular loon carrying current / (Problem P.6-1.3).

P.6-14 For a vector field \mathbf{F} with continuous, first derivatives, prove that

$$
\int_{V}(\nabla \times F) d v=-\oint_{S} F \times d \mathbf{s}
$$

where S is the surface enclosing the volume V : (Hint: Apply the divergence theorem to $(\mathrm{A} \times \mathrm{C})$, where C is a constant vector.)
P.6-15 A circular rod of magnetic material with permeability μ is inserted coaxially in the long solenoid of Fig. 6-4. The radius of the rod, a, is less than the inner radius, b, of the solenoid. The solenoid's winding has n turns per unit length and carries a current I.
a) Find the values of \mathbf{B}, \mathbf{H}, and \mathbf{M} inside the solenoid for $r<a$ and for $a<r<b$.
b) What are the equivalent magnetization current densities J_{m} and $\mathbf{J}_{m s}$ for the magnetized rod?
P.6-16 The scalar magnetic potential, V_{m}, due to a current loop can be obtained by first dividing the loop area into many small loops and then summing up the contribution of these small loops (magnetic dipoles); that is,

$$
\begin{equation*}
V_{m}=\int d V_{m}=\int \frac{d \mathbf{m} \cdot \mathbf{a}_{R}}{4 \pi R^{2}} \tag{6-198a}
\end{equation*}
$$

where

$$
\begin{equation*}
d \mathrm{~m}=\mathbf{a}_{n} I d \mathrm{~s} \tag{6-198b}
\end{equation*}
$$

Prove, by substituting Eq. (6-198b) in Eq. (6-198a), that

$$
\begin{equation*}
V_{m}=\frac{I}{4 \pi} \Omega \tag{6-199}
\end{equation*}
$$

where Ω is the solid angle subtended by the loop surface at the field point P (see Fig. 6-33).

PROBLEMS

Fig. 6-33 Subdivided current loop for determination of scalar magnetic potential (Problem P.6-16).
P.6-17 Do the following by using Eq. (6-199):
a) Determine the scalar magnetic potential at a point on the axis of a circular loop having radius b and carrying a current I.
b) Obtain the maghetic flux density \mathbf{B} from $-\mu_{0} \nabla V_{m}$, and compare the result with Eq. (6-38).
P.6-18 A ferromagnetic sphere of radius b is magnetized uniformly with a magnetization $\mathbf{M}=$ $\mathrm{a}_{z} M_{0}$.
a) Determine the equivalent magnetization current densities \mathbf{J}_{m} and $\mathbf{J}_{m s}$.
b) Determine the magnetic flux density at the center of the sphere.
P.6-19 A toroidal iron core of relative permeability 3000 has a mean radius $R=80(\mathrm{~mm})$ and a circular cross section with radius $b=25(\mathrm{~mm})$. An air gap $C_{y}=3(\mathrm{~mm})$ exists, and a current $/$ hlows in a 500 -turn winding to produce a magnetic flux of $10^{-3}(\mathrm{~Wb})$. (See Fig. 6-34.) Neglecting leakage

Fig. 6-34 A.toroidal iron core with air gap (Problem P.6-19).
and using mean path length, find
a) the reluctances of the air gap and of the iron core.
b) B_{g} and H_{g} in the air gap, and B_{c} and H_{c} in the iron core.
c) the required current I.
P.6-20 Consider the magnetic circuit in Fig. 6-35. A current of 3 (A) flows through 200 turns of wire on the center leg. Assuming the core to have a constant cross-sectional area of $10^{-3}\left(\mathrm{~m}^{2}\right)$ and a relative permeability of 5000 :
a) Determine the magnetic flux in each leg.
b) Determine the magnetic fied intensity in each leg of the core and in the air gap.

Fig. 6-35 A magnetic circuit with air gap (Problem P.6-20).
P.6-21 Consider an infinitely long solenoid with n turns per unit length around a ferromagnetic core of cross-sectional area S. When a current is sent through the coil to create a magnetic field, a voltage $v_{1}=-n d \Phi / d t$ is induced per unit length, which opposes the current change. Power $P_{1}=-v_{1} I$ per unit length must be supplied to overcome this induced voltage in order to increase the current to I.
a) Prove that the work per unit volume required to produce a final magnetic flux density B_{f} is

$$
\begin{equation*}
W_{1}=\int_{0}^{B_{s}} H d B \tag{6-200}
\end{equation*}
$$

b) Assuming the current is changed in a periodic manner such that B is reduced from B_{f} to $-B_{f}$ and then is increased again to B_{f}, prove that the work done per unit volume for such a cycle of change in the ferromagnetic core is represented by the area of the hysteresis loop of the core material.
P.6-22 Prove that the relation $\nabla \times \mathbf{H}=\mathbf{J}$ leads to Eq. (6-99) at an interface between two media. P.6-23 What boundary conditions must the scalar magnetic potential V_{m} satisfy at an interface between two different magnetic media?
P.6-24 Consider a plane boundary ($y=0$) between air (region 1, $\mu_{r 1}=1$) and iron (region 2, $\mu_{\mathrm{r} 2}=5000$).
a) Assuming $\mathbf{B}_{1}=a_{x} 0.5-a_{y} 10(m T)$, find B_{2} and the angle that \mathbf{B}_{2} makes with the interface.
b) Assuming $B_{2}=\mathbf{a}_{x} 10+\mathbf{a}_{y} 0.5(\mathrm{mT})$, find \mathbf{B}_{1} and the angle that \mathbf{B}_{1} makes with the normal to the interface.
P.6-25 The method of images can also be applied to certain magnetostatic problems. Consider a straight thin conductor in air parallel to and at a distance d above the plane interface of a magnetic material of relative permeability μ_{r}. A current I flows in the conductor.

i) the magneticfield ith the air is calculated from I and an image current I_{i},

$$
I_{t}=\left(\frac{\mu_{r}-1}{\mu_{t}+1}\right) I,
$$

and these cutrents are equidistant from the interface and situated in air;
ii) the magnetictield below the boundary plane is calculated from I and $-I_{i}$, both at the same location These currents are sitlated in an infinite magnetic material of
b) For a long conductor carrying a current I and for $\mu_{\mathrm{r}} \gg 1$, determine the magnetic flux

Fig. 6-36 A current-carrying conductor near a ferromagnetic medium (Problem P.6-25).
P.6-26 Determine the self-inductance of a toroidal coil of N turns of wire wound on an air frame with mean radius ' r and a circular cross section of radius b. Obtain an approximate expression assuming $b \ll r_{0}$.
P.6-27 Refer to Example 6-14. Determine the inductance per unit length of the air coaxial transmission line assuming that its outer conductor is not very thin but is of a thickness d.
\checkmark P.6-28 Calculate the intetnal and external inductances per unit length of a two-wire transmission line consisting of two lofig parallel conducting wires of radius a that carry currents in opposite directions. The wires are separated by an axis-to-axis dlstance d, which is much larger than a.
${ }^{v}$ P.6-29 Determine the mutual inductance between a very long straight wire and a conducting equilateral triangular lodp, as shown

Fig. 6-37 A long straight wire and a conducting equilateral triangular loop (Problem P.6-29).

266 - STATIC MAGNETIC FIELDS / 6

Fig. 6-38 A long straight wire and a conducting circular loop (Problem P.6-30).
P.6-30 Determine the mutual inductance between a very long straight wire and a conducting circular loop, as shown in Fig. 6-38.
P.6-31 Find the mutual inductance between two coplanar rectangular loops with parallel sides, as shown in Fig. 6-39. Assume that $h_{1} \gg h_{2}\left(h_{2}>w_{2}>d\right)$.

Fig. 6-39 Two coplanar rectangular loops, $h_{1} \gg h_{2}$ (Problem P.6-31).
\sim P.6-32 Consider two coupled circuits, having self-inductances L_{1} and L_{2}, that carry currents I_{1} and I_{2} respectively. The mutual inductance between the circuits is M.
a) Using Eq. $(6-140)$, find the ratio I_{1} / I_{2} that makes the stored magnetic energy W_{2} a minimum.
$\cdot v \quad$ b) Show that $M \leq \sqrt{L_{1} L_{2}}$.
P.6-33 Calculate the force per unit length on each of three equidistant, infinitely long, parallel wires $0.15(\mathrm{~m})$ apart, each carrying a current of $25(\mathrm{~A})$ in the same direction. Specify the direction of the force.
\checkmark P.6-34 The cross section of a long thin metal strip and a parallel wire is shown in Fig. 6-40. Equal and opposite currents I flow in the conductors. Find the force per unit length on the conductors.

nducting

Aed sidess
P.6-40 A current I flows in a long solenoid with n closely wound coil-turns per unit length. The cross-sectional area of its iron core, which has permeability μ, is S. Determine the force acting on the coreifit is withdrawn to the position shown in Fig. 6-41.

7 / Time-Varying Fields and Maxwell's Equations

7-1 INTRODUCTION

In constructing the electrostatic model, we defined an electric \mathbf{E}, and an electric flux density (electric displacement) vector, \bar{U} governing differential equations are

$$
\begin{align*}
& \mathrm{V} \times \mathrm{E}=0 \tag{3-5}\\
& \nabla \therefore \mathrm{D}=\rho . \tag{3-93}
\end{align*}
$$

For linear and isotropic (not necessarily homogeneous) media, \mathbf{E} and \mathbf{D} are related by the constitutive relation

$$
\begin{equation*}
D=\epsilon E . \tag{3-97}
\end{equation*}
$$

For the magnetostatic model, we defined a magnetic flux density vector, B, and a magnetic field intensity vector, \mathbf{H}. The fundamental governing differential equations are

$$
\begin{array}{r}
\nabla \cdot \mathbf{B}=0 \\
\nabla \times \mathbf{H}=\mathbf{J} \tag{6-68}
\end{array}
$$

The constitutive relation for \mathbf{B} and \mathbf{H} in linear and isotropic media is

$$
\begin{equation*}
\mathbf{H}=\frac{1}{\mu} \mathbf{B} . \tag{6-72b}
\end{equation*}
$$

These fundamental relations are summarized in Table 7-1.
We observe that, in the static (non-time-varying) case, electric field vectors \mathbf{E} and \mathbf{D} and magnetic field vectors \mathbf{B} and \mathbf{H} form separate and independent pairs. In other words, \mathbf{E} and \mathbf{D} in the electrostatic model are not related to \mathbf{B} and \mathbf{H} in the magnetostatic model. In a conducting medium, static electric and magnetic fields may both exist and form an electromagnetostatic field (see the statement following Example 5-3 on p. 187). A static electric field in a conducting medium causes a steady current to flow that, in turn, gives rise to a static magnetic field. However, the electric field can be completely determined from the static electric charges or potential distributions.
y vector, lamental

e related
r, B, and :quations

Table 7-1 Fundamental Relations for Electrostatic and Magnetostatic Models

Ftindamental Relations	Electrostatic Model	Magnetostatic Model
Governing equations	$\begin{aligned} & \nabla \times E=0 \\ & \nabla \cdot D=\rho \end{aligned}$	$\begin{array}{r} \nabla \cdot \mathrm{B}=0 \\ \nabla \times \mathbf{H}=\mathbf{J} \end{array}$
Constitutlve Relations (linear and isotropic media)	$\mathrm{D}=\epsilon \mathrm{E}$	$\mathbf{H}=\frac{1}{\mu} \mathbf{B}$

The magnetic field is:a consequence; it does not enter into the calculation of the electric field.

In this chapter we will see that a changing magnetic field gives rise to an electric lield, and vice versa.' To explain electromagnetic phenomena under time-varying conditions, it is necessary to construct an electromagnetic model in which the electric field vectors \mathbf{E} and \mathbf{D} are properly related to the magnetic field vectors \mathbf{B} and \mathbf{H}. The two pairs of the governing equations in Table $7-1$ must therefore be modified to show a mutual depentence between the electric and magnetic field vectors in the time-varying case.

We will begin with a fundamental postulate that modifies the $V \times \mathbf{E}$ equation in Table 7-1 and leads to Faraday's law of electromagnetic induction. The concepts of transformer emf and thotional emf will be discussed. With the new postulate we will also need to modify the $\nabla \times H$ equation in order to make the governing equations consistent with the equation of continuity (law of conservation of charge). The two modified curl equations together with the two divergence equations in Table 7-1 are known as Maxwell's equations and form the foundation of electromagnetic theory. The governing equations for electrostatics and magnetostatics are special forms of Maxwell's equations when all quantities are independent of time. Maxwell's equations can be combined to yield wave equations that predict the existence of electromagnetic waves propagating with the velocity of light. The solutions of the wave equations, especially for time-harmonic fields, will be discussed in this chapter.
'7-2 FARADAY'S LAW OF ELECTROMAGNETIC INDUCTION

A major advance in electromagnetic theory was made by Michael Faraday who, in 1831, discovered experimentally that a current was induced in a conducting loop when the magnetic flux linking the loop changed. ${ }^{\dagger}$ The quantitative relationship
${ }^{\dagger}$ There is evidence that Josetph Henry independently made similar discoveries about the same time.
between the induced emf and the rate of change of flux linkage, based on experimental observation, is known as Faraday's law. It is an experimental law and can be considered as a postulate. However, we do not take the experimental relation concerning a finite loop as the starting point for developing the theory of electromagnctic induction. Instead, we follow our approach in Chapter 3 for electrostatics and in Chapter 6 for magnetostatics by putting forth the following fundamental postulate and developing from it the integral forms of Faraday's law.

Fundamental Postulate for Flectromagnetic Induction

$$
\begin{equation*}
\bar{\nabla} \times \mathrm{E}=-\frac{i \mathbf{B}}{i} \tag{7-1}
\end{equation*}
$$

Equation (7-1) expresses a point-function relationship; that is, it applies to every point in space, whether it be in fiee space or in a material medium. The electric fish imensity in a region of time-raryiny mayneric flus density is therefore nomeonsertative and cannot be expressed as the gradient of a scalar potential.

Taking the surface integral of both sides of Eq. (7-1) over an open surface and applying Stokes's theorem, we obtain

$$
\begin{equation*}
\dot{\varphi}_{C} \mathbf{E} \cdot d \ell=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{s} \tag{7-2}
\end{equation*}
$$

Equation (7-2) is valid for any surface S with a bounding contour C, whether or not a physical circuit exists around C. Of course, in a field with no time variation, $\partial \mathrm{B} / \hat{\partial} t=$ 0 , Eqs. (7-1) and (7-2) reduce, respectively, to Eqs. (3-5) and (3-8) for electrostatics.

In the following subsections we discuss separately the cases of a stationary circuit in a time-varying magnetic field, a moving conductor in a static magnetic field, and a moving circuit in a time-varying magnetic field.

7-2.1 A Stationary Circuit in a Time-Varying Magnetic Field

For a stationary circuit with a contour C and surface S, Eq. (7-2) can be written as

$$
\begin{equation*}
\oint_{\mathrm{C}} \mathbf{E} \cdot d \ell=-\frac{d}{d t} \int_{\mathrm{S}} \mathbf{B} \cdot \ddot{d \mathbf{S}} \tag{7-3}
\end{equation*}
$$

If we define

$$
\begin{equation*}
\mathscr{r}=\oint_{C} E \cdot d \ell=\text { emf induced in circuit with contour } C \quad \text { (V). } \tag{7-4}
\end{equation*}
$$

mental xe concerning :inducrapter 6 1 devel-
and

$$
\Phi=\int_{S} \mathbf{B} \cdot \dot{d} s=\text { magnetic flux crossing surface } S \quad(\mathrm{~Wb})
$$

then Eq. (7-3) becomes

$$
\begin{equation*}
\mathscr{V}=-\frac{d \Phi}{d t} \quad(\mathrm{~V}) \tag{7-6}
\end{equation*}
$$

Equation (7-6) states that the electromotive force induced in a stationary closed circuit is equal to the neyatine rute of increase of 'he maynuric flux linking the circuit. This is a statement of Furadiy's law of electromagnetic induction. A time-rate of change of magnetic flux induces an electric field according to Eq. (7-3), even in the absence of a physical closed circuit.The negative sign in Eq. (7-6) is an assertion that the induced emf will cause a current to flow in the closed loop in such a direction as to oppose the change in the linking magnetic flux. This assertion is known as Lenz's law. The emf induced in a stationary loop caused by a time-varying magnetic field is a transformer emf.

Example 7-1 A circular loop of N turns of conducting wire lies in the $x y$-plane with its center at the orlgin of a magnetic field specified by $\mathbf{B}=\mathbf{a}_{\mathbf{z}} B_{0} \cos (\pi r / 2 b) \sin \omega t$, where b is the radius of the loop and ω is the angular frequency. Find the emf induced in the loop.

Solution: The problem specifies a stationary loop in a time-varying magnetic field; hence Eq. (7-6) can be used directly to find the Induced emf, \mathscr{V}. The magnetic flux linking each turn of the circular loop is

$$
\begin{aligned}
\Phi & =\int_{s} \mathbf{B} \cdot d \mathbf{s} \\
& =\int_{0}^{b}\left[\mathbf{a}_{z} B_{0} \cos \frac{\pi r}{2 b} \sin \omega t\right] \cdot\left(\mathbf{a}_{2} 2 \pi r d r\right) \\
& =\frac{8 b^{2}}{\pi^{2}}\left(\frac{\pi}{2}-1\right) B_{0} \sin \omega t
\end{aligned}
$$

Since there are N turns, the total flux linkage is $N \Phi$, and we obtain

$$
\begin{align*}
\mathscr{r} & =-N \frac{d \Phi}{d t} \\
& =-\frac{8 N}{\pi} b^{2}\left(\frac{\pi}{2}-1\right) B_{0} \omega \cos \omega t \tag{V}
\end{align*}
$$

The induced emf is seen to be ninety degrees out of time phase with the magnetic flux.

Fig. 7-1 A conducting bar moving in a magnetic field.

7-2.2 A Moving Conductor in a Static Magnetic field

When a conductor moves with'a velocity \mathbf{u} in a static (non-time-varying) magnetic field \mathbf{B} as shown in Fig. 7-1, a force $\mathbf{F}_{m}=q \mathbf{u} \times \mathbf{B}$ will cause the freely movable electrons in the conductor to drift toward one end of the conductor and leave the other end positively charged. This separation of the positive and negative charges creates a Coulombian force of attraction. The charge-separàtion process continues until the electric and magnetic forees batanee cath other and a state of equilitrium is reached. At equilibrium, which is reached very rapidly, the ne forec on the free charges in the moving conductor is zero.

To an observer moving with the conductor, there is no apparent motion and the magnetic force per unit charge $\mathbf{F}_{m} / q=\mathbf{u} \times \mathbf{B}$ can be interpreted as an induced electric field acting along the conductor and producing a voltage

$$
\begin{equation*}
V_{21}=\int_{1}^{2}(\mathbf{u} \times \mathbf{B}) \cdot d \ell \tag{7-7}
\end{equation*}
$$

If the moving conductor is a part of a closed circuit C, then the emf generated around the circuit is

$$
\begin{equation*}
\mathscr{V}^{\prime}=\oint_{c}(\mathbf{u} \times \mathbf{B}) \cdot d \ell \quad(\mathrm{~V}) . \tag{7-8}
\end{equation*}
$$

This is referred to as a flux-cutting emf, or a motional emf. Obviously only the part of the circuit that moves in a direction not parallel to (and hence, figuratively, "cutting") the magnetic flux will contribute to \mathscr{V}^{\prime} in Eq. (7-8).

Example 7-2 A metal bar slides over a pair of conducting rails in a uniform magnetic field $\mathbf{B}=\mathbf{a}_{z} B_{0}$ with a constant velocity \mathbf{u}, as shown in Fig. 7-2. (a) Determine the open-circuit voltage V_{0} that appears across terminals 1 and 2. (b) Assuming that a resistance R is connected between the terminals, find the electric power dissipated in R. (c) Show that this electric power is equal to the mechanical power required to move the sliding bar with a velocity u. Neglect the electric resistance of the metal bar and of the conducting rails. Neglect also the mechanical friction at the contact points.
) magnetic y movable 1 leave the ive charges ; corpues alibi...n is reco -ges
on and the an induced
ted around
ily the part iguratively,
mm ?tic ermine the ning - a - dissipated required to e metal bar tact points.

Fig. 7-2 A metal bar sliding over conducting rails (Example 7-2).

Solution

a) The moving bar generates a flux-cutting emf. We use Eq. (7-8) to find the opencircuit voltage V_{0} :

$$
\begin{align*}
V_{0}=V_{1}-V_{2} & =\oint_{C}(\mathbf{u} \times \mathbf{B}) \cdot d \ell \\
& =\int_{2^{\prime}}^{1}\left(\mathbf{a}_{\mathbf{x}} u \times \mathbf{a}_{2} B_{0}\right) \cdot\left(\mathbf{a}_{y} d \ell\right) \\
& =-u B_{0} h \quad(\mathrm{~V}) \tag{7-9}
\end{align*}
$$

b) When a resistance R is connected between terminals 1 and 2 , a current $I=u B_{0} h^{\prime} R$ will flow from terminal 2 to terminal 1 , so that the electric power, P_{e}, dissipated in R is

$$
\begin{equation*}
P_{u}=I^{2} R=\frac{\left(u B_{0} h\right)^{2}}{R} \quad(\mathrm{~W}) \tag{7-10}
\end{equation*}
$$

c) The mechanical power, P_{m}, required to move the sliding bar is

$$
\begin{equation*}
P_{m}=\mathbf{F} \cdot \mathbf{u} \quad(\mathrm{W}) \tag{7-11}
\end{equation*}
$$

where F is the mechanical force required to counteract the magnetic force, F_{m}, which the magnetic field exerts on the current-carrying metal bar. From Eq. $(6-159)$ we have.

$$
\begin{equation*}
\mathbf{F}_{m}=I \int_{2^{\prime}}^{1^{\prime}} d \ell \times \mathbf{B}=-\mathbf{a}_{x} I B_{0} h \quad(\mathrm{~N}) \tag{7-12}
\end{equation*}
$$

The negative sign in Eq. $(7-12)$ arises because current I flows in a direction opposite to that of $d \ell$. Hence,

$$
\begin{equation*}
\mathbf{F}=-\mathbf{F}_{n}=\mathbf{a}_{x} I B_{0} h=\mathbf{a}_{x} u B_{0}^{2} h^{2} / R \quad(N) \tag{7-13}
\end{equation*}
$$

Substitution of Eq. (7-13) in Eq. $(7-11)$ proves $P_{m}=P_{i}$, which upholds the principle of consetvation of energy.

Example 7-3 The Faraday disk generator consists of a circular metal disk rotating with a constant angular velocity ω in a uniform and constant magnetic fied of tlux density $\mathbf{B}=\mathbf{a}_{2} B_{0}$ that is parallel to the axis of rotation. Brush contacts are provided

Fig. 7-3 Faraday disk generator (Example 7-3).
at the axis and on the rim of the disk, as depicted in Fig. 7-3. Determine the opencircuit voltage of the generator if the radius of the disk is b.

Solution: Let us consider the circuit $122^{\prime} 341^{\prime} 1$. Of the part $2^{\prime} 34$ that moves with the disk, only the straight portion 34 "cuts" the magnetic flux. We trave, from Eq. (7-8),

$$
\begin{align*}
V_{0} & =\oint(\mathbf{u} \times \mathbf{B}) \cdot d \ell \\
& =\int_{3}^{4}\left[\left(\mathbf{a}_{\phi} r \omega\right) \times \mathbf{a}_{z} B_{0}\right] \cdot\left(\mathbf{a}_{r} d r\right) \\
& =\omega B_{0} \int_{b}^{0} r d r=-\frac{\omega B_{0} b^{2}}{2} \tag{7-14}
\end{align*}
$$

which is the emf of the Faraday disk generator. To measure V_{0} we must use a voltmeter of a very high resistance so that no appreciable current flows in the circuit to modify the externally applied magnetic fied.

7-2.3 A Moving Circuit in a Time-Varying Magnetic Field

When a charge q moves with a velocity \mathbf{u} in a region where both an electric field \mathbf{E} and a magnetic field B exist, the electromagnetic force \mathbf{F} on q, as measured by a laboratory observer, is given by Lorentz's force equation, Eq. (6-5), which is repeated below:

$$
\begin{equation*}
\mathbf{F}=q(\mathbf{E}+\mathbf{u} \times \mathbf{B}) . \tag{7-15}
\end{equation*}
$$

To an observer moving with q, there is no apparent motion, and the force on q can be interpreted as caused by an electric field \mathbf{E}^{\prime}, where

$$
\begin{equation*}
\mathbf{E}^{\prime}=\mathbf{E}+\mathbf{u} \times \mathbf{B} \tag{7-16}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}^{\prime}-\mathbf{u} \times \mathbf{B} \tag{7-17}
\end{equation*}
$$

Equation (7-18) is the general form of Faraday's law for a moving circuit in a timevarying magnetic field. The line integral on the left side is the emf induced in the moving frame of reference. The first term on the right side represents the transformer emf due to the time variation of B; and the second term represents the motional emf due to the motion of the circuit in \mathbf{B}. The divtsion of the induced emf between the transformer and the motional parts depends on the chosen frame of reference.

Let us consider a circuit with contour C that moves from C_{1} at time t to C_{2} at lime $t+\Delta t$ in a changing magnetic field B. The motion may include translation, rotation, and distortion in an arbitrary manner. Figure 7-4 illustrates the situation. The time-rate of chatige of magnetic flux through the contour is

$$
\begin{align*}
\frac{d \Phi}{d t} & =\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{s} \\
& =\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\int_{S_{2}} \mathbf{B}(t+\Delta t) \cdot d \mathrm{~s}_{2}-\int_{\mathrm{s}_{1}} \mathbf{B}(t) \cdot \dot{d}_{1}\right] \tag{7-19}
\end{align*}
$$

$\mathbf{B}(t+\Delta t)$ in Eq. $(7-19)$ can be expanded as a Taylor's series:

$$
\begin{equation*}
\mathbf{B}(i+\Delta t)=\mathbf{B}(t)+\frac{\partial \mathbf{B}(t)}{\partial t} \Delta t+\text { H.O.T. } \tag{7-20}
\end{equation*}
$$

where the high-order terms (H.O.T.) contain the second and higher powers of (Δt). Substitution of Eq. (4-20) in Eq. (7-19) yields

$$
\begin{align*}
\frac{d}{d t} \int_{S} \mathbf{B} \cdot d \mathbf{s}= & \int_{\mathrm{s}} \frac{\partial \mathbf{B}}{\partial t} \cdot d \mathbf{s} \\
& +\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\int_{S_{2}} \mathbf{B} \cdot d \mathbf{s}_{2}-\int_{s_{1}} \mathbf{B} \cdot d \mathrm{~s}_{1}+\text { H.O.T. }\right] \tag{7-21}
\end{align*}
$$

Fig. 7-4 A moving circuit in a time-varying magnetic field.
where B has been written for $B(t)$ for simplicity. In going from C_{1} to C_{2}, the circuit covers a region that is bounded by S_{1}, S_{2}, and S_{3}. Side surface S_{3}, is the area swept out by the contour in time Δt. An element of the side surface is

$$
\begin{equation*}
d \mathbf{s}_{3}=d \ell \times u \Delta t \tag{7-22}
\end{equation*}
$$

We now apply the divergence theorem for \mathbf{B} at time t to the region sketched in Fig. 7-4:

$$
\begin{equation*}
\int_{V} \nabla \cdot \mathbf{B} d v=\int_{s_{2}} \mathbf{B} \cdot d \mathbf{s}_{2}-\int_{s_{1}} \mathbf{B} \cdot d \mathbf{s}_{1}+\int_{s_{3}} \mathbf{B} \cdot d \mathbf{s}_{3} \tag{7-23}
\end{equation*}
$$

where a negative sign is included in the term involving $d \mathbf{s}_{1}$ because outward normals must be used in the divergence theorem. Using Eq. (7-22) in Eq. (7-23) and noting that $\nabla \cdot \dot{B}=0$, we have

$$
\begin{equation*}
\int_{S_{2}} \mathbf{B} \cdot d \mathbf{s}_{2}-\int_{s_{1}} \mathbf{B} \cdot d \mathbf{s}_{1}=-\Delta t \oint_{C}(\mathbf{u} \times \mathbf{B}) \cdot d \ell \tag{7-24}
\end{equation*}
$$

Combining Eqs. (7-21) and (7-24), we obtain

$$
\begin{equation*}
\frac{d}{d d} \int_{s} \mathbf{B} \cdot d \mathbf{s}=\int_{s} \frac{\partial \mathbf{B}}{\partial} \cdot d \mathbf{s}-\int_{c}(\mathbf{u} \times B) \cdot d l \tag{7-25}
\end{equation*}
$$

which can be identified as the negative of the right side of Eq. (7-18).
If we designate

$$
\begin{equation*}
\mathscr{r}^{\prime}=\oint_{C} \mathbf{E}^{\prime} \cdot \dot{d} \ell=\mathrm{em} \int \text { induced in circuit } C \text { measured in the moving frame } \tag{7-26}
\end{equation*}
$$

Eq. (7-18) can be written simply as

$$
\begin{align*}
\mathscr{F}^{\prime} & =-\frac{d}{d t} \int_{\mathrm{s}} \mathbf{B} \cdot d \mathrm{~s} \\
& =-\frac{d \Phi}{d t} \quad(\mathrm{~V}) \tag{7-27}
\end{align*}
$$

which is of the same form as Eq. (7-6). Of course, if a circuit is not in motion, $\mathscr{y}^{\prime \prime}$ reduces to \mathscr{H}, and Eqs. (7-27) and (7-6) are exactly the same. Hence, Faraday's law that the emf induced in a closed circuit equals the negative time-rate of increase of the magnetic flux linking a circuit applies to a stationary circuit as well as a moving one. Either Eq. (7-18) or Eq. (7-27) can be used to evaluate the induced emf in the general case. If a high-impedance \%oltmeler is inserted in a conducting circuit, it will read the open-circuit voltage due to electromagnetic induction whether the circuit is stationary or moving. We have mentioned that the division of the induced emf in Eq. (7-18) into transformer and motional emf's is not unique, but their sum is always equal to that computed by using Eq. (7-27).

In Example 7-2 (Fig. 7-2), we determined the open-circuit voltage V_{0} by using Eq. (7-8). If we use Eq. (7-27), we have

$$
\Phi=\int_{s} \mathbf{B} \cdot d \mathbf{s}=B_{0}(h u t)
$$

circuit swept (7-22) in Fig. ormals noting
ion, $\boldsymbol{y}^{\prime \prime}$ ays law rease of moving If in the t, it y y : circ... temf in salw! y using

$$
V_{0}=-\frac{d \Phi}{d t}=-u B_{d} \quad \quad \text { (V) },
$$

which is the same as Eq. (7-9).
Similarly, for the Faraday disk generator in Example 7-3, the magnetic flux linking the circuit, $122^{\prime} 3411$ is that which passes through the wedge-shaped area $2^{\prime} 342^{\prime}$.
and 232.
and

$$
\begin{aligned}
\Phi=\int_{S} \mathbf{B} \cdot d \mathbf{s} & =B_{0} \int_{0}^{b} \int_{0}^{\omega t} r d \phi d r \\
& =B_{0}(\omega t) \frac{b^{2}}{2}
\end{aligned}
$$

$$
V_{0}=-\frac{d(t)}{d t}=-\frac{\omega B_{0} b^{2}}{2},
$$

which is the same as Eq. $(7-14)$.
Example 7-4 An h by w rectangular conducting loop is situated in a changing magnetic field $\mathrm{B}=\mathbf{a}_{9} B_{0} \sin \omega t$. The normal of the loop initially makes an angle x with a_{y}, as shown in Fig. 7-5. Find the induced emf in the loop: (a) when the loop is at rest, and (b) when the loop rotates with an angular velocity ω about the x-axis.

Fig. 7-5 A rectangular conducting loop rotating in a changing magnetic fied (Example 7-4).

Solution

a) When the loop is at rest, we use Eq. (7-6).

$$
\begin{aligned}
\Phi & =\int \mathbf{B} \cdot d \mathbf{s} \\
& =\left(\mathbf{a}_{y} B_{0} \sin \omega t\right) \cdot\left(\mathbf{a}_{n} h w\right) \\
& =B_{0} h w \sin \omega t \cos \alpha .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathscr{V}_{a}=-\frac{d \Phi}{d t}=-B_{0} S \omega \cdot \cos \omega t \cos \alpha, \tag{7-28}
\end{equation*}
$$

where $S=h w$ is the area of the loop. The relative polarities of the terminals are as indicated. If the circuit is completed through an external load, $\mathscr{H}_{\text {u }}$ will produce a current that will oppose the change in (1).
b) When the loop rotates about the x-axis, both terms in Eq. (7-18) contribute: the first term contributes the transformer emf ψ_{a} in Eq. (7-28), and the second term contributes a motional emf $\psi_{a}^{\prime \prime}$ where

$$
\begin{aligned}
\mathscr{V}_{a}^{\prime}= & \oint_{c}(\mathbf{u} \times \mathbf{B}) \cdot d \ell \\
= & \int_{2}^{1}\left[\left(\mathbf{a}_{n} \frac{w}{2} \omega\right) \times\left(\mathbf{a}_{y} B_{0} \sin \omega t\right)\right] \cdot\left(\mathbf{a}_{x} d x\right) \\
& +\int_{4}^{3}\left[\left(-\mathbf{a}_{n} \frac{w}{2} \omega\right) \times\left(\mathbf{a}_{y} B_{0} \sin \omega t\right)\right] \cdot\left(\mathbf{a}_{x} d x\right) \\
= & 2\left(\frac{w}{2} \omega B_{0} \sin \omega t \sin \alpha\right) h .
\end{aligned}
$$

Note that the sides 23 and 41 do not contribute to \mathscr{V}_{a}^{\prime} and that the contributions of sides 12 and 34 are of equal magnitude and in the same direction. If $\alpha=0$ at $t=0$, then $\alpha=\omega t$, and we can write

$$
\begin{equation*}
\text { . } \psi_{a}^{\prime \prime}=B_{0} S \omega \sin \omega t \sin \omega t . \tag{7-29}
\end{equation*}
$$

The total emf induced or generated in the rotating loop is the sum of \mathscr{r}_{a} in Eq. (7-28) and \mathscr{V}^{\prime} 'in Eq. (7-29):

$$
\begin{equation*}
\mathscr{F}_{t}^{\prime}=-B_{0} S \omega\left(\cos ^{2} \omega t-\sin ^{2} \omega t\right)=-B_{0} S \omega \cos 2 \omega t, \tag{7-30}
\end{equation*}
$$

which has an angular frequency $2(1)$.
We can determine the total induced emf \mathscr{V}_{t}^{\prime} by applying Eq. (7-27) directly. At any time t, the magnetic flux linking the loop is

$$
\begin{aligned}
\Phi(t) & =\mathbf{B}(t) \cdot\left[\mathbf{a}_{n}(t) S\right]=B_{0} S \sin \omega t \cos \alpha \\
& =B_{0} S \sin \omega t \cos \omega t=\frac{1}{2} B_{0} S \sin 2 \omega t .
\end{aligned}
$$

mals are rroduce
itribute: second
ibutions $\alpha=0$ at of \mathscr{V}_{a} in $(7 \curvearrowright)$ 1 diren. .

7-3 MAXWELL'S EQUATIONS

The fundamental postulate for electromagnetic induction assures us that a timevarying magnetic field gives rise to an electric field. This assurance has been amply verified by numerous experiments. The $\nabla \times \mathbf{E}=0$ equation in Table $7-1$ must therefore be replacet by Eq. (7-1) in the time-varying case. Following are the revised set of two curl and two divergence equations from Table 7-1.

$$
\begin{align*}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{7-31a}\\
\mathbf{V} \times \mathbf{I I} & =\mathbf{J} \tag{7-316}\\
\nabla \cdot \mathbf{D} & =\rho \tag{7-31c}\\
\nabla \cdot \mathbf{B} & =0 . \tag{7-31d}
\end{align*}
$$

In addition, we know that the principle of conservation of charge must be satisfed at all times. The mathematical expression of charge conservation is the equation of comtinuity, Eic. (5.3), whichs is repeated betow.

$$
\begin{equation*}
\nabla \cdot \mathbf{J}=-\frac{\partial \rho}{\partial t} . \tag{7-32}
\end{equation*}
$$

The crucial question here is whether the set of four equations in (7-31a; b, c, and d) are now consistent with the requirement specified by Eq. (7-32) in a time-varying situation. That the answer is in the negative is immediately obvious by simply taking the divergence of Eq. (7-31b),

$$
\begin{equation*}
\nabla \cdot(\boldsymbol{\nabla} \times \mathbf{H})=0=\boldsymbol{\nabla} \cdot \mathbf{J}, \tag{7-33}
\end{equation*}
$$

which follows from the null identity, Eq. $(2-137)$. We are reminded that the divergence of the curtof any well-hehaved vector fick ts zero. Since Eq. (7-32) asserts $\nabla \cdot \mathbf{J}$ does not vanish if alime varying situation, Eq. ($7-33$) is, in general, not true.

How should Eqs. (7-31a, b, c, and d) be modified so that they are consistent with Eq. (7-32)? First of all, a term $\partial \rho / \partial t$ must be added to the right side of Eq. (7-33):

$$
\begin{equation*}
\nabla \cdot(\nabla \times \mathbf{H})=0=\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t} . \tag{7-34}
\end{equation*}
$$

Using Eq. (7-31c) in Eq. (7-34), we have

$$
\begin{equation*}
\nabla \cdot(\nabla \times \mathbf{H})=\nabla \cdot\left(\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}\right), \tag{7-35}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{7-36}
\end{equation*}
$$

Equation (7-36) indicates that a time-varying electric field will give rise to a magnetic field, even in the absence of a current flow. The additional term $\partial \mathbf{D} / \partial t$ is necessary in order to make Eq. (7-36) consistent with the principle of conservation of charge.

It is easy to verify that $\partial \mathrm{D} / \bar{c} t$ has the dimension of a current density (SI unit: $\mathrm{A} / \mathrm{m}^{2}$). The term $\partial \mathrm{D} / \partial \mathrm{t}$ is called displacement current density, and its introduction in the $\nabla \times \mathrm{H}$ equation was one of the major contributions of James Clerk Maxwell (1831-1879). In order to be consistent with the equation of continuity in a timevarying situation, both of the curl equations in Table 7-1 must be generalized. The set of four consistent equations to replace the inconsistent equations, Eqs. (7-31a, b, c, and d), are

$$
\begin{align*}
\nabla \times \mathbf{E} & =-\frac{\partial \mathbf{B}}{\partial t} \tag{7-37a}\\
\nabla \times \mathbf{H} & =\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} \tag{7-37b}\\
\nabla \cdot \mathbf{D} & =\rho \tag{7-37c}\\
\nabla \cdot \mathbf{B} & =0 . \tag{7-37~d}
\end{align*}
$$

They are known as Maxwell's equations. These four equations, together with the equation of continuity in Eq, (7-31) and Lorentz's force equation in Eq. (6-5), form the foundation of electromagnetic theory. These equations can be used to explain and predict all macroscopic electromagnetic phenomena.

Although the four Maxwell's equations in Eqs. (7-37a, b, c, and d) are consistent, they are not all independent. As a matter of fact, the two divergence equations, Eqs. ($7-37 \mathrm{c}$ and d), can be derived from the two curl equations, Eqs. ($7-37 \mathrm{a}$ and b), by making use of the equation of continuity, Eq. (7-32) (sec Problem P. $7-7$). The four fundamental field vectors E, D, B, H (each having three components) represent twelve unknowns. Twelve scalar equations are required for the determination of these twelve unknowns. The required equations are supplied by the two vector curl equations and the two vector constitutive relations $\mathbf{D}=\epsilon \mathbf{E}$ and $\mathbf{H}=\mathbf{B} / \mu$, each vector equation being equivalent to three scalar equations.

The four Maxwell's equations in ($7-37 a, b, c$, and d) are differential equations that are valid at every point in space. In explainlng electromagnetic phenomena in a physical environmeht, we must deal with flite objects of specified shapes and boundaries. It is coflvenient to convert the differential forms into their integral-form equivalents. We take the surface integral of both sides of the curl equations in Eqs. (7-37a) and (7-37b) over an open surface'S with a contour C and apply Stokes's theorem to obtain

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \ell=-\int_{s} \frac{\partial \mathrm{~B}}{\partial t} \cdot d \mathrm{~s} \tag{7-38a}
\end{equation*}
$$

and

$$
\begin{equation*}
\oint_{C} \mathbf{H} \cdot d \ell=\int_{S}\left(\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}\right) \cdot d \mathbf{s} . \tag{7-38b}
\end{equation*}
$$

Taking the volume integral of both sides of the divergence equations in Eqs. ($7-37 \mathrm{c}$) and ($7-37 \mathrm{~d}$) over a volume V with a clased surface S and using divergence theorem, we have
and
ith the (6-5), :sed to sistent, atio and us, 7). $T_{1}^{\prime \prime}$ prese... of these or curl u, each

$$
\begin{equation*}
\oint_{s} \mathbf{D} \cdot d \mathbf{s}=\int_{v} \rho d v \tag{7-38c}
\end{equation*}
$$

The set of lout equat:ons in ($7-38 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d) are the integral form of Maxwell's equations. We sef that Eq: (7-38a) is the same as Eq. (7-2), which is an expression of Faraday's latyon electromagnetic induction. Equation $(7-38 b)$ is a generalization of Ampère'scir wal law given in Eq. ($6-70$), the latter applying only to static magnetic fields. Note the current density \mathbf{J} may consist of a convection current density ρ due to the in of a frec-charge distribution, as well as a conduction current density $\sigma \mathrm{F}$ caus. surface integratof Jis the current I flowing through the open surface S.

Equation ((-380) can be recognized as Gauss's law, which we used extensively in electrostatics and"which remains the same in the time-varying case. The volume integral of ρ equals the total charge Q that is enclosed in surface S. No particular law is associated with Eq. (7-38d); but, in comparing it with Eq. ($7-38 \mathrm{c}$), we conclude that there are no isdlated magnetic charges and that the total outward magnetic

Table 7-2 Maxwell's Equations

Differential Form	Integral Form	
$\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}$	$\oint_{C} \mathbf{E} \cdot d \ell=-\frac{d \Phi}{d t}$	Significance
$\nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t}$	$\oint_{C} \mathbf{H} \cdot d \ell=I+\int_{S} \frac{\partial \mathbf{D}}{\partial t} \cdot d \mathbf{s}$	Ampère's circuital law.
$\vdots=\rho$	$\oint_{s} \mathbf{D} \cdot d \mathbf{s}=Q$	Gaus's law.
$\nabla \cdot \mathbf{B}=0$	$\oint_{S} \mathbf{B} \cdot d \mathbf{s}=0$	No isolated magnetic charge.

flux through any closed surface is zero. Both the differential and the integral forms of Maxwell's equations are collected in Table 7-2 for easy reference.

Example 7-5 An AC voltage source of amplitude V_{0} and-angular frequency ω, $v_{c}=V_{0} \sin \omega t$, is connected across a parallel-plate capacitor C_{1}, as shown in Fig. 7-6. (a) Verify that the displacement current in the capacitor is the same as the conduction current in the wires. (b) Determine the magnetic field intensity at a distance r from the wire.

Solution

a). The conduction current in the connecting wire is

$$
i_{C}=C_{1} \frac{d v_{c}}{d t}=C_{1} V_{0} \omega \cos \omega t
$$

For a parallel-plate capacitor with an area A, plate separation d, and a dielectric medium of permittivity ϵ, the capacitance is

$$
C_{1}=\epsilon \frac{A}{\bar{d}} .
$$

Fig. 7-6 A parallel-plate capacitor connected to an AC voltage sóurce (Example 7-5).

With a völtage appearing between the plates, the uniform electric field intensity E in the dielectric is equal to (neglecting fringing effects) $E=v_{c} / d$, whence

$$
D=\epsilon E=\epsilon \frac{V_{0}}{d} \sin \omega t .
$$

The displacement current is then

$$
\begin{aligned}
i_{p}=\int_{A} \frac{\partial \mathrm{D}}{\partial t} \cdot d \mathrm{~s} & =\left(\epsilon_{\bar{A}}^{d}\right) V_{\mathrm{Q}} \omega \cos \omega t \\
& =C_{1} V_{0} \omega \cos \omega t=i_{C} \quad \text { Q.E.D. }
\end{aligned}
$$

b) The magnetic field ntensity at a distance r from the conducting wire can be found by applying the generalized Ampère's circuital law, Eq. (7-38b), to contour C in Fig. 7-6. Two typical open surfaces with rim C may be chosen: (1) a planar disk surface S_{1}; (2) a curved surface S_{2} passing through the dielectric medium. Symmetry around the wire ensures a constant H_{ϕ} along the contour C. The line integral on the left s.de of Eq. (7-38b) is

$$
\oint_{C} \mathbf{H} \cdot d \ell=2 \pi r H_{\phi} .
$$

For the surface S_{1}, crily the first term on the right side of Eq. (7-38b) is nonzero because no chatges are deposited along the wire and, consequently, $\mathrm{D}=0$.

$$
\int_{S_{1}} \mathbf{J} \cdot d \mathbf{s}=\mathrm{i}_{c}=C_{1} V_{0} \omega \cos \omega t
$$

Since the surface S_{2}, asses through the dielectric medium, no conduction current flows throtugh $\$_{2}$. If the second surface integral were not there, the right side of Eq. (7-38b) would te zero. This would result in a contradiction. The inclusion of the displacerment current term by Maxwell eliminates this contradiction. As we have shown in part (a), $i_{D}=i_{c}$. Hence we obtain the same result whether surface S_{1} or sufface S_{2} is chosen. Equating the two previous integrals, we find

$$
H_{\phi}=\frac{C_{1} V_{0}}{2 \pi r} \omega \cos \omega t \quad(\mathrm{~A} / \mathrm{m}) .
$$

7-4 POTENTIAL FUNCTIONS

In Section 6-3 the concept of the vector magnetic potential A was introduced because of the solenoidal nature of $\mathbf{B}(\nabla \cdot \mathbf{B}=0)$:

$$
\begin{equation*}
\mathbf{B}=\nabla \times \mathbf{A} \quad(\mathrm{T}) . \tag{7-39}
\end{equation*}
$$

If Eq. (7-39) is substituted in the differential form of Faraday's law, Eq. (7-1), we get

$$
\boldsymbol{\nabla} \times \mathbf{E}=-\frac{\partial}{\partial t}(\boldsymbol{\nabla} \times \mathbf{A})
$$

or

$$
\begin{equation*}
\nabla \times\left(\mathbf{E}+\frac{\partial \mathbf{A}}{\partial t}\right)=0 \tag{7-40}
\end{equation*}
$$

Since the sum of the two vector quantities in the parentheses of Eq. (7-40) is curl-free, it can be expressed as the gradient of a scalar. To be consistent with the definition of the scalar electric potential V in Eq. (3-38) for electrostatics, we write

$$
\cdot \mathbf{E}+\frac{\lambda \mathbf{A}}{\lambda 1}=-\nabla V
$$

from which we obtain

$$
\begin{equation*}
\mathrm{E}=-\nabla V-\frac{\partial \mathrm{A}}{\partial t} \quad(\mathrm{~V} / \mathrm{m}) \tag{7-41}
\end{equation*}
$$

In the static case, $\partial \mathbf{A} / \partial t=0$, and $\mathrm{Eq} .(7-41)$ reduces to $\mathbf{E}=-\nabla V$. Hence E can be determined from V alone; and \mathbf{B}, from \mathbf{A} by Eq. (7-39). For time-varying fields, \mathbf{E} depends on both V and \mathbf{A}. Inasmuch as \mathbf{B} aiso depends on \mathbf{A}, \mathbf{E} and \mathbf{B} are coupled.

The electric field in Eq. (7-41) can be viewed as composed of two parts: the first part, $-\nabla V$, is due to charge distribution ρ; and the second part, $-\partial \mathbf{A} / \partial t$, is due to time-varying current \mathbf{J}. We are tempted to find V from ρ by Eq. (3-56)

$$
\begin{equation*}
V=\frac{1}{4 \pi \epsilon_{0}} \int_{V^{\prime}} \frac{\rho}{R} d v^{\prime}, \tag{7-42}
\end{equation*}
$$

and to find \mathbf{A} by Eq. (6-22)

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int_{V^{\prime}} \frac{\mathbf{J}}{R} d v^{\prime} \tag{7-43}
\end{equation*}
$$

However, the preceding two equations were obtained under static conditions, and V and \mathbf{A} as given were, in fact, solutions of Poisson's equations, Eqs. (4-6) and (6-20) respectively. These solutions may themselves be time-dependent because ρ and J may be functions of time, but they neglect the time-retardation effects associated with the finite velocity of propagation of time-varying electromagnetic fields. When ρ and J vary slowly with time (at a very low frequency) and the range of interest R is small compared with the wavelength, it is allowable to use Eqs. (7-42) and (7-43) in Eqs. (7-39) and (7-41) to find quasi-static fields. We will discuss this again in subsection 7-7.2.

Quasi-static fields are approximations. Their consideration leads from field theory to circuit theory. However, when the source frequency is high and the range
irl-free, ition of
\therefore E : fictlds, oupled. he first due to
us, and
$1(6-20)$
, and J
red withi
$\mathrm{n} \rho$
is $\mathrm{sm}^{\text {in }}$ in E
subsec-
,m field le range
of interest is no longer sthall in comparison to the wavelength, quasi-static solutions will not suffice. Time-retardation effects must then be included, as in the case of electromagnetic radation from antennas. These points will be discussed more fully when we study solutions to wave equations.

Let us substitute Eqs. (7-39) and (7-41) into Eq. (7-37b) and make use of the constitutive relations $\mathbf{H}=\mathbf{B} / \mu$ and $\mathbf{D}=\epsilon \mathbf{E}$. We have

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{A}=\mu \mathbf{J}+\mu \epsilon \frac{\partial}{\partial t}\left(-\nabla V-\frac{\partial \mathbf{A}}{\partial t}\right), \tag{7-44}
\end{equation*}
$$

where a homogeneous riedium has been assumed. Recalling the vector identity for $\nabla \times \nabla \times \mathrm{A}$ in Eq. (6-16a); we can write Eq. (7-44) as

$$
\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu \mathbf{J}-\nabla\left(\mu \epsilon \frac{\partial V}{\partial t}\right)-\mu \epsilon \frac{\hat{\partial}^{2} \mathbf{A}}{\partial t^{2}}
$$

or

$$
\begin{equation*}
\nabla^{2} \mathbf{A}-\mu \epsilon \frac{\partial^{2} \mathbf{A}}{\partial t^{2}}=-\mu \mathbf{J}+\boldsymbol{\nabla}\left(\boldsymbol{\nabla} \cdot \mathbf{A}+\mu \epsilon \frac{\partial V}{\partial t}\right) . \tag{7-45}
\end{equation*}
$$

Now, the definition of a vector requires the specification of both its curl and its divergence. Although the curl or A is clesignated B in Eq. (7-39), we are still al liberty to chnose the divergence of A . We let

$$
\begin{equation*}
\nabla \cdot \mathbf{A}+\mu \epsilon \frac{\partial \dot{\partial} V}{\partial t}=0, \tag{7-46}
\end{equation*}
$$

which makes the seconci term on the right side of Eq. (7-45) vanish, so we obtain

$$
\begin{equation*}
\nabla^{2} \mathbf{A}-\mu \epsilon \frac{\hat{a}^{2} \mathbf{A}}{\hat{\partial t^{2}}}=-\mu \mathbf{J} . \tag{7-47}
\end{equation*}
$$

Equation (7-47) is the tonhomogeneous, wave equation for vector porential \mathbf{A}. It is called a wave equation because its solutions represent waves traveling with a velocity equal to $1 / \sqrt{\mu \epsilon}$. This will become clear in Section 7-6 when the solution of wave equations is discussed. The relation between A and V in Eq. (7-46) is called the Lorentz condition (or Lorentz galuse) for potentials. It reduces to the condition $\nabla \cdot \mathbf{A}=0$ in Eq. ($6-19$)for static fields. The Lorentz condition can be shown to be consistent with the equation of continuity (Problem P.7-8).

A corresponding wave equation for the scalar potential V can be obtained by substituting Eq. (7-41) in Eq. (7-37c). We have

$$
-\nabla \cdot \epsilon\left(\nabla \dot{V}+\frac{\partial \mathbf{A}}{\partial t}\right)=\rho
$$

which, for a constant ϵ, leads to

$$
\begin{equation*}
\nabla^{2} V+\frac{\partial}{\partial t}(\nabla \cdot A)=-\frac{\rho}{\epsilon} . \tag{7-48}
\end{equation*}
$$

Using Eq. (7-46), we get

$$
\begin{equation*}
\nabla^{2} V-\mu \epsilon \frac{\partial^{2} V}{\partial t^{2}}=-\frac{\rho}{\epsilon}, \tag{7-49}
\end{equation*}
$$

which is the nonhomogeneous wave equation for scalar potential V. The nonhomogeneous wave equations in (7-47) and (7-49) reduce to Poisson's equations in static cases. Since the potential functions given in Eqs. (7-42) and (7-43) are solutions of Poisson's equations, they cannot be expected to be the solutions of nonhomogeneous wave equations in time-varying situations without modification.

7-5 ELECTROMAGNETIC BOUNDARY CONDITIONS

In order to solve electromagnetic problems involving contiguous regions of different constitutive parameters, it is necessary to know the boundary conditions that the field vectors E, D, B, and \mathbf{H} must satisfy at the interfaces. Boundary conditions are derived by applying the integral form of Maxwell's equations ($7-38 a, b, c$, and d) to a small region at an interface of two media in manners similar to those used in obtaining the boundary conditions for static electric and magnetic fields. The integral equations are assumed to hold for regions containing discontinuous media. The reader should review the procedures followed in Sections 3-9 and 6-10. In general, the application of the integral form of a curl equation to a flat closed path at a boundary with top and bottom sides in the two touching media yields the boundary condition for the tangential components; and the application of the integral form of a divergence equation to a shallow pillbox at an interface with top and bottom faces in the two contiguous media gives the boundary condition for the normal components.

The boundary conditions for the tangential components of \mathbf{E} and \mathbf{H} are obtained from Eqs. ($7-38 \mathrm{a}$) and ($7-38 \mathrm{~b}$) respectively:

$$
\begin{equation*}
\frac{E_{1 i}=E_{2 t} \quad(\mathrm{~V} / \mathrm{m}) ;}{\mathbf{a}_{n 2} \times\left(\mathrm{H}_{1}-\mathrm{H}_{2}\right)=\mathrm{J}_{s} \quad(\mathrm{~A} / \mathrm{m}) .} \tag{7-50a}
\end{equation*}
$$

We note that Eqs. (7-50a) and (7-50b) for the time-varying case are exactly the same as, respectively, Eq. (3-110) for static electric fields and Eq. (6-99) for static magnetic fields in spite of the existence of the time-varying terms in Eqs. (7-38a) and (7-38b).

The reason is that, indetting the height of the flat closed path (abcda in Figs. 3-22 and 6-17) approach zerd, the area bounded by the path approaches zero, causing the surface integrals of $\partial \mathbf{B} / \partial t$ and $\partial \mathbf{D} / \partial t$ to vanishi,

Similarly, the bdundary conditions fot the normal components of \mathbf{D} and \mathbf{B} are obtained from Eds. (7-38c) and (7-38d)

These are the same as, respectively, Eq. (3-113a) for static electric fields and Eq. (6-95) for static magnetic fields because we start from the same divergence equations.

We can make the following general statements about electromagnetic boundary conditions: (1) The tangential component of an \mathbf{E} field is continuous across an interface; (2) The tanyential component of an \mathbf{H} field is discontinuous across un interface where a surface current exists, the amount of discontinuity being determined by Eq. (7-50b); (3) The normal component of a D field is discontinuous across an interface where a surface charge exists, the amount of Uiscontinuity being determined by Eq. (7-50c); and (4) The normal component of a B field is continuous across an interface. As we have noted pteviouisly, the two diyergetce equations can be derived from the two curl equations thad the equation of continuity; hence, the boundary conditions in Egs. (7 50c) and (7 Sod), which are obtained from the divergence equations, camot be independent from those in Eqs. (7-50a) and (7-50b), which are obtained from the curl equations. As a matter of fact, in the time-varying case the boundary condition for the tangential component of E in Eq. (7-50a) is equivalent to that for the normal component of \mathbf{B} in Eq. (7-50d), and the boundary condition for the tangential component of \mathbf{H} in Eq. $(7-50 \mathrm{~b})$ is equivalent to that of \mathbf{D} in Eq. (7-50c). The simultaneous specification of the tangential component of E and the normal component of \mathbf{B} at a boundary surface in a time-varying situation, for example, would be redundantiand, if we are not careful, could result in contradictions.

We now examine the important special cases of (1) a boundary between two lossless linear media, and (2) a boundary between a good dielectric and a good conductor.

7-5.1 Interface 'between two Lossless

Linear Media

A lossiess linear medium can be specified by a permittivity ϵ and a permeability μ, $\dot{\text { with }} \sigma=0$. There are usually no free charges and no surface currents at the interface between two lossless media: We set $\rho_{s}=\sigma$ and $\mathbf{J}_{s}=0$ in Eqs. (7-50a, b, \mathbf{c}, and d) and obtain the boundary conditions listed in Table 7-3.

Table 7-3 Boundary Conditions between Two Lossless Media

$$
\begin{gather*}
E_{1 t}=E_{2 t} \rightarrow \frac{D_{1 t}}{D_{2 t}}=\frac{\epsilon_{1}}{\epsilon_{2}} \tag{7-51a}\\
H_{1 t}=H_{2 t} \rightarrow \frac{B_{1 t}}{B_{2 t}}=\frac{\mu_{1}}{\mu_{2}} \\
D_{1 n}=D_{2 n} \rightarrow \epsilon_{1} E_{1 n}=\epsilon_{2} E_{2 n} \\
B_{1 n}=B_{2 n} \rightarrow \mu_{1} H_{1 n}=\mu_{2} H_{2 n}
\end{gather*}
$$

7-5.2 Interface between a Dielectric and a Perfect Conductor

A perfect conductor is one with an infinite conductivity. In the physical world we only have "good" conductors such as silver, copper, gold, and"atuminium. In order to simplify the analytical solution of field problems, good conductors are often considered perfect conductors in regard to boundary conditions. In the interior of a perfect conductor, the electric field is zero (otherwise it would produce an infinite current density), and any charges the conductor will have will reside on the surface only. The interrelationship between (\mathbf{E}, \mathbf{D}) and (\mathbf{B}, \mathbf{H}) through Maxwell's equations ensures that \mathbf{B} and \mathbf{H} are also zero in the interior of a conductor in a time-varying situation. ${ }^{\dagger}$ Consider an interface between a lossless dielectric (medium 1) and a perfect conductor (medium 2). In medium 2, $\mathbf{E}_{2}=0, \mathbf{H}_{2}=0, \mathbf{D}_{2}=0$, and $\mathbf{B}_{2}=0$. The

Table 7-4 Boundary Conditions between a Dielectric (Medium 1) and a Perfect Conductor (Medium 2) (Time-Varying Case)

On the Side of Medium 1	On the Side of Medium 2
$\cdot E_{1 t}=0$	$E_{2 t}=0$
$\mathbf{a}_{n 2} \times \mathbf{H}_{1}=\mathbf{J}_{s}$	$H_{2 t}=0$
$\mathbf{a}_{n 2} \cdot \mathbf{D}_{1}=\rho_{s}$	$D_{2 n}=0$
$B_{1 n}=0$	$B_{2 n}=0$

[^38]
general boundary conditions in Eqs. (7-50a, b, c, and d) reduce to those listed in Table 7-4. When we apply Eqs. (7-52b) and (7-52c), it is important to note that the reference unit normd is an outward normal fram medium 2 in order to avoid an error in sign. As mentioned in Section 6-10, currents in media with finite conductivities are expressed in terrts of volume current densities, and surface current densities defined for currents flowing through an infinitesimal thickness is zero. In this case, Eq. (7-52b) leads to the condition that the tangential component of \mathbf{H} is continuous across an interface with a conductor having a finite conductivity.

Exanuple 7-6 The \mathbf{E} and \mathbf{H} field of a certain propagating mode ($T E_{10}$) in a cross section of an a by b rectangular waveguide are $\mathbf{E}=\mathbf{a}_{y} E_{y}$ and $\mathbf{H}=\mathbf{a}_{x} H_{x}+\mathbf{a}_{z} H_{z}$, where

$$
\begin{align*}
& E_{y}=-j \omega \mu \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \tag{7-53a}\\
& H_{x}=j \beta \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \tag{7-53b}\\
& H_{z}=H_{0} \cos \frac{\pi x}{a}
\end{align*}
$$

where H_{0}, ω, μ, and β are constants. Assuming the inner walls of the waveguide are perfectly conducting, derermine for the four inner walls of the waveguide (a) the surface charge densities and (b) the surface current densities.

Solution: Figure 7-7 sliows a cross section of the waveguide. The four inner walls are specified by $x=0, x=a, y=0$, and $y=b$. The outward normals to these walls (medium 2) are, respectiv ely, $\mathbf{a}_{x},-\mathbf{a}_{x}, a_{y}$, and $-\mathbf{a}_{y}$.

Fig. 7-7 Cross section of a rectangular waveguide (Example 7-6).
a) Surface charge densities - Use Eq. $(7-52 \mathrm{c})$:

$$
\begin{aligned}
\rho_{s}(x=0) & =\mathbf{a}_{x} \cdot \epsilon_{0} \mathbf{E}=0 \\
\rho_{s}(x=a) & =-\mathbf{a}_{x} \cdot \epsilon_{0} \mathbf{E}=0 \\
\rho_{s}(y=0) & =\mathbf{a}_{y} \cdot \epsilon_{0} \mathbf{E}=\epsilon_{0} E_{y}=-j \omega \mu \epsilon_{0} \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \\
\rho_{s}(y=b) & =-\mathbf{a}_{y} \cdot \epsilon_{0} \mathbf{E}=-\epsilon_{0} E_{y}=j \omega \mu \epsilon_{0} \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \\
& =-\rho_{s}(y=0) .
\end{aligned}
$$

b) Surface current densities - Use Eq. (7-52b):

$$
\begin{aligned}
\mathbf{J}_{s}(x=0) & =\mathbf{a}_{x} \times\left(\mathbf{a}_{x} H_{x}+\mathbf{a}_{z} H_{z}\right)=-\mathbf{a}_{y}\left(H_{z}\right)_{x=0}=-\mathbf{a}_{y} H_{0} \\
\mathbf{J}_{s}(x=a) & =\mathbf{a}_{y}\left(H_{z}\right)_{x=a}=-\mathbf{a}_{y} H_{0}=\mathbf{J}_{s}(x=0) \\
\mathbf{J}_{s}(y=0) & =\mathbf{a}_{y} \times\left(\mathbf{a}_{x} H_{x}+\mathbf{a}_{z} H_{z}\right)=\mathbf{a}_{x} H_{z}-\mathbf{a}_{z} H_{x} \\
& =\mathbf{a}_{x} H_{0} \cos \frac{\pi x}{a}-\mathbf{a}_{z} j \beta \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \\
\mathbf{J}_{s}(y=b) & =-\mathbf{a}_{y} \times\left(\mathbf{a}_{x} H_{x}+\mathbf{a}_{z} H_{z}\right)=-\mathbf{a}_{x} H_{z}+\mathbf{a}_{z} H_{x} \\
& =-\mathbf{a}_{x} H_{0} \cos \frac{\pi x}{a}+\mathbf{a}_{z} j \beta \frac{a}{\pi} H_{0} \sin \frac{\pi x}{a} \\
& =-\mathbf{J}_{s}(y=0) .
\end{aligned}
$$ solution between electromagnetic fields and charge and current distributions. Their solutions provide the answers to all electromagnetic problems, albeit in some cases the solutions are difficult to obtain. Special analytical and numerical techniques

 the fundamental structure. Such is the importance of Maxwell's equations.

For given charge and current distributions, p and J, we first solve the nonhomogeneous wave equations, Eqs. (7-47) and (7-49), for potentials \mathbf{A} and V. With \mathbf{A} and V determined, \mathbf{E} and \mathbf{B} can be found from tespectively, Eqs. (7-41) and (7-39) by differentiation.

7-6.1 Solution of Wave Equítions for Potentials

We now considet the solntion of the nonhomogeneous wave cquation, Eq. (7-49), for scalar electric potential V. We can do this by first finding the solution for an elemental point charge at time $1, \rho(t) \Delta v^{\prime}$, located at the origin of the coordinates and then by summing the effects of all the charge elements in a given region. For a point charge at the origin, it is most convenient to use spherical coordinates. Because of spherical symmetry, V depends only on R and t (not on θ or ϕ). Except at the origin, V satisfies the following homogeneous equation:

$$
\begin{equation*}
\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{\partial V}{\partial R}\right)-\mu \epsilon \frac{\partial^{2} V}{\partial t^{2}}=0 \tag{7-54}
\end{equation*}
$$

We introduce a new variable

$$
\begin{equation*}
V(R, t)=\frac{1}{R} U(R, t) \tag{7-55}
\end{equation*}
$$

which converts Eq. $(7-54)$ to

$$
\begin{equation*}
\frac{\partial^{2} U}{\partial R^{2}}-\mu \epsilon \frac{\hat{c}^{2} U}{\partial t^{2}}=0 \tag{7-56}
\end{equation*}
$$

Equation (7-56) is a one-cimensional homogeneous wave equation. It can be verified by direct substitution (see Problem P.7-15) that any twice-differentiable function of $(t-R \sqrt{\mu \epsilon})$ or of $(t+R \sqrt{\mu \epsilon})$ is a solution of Eq. (7-56). Later in this section we will see that a function oi $(t+R \sqrt{\mu \epsilon})$ does not correspond to a physically useful solution. Hence we have

$$
\begin{equation*}
U(R, t)=f(t-R \sqrt{\mu \epsilon}) \tag{7-57}
\end{equation*}
$$

Equation ($7-57$) represents a wave traveling in the positive R direction with a velocity $1 / \sqrt{\mu \epsilon}$. As we see, the function at $R+\Delta R$ at a later time $t+\Delta t$ is

$$
\dot{U}(R+\Delta R, t+\Delta t)=f[t+\Delta t-(R+\Delta R) \sqrt{\mu \epsilon}]=f(t-R \sqrt{\mu \epsilon})
$$

Thus, the function retains its form if $\Delta t=\Delta R \sqrt{\mu \epsilon}=\Delta R / u$, where $u=1 / \sqrt{\mu \epsilon}$ is the velocity of propagation, a characteristic of the medium. From Eq. (7-55), we get

$$
\begin{equation*}
V(R, t)=\frac{1}{R} f(t-R / u) \tag{7-58}
\end{equation*}
$$

To determine what the specific function $f(t-R / u)$ must be, we note that for a static point charge $\rho(t) \Delta v^{\prime}$ at the origin,

$$
\begin{equation*}
\Delta V(R)=\frac{\rho(t) \Delta v^{\prime}}{4 \pi \epsilon} \tag{7-59}
\end{equation*}
$$

Comparison of Eqs. (7-58) and (7-59) enables us to identify

$$
\Delta f(t-R / u)=\frac{\rho(t-R / u) \Delta v^{\prime}}{4 \pi \epsilon}
$$

The potential due to a charge distribution over a volume V^{\prime} is then

$$
\begin{equation*}
V(R, t)=\frac{1}{4 \pi \epsilon} \int_{V^{\prime}} \frac{\rho(t-R / u)}{R} d v^{\prime} \quad(\mathrm{V}) \tag{7-60}
\end{equation*}
$$

Equation (7-60) indicates that the scalar potential at a distance R from the source at time t depends on the value of the charge density at an earlier time ($t-R / u$). It takes time R / u for the effect of ρ to be felt at distance R : Fow this reason $V^{\prime}(R, t)$ in Eq. (7-(0)) is called the retarded scatar potemial. It is now clear that a function of ($t+R / u$) cannot be a physically useful solution, since it would lead to the impossible situation that the effect of ρ would be felt at a distant point before it occurs at the source.

The solution of the nonhomogeneous wave equation, Eq. (7-47), for vector magnetic potential A can proceed in exactly the same way as that for V. The vector equation, Eq. (7-47), can be decomposed into three scalar equations, each similar to Eq. (7-49) for V. The retarded vector potential is, thus, given by

$$
\begin{equation*}
\mathbf{A}(R, t)=\frac{\mu}{4 \pi} \int_{V^{\prime}} \frac{\mathbf{J}(t-R / u)}{R} d v^{\prime} \quad(\mathrm{Wb} / \mathrm{m}) \tag{7-61}
\end{equation*}
$$

The electric and magnetic fields derived from A and V by differentiation will obviously also be functions of $(t-R / u)$ and, therefore, retarded in time. It takes time for electromagnetic waves to travel and for the effects of time-varying charges and currents to be felt at distant points. In the quasi-static approximation, we ignore this time-retardation effect and assume instant response. This assumption is implicit in dealing with circuit problems.

T-6.2 Source-Free Wave Equations

In problems of wave propagation we are concerned with the behavior of an electromagnetic wave in a source-free region where ρ and \mathbf{J} are both zero. In other words, we are often interested not so much in how an electromagnetic wave is originated. but in how it propagates. If the wave is in a simple (dincar, isotropic, and homogeneous)
\because source
$R i{ }^{2}$
($R . I$) in
stic f
ipossume
irs at the
ir vectur
he vector
h similar
(7-61)
ation will .akes time arges and we ignore is implicit
an electroher words. ortginated, ogeneous)
nonconducting medium characterized by ϵ and $\mu(\sigma=0)$, Maxwell's equations ($7-37 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d) reduce to:

$$
\begin{align*}
\nabla \times \mathbf{E} & =-\mu \frac{\partial \mathbf{H}}{\partial t} \tag{7-62a}\\
\nabla \times \mathbf{H} & =\epsilon \frac{\partial \mathbf{E}}{\partial t} \tag{7-62b}\\
\nabla \cdot \mathbf{E} & =0 \tag{7-62c}\\
\nabla \cdot \mathbf{H} & =0 . \tag{7-62~d}
\end{align*}
$$

Equations (7-62a, b, c, and d) are first-order differential equations in the two variables \mathbf{E} and \mathbf{H}. They can be combined to give a second-order equation in \mathbf{E} alone. To do this, we take the curl of Eq. (7-62a) and use Eq. (7-62b):

$$
\nabla \times \nabla \times \mathbf{E}=-\mu \frac{\partial}{\partial t}(\nabla \times \mathbf{H})=-\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} .
$$

Now $\nabla \times \nabla \times \mathbf{E}=\nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\nabla^{2} \mathbf{E}$ beciuse of Eq. (7-62c). Hence, we have

$$
\begin{equation*}
\nabla^{2} \mathbf{E}-\mu \epsilon \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \tag{7-63}
\end{equation*}
$$

or, since $u=1 / \sqrt{\mu \epsilon}$,

$$
\begin{equation*}
\nabla^{2} \mathbf{E}-\frac{1}{u^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \tag{7-64}
\end{equation*}
$$

In an entirely similar way we also obtain an equation in H :

$$
\begin{equation*}
\nabla^{2} \mathbf{H}-\frac{1}{u^{2}} \frac{\partial^{2} \mathbf{H}}{\partial t^{2}}=0 \tag{7-65}
\end{equation*}
$$

Equations (7-64) and (7-53) are homogeneous vector wave equations.
We can see that in Cartesian coordinates Eqs. (7-64) and (7-65) can each be decomposed into three one-dimensional, homogeneous, scalar wave equations. Each component of E and of H will satisfy an equation exactly like Eq. (7-56), whose solutions represent waves. We will extensively discuss wave behavior in various environments in the next two chapters.

7-7 TIME-HARMONIC FIELDS

Maxwell's equations and all the equationsderived from them so far in this chapter hold for electromagnetic yuanticis with an abbitary time-dependence. The actual type of time functions that the field quantities assume depends on the source functions ρ and \mathbf{J}. In engineering, sinusoidal time functions occupy a unique position.

They are easy to generate; arbitrary periodic time functions can be expanded into Fourier series of harmonic sinusoidal components; and transient nonperiodic functions can be expressed as Fourier integrals. ${ }^{\dagger}$ Since Maxwell's equations are linear differential equations, sinusoidal time variations of source functions of a given frequency will produce sinusoidal variations of \mathbf{E} and \mathbf{H} with the same frequency in the steady state. For source functions with an arbitrary time dependence, electrodynamic fields can be determined in terms of those caused by the various frequency components of the source functions. The application of the principle of superposition will give us the total fields. In this section we examine time-harmonic (steady-state sinusoidal) field relationships.

7-7.1 The Use of Phasors - A Review

For time-harmonic fields it is convenient to use a phasor notation. At this time we digress briefly to review the use of phasors. Conceptually it is simpler to discuss a scalar phasor. The instantaneous (time-dependent) expression of a sinusoidal scalar quantity, such as a current i, can be written as either a cosine or a sine function. If we choose a cosine function as the reference (which is usualliy dictated by the functional form of the excitation), then all derived results will refer to the cosine function. The specification of a sinusoidal quantity requires the knowledge of three parameters: amplitude, frequency, and phase. For example,

$$
\begin{equation*}
i(t)=I \cos (\omega t+\phi) \tag{7-66}
\end{equation*}
$$

where I is the amplitude; ω is the angular frequency ($\mathrm{rad} / \mathrm{s}$) - ω is always equal to $2 \pi f, f$ being the frequency in hertz; and ϕ is the phase referred to the cosine function. We could write $i(t)$ in Eq. (7-66) as a sine function if we wish: $i(t)=I \sin \left(\omega t+\phi^{\prime}\right)$, with $\phi^{\prime}=\phi+\pi / 2$. Thus it is important to decide at the outset whether our reference is a cosine or a sine function, then to stick to that decision throughout a problem.

To work directly with an instantaneous expression such as the cosine function is inconvenient when differentiations or integrations iof $i(t)$ are involved because they lead to both sine (first-order differentiation or integeation) and cosine (second-order differentiation or integration) functions and because it is tedious to combine sine and cosine functions. For instance, the loop equation for a series RLC circuit with an applied voltage $e(t)=E \cos \omega t$ is:

$$
\begin{equation*}
L \frac{d i}{d t}+R i+\frac{1}{C} \int i d t=c(t) . \tag{7-67}
\end{equation*}
$$

If we write $i(t)$ as in Eq. (7-66), Eq. (7-67) yields

$$
\begin{equation*}
I\left[-\omega L \sin (\omega t+\phi)+R \cos (\omega t+\phi)+\frac{1}{\omega C} \sin (\omega t+\phi)\right]=E \cos \omega t \tag{7-68}
\end{equation*}
$$

[^39]fro- odic funcare linear given frency in the odynamic mponents will give inusoidal)
stime we disluss a dal scalar nctio If the luacfunc* \quad.
ran:....s:
(7-66)
equal to fanction. $\left(1, t+\phi^{\prime}\right)$, reference problem. function ause they nd-order bine sine cuit with

Complicated mathemdticatmanipulations are required in order to determine the unknown I and ϕ

It is much simpler to use exponential functions by writing the applied voltage as

$$
\begin{align*}
e(t) & =E \cos \omega t=\mathscr{R} c\left[\left(E e^{j 0}\right) e^{j \omega t}\right] \\
& =\mathscr{R} \epsilon\left(E_{s} e^{j \omega t}\right) \tag{7-69}
\end{align*}
$$

and $i(t)$ in Eq. (7-66) as

$$
\begin{align*}
i(t) & =\mathscr{R}\left[\left(I e^{j \phi}\right) e^{j \omega t}\right] \\
& =\mathscr{R} e\left(I_{s} e^{j \omega t}\right) \tag{7-70}
\end{align*}
$$

where tha means "the real part of." In Eqs. (7-69) and (7-70),

$$
\begin{align*}
E_{s} & =E e^{j 0}=E \tag{7--71a}\\
I_{s} & =I e^{j \phi} \tag{7-71b}
\end{align*}
$$

are (scalar) phasors that contain amplitude and phase information but are independent of t. The phasor E_{s} in Eq. (7-71a) with zero phase angle is the reference phasor. Now,

$$
\begin{align*}
\frac{d i}{d t} & =\mathscr{R e}_{e}\left(j \omega I_{s} e^{j \omega t}\right) \tag{7-72a}\\
\int i d t & =\mathscr{R}_{e}\left(\frac{I_{s}}{j \omega} e^{j \omega t}\right) \tag{7-72b}
\end{align*}
$$

Substitution of Eqs. (7-69) through (7 72b) in Eq. (7-67) yiclds

$$
\begin{equation*}
\left[R+j\left(\omega L-\frac{1}{\omega C}\right)\right] I_{s}=E_{s} \tag{7-73}
\end{equation*}
$$

from which the current phasor I_{s} can be solved edsily. Note that the time-dependent factor $e^{j \omega t}$ disappears from Eq. (7-73) because it is present in every term in Eq. (7-67) after the substitution and is therefie canceled. This is the essence of the usefulness of phasors in the analysis of linear systems with time-harmonic excitations. After I_{s} has been determined, the instantaneous current response $i(t)$ can be found from Eq. (7-70) by (1) multiplying I_{s} by $e^{j \omega t}$, and (2) taking the real part of the product.

If the applied voltage had been given as a sine function such as $e(t)=E \sin \omega t$, the series RLC-circuit problem would be solved in terms of phasors in exactly the same way; enly the instantaneous expressions would be obtained by taking the imaginary part of the product of the phasors with $e^{j \omega t}$. The complex phasors represent the magnitudes and the phase shifts of the quantities in the solution of time-harmonic problems.

Example 7-7 Express $3 \cos \omega t-4 \sin \omega t$ as first (a) $A_{1} \cos \left(\omega t+0_{1}\right)$, and then (b) $A_{2} \sin \left(\omega t+\theta_{2}\right)$. Determine A_{1}, θ_{1}, A_{2}, and θ_{2}.

Solution: We can conveniently use phasors to solve this problem.
a) To express $3 \cos \omega t-4 \sin \omega t$ as $A_{1} \cos \left(\omega t+\theta_{1}\right)$, we use $\cos \omega t$ as the reference and consider the sum of the two phasors 3 and $-4 e^{-j \pi / 2}(=j 4)$, since $\sin \omega t=$ $\cos (\omega t-\pi / 2)$ lags behind $\cos \omega t$ by $\pi / 2 \mathrm{rad}$.

$$
3+j 4=5 e^{j \tan ^{-1}(4 / 3)}=5 e^{j 53.1^{\circ}} .
$$

Taking the real part of the product of this phasor and $e^{j \omega t}$, we have

$$
\begin{align*}
3 \cos \omega t-4 \sin \omega t & =\mathscr{R} e\left[\left(5 e^{\left.j 53.1^{\circ}\right)} e^{j \omega t}\right]\right. \\
& =5 \cos \left(\omega t+53.1^{\circ}\right) . \tag{7-74a}
\end{align*}
$$

So, $A_{1}=5$, and $\theta_{1}=53.1^{\circ}=0.927(\mathrm{rad})$.
b) To express $3 \cos \omega t-4 \sin \omega t^{\circ}$ as $A_{2} \sin \left(\omega t+\theta_{2}\right)$, we use $\sin \omega t$ as the reference and consider the sum of the two phasors $3 e^{j \pi / 2}(=j 3)$ and -4 .

$$
j 3-4=5 e^{j \tan ^{-1} 3 /(-4)}=5 e^{j 143.1^{\circ}} .
$$

(The reader should note that the angle above is 143.1°, not -36.9°.) Now we take the imaginary part of the product of the phasor above and $e^{j \omega t}$ to obtain the desired answer:

$$
\begin{align*}
3 \cos \omega t-4 \sin \omega t & =\mathscr{\operatorname { I m } [(5 e ^ { j 1 4 3 . 1 ^ { \circ } }) e ^ { j \omega t }]} \\
& =5 \sin \left(\omega t+143.1^{\circ}\right) . \tag{7-74~b}
\end{align*}
$$

Hence, $A_{2}=5$ and $\theta_{2}=143.1^{\circ}=2.50(\mathrm{rad})$.
The reader should recognize that the results in Eqs. (7-74a) and (7-74b) are identical.

7-7.2 Time-Harmonic Electromagnetics

Field vectors that vary with space coordinates and are sinusoidal functions of time can similarly be represented by vector phasors that depend on space coordinates but not on time. As an example, we can write a time-harmonic E field referring to $\cos \omega t^{\dagger}$ as

$$
\begin{equation*}
\mathbf{E}(x, y, z, t)=\mathscr{R} t\left[\mathbf{E}(x, y, z) e^{j \omega t}\right], \tag{7-75}
\end{equation*}
$$

where $\mathbf{E}(x, y, z)$ is a vector phasor that contains information on direction; magnitude, and phase. Phasors are, in general, complex quantities. From Eqs. (7-75), (7-70), (7-72a), and (7-72b), we see that, if $\mathbf{E}(x, y, z, t)$ is to be represented by the vector phasor $\mathbf{E}(x, y, z)$, then $\partial \mathbf{E}(x, y, z, t) / \partial t$ and $\int \mathbf{E}(x, y, z, t) d t$ would be represented by, respectively, vector phasors $j \omega \mathbf{E}(x, y, z)$ and $\mathbf{E}(x, y, z) / j \omega$. Higher-order differentiations and integrations with respect to t wouid be represented, respectively, by multi-. plications and divisions of the phasor $\mathbf{E}(x, y, z)$ by higher powers of $j \omega$.

[^40] of vector field phasors (\mathbf{E}, \mathbf{H}) and source phasors (ρ, \mathbf{J}) in a simple (linear, isotropic, and homogenieous) medium as follows.
\[

$$
\begin{align*}
\nabla \times \mathbf{E} & =-j \omega \mu \mathbf{H} \tag{7-76a}\\
\nabla \times \mathbf{H} & =\mathbf{J}+j \omega \in \mathrm{E} \\
\nabla \cdot \mathbf{E} & =g / \epsilon \\
\nabla \cdot \mathbf{H} & =0 .
\end{align*}
$$
\]

The space-cofitdinate arg uments have been omitted for simplicity. The fact that the same notations are used lor the phasors as are used for their corresponding timedependent quantities shc uld create little confusion, because we will deal almost exclusively with time-harmonic fields (and therefore with phasors) in the rest of this book. When there is a neud to distinguish an instantaneous quantity from a phasor, the time dependence of the instantancous quantity will be indicated explicitly by the inclusion of a t in its argument. Phasor quantities are not functions of t. It is useful to note that any quantity containing j must necessarily be a phasor.

The time-fiarmonic wave equations for scalar potential V and vector potential A-Eqs. (7-49) and (7-47)-become, respectively,

$$
\begin{equation*}
\nabla^{2} V+k^{2} V=-\frac{\rho}{\epsilon} \tag{7-77}
\end{equation*}
$$

and
where

$$
\begin{equation*}
\mathrm{V}^{2} \mathrm{~A}+k^{2} \mathrm{~A}=-\mu \mathrm{J}, \tag{7-78}
\end{equation*}
$$

s of time urdinates erring to agnitude,), (ค), se vector enta゙ -ficrentuby multi-

$$
\begin{equation*}
k=\omega \sqrt{\mu \epsilon}=\frac{\omega}{u} \tag{7-79}
\end{equation*}
$$

is called the wavenumber. Equations (7-77) and (7-78) are referred to as nonhomogeneous Helmholtz's eqtiatians. The Lorentz condition for potentials, Eq. (7-46), is now

$$
\begin{equation*}
\nabla \cdot \mathbf{A}+j \omega \mu \epsilon V=0 \tag{7-75}
\end{equation*}
$$

The phasor solutions of Eqs. (7-77) and (7-78) are obtained from Eqs. (7-60) and (7-61) respectively:

$$
\begin{align*}
& \forall^{\prime}(R)=\frac{1}{4 \pi \epsilon} \int_{V^{\prime}} \frac{\rho e^{-j k R}}{R} d v^{\prime} \quad(\mathrm{V}) \tag{7-81}\\
& \mathrm{A}(R)=\frac{\mu}{4 \pi} \int_{V^{\prime}} \frac{\mathrm{J} e^{-j k R}}{R} d v^{\prime} \quad(\mathrm{Wb} / \mathrm{m}) . \tag{7-82}
\end{align*}
$$

These are the expressions for the retarded scalar and vector potentials due to timeharmonic sources. Now the Taylor-series expansion for the exponential factor $e^{-j k R}$ is

$$
e^{-j k R}=1-j k R+\frac{k^{2} R^{2}}{2}+\cdots
$$

where k, defined in Eq. (7-79), can be expressed in terms of the wavelength $\lambda=u / f$ in the medium. We have

$$
\begin{equation*}
k=\frac{2 \pi f}{u}=\frac{2 \pi}{\lambda} \tag{7-83}
\end{equation*}
$$

Thus, if

$$
\begin{equation*}
\because k R=2 \pi \frac{R}{\lambda} \ll 1 \text {, } \tag{7-84}
\end{equation*}
$$

or if the distance R is small compared to the wavelength $\lambda, e^{-j k R}$ can be approximated by 1 . Equations ($7-81$) and ($7-82$) then simplify to the static expressions in Eqs. (7-42) and (7-43), which are used in Eqs. (7-39) and (7-41) to find quasi-static fields.

The formal procedure for determining the electric and magnetic fields due to time-harmonic charge and current distributions is as follows:

1. Find phasors $V(R)$ and $\mathbf{A}(R)$ from Eqs. (7-81) and (7-82).
2. Find phasors $\mathbf{E}(R)=-\nabla V-j \omega \mathbf{A}$ and $\mathbf{B}(R)=\nabla \times \mathbf{A}$.
3. Find instantancous $\mathbf{E}(R, t)=\mathscr{S}_{R}\left[\mathbf{E}(R) e^{j \omega t}\right]$ and $\mathbf{B}(R, t)=\mathscr{R} c\left[\mathbf{B}(R) e^{j \omega t}\right]$ for a cosine reference.

The degree of difficulty of a problem depends on how difficult it is to perform the integrations in Step 1.

7-7.3 Source-Free Fields in Simple Media

In a simple, nonconducting source-free medium characterized by $\rho=0, \mathbf{J}=0, \sigma=0$, the time-harmonic Maxwell's equations ($7-76 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d) become

$$
\begin{align*}
\nabla \times \mathbf{E} & =-j \omega \mu \mathbf{H} \tag{7-85a}\\
\nabla \times \mathbf{H} & =j \omega \in \mathbf{E} \tag{7-85b}\\
\nabla \cdot \mathbf{E} & =0 \tag{7-85c}\\
\nabla \cdot \mathbf{H} & =0 . \tag{7-85~d}
\end{align*}
$$

Equations (7-85a, b, c, and d) can be combined to yield second-order partial differential equations in \mathbf{E} and \mathbf{H}. From Eqs. (7-64) and (7-65), we obtain
and

$$
\begin{equation*}
\nabla^{2} \mathbf{E}+k^{2} \mathbf{E}=0 \tag{7-86}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{2} \boldsymbol{H}+k^{2} \mathbf{H}=0, \tag{7-87}
\end{equation*}
$$

which are homogencous fector Helmhollz's equations. Solutions of homogeneous Helmholtz's equations with various boundary conditions is the main concern of Chapters 8 and 10.

Example 7-8 Show that if (\mathbf{E}, \mathbf{H}) are solutions of source-free Maxwell's equations in a simple medium characterized by ϵ and μ, then so also are $\left(\mathbf{E}^{\prime}, \mathbf{B}^{\prime}\right)$, where

$$
\begin{align*}
& \mathbf{E}^{\prime}=\mathbf{E} \cos \alpha+\eta \mathbf{H} \sin \alpha \tag{7-88a}\\
& \mathbf{H}^{\prime}=-\left(\frac{\mathbf{E}}{\eta}\right) \sin \alpha+\mathbf{H} \cos \alpha \tag{7-88b}
\end{align*}
$$

In Eqs. (7-88a) and (7-88b), α is an arbitrary angle, and $\eta=\sqrt{\mu / \epsilon}$ is called the intrinsic impedance of the medium.

Solution: We prove the statement by taking the curl and the divergence of E^{\prime} and H^{\prime} and using Eqs. (7-85a, b, c, and d):

$$
\begin{align*}
\nabla \times \mathbf{E}^{\prime} & =(\nabla \times \mathbf{E}) \cos \alpha+\eta(\nabla \times \mathbf{H}) \sin \alpha \\
& =(-j \omega \mu \mathbf{H}) \cos \alpha+\eta(j \omega \epsilon \mathbf{E}) \sin \alpha \\
& =-j \omega \mu\left(\mathbf{H} \cos \alpha-\frac{1}{\eta} \mathbf{E} \sin \alpha\right)=-j \omega \mu \mathbf{H}^{\prime} \tag{7-89a}\\
\nabla \times \mathbf{H}^{\prime} & =-\frac{1}{\eta}(\nabla \times \mathbf{E}) \sin \alpha+(\nabla \times \mathbf{H}) \cos \alpha \\
& =-\frac{1}{\eta}(-j \omega \mu \mathbf{H}) \sin \alpha+(j \omega \in \mathbf{E}) \cos \alpha \\
& =j \omega \epsilon(\eta \mathbf{H} \sin \alpha+\mathbf{E} \cos \alpha)=j \omega \in \mathbf{E}^{\prime} \tag{7-89b}\\
\nabla \cdot \mathbf{E}^{\prime} & =(\nabla \cdot \mathbf{E}) \cos \alpha+\eta(\nabla \cdot \mathbf{H}) \sin \alpha=0 \tag{7-89c}\\
\nabla \cdot \mathbf{H}^{\prime} & =-\frac{1}{\eta}(\mathbf{V} \cdot \mathbf{E}) \sin \alpha+(\nabla \cdot \mathbf{H}) \cos \alpha=0 \tag{7-89~d}
\end{align*}
$$

Equations (7-89a, b, c, and t) are source-free itax well's equations in \mathbf{E}^{\prime} and \mathbf{H}^{\prime}.
This example shows that source-free Mexwell's equations for free space are invariant under the linear transiormation spedified by Eqs. (7-88a) and (7-88bi. An interesting special case is for $\alpha=\pi / 2$. Equations ($7-88 \mathrm{a}$) and $(7-88 \mathrm{~b})$ become

$$
\cdots
$$

$$
\begin{align*}
& \mathbf{F}^{\prime}=\eta H \tag{7.90a}\\
& \mathbf{H}^{\prime}=-\mathbf{E}_{6}
\end{align*}
$$

Equations (7-90a) and (7-90b) show that if (\mathbf{E}, \mathbf{H}) are solutions of source-free Maxwell's equations then so also are $\left(\mathbf{E}^{\prime}=\eta \mathbf{H}, \mathrm{H}^{\prime}=-\mathbf{E} / \eta\right)$. This is a statement of the principle of duality. This principle is a consequence of the symmetry of source-free Maxwell's equations.

If the simple medium is conducting $(\sigma \neq 0)$, a current $\mathbf{J}=\sigma \mathbf{E}$ will flow, and Eq. (7-85b) should be changed to

$$
\begin{align*}
\nabla \times \mathbf{H} & =(\sigma+j \omega \epsilon) \mathbf{E}=j \omega\left(\epsilon+\frac{\sigma}{j \omega}\right) \mathbf{E} \\
& =j \omega \epsilon_{\mathrm{c}} \mathbf{E} \tag{7-91}
\end{align*}
$$

with

$$
\begin{equation*}
\epsilon_{c}=\epsilon+\frac{\sigma}{j \omega}=\epsilon^{\prime}-j \epsilon^{\prime \prime} \quad(\mathrm{F} / \mathrm{m}), \tag{7-92}
\end{equation*}
$$

where $\epsilon^{\prime}=\epsilon$ and $\epsilon^{\prime \prime}=\sigma / \omega$. The other three equations, Eqs. (7-85a, c, and d), are unchanged. Hence, all the previous equations for nonconducting media will apply to conducting media if ϵ is replaced by the complex permittivity ϵ_{c}. The real wavenumber k in the Heimholtz's equations, Eqs. (7-86) and (7-87), will have to be changed to a complex wavenumber $k_{c}=\omega \sqrt{\mu \epsilon_{c}}$.

The ratio $\epsilon^{\prime \prime} / \epsilon^{\prime}$ measures the magnitude of the conduction current relative to that of the displacement current. It is called a loss tangent because it is a measure of the ohmic loss in the medium:

$$
\begin{equation*}
\tan \delta_{c}=\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}=\frac{\sigma}{: \omega \bar{\prime}} \tag{7-93}
\end{equation*}
$$

The quantity δ_{c} in Eq. (7-93) may be called the loss angle. A medium is said to be a good conductor if $\sigma \gg \omega \epsilon$, and a good insulator if $\omega \epsilon \gg \sigma$. Thus, a material may be a good conductor at low frequencies, but may have the properties of a lossy dielectric at very high frequencies. For example, a moist ground has a dielectric constant ϵ_{r} and a conductivity σ that are, respectively, in the neighborhood of 10 and $10^{-2}(\mathrm{~S} / \mathrm{m})$. The loss tangent $\sigma /() \in$ of the moist ground then equals 1.8×10^{4} at $1(\mathrm{kHz})$, making it a relatively good conductor. At $10(\mathrm{GHz}), \sigma / \omega \in$ becomes 1.8×10^{-3}, and the moist ground behaves more like an insulator. ${ }^{\dagger}$

Example 7-9 A sinusoidal electric intensity of amplitude $50(\mathrm{~V} / \mathrm{m})$ and frequency $1(\mathrm{GHz})$ exists in a lossy dielectric medium that has a relative permittivity of 2.5 and a loss tangent of 0.001 . Find the average power dissipated in the medium per cubic meter.

Solution: First we must find the effective conductivity of the lossy medium:

$$
\begin{gathered}
\tan \delta_{c}=0.001=\frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}} . \\
\sigma=0.001\left(2 \pi 10^{9}\right)\left(\frac{10^{-9}}{36 \pi}\right)(2.5) \\
=1.389 \times 10^{-4}(\mathrm{~S} / \mathrm{m}) .
\end{gathered}
$$

[^41]
R.7-21 In what ways do the retardation time and the velocity of wave propagation depend on the constitutive parameters of the medium?
R.7-22 Write the source-free wave equation for \mathbf{E} and \mathbf{H} in free space.
R.7-23 What is a phasor? Is a phasor a function of t ? A function of ω ?
R.7-24 What is the difference between a phasor and a vector?
R.7-25 Discuss the advantages of using phasors in electromagnetics.
R.7-26 Write in terms of phasors the time-harmonic Maxwell's equations for a simple medium.

R.7-27 Define wavenumber.

R.7-28 Write the expressions for time-harmonic retarded scalar and vector potentials in terms of charge and current distributions.
R.7-29 Write the homogeneous vector'Helmholtz's equation for E in'a simple, nonconducting, source-free medium.
R.7-30 What is meant by the loss tangent of a medium?
R.7-31 In a time-varying situation how do we define a good conductor?-A lossy dielectric?
R.7-32 Are conduction and displacement currents in phase for time-harmonic fields? Explain.

PROBLEMS

P.7-1 Express the transformer emf induced in a stationary loop in terms of time-varying vector potential A.
P.7-2 The circuit in Fig. 7-8 is situated in a magnetic field

$$
\mathbf{B}=\mathbf{a}=3 \cos \left(5 \pi 10^{7} t-\frac{2}{3} \pi x\right) \quad(\mu \mathrm{T})
$$

Assuming $R=15(\Omega)$, find the current i.

Fig. 7-8 A circuit in a time-varying magnetic field (Problem P.7-2).
P.7-3 A conducting equilateral triangular loop is placed near a very long straight wire, showńn in Fig. $6-37$, with $d=b / 2$. A.current $i(t)=I \sin \omega t$ flows in the straight wire.
a) Determine the voltage registered by a high-impedance rms voltmeter inserted in the loop.
b) Determine the voltmeter reading when the triangular loop is rotated by 60° about a perpendicular axis through its center.

iple medium.
tials in terms
nconducting,
y. dielectric?
ids. . . ain.
arying vector
it wire, snown
ed in the loop. y 60 about a
P.7-4 A conducting circular loop of a radius 0.1 (im) is situated in the neighborhood of a very long power line carryling a $60-(\mathrm{Hz})$ current, as shown in Fig. $6-38$, with $d=0.15(\mathrm{~m})$. An AC milliammeter inserted th the loop reads $0.3(\mathrm{~mA})$. Assume the total impedance of the loop including the milliammeter to be $0.01(\Omega)$.
a) Find the magritude of the current in the power line.
b) To what angle about the horizontal axis should the circular loop be rotated in order to reduce the milliammeter teading to $0.2(\mathrm{~mA})$?
P.7-5 A conducting sliding bar oscillates over twd parallel conducting rails in a sinusoidally varying magnetic field

$$
B=a=5 \cos (\omega) \quad(\mathrm{mT}),
$$

as shown in Fig. 7-9. The position of the sliding bar is given by $x=0.35(1-\cos \omega t)(\mathrm{m})$, and the rails are terminated in a resistance $R=0.2(\Omega)$. Find i.

Fig. 7-9 A conducting bar sliding over parallel rails in a time-varying magnetic field (Problem P.7-5).
P.7-6 Assuming that a resistance R is connected across the slip rings of the rectangular conducting loop that rotates in a constant magnetic field $\mathrm{B}=\mathbf{a}_{y} B_{0}$, shown in Fig. 7-5, prove that the power dissipated $\ln R$ is equal to the power required to rotate the loop at an angular frequency ω.
P.7-7 Derive the two divergence equations, Eqs. (7-37c) and (7-37d), from the two curl equations, Eqs. (7-37a) anc ($7-37 \mathrm{~b}$), and the equation of continuity, Eq. (7-32).
P.7-8 Prove that the Lorentz condition for potentials as expressed in Eq. (7-46) is consistent with the equation of continuty.
P.7-9 Substitute Eqs. (7-39) and (7-41) in Maxwell's equations to obtain wave equations for scalar potential V and vector potential A for a linear, isotropic but inhomogeneous medium.
P.7-10 Write the set of four Maxwell's equations, Eqs. (7-37a, b, c, and d), as eight scalar equations
a) in Cartesian cdordinates,
b) in cylindrical cbordinates,
c) in spherical coordinates.
P.7-11 Supply the detailed steps for the derivation of the electromagnetic boundary conditions, Eqs. (7-50a, b, c, and d).

P.7-12 Discuss the relations

a) between the boundary conditions for the tangential components of E and those for the normal components of \mathbf{B},
b) between the boundary conditions for the normal components of \mathbf{D} and those for the tangential components of H .
P.7-13 Write the boundary conditions that exist at the interface of free space and a magnetic material of infinite (an approximation) permeability.
P.7-14 The electric field of an electromagnetic wave

$$
\mathrm{E}=\mathrm{e}_{x} E_{0} \cos \left[10^{8} \pi\left(t-\frac{z}{c}\right)+\theta\right]
$$

is the sum of

$$
\mathbf{E}_{1}=\mathrm{e}_{x} 0.03 \sin 10^{8} \pi\left(t-\frac{z}{c}\right)
$$

and

Find E_{0} and θ.

$$
\mathbf{E}_{2}=\mathbf{e}_{x} 0.04 \cos \left[10^{8} \pi\left(t-\frac{z}{c}\right)-\frac{\pi}{3}\right] \cdots
$$

P.7-15 Prove by direct substitution that any twice differentiable function of $(t-R \sqrt{\mu \epsilon})$ or of ($t+R \sqrt{\mu \epsilon}$) is a solution of the homogeneous wave equation, Eq. (7-56).
P.7-16 Prove that the retarded potential in Eq. (7-60) satisfies the norhomogeneous wave equation, Eq. (7-49).
P.7-17 Write the general wave equations for \mathbf{E} and \mathbf{H} in a nonconducting simple medium where a charge distribution ρ and a current distribution \mathbf{J} exist. Convert the wave equations to Helmhollz's equations for sinusoidal time dependence.
P.7-18 Given that

$$
\mathbf{E}=\mathbf{a}_{y} 0.1 \sin (10 \pi x) \cos \left(0 \pi 10^{\prime \prime} i-\beta z\right) \quad(\mathrm{V} / \mathrm{m})
$$

in air, find \mathbf{H} and β.
P.7-19 Given that

$$
H=\mathbf{a}_{y} 2 \cos (15 \pi x) \sin \left(6 \pi 10^{9} t-\beta z\right) \quad(A / m)
$$

in air, find E and β.
P.7-20 It is known that the electric field intensity of a spherical wave in free space is

$$
\mathbf{E}=\mathbf{a}_{\theta} \frac{E_{0}}{R} \sin \theta \cos (\omega t-k R) .
$$

Determine the magnetic field intensity H .
P.7-21 In Section 7-4 we indicated that \mathbf{E} and \mathbf{B} can be determined from the potentials V and A, which are related by the Lorentz condition, Eq. (7-80), in the time-harmonic case. The vector potential A was introduced through the relation $B=\nabla \times A$ because of the solenoidal nature of \mathbf{B}. In a source-free region, $\nabla \cdot E=0$, we can define another type of vector potential $\mathbf{A}_{\boldsymbol{e}}$, such

8-1 INTRODUCTION

In Chapter 7 we showed that in a source-free simple medium Maxwell's equations, Eqs. ($7-62 \mathrm{a}, \mathrm{b}, \mathrm{c}$, and d) can be combined to yield homogeneous vector wave equations in E and in H . These two equations, Eqs. (7-64) and (7-65), have exactly the same form. In free space, the source-free wave equation for \mathbf{E} is

$$
\begin{equation*}
\nabla^{2} \mathbf{E}-\frac{1}{c^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}}=0 \tag{8-1}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}} \cong 3 \times 10^{8}(\mathrm{~m} / \mathrm{s})=300(\mathrm{Mm} / \mathrm{s}) \tag{8-2}
\end{equation*}
$$

is the velocity of wave propagation (the speed of light) in free space. The solutions of Eq. (8-1) represent waves. The study of the behavior of waves which have a onedimensional spatial dependence (plane waves) is the main concern of this chapter.

We begin the chapter with a study of the propagation of time-harmonic planewave fields in an unbounded homogeneous medium. Medium parameters such as intrinsic impedance, attenuation constant, and phase constant will be introduced. The meaning of skin deph, the depth of wave penctration into a good conductor, will he explained. Electromagnetic waves carry with them electromagnetic power. The concept of Poynting vector, a power flux density, will be discussed.

We will examine the behavior of a plane wave incident normally on a plane boundary. The laws governing the reflection and refraction of plane waves incident obliquely on a plane boundary will then be discussed, and the conditions for no reflection and for total reflection will be examined.

A uniform plane wave is a particular solution of Maxwell's equations with \mathbf{E} (and also \mathbf{H}), assuming the same direction, same magnitude, and same phase in infinite planes perpendicular to the direction of propagation. Strictly speaking, a uniform plane wave does not exist in practice, because a source infinite in extent would be required to create it, and practical wave sources are always finite in extent. But, if we are far enough away from a source, the wavefront (surface of constant phase)
squations, ave equaxactly the
 (8-2)
lutions of re a onechapter. ic plane; such as iced. The r, will be vcr. The
a plane incident s for no hert ? on t. But, if t phase)
becomes almost spherical; and a very small portion of the surface of a giant sphere is very nearly a plare. The characteristics of aniform plane waves are particularly simple and their study is of fundamental theoretical, as well as practical, importance.

8-2 PLANE WAVES IN LOSSLESS MEDIA

In this and future chapters we focus our attention on wave behavior in the sinusoidal steady state, using phasors to great advantage. The source-free wave equation, Eq. (8-1), for free space becomes a homogeneous vector Helmholtz's equation (see Eq. 7-86):

$$
\begin{equation*}
\nabla^{2} \mathbf{E}+k_{0}^{2} \mathbf{E}=0, \tag{8-3}
\end{equation*}
$$

where k_{0} is the free-space wavenumber

$$
\begin{equation*}
k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}=\frac{(\omega)}{c} \quad(\mathrm{rad} / \mathrm{m}) . \tag{8-4}
\end{equation*}
$$

In Cartesian coordinates, Eq. (8-3) is equivalent to three scalar Helmholtz's equations, one each in the components E_{x}, E_{y}, and E_{z}. Writing it for the component E_{x}, we have

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}+k_{0}^{2}\right) E_{x}=0 \tag{8-5}
\end{equation*}
$$

Consider a uniform plane wave characterized by a uniform E_{x} (uniform magnitude and constant phase) over plane surfaces perpenducular to z : that is,

$$
\partial^{2} E_{x} / \partial x^{2}=0 \quad \text { and } \quad \partial^{2} E_{x} / \partial y^{2}=0
$$

Equation (8-5) simplifies to

$$
\begin{equation*}
\frac{d^{2} E_{x}}{d z^{2}}+k_{0}^{2} E_{x}=0, \tag{8-6}
\end{equation*}
$$

which is an ordinary differential equation becalse E_{x}, a phasor, depends only on z.
The solution of Eq. (8-6) is readily seen to be

$$
\begin{align*}
E_{x}(z) & =E_{x}^{+}(z)+E_{x}^{-}(z) \\
& =E_{0}^{+} e^{-j k_{0} z}+E_{0}^{-} e^{j k_{0} z} \tag{8-7}
\end{align*}
$$

where E_{0}^{+}and E_{0}^{-}are arbitrary (and, in general, complex) constants that must be determined by boundary conditions. Note that since Eq. (8-6) is a second-order equation, its general solution in Eq. (8-7) contains two integration constants.

Now let us examine what the first phesor term on the right side of Eq. (8-7) represents in real time. Using. $\cos \omega t$ as the reference and assuming E_{0}^{+}to be a real

Fig. 8-1 Wave traveling in positive z direction $E_{x}^{+}(z, t)=E_{0}^{+} \cos \left(\omega t-k_{0} z\right)$, for several values of t.
constant (zero reference phase at $z=0$), we have

$$
\begin{align*}
E_{x}^{+}(z, t) & =\mathscr{R} e\left[E_{x}^{+}(z) e^{j \omega t}\right] \\
& =\mathscr{R} e\left[E_{0}^{+} e^{j\left(\omega t-k_{0} z\right)}\right] \\
& =E_{0}^{+} \cos \left(\omega t-k_{0} z\right) \quad(\mathrm{V} / \mathrm{m}) \tag{8-8}
\end{align*}
$$

Equation (8-8) has been plotted in Fig. 8-1 for several values of t. At $t=0, E_{x}^{+}(z, 0)=$ $E_{0}^{+} \cos k_{0} z$ is a cosine curve with an amplitude E_{0}^{+}. At successive times, the curve effectively travels in the positive z direction. We have, then, a traveling wave. If we fix our attention on a particular point (a point of a particular phase) on the wave, we set $\cos \left(\omega t-k_{0} z\right)=$ a constant or

$$
\omega t-k_{0} z=\mathrm{A} \text { constant phase },
$$

from which we obtain

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\omega}{k_{0}}=c . \tag{8-9}
\end{equation*}
$$

Equation (8-9) assures us that the velocity of propagation of an equiphase front the phase velocity) in free space is equal to the velocity of light, which is approximately $3 \times 10^{8}(\mathrm{~m} / \mathrm{s})$ in free space.

The quantity k_{0} bears a definite relation to the wavelength. From Eq. (8-4), $k_{0}=2 \pi f / c$ or

$$
\begin{equation*}
k_{0}=\frac{2 \pi}{\lambda_{0}} \quad(\mathrm{rad} / \mathrm{m}) . \tag{8-10}
\end{equation*}
$$

which measures the number of wavelengths in a complete cycle, hence its name. An inverse relation of Eq. ($8-10$) is

$$
\begin{equation*}
i_{0}=\frac{2 \pi}{k_{0}} \tag{8-11}
\end{equation*}
$$

Equations $(8-10)$ and $(8-11)$ are valid without the subscript 0 if the medium is a lossless material such as a.perfect dielectric.

It is obvious without replotting that the second phasor term on the right side of 'Eq. (8-7), $E_{0}^{-} e^{j k_{0} z}$, represents a cosinusoidal wave traveling in the $-z$ direction with the same velocity c. In an unbounded region' we are concerned only with the outgoing wave; hence, if the source is on the left, the negetively going wave does not exist, and $E_{0}^{-}=0$. However, if there are discontinuities in, the medium, reflected waves traveling in the opposite direction must also be considered, as we will see later in this chapter.

The associated magnetic field \mathbf{H} can be found from Eq. (7-85a)

$$
\nabla \times \mathbf{E}=\left|\begin{array}{lll}
a_{x} & a_{y} & a_{z} \\
0 & 0 & \frac{\partial}{\partial z} \\
E_{x}^{+}(z) & 0 & 0
\end{array}\right|=-j \omega \mu_{0}\left(\mathbf{a}_{x} H_{x}^{+}+\mathbf{a}_{y} H_{y}^{+}+\mathbf{a}_{z} H_{z}^{+}\right)
$$

which leads to

$$
\begin{align*}
& H_{x}^{+}=0 \tag{8-12a}\\
& H_{y}^{+}=\frac{1}{-j \omega \mu \mu_{0}} \frac{\partial E_{x}^{+}(z)}{\partial z} \tag{8-12b}\\
& H_{z}^{+}=0 \tag{8-12c}
\end{align*}
$$

Thus, H_{y}^{+}is the only tion ero component of \mathbf{H}; and since

$$
\frac{\partial E_{x}^{+}(z)}{\partial z}=\frac{\partial}{\partial z}\left(E_{0}^{+} e^{-j k_{0} z}\right)=-j k_{0} E_{x}^{+}(z)
$$

Eq. $(8-12 b)$ yields

$$
\begin{equation*}
H_{y}^{+}(:)=\frac{k_{0}}{\omega \mu_{0}} E_{x}^{+}(z)=\frac{1}{\eta_{0}} E_{x}^{+}(z) \quad(\mathrm{A} / \mathrm{m}) . \tag{8-13}
\end{equation*}
$$

We have introduced a new quantity, η_{0}, in Eq. (8-13):

$$
\begin{equation*}
\eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=120 \pi=377 \quad(\Omega) \tag{8-14}
\end{equation*}
$$

which is called the intrinsic impedince of the free space. Because n_{0} is a real number, $H_{y}^{+}(z)$ is in phase with $E_{x}^{+}(z)$, and we can write the instantaneous expression for H as

$$
\begin{align*}
\mathbf{H}(z,) & =\mathbf{a}_{y} H_{y}^{+}(z, t)=\mathbf{a}_{y} \mathscr{R e}_{e}\left[H_{y}^{+}(z) e^{j \omega t}\right] \\
& =\mathbf{a}_{y} \frac{E_{0}^{+}}{\eta_{0}} \cos \left(\omega t-k_{0} z\right) \quad(\Lambda / \mathrm{m}) \tag{8-15}
\end{align*}
$$

Hence, for a uniform plane wave, the ratio of the magnitudes of \mathbf{E} and \mathbf{H} is the intrinsic impedance of the medium. We also note that H is perpendicular to E and that both are normal to the direction of propagation. The fact that we specified $\mathrm{E}=\mathrm{a}_{\mathrm{x}} \mathrm{E}_{\mathrm{x}}$
is not as restrictive as it appears, inasmuch as we are free to designate the direction of E as the $+x$ direction, which is normal to the direction of propagation \mathbf{a}_{2}.

Example 8-1 A uniform plane wave with $\mathbf{E}=\mathbf{a}_{x} E_{x}$ propagates in a lossless simple medium $\left(\epsilon_{r}=4, \mu_{r}=1, \sigma=0\right)$ in the $+z$ direction. Assume that E_{x} is sinusoidal with a frequency $100(\mathrm{MHz})$ and has a maximum value of $+10^{-4}(\mathrm{~V} / \mathrm{m})$ at $t=0$ and $z=\frac{1}{8}(\mathrm{~m})$.
a) Write the instantaneous expression for \mathbf{E} for any t and z.
b) Write the instantaneous expression for \mathbf{H}.
c) Determine the locations where E_{x} is a positive maximum when $t=10^{-8}(\mathrm{~s})$.

Solution: First we find k.

$$
\begin{aligned}
k & =\omega \sqrt{\mu \epsilon}=\frac{\omega}{c} \sqrt{\mu_{r} \epsilon_{r}} \\
& =\frac{2 \pi 10^{8}}{3 \times 10^{8}} \sqrt{4}=\frac{4 \pi}{3}(\mathrm{rad} / \mathrm{m}) .
\end{aligned}
$$

a) Using $\cos \omega t$ as the reference, we find the instantaneous expression for \mathbf{E} to be

$$
\mathbf{E}(z, t)=\mathbf{a}_{x} E_{x}=\mathbf{a}_{x} 10^{-4} \cos \left(2 \pi 10^{8} t-k z+\psi\right)
$$

Since E_{x} equals $+10^{-4}$ when the argument of the cosine function equals zerothat is, when

$$
2 \pi 10^{8} t-k z+\psi=0,
$$

we have, at $t=0$ and $z=\frac{1}{8}$,

Thus,

$$
\psi=k z=\left(\frac{4 \pi}{3}\right)\left(\frac{1}{8}\right)=\frac{\pi}{6}(\mathrm{rad}) .
$$

$$
\begin{aligned}
\mathbf{E}(z, t) & =\mathbf{a}_{x} 10^{-4} \cos \left(2 \pi 10^{8} t-\frac{4 \pi}{3} z+\frac{\pi}{6}\right) \\
& =\mathbf{a}_{x} 10^{-4} \cos \left[2 \pi 10^{8} t-\frac{4 \pi}{3}\left(z-\frac{1}{8}\right)\right](\mathrm{V} / \mathrm{m}) .
\end{aligned}
$$

This expression shows a shift of a mere $\frac{1}{8}$ in the $+z$ direction and could have been written down directly from the statement of the problem.
b) The instantaneous expression for \mathbf{H} is

$$
\mathbf{H}=\mathbf{a}_{y} H_{y}=\mathbf{a}_{y} \frac{E_{x}}{\eta}
$$

where

$$
\eta=\sqrt{\frac{\mu}{\epsilon}}=\frac{\eta_{0}}{\sqrt{\epsilon_{r}}}=60 \pi(\Omega)
$$

Hence,

$$
\mathbf{H}(z, t)=\mathbf{a}_{y} \frac{10^{-4}}{60 \pi} \cos \left[2 \pi 10^{8} t-\frac{4 \pi}{3}\left(z-\frac{1}{8}\right)\right](\mathrm{A} / \mathrm{m})
$$

c) At $t=10^{-8}$, we equate the argument of the cosine function to $+2 n \pi$ in order to make E_{y} a positive maximum:

$$
2 \pi 10^{8}\left(10^{-8}\right)-\frac{4 \pi}{3}\left(z_{m}-\frac{1}{8}\right)= \pm 2 n \pi
$$

from which we get

$$
z_{m}=\frac{13}{8} \pm \frac{3}{2} n(m), \quad n=0,1,2, \ldots
$$

Examining this result more closely, we note that the wavelength in the given medium is

$$
\lambda=\frac{2 \pi}{k}=\frac{3}{2}(\mathrm{~m}) .
$$

Hence, the positive naximum value of E_{x} occurs at

$$
z_{m}=\frac{13}{8} \pm h \lambda(\mathrm{~m})
$$

The \mathbf{E} and H flelds are shown in Fig. 8-2 as functions of z for the reference time $t=0$.

Fig. 8-2 E and \mathbf{H} fields of a uniform plane wave at $t=0$ (Example 8-1).

312

PLANE ELECTROMAGNETIC WAVES / 8

8-2.1 Transverse Electromagnetic Waves

We have seen that a uniform plane wave.characterized by $\mathbf{E}=\mathbf{a}_{x} E_{x}$ propagating in the $+z$ direction has associated with it a magnetic field $\mathbf{H}=\mathbf{a}_{y} H_{y}$. Thus \mathbf{E} and \mathbf{H} are perpendicular to each other, and both are transverse to the direction of propagation. It is a particular case of a transverse electromagnetic (TEM) wave. The phacor field quantities are functions of only the distance z along a single coordinate axis. We now consider the propagation of a uniform plane wave along an arbitrary direction that does not necessarily coincide with a coordinate axis.

The phasor electric field intensity for a uniform plane wave propagating in the $+z$ direction is

$$
\begin{equation*}
\mathbf{E}(z)=\mathbf{E}_{0} e^{-j k z} \tag{8-16}
\end{equation*}
$$

where \mathbf{E}_{0} is a constant vector. A more general form of Eq. $(8-16)$ is

$$
\begin{equation*}
\mathbf{E}(x, y, z)=\mathbf{E}_{0} e^{-j k_{x} x-j k_{y} y-j k_{z} z} \tag{8-17}
\end{equation*}
$$

It can be easily proved by direct substitution that this expression satisfies the homogeneous Helmholtz's equation, provided that

$$
\begin{equation*}
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=\omega^{2} \mu \epsilon \tag{8-18}
\end{equation*}
$$

If we define a wavenumber vector as

$$
\begin{equation*}
\mathbf{k}=\mathbf{a}_{x} k_{x}+\mathbf{a}_{3} k_{y}+\mathbf{a}_{z} k_{z}=k \mathbf{a}_{n} \tag{8-19}
\end{equation*}
$$

and a radius vector from the origin

$$
\begin{equation*}
\mathbf{R}=\mathbf{a}_{x} x+\mathbf{a}_{y} y+\mathbf{a}_{z} z \tag{8-20}
\end{equation*}
$$

then Eq. (8-17) can be written compactly as

$$
\begin{equation*}
\mathbf{E}(\mathbf{R})=\mathbf{E}_{0} e^{-j \mathbf{k} \cdot \mathbf{R}}=\mathbf{E}_{0} e^{-j k a_{n} \cdot \mathbf{R}} \quad(\mathrm{~V} / \mathrm{m}) \tag{8-21}
\end{equation*}
$$

where a_{n} is a unit vector in the direction of propagation. From Eq. $(8-19)$ it is clear that

$$
\begin{align*}
& k_{x}=\mathrm{k} \cdot \mathbf{a}_{x}=k \mathbf{a}_{n} \cdot \mathbf{a}_{x} \tag{8-22a}\\
& k_{y}=\mathrm{k} \cdot \mathbf{a}_{y}=k \mathbf{a}_{n} \cdot \mathbf{a}_{y} \tag{8-22b}\\
& k_{z}=\mathrm{k} \cdot \mathbf{a}_{z}=k \mathbf{a}_{n} \cdot \mathbf{a}_{z}, \tag{8-22c}
\end{align*}
$$

and that $\mathbf{a}_{n} \cdot \mathbf{a}_{x}, \mathbf{a}_{n} \cdot \mathbf{a}_{y}$ and $\mathbf{a}_{n} \cdot \mathbf{a}_{z}$ are direction cosines of \mathbf{a}_{n}.
The geometrical relations of a_{n} and R are illustrated in Fig. 8-3, from which we see that

$$
\mathbf{a}_{n}: \mathbf{R}=\text { Length } \overline{O P}(\text { a constant })
$$

is the equation of a plane normal to \mathbf{a}_{n}, the direction of propagation. Just as $z=$ Constant denotes a plane of constant phase and uniform amplitude for the wave in
agating in ; E and H f propagahe phasor inate axis. arbitary ting in the (8-16)
the homo-
7) it is clear

- (8-22a)
(8-22b)
(8-22c)

Just as $z=$ the wave in

8-2 PLANE WAVES IN LOSSLESS MEDIA

Fig. 8-3 : Radius vector and wave normal to. a phase front of a uniform plane wave.

Eq. (8-16), $\mathbf{a}_{n} \cdot \mathbf{R}=$ Constant is a plane of constant phase and uniform amplitude for the wave in $\mathrm{Eq} .(8-21)$. In a charge-free region, $\mathrm{V} \cdot \mathrm{E}=0$. As a result,

But

$$
\begin{equation*}
\mathbf{E}_{0} \cdot \nabla\left(e^{-j k \mathbf{a}_{n} \cdot \mathbf{R}}\right)=0 . \tag{8-23a}
\end{equation*}
$$

$$
\begin{aligned}
\nabla\left(e^{-j k \mathbf{a}_{n} \cdot \mathbf{R}}\right) & =\left(\mathbf{a}_{x} \frac{\partial}{\partial x}+\mathbf{a}_{y} \frac{\partial}{\partial y}+\mathbf{a}_{z} \frac{\partial}{\partial z}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z}=\right)} \\
& =-j\left(\mathbf{a}_{x} k_{x}+\mathbf{a}^{\prime} k_{y}+\mathbf{a}_{z} k_{z}\right) e^{-j\left(k_{x} x+k_{y} y+k_{z} z\right)} \\
& =-j k \mathbf{a}_{n} e^{-j k \mathbf{a}_{n} \cdot \mathbf{R}} .
\end{aligned}
$$

Hence Eq. (8-23a) can be written as

$$
-j k\left(\mathbf{E}_{0} \cdot \mathbf{a}_{n}\right) e^{-j k \mathbf{E}_{n} \cdot \mathbf{R}}=0,
$$

which requires

$$
\begin{equation*}
\mathbf{a}_{n} \cdot \mathrm{E}_{0}=0 \tag{8-23b}
\end{equation*}
$$

Thus the plane-wave solution in Eq. ($8-17$) implies that \mathbf{E}_{0} is transverse to the direction of propagation.

The magnetic field associated with $\mathbf{E}(\mathbf{R})$ in Eq. (8-21) may be obtained from Eq. $(7-85 \mathrm{a})$ as

$$
\mathbf{H}(\mathbf{R})=-\frac{1}{j \omega \mu} \nabla \times \mathbf{E}(\mathbf{R})
$$

or

$$
\begin{equation*}
\mathrm{H}(\mathrm{R})=\frac{1}{\eta} \mathbf{a}_{n} \times \mathrm{E}(\mathrm{R}) \quad(\mathrm{A} / \mathrm{m}) \tag{8-24}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=\frac{\omega \mu}{k}=\sqrt{\frac{\mu}{\epsilon}} \tag{8-25}
\end{equation*}
$$

[^42]is the intrinsic impedance of the medium. Substitution of Eq. (8-21) in Eq. (8-24) yields
\[

$$
\begin{equation*}
H(R)=\frac{1}{\eta}\left(\mathrm{a}_{n} \times \mathrm{E}_{0}\right) e^{-j \mathrm{k} \mathrm{a}_{n} \cdot \mathrm{R}} \quad(\mathrm{~A} / \mathrm{m}) \tag{8-26}
\end{equation*}
$$

\]

It is now clear that a uniform plane wave propagating in an arbitrary direction, \mathbf{a}_{n}, is a TEM wave with $\mathbf{E} \perp \mathbf{H}$ and that both \mathbf{E} and \mathbf{H} are normal to \mathbf{a}_{n}.

8-2.2 Polarization of Plane Waves

The polarization of a uniform plane wave describes the time-varying behavior of the electric field intensity vector at a given point in space. Since the \mathbf{E} vector of the plane wave in Example 8-1 is fixed in the x direction ($\mathrm{E}=\mathbf{a}_{x} E_{x}$, where E_{x} may be positive or negative), the wave is said to be linearly polarized in the x direction. A separate description of magnetic-field behavior is not necessary, inasmuch as the direction of \mathbf{H} is definitely related to that of \mathbf{E}.

In some cases the direction of \mathbf{E} of a plane wave at a given point may change with time. Consider the superposition of two linearly polarized waves: one polarized in the x direction; the other polarized in the y direction and lagging 90° (or $\pi / 2 \mathrm{rad}$) in time phase. In phasor notation we have

$$
\begin{align*}
\mathbf{E}(z) & =\mathbf{a}_{x} E_{1}(z)+\mathbf{a}_{y} E_{2}(z) \\
& =\mathbf{a}_{x} E_{10} e^{-j k z}-\mathbf{a}_{y} j E_{20} e^{-j k z}, \tag{8-27}
\end{align*}
$$

where E_{10} and E_{20} are real numbers denoting the amplitudes of the two linearly polarized waves.

The instantaneous expression for E is

$$
\begin{aligned}
\mathbf{E}(z, t) & =\mathscr{R}\left\{\left[\mathbf{a}_{x} E_{1}(z)+\mathbf{a}_{y} E_{2}(z)\right] e^{j \omega t}\right\} \\
& =\mathbf{a}_{x} E_{10} \cos (\omega t-k z)+\mathbf{a}_{y} E_{20} \cos \left(\omega t-k z-\frac{\pi}{2}\right) .
\end{aligned}
$$

In examining the direction change of E at a given point as t changes, it is convenient to set $z=0$. We have

$$
\begin{align*}
\mathbf{E}(0, t) & =\mathbf{a}_{x} E_{1}(0, t)+\mathbf{a}_{y} E_{2}(0, t) \\
& =\mathbf{a}_{x} E_{10} \cos \omega t+\mathbf{a}_{y} E_{20} \sin \omega t . \tag{8-28}
\end{align*}
$$

As ωt increases from 0 through $\pi / 2, \pi$, and $3 \pi / 2$ - completing the cycle at 2π - the tip of the vector $\mathrm{E}(0, t)$ will traverse an elliptical locus in the counterclockwise direction. Analytically, we have

$$
\cos \omega t=\frac{E_{1}(0, t)}{E_{10}}
$$

q. $(8-24)$
action, \mathbf{a}_{n},
tor of the the plane e positive . separate rection of
ly
poia.
$r \pi / 2 \mathrm{rad}$) - linearly onvenient

and

$$
\begin{aligned}
\sin \omega t & =\frac{E_{2}(0, t)}{E_{20}} \\
& =\sqrt{1-\cos ^{2} \omega t}=\sqrt{1-\left[\frac{E_{1}(0, t)}{E_{10}}\right]^{2}}
\end{aligned}
$$

which leads to the following equation for an ellipse:

$$
\begin{equation*}
\left[\frac{E_{2}(0, t)}{E_{i 0}}\right]^{2}+\left[\frac{E_{1}(0, t)}{E_{10}}\right]^{2}=1 \tag{8-29}
\end{equation*}
$$

Hence \mathbf{E}, which is the sum of two linearly polarized waves in both space and time quadrature, is elliptically polarized if $E_{20} \neq E_{1}$, and in circularly polarized if $E_{20}=$. E_{10}. A typical polarization circle is shown in Fig. 8-4(a).

When $E_{20}=E_{10}$, the instantaneous angle α which E makes with the x-axis at $z=0$ is

$$
\begin{equation*}
\alpha=\tan ^{-1} \frac{E_{2}(0, t)}{E_{1}(0, t)}=\omega t, \tag{8-30}
\end{equation*}
$$

which indicates that \mathbf{E} rotates at a uniform rate with an angular velocity is in a counterclockwise directicn. When the fingers of the right hand follow the direction

(a)

(b)

Fig. 8-4. Polarization diagrams for sum of two linearly polarized waves in space quadrature at $z=0$: (a) circular polarization, $E(0, t)=E_{20}\left(\mathrm{a}_{x} \cos \omega t \pm \mathrm{a}_{y} \sin \omega t\right)$; (b) linear polarization, $\mathbf{E}(0, t)=\left(\mathbf{a}_{x} E_{10}+\mathbf{a}_{y} E_{20}\right) \cos \omega t$.

316 PLANE ELECTROMAGNETIC WAVES / 8

of the rotation of \mathbf{E}; the thumb points to the direction of propagation of the wave. This is a right-hand or positive circularly polarized wave.

If we start with an $E_{2}(z)$, which leads $E_{1}(z)$ by $90^{\circ}(\pi / 2 \mathrm{rad})$ in time phase, Eqs. ($8-27$) and ($8-28$) will be, respectively,

$$
\begin{equation*}
\mathbf{E}(z)=\mathbf{a}_{x} E_{10} e^{-j k z}+\mathbf{a}_{y} j E_{20} e^{-j k z} \tag{8-31}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}(0, t)=\mathbf{a}_{x} E_{10} \cos \omega t-\mathbf{a}_{y} E_{20} \sin \omega t . \tag{8-32}
\end{equation*}
$$

Comparing Eq. (8-32) with Eq. (8-28), we see that E will still be elliptically polarized. If $E_{20}=E_{10}$, E will be circularly polarized and its angle measured from the x-axis at $z=0$ will now be $-\omega t$, indicating that \mathbf{E} will rotate with an angular velocity ω in a clockwise direction; this is a left-hand or negative circularly polarized wave.

If $E_{2}(z)$ and $E_{1}(z)$ are in space quadrature but in time phase, their sum \mathbf{E} will be linearly polarized along a line that makes an angle $\tan ^{-1}\left(E_{20} / E_{10}\right)$ with the x-axis, as depicted in Fig. 8-4(b). The instantaneous expression for E at $z=0$ is

$$
\begin{equation*}
\mathbf{E}(0, t)=\left(\mathbf{a}_{x} E_{10}+\mathbf{a}_{y} E_{20}\right) \cos \omega t \tag{8-33}
\end{equation*}
$$

The tip of the $\mathrm{E}(0, t)$ will be at the point P_{1} when $\omega t=0$. Its magnitude will decrease toward zero as ωt increases toward $\pi / 2$. After that, $\mathrm{E}(0, t)$ starts to increase again. in the opposite direction, toward the point P_{2} where $\omega t=\pi$.

In the general case, $E_{2}(z)$ and $E_{1}(z)$, which are in space quadrature, can have unequal amplitudes ($E_{20} \neq E_{10}$) and can differ in phase by an arbitrary amount (not zero or an integral multiple of $\pi / 2$). Their sum E will be elliptically polarized and the principal axes of the polarization ellipse will not coincide with the axes of the coordinates (see Problem P.8-4).

Example 8-2 Prove that a linearly polarized plane wave can be resolved into a right-hand circularly polarized wave and a left-hand circularly polarized wave of equal amplitude.

Solution: Consider a linearly polarized plane wave propagating in the $+z$ direction. We can assume, with no loss of generality, that \mathbf{E} is polarized in the x direction. In phasor notation we have

$$
\mathbf{E}(z)=\mathbf{a}_{x} E_{0} e^{-j k z} .
$$

But this can be written as

$$
\mathbf{E}(z)=\mathbf{E}_{r c}(z)+\mathbf{E}_{l c}(z),
$$

where

$$
\begin{equation*}
\mathrm{E}_{\mathrm{rc}}(z)=\frac{E_{0}}{2}\left(\mathbf{a}_{\mathrm{x}}-j \mathrm{a}_{\mathrm{y}}\right) e^{-j k z} \tag{8-34a}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{E}_{l c}(z)=\frac{E_{0}}{2}\left(\mathbf{a}_{x}+j \mathbf{a}_{y}\right) e^{-j k z} \tag{8-34b}
\end{equation*}
$$ Eq. $(8-34 b)$ represent, respectively, right-hdud and left-hand circularly polarized waves, each having an amplitude $E_{0} / 2$. The ftatement of this problem is therefore proved. The conyerse statement that the sum of two oppositely rotating circularly polarized waves of equal amplitude is a linearly polarized wave is, of course, also true.

8-3 PLANE WAVES IN CONDUCTING MEDIA

n the x-axis r velocity o ' wave.
m E will be 1 the x-axis,

\therefore can have mount (not ad and the af the cos.
ved into a :d wave of : direction. rection. In

In a source-free conducting medium, the homogeneous vector Helmholtz's equation to be solve is

$$
\begin{equation*}
\nabla^{2} \mathbf{E}+k_{c}^{2} \mathbf{E}=0, \tag{8-35}
\end{equation*}
$$

where the wavenumber $k_{c}=\omega \sqrt{\mu \epsilon_{c}}$ is a complex number because $\epsilon_{\mathrm{c}}=\epsilon^{\prime}-j \epsilon^{\prime \prime}$ is complex, as defined in Eq. (7-92). The derlvations and discussions pertaining to plane waves in a lossless medium in Section 8-2 can be modified to apply to wave propagation in a condusting medium by simply replacing k with k_{c}. However, in an effort to conform with tae conventional notation used in transmission-line theory, it is customary to define a propagation constant, γ such that

$$
\begin{equation*}
\gamma=j k_{c}=j u \sqrt{\mu \epsilon_{c}} \quad\left(\mathrm{~m}^{-1}\right) \tag{8-36}
\end{equation*}
$$

Since $\%$ is complex, we vrite, with the help of Eq (7-92)

$$
\begin{equation*}
\gamma=\alpha+j \beta=j \omega \sqrt{\mu \epsilon}\left(1+\frac{\sigma}{j \omega \epsilon}\right)^{1 / 2}, \tag{8-37}
\end{equation*}
$$

where α and β are, res;ectively, the real and imaginary parts of γ. Their physical significance will be explained presently. For a lossless medium, $\sigma=0, \alpha=0$, and $\beta=k=\omega \sqrt{\mu \epsilon}$.

The Helmholtz's equation, Eq. (8-35), becomes

$$
\begin{equation*}
\nabla^{2} \mathbf{E}-\gamma^{2} \mathbf{E}=0 \tag{8-38}
\end{equation*}
$$

The solution of Eq. (8-38), which corresponds to a uniform plane wave propagating in the $+z$ direction, is

$$
\begin{equation*}
\mathbf{E}=\mathbf{a}_{x} E_{x}=\mathbf{a}_{x} E_{0} e^{-\gamma z}, \tag{8-39}
\end{equation*}
$$

where we have assumed that the wave is linearly polarized in the x direction. The propagation factor e^{-r} can be written as a product of two factors:

$$
E_{x}=E_{0}^{\prime} e^{-\alpha z} e^{-j \beta z}
$$

As we shall see, both x and β are positive quantities. The first factor, $e^{-x z}$, decreases
as z increases and, thus, is an attenuation factor, and α is called an attenuation constant. The SI unit of the attenuation constant is neper per meter $(\mathrm{Np} / \mathrm{m}) .{ }^{\dagger}$ The second factor, $e^{-j \beta_{2}}$, is a phase factor; β is called a phase constant and is expressed in radians per meter ($\mathrm{rad} / \mathrm{m}$). The phase constant expresses the amount of phase shift that occurs as the wave travels one meter.

General expressions of α and β in terms of ω and the constitutive parameters - ϵ, μ, and σ-of the medium are rather involved (see Problem P.8-6). In the following paragraphs we examine the approximate expressions for a low-loss dielectric and a good conductor.

8-3.1 Low-Loss Dielectric

A low-loss dielectric is a good but imperfect insulator with a nonzero conductivity, such that $\epsilon^{\prime \prime} \ll \epsilon^{\prime}$ or $\sigma / \omega \epsilon \ll 1$. Under this condition γ in Eq. (8-37) can be 'approximated by using the binomial expansion.

$$
\gamma=\alpha+j \beta \cong j \omega \sqrt{\mu \epsilon}\left[1+\frac{\sigma}{j 2 \omega \epsilon}+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right]
$$

from which we obtain the attenuation constant

$$
\begin{equation*}
\alpha \cong \frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \quad(\mathrm{~Np} / \mathrm{m}) \tag{8-40}
\end{equation*}
$$

and the phase constant

$$
\begin{equation*}
\beta \cong \omega \sqrt{\mu \epsilon}\left[1+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right] \quad(\mathrm{rad} / \mathrm{m}) . \tag{8-41}
\end{equation*}
$$

It is seen from Eq. (8-40) that the attenuation constant of a low-loss dielectric is a positive constant and is approximately directly proportional to the conductivity σ. The phase constant in Eq. (8-41) deviates only very slightly from the value $\omega \sqrt{\mu \epsilon}$ for a perfect (lossless) dielectric.

The intrinsic impedance of a low-loss dielectric is a complex quantity.

$$
\begin{align*}
\eta_{c} & =\sqrt{\frac{\mu}{\epsilon}}\left(1+\frac{\sigma}{j \omega \epsilon}\right)^{-1 / 2} \\
& \cong \sqrt{\frac{\mu}{\epsilon}}\left(1+j \frac{\sigma}{2 \omega \epsilon}\right) \tag{8-42}
\end{align*}
$$

Since the intrinsic impedance is the ratio of E_{x} and H_{y} for a uniform plane wave, the electric and magnetic field intensities in a lossy dielectric are, thus, not in time phase, as they would be in a lossless medium.

[^43]or
The phase velocity u_{p} is obtained from the ratio ω / β in a manner similar to that in Eq. $(8-9)$. Using Eq. $(8-41)$, we have
$$
u_{p}=\frac{\omega}{\beta} \cong \frac{1}{\sqrt{\mu \epsilon}}\left[1-\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right] \quad(\mathrm{m} / \mathrm{s})
$$

8-3.2 Good Conductor

A good conductor is a medium for which $\epsilon^{\prime \prime} \gg \epsilon^{\prime}$ or $\sigma / \omega \epsilon \gg 1$. Under this condition we can neglect 1 in tomparison with the term $\sigma / \mathrm{j} \omega \in$ in Eq. (8-37) and write

$$
\gamma \cong j \omega \sqrt{\mu \epsilon} \sqrt{\frac{\sigma}{j \omega \epsilon}}=\sqrt{j} \sqrt{\omega \mu \sigma}=\frac{1+j}{\sqrt{2}} \sqrt{\omega \mu \sigma}
$$

$$
\begin{equation*}
\dot{y}=\alpha+j \beta \cong(1+j) \sqrt{\pi f \mu \sigma} \tag{8-44}
\end{equation*}
$$

where we have used the relations

$$
\sqrt{j}=\left(e^{j \pi / 2}\right)^{1 / 2}=e^{j \pi / 4}=(1+j) / \sqrt{2}
$$

and $\omega=2 \pi f$. Equation ($8-44$) indicates that α and β for a good conductor are appruximately equal and both increase as \sqrt{f} and $\sqrt{\sigma}$. For a good conductor,

$$
\begin{equation*}
\alpha=\beta=\sqrt{\pi j \mu \sigma} \tag{8-45}
\end{equation*}
$$

The intrinsic impedince of a good conductor is

$$
\begin{equation*}
\eta_{c}=\sqrt{\frac{\mu}{\epsilon_{c}}} \cong \sqrt{\frac{j \omega \mu}{\sigma}}=(1+j) \sqrt{\frac{\pi f \mu}{\sigma}}=(1+j) \frac{\alpha}{\sigma} \quad(\Omega) \tag{8-40}
\end{equation*}
$$

which has a phase angle of 45°. Hence the magnetic field intensity lags behind the electric field intensity by 45°.

The phase velocity in a good conductor is

$$
\begin{equation*}
u_{p}=\frac{\omega}{\beta} \cong \sqrt{\frac{2 \omega}{\mu \sigma}} \quad(\mathrm{~m} / \mathrm{s}) \tag{8-47}
\end{equation*}
$$

which is proportional to \sqrt{J} and $1 / \sqrt{\sigma}$. Consider copper as an example:

$$
\begin{aligned}
\sigma & =5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m}) \\
\mu & =4 \pi \times 10^{-7}(\mathrm{H} / \mathrm{m}) \\
\mu_{1} & =720(\mathrm{~m} / \mathrm{s}) \quad \text { at } \quad 3(\mathrm{MHz})
\end{aligned}
$$

Which is about lwice the velocity of sound in uir and is many orders of magnitude slower than the velocity of light in air. The wavelength of a plane wave in a good conductor is

$$
\begin{equation*}
\lambda=\frac{2 \pi}{\beta}=\frac{u_{p}}{f}=2 \sqrt{\frac{\pi}{f \mu \sigma}} \quad \text { (m) } \tag{8-48}
\end{equation*}
$$

For copper at $3(\mathrm{MHz}), \lambda=0.24(\mathrm{~mm})$. As a comparison, a $3-(\mathrm{MHz})$ electromagnetic wave in air has a wavelength of $100(\mathrm{~m})$.

At very high frequencies the attenuation constant α for a good conductor, as given by Eq. $(8-45)$, tends to be very large. For copper at $3(\mathrm{MHz})$,

$$
\alpha=\sqrt{\pi\left(3 \times 10^{6}\right)\left(4 \pi \times 10^{-7}\right)\left(5.80 \times 10^{7}\right)}=2.62 \times 10^{4}(\mathrm{~Np} / \mathrm{m})
$$

Since the attenuation factor is $e^{-\alpha z}$, the amplitude of a wave will be attenuated by a factor of $e^{-1}=0.368$ when it travels a distance $\delta=1 / \alpha$. For copper at $3(\mathrm{MHz})$, this distance is $(1 / 2.62) \times 10^{-4}(\mathrm{~m})$, or $0.038(\mathrm{~mm})$. At $10(\mathrm{GHz})$ it is only $0.66(\mu \mathrm{~m})-\mathrm{a}$ very small distance indeed. Thus, a high-frequency electromagnetic wave is attenuated very rapidly as it propagates in a good conductor. The distance δ through which the amplitude of a traveling plane wave decreases by a factor of e^{-1} or 0.368 is called the skind depth or the depth of penetration of a conductor:

$$
\begin{equation*}
\delta=\frac{1}{\alpha}=\frac{1}{\sqrt{\pi f \mu \sigma}} \tag{8-49a}
\end{equation*}
$$

Since $\alpha=\beta$ for a good conductor, δ can also be written as

$$
\begin{equation*}
j=\frac{1}{\beta}=\frac{\lambda}{2 \pi} \quad(\mathrm{~m}) . \tag{8-49b}
\end{equation*}
$$

At microwave frequencies, the skin depth or depth of penetration of a good conductor is so small that fields and currents can be considered as, for all practical purposes, confined in a very thin layer (that is, in the skin) of the conductor surface.

Example 8-3 The electric fieid intensity of a linearly polarized uniform plane wave propagating in the $+z$ direction in sea water is $\mathbf{E}=\mathbf{a}_{x} 100 \cos \left(10^{7} \pi t\right)(\mathrm{V} / \mathrm{m})$ at $z=$ 0 . The constitutive parameters of sea water are $\epsilon_{r}=80, \mu_{r}=1$, and $\sigma=4(\mathrm{~S} / \mathrm{m})$. (a) Determine the attenuation constant, phase constant, intrinsic impedance, phase velocity, wavelength, and skin depth. (b) Find the distance at which the amplitude of \mathbf{E} is 1% of its value at $z=0$. (c) Write the expressions for $\mathrm{E}(z, t)$ and $\mathbf{H}(z, t)$ at $z=$ $0.8(\mathrm{~m})$ as functions of t.
Solution

$$
\begin{aligned}
\omega & =10^{7} \pi(\mathrm{rad} / \mathrm{s}) \\
f & =\frac{\omega}{2 \pi}=5 \times 10^{6}(\mathrm{~Hz}), \\
\frac{\sigma}{\omega \epsilon} & =\frac{\sigma}{\omega \epsilon_{0} \epsilon_{r}}=\frac{4}{10^{7} \pi\left(\frac{1}{36 \pi} \times 10^{-9}\right) 80}=180 \gg 1
\end{aligned}
$$

 Iductor, as
uated by a MHz), this $6(\mu \mathrm{~m})-\mathrm{a}$ attenuated which the ; called the
$(8-49 b)$
conductor 1 purposes,
slane wave (m) at $z=$ $=4(\mathrm{~S} / \mathrm{m})$. nce. phase mplitude of \therefore t) at $z=$
c) In phasor notation.

$$
\mathrm{E}(z)=\mathrm{a}_{\mathrm{x}} 100 e^{-\alpha z} e^{-j \beta z}
$$

The instantaneous expression for E is

$$
\begin{aligned}
\mathbf{E}(z, t) & =\mathfrak{R} e\left[\mathbf{E}(z) e^{j \omega t}\right] \\
& =\mathscr{R} e\left[\mathbf{a}_{x} 100 e^{-\alpha z} e^{j(\omega t-\beta z)}\right]=\mathbf{a}_{x} 100 e^{-\alpha z} \cos (\omega t-\beta z)
\end{aligned}
$$

At $z=0.8(\mathrm{~m})$, we have

$$
\begin{aligned}
\mathbf{E}(0.8, t) & =\mathbf{a}_{x} 100 e^{-0.8 \alpha} \cos \left(10^{7} \pi t-0.8 \beta\right) \\
& =\mathbf{a}_{x} 0.082 \cos \left(10^{7} \pi t-7.11\right)(\mathrm{V} / \mathrm{m})
\end{aligned}
$$

We know that a uniform plane wave is a TEM wave with $\mathbf{E} \perp \mathbf{H}$ and that both are normal to the direction of wave propagation \mathbf{a}_{z}. Thus $\mathbf{H}=\mathbf{a}_{y} H_{y}$. To find

322

$\mathbf{H}(z, t)$, the instantaneous expression of \mathbf{H} as a function of t, we must not make the mistake of writing $H_{y}(z, t)=E_{x}(z, t) / \eta_{c}$, because this would be mixing real time functions $E_{x}(z, t)$ and $H_{z}(z, t)$ with a complex quantity η_{c}. Phasor quantities $E_{x}(z)$ and $H_{y}(z)$ must be used. That is,

$$
H_{y}(z)=\frac{E_{x}(z)}{\eta_{c}}
$$

from which we obtain the relation between instantaneous quantities

$$
H_{y}(z, t)=\mathscr{R} e\left[\frac{E_{x}(z)}{\eta_{c}} e^{j \omega t}\right]
$$

For the present problem we have, in phasors.

$$
H_{y}(0.8)=\frac{100 e^{-0.8 \alpha} e^{-j 0.8 \beta}}{\pi e^{j \pi / 4}}=\frac{0.082 e^{-j 7.11}}{\pi e^{j \pi / 4}}=0.026 e^{-j 1.61}
$$

Note that both angles must be in radians before combining. The instantaneous expression for H at $z=0.8(\mathrm{~m})$ is then

$$
\mathbf{H}(0.8, t)=\mathbf{a}_{y} 0.026 \cos \left(10^{7} \pi t-1.61\right)(\mathrm{A} / \mathrm{m})
$$

We can see that a $5-(\mathrm{MHz})$ plane wave attenuates very rapidly in sea water and becomes negligibly weak a very short distance from the source. This phenomenon is accentuated at higher frequencies. Even at very low frequencies, long-distance radio communication with a submerged submarine is extremely - difficult.

8-3.3 Group Velocity

In Section $8-2$ we defined the phase velocity, u_{p}, of a single-frequency plane wave as the velocity of propagation of an equiphase front. The relation between u_{p} and the phase constant, β, is

$$
\begin{equation*}
u_{p}=\frac{\omega}{\beta} \quad(\mathrm{m} / \mathrm{s}) \tag{8-50}
\end{equation*}
$$

For plane waves in a lossless medium, $\beta=\omega \sqrt{\mu \epsilon}$ is a linear function of ω. As a consequence, the phase velocity $u_{p}=1 / \sqrt{\mu \epsilon}$ is a constant that is independent of frequency. However, in some cases (such as wave propagation in a lossy dielectric, as discussed previously, or along a transmission line, or in a waveguide to be discussed in later chapters) the phase constant is not a linear function of ω; waves of different frequencies will propagate with different phase velocitics. Inasmuch as all information-bearing signals consist of a band of frequencies, waves of the component
not make ixing real quantities
wous
n sea water \therefore This pheFrequencies, is extremely
plane wave seen u_{p} and

1 of: As a iepenc...t of sy dielectric, de to be disw; waves of smuch as all e component
frequencies travel with different phase velocities, causing a distortion in the signal wave shape. The signal "disperses." The phenomenon of signal distortion caused by a dependence of the phase velocity on frequency ls called dispersion. Given Eq. (8-43), we conclude that a lossy dielectric is obviously a dispersive medium.

An information-bearing signal normally has a small spread of frequencies (sidebands) around a high carrier frequency. Such a signal comprises a "group" of frequencies and forms a wave packet. A group velocity is the velocity of propagation of the wave-packet erivelope.

Consider the simplest case of a wave packet that consists of two traveling waves having equal amplitude and slightly different angular frequencies $\omega_{0}+\Delta \omega$ and $\omega_{0}-\Delta \omega\left(\Delta \omega \ll \omega_{0}\right)$. The phase constants, being functions of frequency, will also be slightly different. Let the phase constants corresponding to the two frequencies be $\beta_{0}+\Delta \beta$ and $\beta_{0}-\Delta \beta$. We have

$$
\begin{align*}
E(z, t)= & E_{0} \cos \left[\left(\omega_{0}+\Delta \omega\right) t-\left(\beta_{0}+\Delta \beta\right) z\right] \\
& +E_{0} \cos \left[\left(\omega_{0}-\Delta(t) t-\left(\beta_{0}-\Delta \beta\right) z\right]\right. \\
= & 2 E_{0} \cos (t \Delta \omega-z \Delta \beta) \cos \left(\omega_{0} t-\beta_{0} z\right) \tag{8-51}
\end{align*}
$$

Since $\Delta \omega \ll \omega_{0}$, the expression in Eq. $(8-51)$ represents a rapidly oscillating wave having an angular frequency (1 , and an amplitude that varies slowly with an angular Prequency Δ... This is dericted in Fig. 8-5.

The wave inside the envelope propagates with a phase velocity found by setting $\omega_{0} t-\beta_{0} z=$ Constant:

$$
u_{p}=\frac{d z}{d t}=\frac{\omega_{0}}{\beta_{0}}
$$

The velocity of the enveiope (the group velocity u_{g}) can be determined by setting the argument of the first cosine factor in $\mathrm{Eq} .(8-51)$ equal to a constant:

$$
t \Delta \omega-z \Delta \beta=\text { Constant },
$$

Fig. 8-5 Sum of two time-harmonic traveling waves of equal amplitude and slightly different frequencies at a given t.
from which we obtain

$$
u_{g}=\frac{d z}{d t}=\frac{\Delta \omega}{\Delta \beta}=\frac{1}{\Delta \beta / \Delta \omega}
$$

In the limit that $\Delta \omega \rightarrow 0$, we have the formula for computing the group velocity in a dispersive medium.

$$
\begin{equation*}
u_{g}=\frac{1}{d \beta / d \omega} \quad(\mathrm{~m} / \mathrm{s}) \tag{8-52}
\end{equation*}
$$

This is the velocity of a point on the envelope of the wave packet, as shown in Fig. 8-5, and is identified as the velocity of the narrow-band signal.

A relation between the group and phase velocities may be obtained by combining Eqs. $(8-50)$ and $(8-52)$. From Eq. (8-50), we have

$$
\frac{d \beta}{d \omega}=\frac{d}{d \omega}\left(\frac{\omega}{u_{p}}\right)=\frac{1}{u_{p}}-\frac{\omega}{u_{p}^{2}} \frac{d u_{p}}{d \omega}
$$

Substitution of the above in Eq. (8-52) yields

$$
\begin{equation*}
u_{g}=\frac{\grave{u}_{p}}{1-\frac{\omega}{u_{p}} \frac{d u_{p}}{d \omega}} . \tag{8-53}
\end{equation*}
$$

From Eq. (8-53) we see three possible cases:
a) No dispersion:

$$
\begin{gathered}
\frac{d u_{p}}{d \omega}=0 \quad\left(u_{p} \text { independent of } \omega, \beta \text { linear function of } \omega\right), \\
u_{g}=u_{p} .
\end{gathered}
$$

b) Normal dispersion:

$$
\begin{gathered}
\frac{d u_{p}}{d \omega}<0 \quad\left(u_{p} \text { decreasing with } \omega\right), \\
u_{\|}<u_{p} .
\end{gathered}
$$

c) Anomalous dispersion:

$$
\begin{array}{cl}
\frac{d u_{p}}{d \omega}>0 & \left(u_{p} \text { increasing with } \omega\right), \\
& u_{g}>u_{p} .
\end{array}
$$

Example 8-4 A narrow-band signal propagates in a lossy dielectric medium which has a loss tangent 0.2 at $550(\mathrm{kHz})$, the carrier frequency of the signal. The dielectric

1Fig. 8-5, ombining
constant of the medium is 2.5 . (a) Determine α and β. (b) Determine u_{p} and u_{g}. Is the medium dispersive?

Solution

a) Since the loss tangent $\sigma / \omega \epsilon=0.2$ and $\sigma^{2} / 8(\omega \epsilon)^{2} \ll 1$, Eqs. ($8-40$) and $(8-41)$ can be used to determine α and β respectively. But first we find σ from the loss tangent:

$$
\begin{gathered}
\frac{\partial}{\partial \omega}=0.2=\frac{\sigma}{2 \pi\left(550 \times 10^{3}\right)\left(2.5 \times \frac{1}{36 \pi} \times 10^{-9}\right)} ; \\
\sigma=1.53 \times 10^{-5}(\mathrm{~S} / \mathrm{m}) .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\alpha & =\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}=\frac{\sigma}{2} \frac{377}{\sqrt{2.5}}=1.82 \times 10^{-3}(\mathrm{~Np} / \mathrm{m}) ; \\
\beta & =\omega \sqrt{\mu \epsilon}\left[1+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right] \\
& =2 \pi\left(550 \times 10^{3}\right) \frac{\sqrt{2.5}}{3 \times 10^{8}}\left[1+\frac{1}{8}(0.2)^{2}\right] \\
& =0.0182 \times 1.005=0.0183(\mathrm{rad} / \mathrm{m}) .
\end{aligned}
$$

b) Phase velocity:

$$
\begin{aligned}
u_{p}=\frac{\omega}{\beta} & =\frac{1}{\sqrt{\mu \epsilon}\left[1+\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right.} \cong \frac{1}{\sqrt{\mu \epsilon}}\left[1-\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right] \\
& =\frac{3 \times 10^{8}}{\sqrt{2.5}}\left[1-\frac{1}{8}(0.2)^{2}\right]=1.888 \times 10^{8}(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

From Eq. (8-41) we have

$$
\frac{d \beta}{d \omega}=\sqrt{\mu \epsilon}\left[1-\frac{1}{8}\left(\frac{\sigma}{\omega \epsilon}\right)^{2}\right] .
$$

c) Group velocity:

$$
u_{g}=\frac{1}{(d \beta / d \omega)} \cong \frac{1}{\sqrt{\mu \epsilon}}\left[1+\frac{1}{8}\left(\frac{\sigma}{(\omega \epsilon}\right)^{2}\right]=1.907 \times 10^{8}(\mathrm{~m} / \mathrm{s})
$$

Since $u_{g} \neq u_{p}$, the medium is dispersive, As we can see, the computed values of u_{g} and u_{p} do not differ much because of the small value of the loss tangent.

8-4 FLOW OF ELECTROMAGNETIC POWER AND THE POYNTING VECTOR

Electromagnetic waves carry with them electromagnetic power. Energy is transported through space to distant receiving points by electromagnetic waves. We will now derive a relation between the rate of such energy transfer and the electric and magnetic field intensities associated with a traveling electromagnetic wave.

We begin with the curl equations

$$
\begin{align*}
& \nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t}, \tag{7-37a}\\
& \nabla \times \mathbf{H}=\mathbf{J}+\frac{\partial \mathbf{D}}{\partial t} . \tag{7-37b}
\end{align*}
$$

The verification of the following identity of vector operations (see Problem P. 2-23) is straightforward:

$$
\begin{equation*}
\nabla \cdot(\mathrm{E} \times \mathrm{H})=\mathrm{H} \cdot(\nabla \times \mathrm{E})-\mathrm{E} \cdot(\nabla \times \mathrm{H}) . \tag{8-56}
\end{equation*}
$$

Substitution of Eqs. (8-54) and (8-55) in Eq. (8-56) yields

$$
\begin{equation*}
\nabla \cdot(\mathbf{E} \times \mathbf{H})=-\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\hat{\partial} t}-\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}-\mathbf{E} \cdot \mathrm{J} . \tag{8-57}
\end{equation*}
$$

In a simple medium, whose constitutive parameters ϵ, μ, and σ do not change with time, we have

$$
\begin{gathered}
\mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t}=\mathbf{H} \cdot \frac{\partial(\mu \mathbf{H})}{\partial t}=\frac{1}{2} \frac{\partial(\mu \mathbf{H} \cdot \mathbf{H})}{\partial t}=\frac{\partial}{\partial t}\left(\frac{1}{2} \mu H^{2}\right), \\
\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t}=\mathbf{E} \cdot \frac{\partial(\epsilon \mathbf{E})}{\partial t}=\frac{1}{2} \frac{\partial(\mathrm{E} \cdot \mathbf{E} \cdot \mathbf{E})}{\partial t}=\frac{\partial}{\partial t}\left(\frac{1}{2} \epsilon E^{2}\right), \\
\mathbf{E} \cdot \mathbf{J}=\mathbf{E} \cdot(\sigma \mathbf{E})=\sigma E^{2} .
\end{gathered}
$$

Equation (8-57) can then be written as

$$
\begin{equation*}
\nabla:(\mathbf{E} \times \mathbf{H})=-\frac{\partial}{\partial t}\left(\frac{1}{2} \epsilon E^{2}+\frac{1}{2} \mu H^{2}\right)-\sigma E^{2}, \tag{8-58}
\end{equation*}
$$

which is a point-function relationship. An integral form of Eq. (8-58) is obtained by integrating both sides over the volume of concern.

$$
\begin{equation*}
\oint_{s}(\mathbf{E} \times \mathbf{H}) \cdot \dot{d s}=-\frac{\partial}{\partial t} \int_{V}\left(\frac{1}{2} \epsilon E^{2}+\frac{1}{2} \mu \ddot{I^{2}}\right) d v-\int_{V} \sigma E^{2} d v, \tag{8-59}
\end{equation*}
$$

where the divergence theorem has been applied to convert the volume integral of $\nabla \cdot(\mathbf{E} \times \mathbf{H})$ to the closed surface integral of $(\mathbf{E} \times \mathbf{H})$.
ansported \therefore will now imagnetic.
a) $(8-54)$
b) $(8-55)$
in P. 2-23)
(8--56)
57)
hange with

8-4/FLOW OF EĔECTROMAGNETIC POWER AND THE POYNTING VECTOR

We recognize thiat the first and second terms on the right side of Eq. (8-59) represent the time-rate of change of the energy stored, respectively, in the electric and magnetic fields. [Compare with Eqs. (3-146b) and (6-151c).] The last term is the ohmic power dissipated in the volume as a result of the flow of conduction current density $\sigma \mathbf{E}$ in the presence of the electric field \mathbf{E}. Hence we may interpret the right side of Eq. (8-59) as the rate of decrease of the electric and magnetic energies stored, subtracted by the ohmic power dissipated as heat in the volume V. In order to be consistent with the law of conservation of energy, this must equal the power (rate of energy) leaving the volume through its surface. Thus the quantity $(\mathbf{E} \times \mathrm{H})$ is a vector representing the power flow per unit area. Define

$$
\begin{equation*}
P=\mathrm{E} \times \mathrm{I} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) \tag{8-60}
\end{equation*}
$$

Quantity is known as the Poynting vector, which is a power density vector associated with an electromagnetic field. The assertion that the surface integral of $3 p$ over a closed surface, as given by the left side of Eq. $(8-59)$, equals the power leaving the enclosed volume is referred to as Poyning's theorem.

Equation (8-59) may be written in another form

$$
\begin{equation*}
-\oint_{S} \mathscr{P}: d \mathrm{~s}=\frac{\partial}{\partial t} \int_{V}\left(w_{e}+w_{m}\right) d v+\int_{V} p_{a} d v \tag{8-61}
\end{equation*}
$$

where

$$
\begin{align*}
w_{e} & =\frac{1}{2} \epsilon E^{2}=\text { Electric energy density } \tag{8-62a}\\
w_{m} & =\frac{1}{2} \mu H^{2}=\text { Magnetic energy density } \tag{8-62b}\\
p_{\sigma} & =\sigma E^{2}=J^{2} / \sigma=\text { Ohmic power density } \tag{8-62c}
\end{align*}
$$

In words, Eq. (8-61) states that the total power flowing into a closed surface at any instant equals the sum of the rates of increase of the stored electric and magnetic energies and the ohmic power dissipated within the enclosed volume.

Two points concerning the Poynting vector are worthy of note. First, the power relations given in Eqs. $(8-59)$ and $(8-61)$ pertain to the total power flow across a closed surface obtained by the surface integral of $(\mathbf{E} \times \mathbf{H})$. The definition of the Poynting vector in Eq. $(8-60)$ as the power density vector at every point on the surface is an arbitrary, albeit useful, concept. Second, the Poynting vector \mathscr{P} is in a direction normal to both E and H .

If the region of concern is lossless ($\sigma=0$), then the last term in Eq. ($8-61$) vanishes, and the total power flowing into a closed surface is equal to the rate of increase of the.stored electric and magnetic energies in the enclosed volume. In a static situation, the first two terms on the right side of Eq. (8-61) vanish, and the total power flowing into a closed surface is equal to the ohmic power dissipated in the enclosed volume.

Example 8-5 Find the Poynting vector on the surface of a long, straight conducting wire (of radius b and conductivity σ) that carries a direct current I. Verify Poynting's theorem.

Solution: Since we have a DC situation, the current in the wire is uniformly distributed over its cross-sectional area. Let us assume that the axis of the wire coincides with the z axis. Figure $8-6$ shows a segment of length ℓ of the long wire. We have

$$
\mathbf{J}=\mathbf{a}_{z} \frac{I}{\pi b^{2}}
$$

and

$$
\mathbf{E}=\frac{\mathbf{J}}{\sigma}=\mathbf{a}=\frac{I}{\sigma \pi b^{2}} .
$$

On the surface of the wire,

$$
\mathbf{H}=\mathbf{a}_{\phi} \frac{I}{2 \pi b} .
$$

8-4.1 Ir Power D ϵ

Thus the Poynting vector on the surface of the wire is

$$
\begin{aligned}
\mathscr{P}=\mathbf{E} \times \mathbf{H} & =\left(\mathbf{a}_{z} \times \mathbf{a}_{\phi}\right) \frac{I^{2}}{2 \sigma \pi^{2} b^{3}} \\
& =-\mathbf{a}_{r} \frac{I^{2}}{2 \pi \pi^{2} b^{3}},
\end{aligned}
$$

which is directed everywhere into the wire surface.

Fig. 8-6 Illustratịng Poynting's theorem (Example 8-5).
onducting ’oynting's rmly discoincides We have

8-4 / FLOW OF ELICTROMAGNETIC POWER AND THE POYNTING VECTOR

In order to verify Poynting's theorem, we integrate \mathscr{P} over the wall of the wire segment in Fig. 8-6.

$$
\begin{aligned}
-\oint_{S} \mathscr{P} \cdot d \mathrm{~s} & =-\oint_{s} \mathscr{P} \cdot \mathrm{a}_{r} d s=\left(\frac{I^{2}}{2 \sigma \pi^{2} b^{3}}\right) 2 \pi b \ell \\
\therefore & =I^{2}\left(\frac{\ell}{\sigma \pi b^{2}}\right)=I^{2} R
\end{aligned}
$$

where the formula for the resistance of a straight wire in Eq. $(5-13), R=\ell / \sigma S$, has bcen used. The abovertesult affirms that the negative surface integral of the Poynting vector is exactly equal to the $I^{2} R$ ohmic power loss in the conducting wire. Hence Poynting's theorem is verified.

8-4.1 Instantaneous and Average

Power Densities

In dealing with time-harmonic electromagnetic waves, we have found it convenient to use phasor notations. The instantaneous value of a quantity is then the real part of the product of the phasor quantity and $e^{j \omega t}$ wheh $\cos \omega t$ is used as the reference. For example, for the phasor

$$
\begin{equation*}
\mathrm{E}(z)=\mathbf{a}_{x} E_{x}(z)=\mathbf{a}_{x} E_{0} e^{-\langle\alpha+j \beta) z}, \tag{8-63a}
\end{equation*}
$$

the instantaneous expression is

$$
\begin{align*}
\mathbf{E}(z, t) & =\mathscr{R} \varepsilon\left[\mathbf{E}(z) e^{j \omega t}\right]=\mathbf{a}_{x} E_{0} e^{-x z} \mathscr{R} e\left[e^{j(\omega t-\beta z 1}\right] \\
& =\mathbf{a}_{x} E_{0} e^{-\alpha z} \cos (\omega t-\beta z) . \tag{8-63b}
\end{align*}
$$

For a uniform plane wave propagating in a lossy medium in the $+z$ direction, the associated magnetic fleld intensity phasor is

$$
\begin{equation*}
\mathbf{H}(z)=\mathbf{a}_{y} H_{y}(z)=\mathbf{a}_{y} \cdot \frac{E_{0}}{|\eta|} e^{-\alpha z} e^{-j\left(\beta z+\theta_{\eta}\right)} \tag{8-6+4a}
\end{equation*}
$$

where θ_{η} is the phase angle of the intrinsic impedance $\eta=|\eta| e^{j \theta_{\eta}}$ of the medium. The corresponding instantaneous expression for $\mathbf{H}(z)$ is

$$
\begin{equation*}
\mathbf{H}(z, t)=\mathscr{R} e\left[\mathbf{H}(z) e^{j \varphi t}\right]=\mathbf{a}_{y} \frac{E_{0}}{|\eta|} e^{-\alpha z} \cos \left(\omega t-\beta z-0_{\eta}\right) . \tag{8-64b}
\end{equation*}
$$

This procedure is permissible as long as the operations and/or the equations involving the quantities with sinusoidal time dependence are linear. Erroneous results will be obtained if this procedure is applied to such nonlinear operations as a product of two sinusoidal quantities. (A Poynting vector, being the cross product of \mathbf{E} and \mathbf{H}, falls in this category.) The reason is that

$$
\mathscr{R} e\left[\mathbf{E}(z) e^{j \omega t}\right] \times \mathscr{R} e\left[\mathbf{H}(z) e^{j \omega t}\right] \neq \mathscr{R} e\left[\mathbf{E}(z) \times \mathbf{H}(z) e^{j \omega t}\right]
$$

The instantaneous expression for the Poynting vector or power density vector is on the one hand, from Eqs. (8-63a) and (8-64a),

$$
\begin{align*}
\mathscr{P}(z, t) & =\mathbf{E}(z, t) \times \mathbf{H}(z, t)=\mathscr{R} e\left[\mathbf{E}(z) e^{j \omega t}\right] \times \mathscr{R} e\left[\mathbf{H}(z) e^{j \omega t}\right] \\
& =\mathbf{a}_{z} \frac{E_{0}^{2}}{|\eta|} e^{-2 \alpha z} \cos (\omega t-\beta z) \cos \left(\omega t-\beta z-\theta_{\eta}\right) \\
& =\mathbf{a}_{z} \frac{E_{0}^{2}}{2|\eta|} e^{-2 \alpha z}\left[\cos \theta_{\eta}+\cos \left(2 \omega t-2 \beta z-\theta_{\eta}\right)\right] \tag{8-65}
\end{align*}
$$

On the other hand,

$$
\mathscr{R e}\left[\mathbf{E}(z) \times \mathbf{H}(z) e^{j \omega t}\right]=\mathbf{a}_{z} \frac{E_{0}^{2}}{|\eta|} e^{-2 \alpha z} \cos \left(\omega t-2 \beta z-\theta_{\eta}\right),
$$

which is obviously not the same as the expression in Eq. (8-65).
As far as the power transmitted by an electromagnetic wave is concerned, its average value is a more significant quantity than its instantancous value. From Eq. (8-65), we obtain the time-average Poynting vector, : \%ax $^{(z)}$),

$$
\begin{equation*}
\mathscr{P}_{\mathrm{av}}(z)=\frac{1}{T} \int_{0}^{T} \mathscr{P}(z, t) d t=\mathbf{a}_{\mathbf{z}} \frac{E_{0}^{2}}{2|\eta|} e^{-2 \alpha z} \cos \theta_{\eta} \quad\left(\mathrm{W} / \mathrm{m}^{2}\right), \tag{8-67}
\end{equation*}
$$

where $T=2 \pi / \omega$ is the time period of the wave. The second term on the right side of

+ Consider two general complex vectors A and B. We know that

$$
\mathscr{R}_{c}(\mathbf{A})=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{*}\right) \quad \text { and } \quad \mathscr{R} c(\mathbf{B})=\frac{1}{2}\left(\mathbf{B}+\mathbf{B}^{*}\right),
$$

where the asterisk denotes "the complex conjugate of." Thus,

$$
\begin{align*}
& \mathscr{H}(\mathrm{A}) \times \mathscr{M}(\mathrm{B})=\frac{1}{2}\left(\mathrm{~A}+\mathrm{A}^{*}\right) \times \frac{1}{2}\left(\mathrm{~B}+\mathrm{B}^{*}\right) \\
& =\frac{1}{4}\left[\left(A \times B^{*}+A^{*} \times \mathbf{B}\right)+\left(A \times B+A^{*} \times B^{*}\right)\right] \\
& =\frac{1}{2} \operatorname{Re}\left(\mathrm{~A} \times \mathrm{B}^{*}+\mathrm{A} \times \mathrm{B}\right) . \tag{8-66}
\end{align*}
$$

This relation hoids also for dot products of vector functions and for products of two complex scalar functions. It is a straightforward exercise to obtain the resuit in Eq. $(8-65)$ by identifying the vectors \mathbf{A} and \mathbf{B} in Eq. (8-66) with $\mathrm{E}(z) e^{j \operatorname{jot}}$ and $\mathbf{H}(z) e^{j \omega t}$ respectively.

* Equation (8-67) is quite similar to the formula for computing the power dissipated in an impedance $Z=|\not Z| e^{j{ }^{j}}$ when a sinusodal voltage $n(1)=V_{0}$ cos wh appars across its terminats. The instantaneous expression for the current $i(t)$ through the impedance is

$$
i(t)=\frac{V_{0}}{|Z|} \cos \left(\omega t-\theta_{z}\right)
$$

From the theory of $A C$ circuits, we know that the average power dissipated in Z is

$$
P_{\mathrm{av}}=\frac{1}{T} \int_{0}^{T} v(t) i(t) d t=\frac{V_{0}^{2}}{2|Z|} \cos \theta_{z}
$$

where $\cos \theta_{z}$ is the power factor of the load impedance. The $\cos 0_{n}$ factor in Eq. (8-67) can be considered the power factor of the intrinsic impedance of the medium.

Eq. $(8-65)$ is a cosind function of a double frequency whose average is zero over a fundamental period.

Using Eq. $(8-66)$, we can express the instantaneous Poynting vector in Eq. (8-65) as the real part of thie sum of two terms, instedd of the product of the real parts of two complex vectors.

$$
\begin{align*}
\mathscr{P}(\dot{z}, t) & =\mathscr{R} c\left[\mathbf{E}(z) e^{j \omega t}\right] \times \mathscr{R} e\left[\mathbf{H}(z) e^{j \omega t}\right] \\
& =\frac{1}{2} \mathscr{R} c\left[\mathbf{E}(z) \times \mathbf{H}^{*}(z)+\mathbf{E}(z) \times \mathbf{H}(z) e^{j 2 \omega t}\right] . \tag{8-68}
\end{align*}
$$

The average power density, $\mathscr{P}_{\mathrm{av}}(z)$, can be obtained by integrating $\mathscr{P}(z, t)$ over a fundamental period T. Since the average of the last (second-harmonic) term in Eq. (8-68) vanishes, we have

$$
P_{\mathrm{av}}(z)=\frac{1}{2},\left[\mathrm{E}(z) \times \mathrm{H}^{*}(z)\right]
$$

In the general case, we may not be dealing with a wave propagating in the z direction. We write

$$
\begin{equation*}
P_{\mathrm{av}}=\frac{1}{2} \cdot R_{1}\left(\mathrm{E} \times \mathrm{H}^{*}\right) \quad\left(\mathrm{W} / \mathrm{m}^{2}\right) \tag{S-69}
\end{equation*}
$$

which is a general formula for computing the average power density in a propagating wave.

Example 8-6 The far field of a short vertical current element $I d \delta$ located at the origin of a spherical coor dinate system in free space is

$$
\mathbf{E}(R, \theta)=\mathbf{a}_{t} E_{0}(R, \theta)=\mathbf{a}_{0}\left(\frac{60 \pi I d \ell}{\lambda R} \sin \theta\right) e^{-j \beta R} \quad(\mathrm{~V} / \mathrm{m})
$$

and

$$
\mathbf{H}(R, \theta)=\mathbf{a}_{\theta} \frac{\dot{E}_{\theta}(R, \theta)}{\eta_{0}}=\mathbf{a}_{\phi}\left(\frac{I d \ell}{2 \lambda R} \sin \theta\right) e^{-\mathrm{j} \beta R} \quad(\mathrm{~A} / \mathrm{m})
$$

where $\lambda=2 \pi / \beta$ is the wavelength.
a) Write the expression for instantaneous Poynting vector.
b) Find the total average power thiated by the current element.

Solution

a) We note that $E_{0} / H_{\phi}=\eta_{0}=120 \pi(\Omega)$. The instantaneous Poynting vector is

$$
\begin{aligned}
\mathscr{P}(\bar{R}, \theta, t) & =\left\{\mathbb{L}\left[\mathrm{E}(R, \theta) e^{j \omega t}\right] \times \mathscr{R} c\left[\mathrm{H}(R, \theta) e^{j \omega t}\right]\right. \\
& =\left(\mathrm{a}_{0} \times \mathrm{a}_{\phi}\right) 30 \pi\left(\frac{I d f}{\lambda R}\right)^{2} \sin ^{2} 0 \cos ^{2}(\omega t-\beta R) \\
& =a_{k} 15 \pi\left(\frac{I d r}{\lambda R}\right)^{2} \sin ^{2} \theta[1+\cos 2(\omega t-\beta R)] \quad\left(\mathrm{W} / \mathrm{m}^{2}\right)
\end{aligned}
$$

b) The average power density vector is, from Eq. (8-69),

$$
\mathscr{P}_{\mathrm{av}}(R, \theta)=\mathbf{a}_{R} 15 \pi\left(\frac{I d \ell}{\lambda R}\right)^{2} \sin ^{2} \theta
$$

which is seen to equal the time-average value of $\mathscr{P}(R, \theta ; t)$ given in the first equation of this solution. The total average power radiated is obtained by integrating $\mathscr{P}_{\text {av }}(R, 0)$ over the surface of the sphere of radius R.

$$
\begin{aligned}
\text { Total } P_{a v} & =\oint_{s} \mathscr{P}_{a v}(R, \theta) \cdot d \mathbf{s}=\int_{0}^{2 \pi} \int_{0}^{\pi}\left[15 \pi\left(\frac{I d \ell}{\lambda R}\right)^{2} \sin ^{2} \theta\right] R^{2} \sin \theta d \theta^{\prime} d \phi \\
& =40 \pi^{2}\left(\frac{d \ell}{\lambda}\right)^{2} I^{2}
\end{aligned}
$$

where I is the amplitude ($\sqrt[6]{2}$ times the effective value) of the sinusoidal current in $d \ell$.

8-5 NORMAL INCIDENCE AT A PLANE CONDUCTING BOUNDARY

Up to this point we have discussed the propagation of uniform plane waves in an unbounded homogeneous medium. In practice, waves often propagate in bounded regions where several media with different constitutive parameters are present. When an electromagnetic wave traveling in one medium impinges on another medium with a different intrinsic impedance, it experiences a reflection. In Sections $8-5$ and $8-6$ we examine the behavior of a plane wave when it is incident upon a plane conducting boundary. Wave behavior at an interface between two diclectric media will be discussed in Sections 8-7 and 8-8.

For simplicity we shall assume that the incident wave $\left(\mathbf{E}_{i}, \mathbf{H}_{i}\right)$ travels in a lossless medium (medium $1: \sigma_{1}=0$) and that the boundary is an interface with a perfect conductor (medium 2: $\sigma_{2}=\infty$). Two cases will be considered: normal incidence and oblique incidence. In this section we study the field behavior of a uniform plane wave incident normally on a plane conducting boundary.

Consider the situation in Fig. $8-7$ where the incident wave travels in the $+z$ direction, and the boundary surface is the plane $z=0$. The incident electric and magnetic field intensity phasors are:

$$
\begin{align*}
\mathbf{E}_{1}(z) & =\mathbf{a}_{x} E_{i 0} e^{-j \mu_{1} z} \tag{8-70a}\\
\mathbf{H}_{i}(z) & =\mathbf{a}_{y} \frac{E_{10}}{\eta_{1}} e^{-j \beta_{1} z}
\end{align*}
$$

where $E_{i 0}$ is the magnitude of E_{i} at $z=0$, and β_{1} and η_{1} are, respectively, the phase constant and the intrinsic impedance of medium 1. It is noted that the Poynting vector of incident waves, $\mathscr{P}_{i}(z)=\mathrm{E}_{i}(z) \times \mathbf{H}_{i}(z)$, is in the a_{z} direction, which is the direction of energy propagation. The variable z is negative in medium 1 .
in the first lined by in-
$\mathrm{n} \theta d \theta d \phi$
jidal current
waves in an - in bounded are present. on another 1. In Sections ivent upon a wo dielectric
\sin a lossless ith a perfect ncidence and niform plane ls in the $+z$ t electric and

ely, the phase the Poynting , which is the 1.

Fig. 8-7 Plane wave incident normally on a plane conducting boundary.

Inside medium 2 (a perfect conductor) both electric and magnetic fields vanish. $\mathrm{E}_{2}=0, \mathrm{H}_{2}=0$; hence no wave is transmitted across the boundary into the $z>0$ region. The incident wave is reflected, giving rise to a reflected wave ($\mathbf{E}_{r}, \mathbf{H}_{r}$). The reflected electric field intensity can be written as

$$
\begin{equation*}
\mathbf{E}_{r}(z)=\mathbf{a}_{x} E_{r 0} e^{+j \beta \beta_{1} z} \tag{s-71}
\end{equation*}
$$

where the positive sign in the exponent signifies that the reflected wave travels in the $-z$ direction, as discussed in Section 8-2. The total electric field intensity in medium 1 is the sum of $\mathbf{E}_{\text {a }}$ and \mathbf{E}_{r}.

$$
\begin{equation*}
\mathbf{E}_{1}(z)=\dot{E}_{i}(z)+\mathbf{E}_{r}(z)=\mathbf{a}_{x}\left(E_{i 0} e^{-j \beta_{1} z}+E_{r 0} e^{+j \beta_{1} z}\right) . \tag{8-72}
\end{equation*}
$$

Continuity of the tangenti.il component of the E-field at the boundary $z=0$ demands that

$$
\mathbf{F}_{1}^{\prime}(0)=\mathbf{a}_{x}\left(E_{i 0}+E_{r 0}\right)=\mathbf{E}_{2}(0)=0,
$$

which yields $E_{r 0}=-E_{i 0}$. Thus, Eq. (8-72) becomes

$$
\begin{align*}
\mathbf{E}_{1}(z) & =\mathbf{a}_{x} E_{i 0}\left(e^{-j p_{1} z}-e^{+j \beta_{1 z} z}\right) \\
& =-\mathbf{a}_{x} j 2 E_{i 0} \sin \beta_{1} z . \tag{8-73a}
\end{align*}
$$

The magnetic field in tensity H_{r} of the reflected wave is related to E_{r} by Eq. (8-24).

$$
\begin{aligned}
\mathbf{H}_{r}(\xi) & =\frac{1}{\eta_{1}} \mathbf{a}_{n r} \times \mathbf{E}_{r}(z)=\frac{1}{\eta_{1}}\left(-\mathbf{a}_{z}\right) \times \mathbf{E}_{r}(z) \\
& =-\mathbf{a}_{y} \frac{1}{\eta_{1}} E_{r 0} e^{+j p_{1} z}=\mathbf{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{+j{H_{12} z}^{2}} .
\end{aligned}
$$

Combining $\mathrm{H}_{r}(z)$ with $\mathrm{H}_{i}(z)$ in Eq. (8-70b), we obtain the total magnetic field intensity in medium 1:

$$
\begin{equation*}
\mathbf{H}_{1}(z)=\mathbf{H}_{i}(z)+\mathbf{H}_{r}(z)=\mathbf{a}_{y} 2 \frac{E_{i 0}}{\eta_{1}} \cos \beta_{1} z . \tag{8-73b}
\end{equation*}
$$

It is clear from Eqs. (8-73a), (8-73b), and (8-69) that no average power is associated with the total electromagnetic wave in medium 1 , since $\mathbf{E}_{1}(z)$ and $\mathbf{H}_{1}(z)$ are in phase quadrature.

In order to examine the space-time behavior of the total field in medium 1, we first write the instantaneous expressions corresponding to the electric and magnetic field intensity phasors obtained in Eqs. (8-73a) and (8-73b):

$$
\begin{align*}
& \mathbf{E}_{1}(z, t)=\mathscr{R} c\left[\mathbf{E}_{\mathrm{t}}(z) e^{j \omega t}\right]=\mathbf{a}_{x} 2 E_{i 0} \sin \beta_{1} z \sin \omega t \tag{8-74a}\\
& \mathbf{H}_{1}(z, t)=\mathscr{R} e\left[\mathbf{H}_{1}(z) e^{j \omega t}\right]=\mathbf{a}_{y} 2 \frac{E_{i 0}}{\eta_{1}} \cos \beta_{1} z \cos \omega t \tag{8-74b}
\end{align*}
$$

Both $\mathrm{E}_{1}(z, t)$ and $\mathrm{H}_{1}(z, t)$ possess zeros and maxima at fixed distances from the conducting boundary for all t, as follows:

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Zeros of } \mathbf{E}_{1}(z, t) \\
\text { Maxima of } \mathbf{H}_{1}(z, t)
\end{array}\right\} \begin{array}{r}
\text { occur at } \beta_{1} z^{\dot{*}}=-n \pi, \text { or } z=-n \frac{\lambda}{2} \\
n=0,1,2, \ldots
\end{array} \\
& \left.\begin{array}{r}
\text { Maxima of } \mathbf{E}_{1}(z, t) \\
\text { Zeros of } \mathbf{H}_{1}(z, t)
\end{array}\right\} \begin{array}{r}
\text { occur at } \beta_{1} z=-(2 n+1) \frac{\pi}{2}, \quad \text { or } z=-(2 n+1) \frac{\lambda}{4}, \\
n=0,1,2 \ldots
\end{array}
\end{aligned}
$$

The total wave in medium 1 is not a traveling wave. It is a standing wave, resulting from the superposition of two waves traveling in opposite directions. For a given t. both \mathbf{E}_{1} and \mathbf{H}_{1} vary sinusoidally with the distance measured from the boundary plane. The standing waves of $\mathbf{E}_{1}=\mathbf{a}_{x} E_{1}$ and $\mathbf{H}_{1}=\mathbf{a}_{y} H_{1}$ are shown in Fig. 8-8 for several values of ωt. Note the following three points: (1) E_{1} vanishes on the conducting boundary ($E_{\mathrm{r} 0}=-E_{i 0}$); (2) \mathbf{H}_{1} is a maximum on the conducting boundary ($H_{r 0}=H_{i 0}=E_{i 0} / \eta_{1}$); (3) the standing waves of \mathbf{E}_{1} and \mathbf{H}_{1} are in time quadrature (90° phase difference) and are shifted in space by a quarter wavelength.

Example 8-7 A y-polarized uniform plane wave $\cdot\left(\mathrm{E}_{i}, \mathrm{H}_{\mathrm{i}}\right)$ with a frequency 100 (MHz) propagates in air and impinges normally on a perfectly conducting plane at $x=0$. Assuming the amplitude of \mathbf{E}_{i} to be $6(\mathrm{mV} / \mathrm{m})$, write the phasor and instantaneous expressions for: (a) \mathbf{E}_{i} and \mathbf{H}_{i} of the incident wave; (b) \mathbf{E}_{r} and \mathbf{H}, of the reflected wave; and (c) \mathbf{E}_{1} and \mathbf{H}_{1} of the total wave in air. (d) Determine the location nearest to the conducting plane where E_{1} is'zero.
eld intens-
associated e in phase
fum 1, we magnetic
(8-74b)
from the

1) $\frac{i}{4}$

2,..
resulting a given t, boundary 3. 8-8 for : the conboundary quadrature
enc $\curvearrowleft 0$! plan . id instan$\mathrm{H}_{\text {r }}$ of the a lexalton

Fig. 8-8 Standing waves of $\mathrm{Q}_{1}=\mathbf{a}_{x} E_{1}$ and $\mathrm{H}_{1}=\mathrm{a}_{1} \mathrm{H}_{1}$ for several values of ω.
Solution: At the given frequency $100(\mathrm{MHz})$,

$$
\begin{aligned}
& \omega=2 \pi f=2 \pi \times 10^{8} \quad(\mathrm{rad} / \mathrm{s}), \\
& \beta_{1}=k_{0}=\frac{\omega}{c}=\frac{2 \pi \times 10^{8}}{3 \times 10^{8}}=\frac{2 \pi}{3} \quad(\mathrm{rad} / \mathrm{m}), \\
& \eta_{1}=\eta_{0}=\sqrt{\frac{\mu_{0}}{\epsilon_{0}}}=120 \pi \quad(\Omega) .
\end{aligned}
$$

a) For the incident wave (a traveling wave):
i) Phasor expressions

$$
\begin{align*}
\mathrm{E}_{i}(x) & =\mathrm{a}_{y} 6 \times 10^{-3} e^{-j 2 \pi x / 3} \quad(\mathrm{~V} / \mathrm{m}) \\
\mathrm{H}_{i}(x) & =\frac{1}{\eta_{1}} \mathbf{a}_{x} \times \mathrm{E}_{i}(: i)=\mathbf{a}_{z} \frac{10^{-4}}{2 \pi} e^{-j 2 \pi x / 3} \tag{A/m}
\end{align*}
$$

ii) Instantaneous expressions

$$
\begin{aligned}
\mathbf{E}_{i}(x, t) & =\left[\mathrm{E}_{i}(\mathrm{~N}) \mathrm{c} \mathrm{c}^{\mathrm{op}}\right] \\
& =\mathbf{a}_{y} 6 \times 10^{-3} \cos \left(2 \pi \times 10^{8} t-\frac{2 \pi}{3} x\right) \quad(\mathrm{V} / \mathrm{m}) \\
\mathbf{H}_{i}(x, t) & =\mathbf{a}_{z} \frac{10+}{2 \pi} \cos \left(2 \pi \times 10^{8} t-\frac{2 \pi}{3} x\right) \quad(\mathrm{A} / \mathrm{m}) .
\end{aligned}
$$

b) For the reflected wave (a traveling wave):
i) Phasor expressions

$$
\begin{aligned}
& \mathbf{E}_{r}(x)=-\mathbf{a}_{y} 6 \times 10^{2-3} e^{j 2 \pi x / 3} \quad(\mathrm{~V} / \mathrm{m}), \\
& \mathbf{H}_{r}(x)=\frac{1}{\eta_{1}}\left(-\mathbf{a}_{x}\right) \times \mathbf{E}_{r}(x)=\mathbf{a}_{z} \frac{10^{-4}}{2 \pi} e^{j 2 \pi x / 3} \quad(\mathrm{~A} / \mathrm{m}) .
\end{aligned}
$$

ii) Instantaneous expressions

$$
\begin{aligned}
& \mathbf{E}_{r}(x, t)=\mathscr{R} \in\left[\mathbf{E}_{r}(x) e^{j \omega t}\right]=-\mathbf{a}_{y} 6 \times 10^{-3} \cos \left(2 \pi \times 10^{8} t+\frac{2 \pi}{3} x\right) \quad(\mathrm{V} / \mathrm{m}) \\
& \mathrm{H}_{r}(x, t)=\mathbf{a}_{z} \frac{10^{-4}}{2 \pi} \cos \left(2 \pi \times 10^{8} t+\frac{2 \pi}{3} x\right) \quad(\mathrm{A} / \mathrm{m})
\end{aligned}
$$

c) For the total wave (a standing wave):
i) Phasor expressions

$$
\begin{aligned}
& \mathrm{E}_{1}(x)=\mathrm{E}_{i}(x)+\mathrm{E}_{r}(x)=-\mathrm{a}_{y} j 12 \times 10^{-3} \sin \left(\frac{2 \pi}{3} x\right)-(\mathrm{y} / \mathrm{m}), \\
& \mathrm{H}_{1}(x)=\mathrm{H}_{i}(x)+\mathrm{H}_{r}(x)=\mathrm{a}_{z} \frac{10^{-4}}{\pi} \cos \left(\frac{2 \pi}{3} x\right) \quad(\mathrm{A} / \mathrm{m}) .
\end{aligned}
$$

ii) Instantaneous expressions

$$
\begin{aligned}
& \mathrm{E}_{1}(x, t)=\mathscr{R}_{e}\left[\mathbf{E}_{1}(x) e^{j \omega t}\right]=\mathbf{a}_{y} 12 \times 10^{-3} \sin \left(\frac{2 \pi}{3} x\right) \sin \left(2 \pi \times 10^{8} t\right) \quad(\mathrm{V} / \mathrm{m}) \\
& \mathbf{H}_{1}(x, t)=\mathbf{a}_{z} \frac{10^{-4}}{\pi} \cos \left(\frac{2 \pi}{3} x\right) \cos \left(2 \pi \times 10^{8} t\right) \quad(\mathrm{A} / \mathrm{m})
\end{aligned}
$$

d) The electric field vanishes at the surface of the conducting plane at $x=0$. In medium 1, the first null occurs at

$$
x=--\frac{\lambda_{1}}{2}=-\frac{\pi}{\beta_{1}}=-\frac{3}{2} \quad(\mathrm{~m}) .
$$

8-6 Oblique incidence at a plane CONDUCTING BOUNDARY

When a uniform plane wave is incident on a plane conducting surface obliquely. the behavior of the reflected wave depends on the polarization of the incident wave. In order to be specific about the direction of \mathbf{E}_{i}, we define a plane of incidence as the plane containing the vector indicating the direction of propagation of the incident wave and the normal to the boundary surface. Since an \mathbf{E}_{i} polarized in an arbitrary direction can always be decomposed into two components-one perpendicular and

Fig. 8-9 Plane wave incident obliquely on a plane conducting boundary (perpendicular polarization).
the other parallel to the plane of incidence--we consider these two cases separately. The general case is obtained by superposing the resuits of the two component cases.

8-6.1 Perpendicular Polarization \dagger

In the case of perpendicular polarization, E_{i} is perpendicular to the plane of incidence, as illustrated in Fig. 8-9. Noting that

$$
\begin{equation*}
\mathbf{a}_{n i}=a_{x} \sin \theta_{i}+a_{z} \cos \theta_{i}, \tag{8-75}
\end{equation*}
$$

where θ_{1} is the angle of incilence measured from the normal to the boundary surface, we obtain, using Eqs. (8-17) and (8-24),

$$
\begin{align*}
\mathbf{E}_{i}(x, z) & =\mathbf{a}_{y} E_{i 0} e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \tag{8-76a}\\
\mathbf{H}_{i}(x, z) & =\frac{1}{\eta_{1}}\left[\mathbf{a}_{n i} \times \mathbf{E}_{i}(x, z)\right] \\
& =\frac{E_{i U}}{\eta_{1}}\left(-\mathbf{a}_{x} \cos \theta_{i}+\mathbf{a}_{z} \sin \theta_{i}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} . \tag{8-76b}
\end{align*}
$$

For the reflected wave,

$$
\begin{equation*}
\cdots \quad a_{n r}=a_{x} \sin \theta_{r}-a_{z} \cos \theta_{r} \tag{8-77}
\end{equation*}
$$

where t_{r} is the anyle of rethection, we have

$$
\begin{equation*}
\mathbf{E}_{r}(x, z)=\mathbf{a}_{y} E_{r 0} e^{-j \beta_{i}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} . \tag{8-78}
\end{equation*}
$$

[^44]At the boundary surface, $z=0$, the total electric field intensity must vanish. Thus,

$$
\begin{aligned}
\mathbf{E}_{1}(x, 0) & =\mathbf{E}_{i}(x, 0)+\mathbf{E}_{r}(x, 0) \\
& =\mathbf{a}_{y}\left(E_{i 0} e^{-j B_{1} x \sin \theta_{i}}+E_{r 0} e^{-j \beta_{1} x \sin v_{r}}\right)=0 .
\end{aligned}
$$

In order for this relation to hold for all values of x, we must have $E_{r 0}=-E_{i 0}$ and $\theta_{r}=\theta_{i}$. The latter relation, asserting that the angle of reflection equals the angle of incidence, is referred to as Snell's law of reflection. Thus, Eq. (8-78) becomes

$$
\begin{equation*}
\mathbf{E}_{r}(x, z)=-\mathbf{a}_{y} E_{i 0} e^{-j \beta_{1}\left(x \sin \theta_{i}-z \cos \theta_{i}\right)} . \tag{8-79a}
\end{equation*}
$$

The corresponding $\mathrm{H}_{r}(x, z)$ is

$$
\begin{align*}
\mathbf{H}_{r}(x, z) & =\frac{1}{\eta_{1}}\left[\mathbf{a}_{n r} \times \mathbf{E}_{r}(x, z)\right] \\
& =\frac{E_{i 0}}{\eta_{1}}\left(-\mathbf{a}_{x} \cos \theta_{i}-\mathbf{a}_{z} \sin \theta_{i}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}-z \cos \theta_{i}\right)} \tag{8-79b}
\end{align*}
$$

The total field is obtained by adding the incident and reflected fields. From Eqs. ($8-76 a$) and ($8-79 a$) we have

$$
\begin{align*}
\mathbf{E}_{1}(x, z) & =\mathbf{E}_{i}(x, z)+\mathbf{E}_{r}(x, z) \\
& =\mathbf{a}_{y} E_{i 0}\left(e^{-j \beta_{1} z \cos \theta_{i}}-e^{j \beta_{1} z \cos \theta_{i}}\right) e^{-j \beta_{1} x \sin \theta_{i}} \\
& =-\mathbf{a}_{y} j 2 E_{i 0} \sin \left(\beta_{1} z \cos \theta_{i}\right) e^{-j \beta_{1} x \sin \theta_{i}} . \tag{8-80a}
\end{align*}
$$

Adding the resuits in Eqs. (8-76b) and (8-79b), we get

$$
\begin{aligned}
& \mathbf{H}_{1}(x, z)=-2 \frac{E_{i 0}}{\eta_{1}}\left[\mathbf{a}_{x} \cos \theta_{i} \cos \left(\beta_{1} z \cos \theta_{i}\right) e^{-j \beta_{1} x \sin \theta_{i}}\right. \\
&\left.+\mathbf{a}_{z} j \sin \theta_{i} \sin \left(\beta_{1} z \cos \theta_{i}\right) e^{-j \beta_{1} \times \sin \theta_{i}}\right]
\end{aligned}
$$

Equations ($8-80 \mathrm{a}$) and ($8-80 \mathrm{~b}$) are rather complicated expressions, but we can make the following observations about the oblique incidence of a uniform plane wave with perpendicular polarization on a plane conducting boundary:

1. In the direction (z direction) normal to the boundary, $E_{1 y}$ and $H_{1 x}$ maintain standing-wave patterns according to $\sin \beta_{1 z} z$ and $\cos \beta_{1 z} z$, respectively, where $\beta_{1 z}=\beta_{1} \cos \theta_{i}$. No average power is propagated in this direction since $E_{1 y}$ and $H_{1 \times}$ are 90° out of time phase.
2. In the direction (x direction) parallel to the boundary, $E_{1 y}$ and $H_{1 z}$ are in both time and space phase and propagate with a phase velocity

$$
u_{1 x}=\frac{\omega}{\beta_{1 x}}=\frac{\omega}{\beta_{1} \sin \theta_{i}}=\frac{u_{1}}{\sin \theta_{i}} .
$$

The wavelength \ln this direction is

$$
\lambda_{1 x}=\frac{2 \pi}{\beta_{1 x}}=\frac{\lambda_{1}}{\sin \theta_{i}}
$$

3. The propagating wave in the x direction is a nonuniform plane wave because its amplitude varies with'z.
4. Since $\mathbf{E}_{1}=0$ for all x when $\sin \left(\beta_{1} z \cos \theta_{i}\right)=0$ or when

$$
\therefore \quad \beta_{1} z \cos \theta_{i}=\frac{2 \pi}{\lambda_{1}} z \cos \theta_{i}=-m \pi, \quad m=1,2,3, \ldots,
$$

a conducting plate can be inserted at

$$
z=-\frac{m \lambda_{1}}{2 \cos 0_{i}}, \quad m=1,2,3, \ldots
$$

without changing the field pattern that exists between the conducting plate and the conducting boundary at $z=0$. A transverse electric (TE) wave ($E_{1 . x}=0$) will bounce back and forth between the conducting planes and propagate in the x direction. We have, in effect, a parallel-plate waveguide.

Example 8-8 A uniform plane wave ($\mathrm{E}_{i}, \mathbf{H}_{i}$) of an angular frequency (ω) is incident from air on a very large, perfectly conducting wall at an angle of incidence θ_{i} with perpendicular polarization. Find (a) the current induced on the wall surface, and (b) the time-average Poynting vector in medium 1.

Solution

a) The conditions of this problem are exactly those we have just discussed; hence we could use the formulas directly. Let $z=0$ be the plane representing the surface of the perfectly conducting wall, and let E_{i} be polarized in the y direction, as was shown in Fig. 8-9. At $z=0, \mathbf{E}_{1}(x, 0)=0$, and $\mathbf{H}_{1}(x, 0)$ can be obtained from Lq. (8-80b):

$$
\begin{equation*}
H_{1}(x, 0)=-\frac{L_{i 0}}{\eta_{0}}\left(a_{x} 2 \cos v_{i}\right) e^{-j p_{0, ~} \sin \theta_{i}} . \tag{8-81}
\end{equation*}
$$

Inside the perfectly conducting wall, both \mathbf{E}_{2} and \mathbf{H}_{2} must vanish. There is then a discontinuity th the magnetic field. The amount of discontinuity is equal to the surface curront. From Ey. (7-52b), we have

$$
\begin{aligned}
\mathbf{J}_{s}(x) & =\mathbf{a}_{n 2} \times \mathbf{H}_{1}(x, 0) \\
& =\left(-\mathbf{a}_{z}\right) \times\left(-\mathbf{a}_{x}\right) \frac{E_{i 0}}{n_{0}} 2 \cos \theta_{i} e^{-j \beta_{0} \times \sin \theta_{i}} \\
& =\mathbf{a}_{y} \frac{E_{i 0}}{60 \pi}\left(\cos \theta_{i}\right) e^{-j(\omega /()) x \sin \theta_{t}} .
\end{aligned}
$$

The instantaneous expression for the surface current is

$$
\begin{equation*}
\mathrm{J}_{s}(x, t)=\mathbf{a}_{y} \frac{E_{i 0}}{60 \pi} \cos \theta_{i} \cos \omega\left(t-\frac{x}{c} \sin \theta_{i}\right) \quad(\mathrm{A} / \mathrm{m}) . \tag{8-82}
\end{equation*}
$$

It is this induced current on the wall surface that gives rise to the reflected wave in medium 1 and cancels the incident wave in the conducting wall.
b) The time-average Poynting vector in medium 1 is found by using Eqs. (8-80a) and ($8-80 b$) in Eq. (8-69). Since $E_{1 y}$ and $H_{1 x}$ are in time quadrature. $\mathscr{P}_{\mathrm{av}}$ will have a nonvanishing x component.

$$
\begin{align*}
\mathscr{P}_{\mathrm{av}_{1}} & =\frac{1}{2} \mathscr{R} \in\left[\mathbf{E}_{1}(x, z) \times \mathbf{H}_{1}^{*}(x, z)\right] \\
& =\mathbf{a}_{3} \frac{E_{i 0}^{2}}{\eta_{1}} \sin O_{i} \sin ^{2} \beta_{1 z} z, \tag{8-83}
\end{align*}
$$

where $\beta_{1 z}=\beta_{1} \cos 0_{i}$. The time-average Poynting vector in medium 2 (a•perfect conductor) is, of course, zero.

8-6.2 Parallel Polarization ${ }^{\dagger}$

We now consider the case of E_{i} lying in the phane of incidence while a uniform plane wave impinges obliquely on a perfectly conducting plane boundary, as depicted in Fig. 8-10. The unit vectors $a_{n i}$ and $\mathbf{a}_{n r}$, representing, respectively, the directions of propagation of the incident and reffected waves, remain the same as those given in

Fig. 8-10 Plane wave incident obliquely on a plane conducting boundary (parallel polarization).

[^45] whereas \mathbf{H}_{i} and \mathbf{H}_{r} hdve only a y component. We have, for the incident wave,
\[

$$
\begin{align*}
& \mathbf{E}_{l}(x, z)=E_{i 0}\left(\mathbf{a}_{x} \cos \theta_{i}-\mathbf{a}_{i} \sin \theta_{i}\right) e^{-j b_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)}, \tag{8-82}\\
& \mathbf{H}_{i}(x, z)=\mathbf{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} . \tag{8-84a}
\end{align*}
$$
\]

The reflected wave $\left(\mathbf{E}_{r}, \mathrm{H}_{r}\right)$ have the following phasor expressions:

$$
\begin{align*}
& \mathbf{E}_{r}(x, \mathbf{z})=E_{r 0}\left(\mathbf{a}_{x} \cos \theta_{r}+\mathbf{a}_{2} \sin \theta_{r}\right) e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)}, \tag{8-85a}\\
& \mathbf{H}_{r}(x, z)=-\mathbf{a}_{r} \frac{E_{r 0}}{\eta_{1}} e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} . \tag{8-85b}
\end{align*}
$$

At the surface of the perfect conductor, $z=0$, the tangential component (he x component) of the total electric field intensity, must vanish for all x, or $E_{i . x}(x, 0)+$ $E_{r, x}(x, 0)=0$. From Eqs. (8...84a) and (8.85a), we have

$$
\left(E_{i 0} \cos \theta_{i}\right) e^{-j p_{1} x \sin \theta_{i}}+\left(E_{r 0} \cos \theta_{r}\right) e^{-j \beta_{1} x \sin \theta_{r}}=0,
$$

which requires $E_{r 0}=-I_{i 0}$ and $\theta_{r}=0_{i}$. The total electric field intensity in medium 1 is the sum of Eqs. $(8+84 i)$ and $(8-85 a)$:

$$
\begin{aligned}
\mathbf{E}_{1}(x, z)= & \mathbf{E}_{i}(x, z)+\mathbf{E}_{r}(x, z) \\
= & \mathbf{a}_{x} E_{i 0} \cos \theta_{i}\left(e^{-j \beta_{1} z \cos \theta_{i}}-e^{j \beta_{1} z \cos \theta_{i}}\right) e^{-j \beta_{1} x \sin \theta_{i}} \\
& -a_{z} E_{i 0} \sin \theta_{i}\left(e^{-j \beta_{1} z \cos \theta_{i}}+e^{j \beta_{1} z \cos \theta_{i}}\right) e^{-j \beta_{1} x \sin \theta_{1}}
\end{aligned}
$$

or

$$
\begin{align*}
\mathrm{E}_{1}(x, z)=-2 E_{i 0} & {\left[\mathbf{a}_{x} j \cos \theta_{i} \sin \left(\beta_{1} z \cos \theta_{i}\right)\right.} \\
& \left.+\mathbf{a}_{z} \sin \theta_{i} \cos \left(\beta_{1} z \cos \theta_{i}\right)\right] e^{-j \beta_{1} x \sin \theta_{1}} . \tag{8-86a}
\end{align*}
$$

Adding Eqs. $(8-84 b)$ and $(8-85$ b), we obtain the total magnetic field intensity in medium 1.

$$
\begin{align*}
\mathbf{H}_{1}(x z) & =\mathbf{H}_{i}(x, z)+\mathbf{H}_{r}(x, z) \\
& =\mathbf{a}_{y} 2 \frac{E_{i 0}}{\eta_{1}} \cos \left(\beta_{1} z \cos \theta_{i}\right) e^{-j \beta_{1 x \sin o_{i}}} . \tag{8-86~b}
\end{align*}
$$

The interpretation of Eqs. ($8-86 a$) and ($8-86 b$) is similar to that of Eqs. (8-80a) and ($8-80 b$) for the perpendicular-polarization case, except that $\mathbf{E}_{8}(x, z)$, instead of $\mathrm{H}_{1}(x, z)$, now has both an x and a a emponent. We conclude, herefore:

1. In the direction (z direction) normal to the boundary, $E_{1 x}$ and $H_{1 y}$ maintain standing-wave patte:ns according to $\sin \beta_{1 z} z$ and $\cos \beta_{1 z} z$, respectively, where $\beta_{1 z}=\beta_{1} \cos \theta_{i}$. No average power is propagated in this direction, since $E_{1 x}$ and $H_{1 y}$ are 90° out of time phase.
2. In the x direction parallel to the boundary, $E_{1=}$ and $H_{1 y}$ are in both time and space phase and propagate with a phase velocity $u_{1 x}=u_{1} / \sin \theta_{i}$, which is the same as that in the perpendicular polarization.
3. The propagating wave in the x direction is a nonuniform plane wave.
4. The insertion of a conducting plate at $z=-m \lambda_{1} / 2 \cos \theta_{i}(m=1,2,3, \ldots)$ where $E_{1 x}=0$ for all x will not affect the field pattern that exists between the conducting plate and the conducting boundary at $z=0$, which form a parallel-plate waveguide. A transverse magnetic (TM) wave ($\mathrm{H}_{1 x}=0$) will propagate in the x direction.

8-7 NORMAL INCIDENCE AT A PLANE DIELECTRIC BOUNDARY

When an electromagnetic wave is incident on the surface of a dielectric medium that has an intrinsic impedance different from that of the medium in which the wave is originated. part of the incident power is reflected and part is transmitted. We may think of the situation as being like an impedance mismatch in circuits. The case of wave incidence on a perfectly conducting boundary discussed in the two previous sections is like terminating a generator that has a certain internal impedance with a short circuit; no power is transmitted into the conducting region.

As before, we will consider separately, the two cases of the normal incidence and the oblique incidence of a uniform plane wave on a plane dielectric: medium. Both media are assumed to be dissipationless ($\sigma_{1}=\sigma_{2}=0$). We will discuss the wave behavior for normal incidence in this section. The case of oblique incidence will be taken up in Section 8-8.

Consider the situation in Fig. $8-11$ where the incident wave travels in the $+z$ direction and the boundary surface is the plane $z=0$. The incident electric and

Fig. 8-11 Plane wave incident normally on a plane dielectric boundary.
: time and jich is the
...) where onducting late wave: direction.

- dium that ce wave is !. We may he case of ? previous ace with a
 dene ad ium. ...th the wave sce will be In the $+z$ sctric and

$$
\begin{equation*}
\mathbf{E}_{i}(z)=\mathbf{a}_{x} E_{i 0} e^{-j \beta_{1} z} \tag{8-87a}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{H}_{i}(z)=\mathrm{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z} \tag{8-87b}
\end{equation*}
$$

These are the same expressions as those given in Eqs. $(8-70$ a) and $(8-70 b)$. Note that z is negative in medlum 1 .

Because of the ntedium discontinuity at $z=0$, the incident wave is partly reflected back into medium and partly transmitted into medium 2 . We have
a) For the reflected wave $\left(\mathbf{E}_{r}, \mathbf{H}_{r}\right)$:

$$
\begin{align*}
& \mathbf{E}_{r}(z)=\mathbf{a}_{\mathbf{r}} E_{r 0} e^{j \beta_{1} z} \tag{8-88a}\\
& \vdots \tag{8-88b}\\
& \mathbf{H}_{r}(z)=\left(-\mathbf{a}_{z}\right) \times \frac{1}{\eta_{1}} \mathbf{E}_{r}(z)=-\mathbf{a}_{y} \frac{E_{r 0}}{\eta_{1}} e^{j \beta_{1} z}
\end{align*}
$$

b) For the transmitted wave $\left(\mathbf{E}_{t}, \mathbf{H}_{t}\right)$:

$$
\begin{align*}
& \mathbf{E}_{t}(z)=\mathbf{a}_{x} E_{10} e^{-j \beta_{2} z} \tag{8-89a}\\
& \mathbf{H}_{t}(z)=\mathbf{a}_{2} \times \frac{1}{\eta_{2}} \mathbf{E}_{t}(z)=\mathbf{a}_{y} \frac{E_{t 0}}{\eta_{2}} e^{-j \beta_{2} z} \tag{8-89b}
\end{align*}
$$

where E_{10} is the magnitude of E_{t} at $z=0$, and β_{2} and η_{2} are the phase constant and the intrinsid impedance of medium 2 respectively.

Note that the directions of the arrows for \mathbf{E}_{r} and \mathbf{E}_{t} in Fig:8-11 are arbitrarily drawn, because $E_{r 0}$ and $E_{t d}$ may, themselves, be positive or negative, depending on the relative magnitudes of the constitutive parameters of the two media.

Two equations are needed for determining the two unknown magnitudes $E_{r 0}$ and $E_{t 0}$. These equations are supplied by the boundary conditions that must be satisfied by the electric and magnetic fields. At the dielectric interface $z=0$, the tangential components (the x components) of the electric and magnetic field intensities must be continuous. We have
and

$$
\begin{equation*}
\mathbf{E}_{i}(0)+\mathbf{E}_{r}(0)=\mathbf{E}_{l}(0) \quad \text { or } \quad E_{i 0}+E_{r 0}=E_{t 0} \tag{8-90a}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{H}_{i}(0)+\mathbf{H}_{r}(0)=\dot{\mathbf{H}}_{t}(0) \quad \text { or } \quad \frac{1}{\eta_{1}}\left(E_{\mathrm{i} 0}-E_{r 0}\right)=\frac{E_{t 0}}{\eta_{2}} . \tag{8-90b}
\end{equation*}
$$

Solving Eqs. (8 $-90 a$) and (8-90b), we obtain

$$
\begin{align*}
& E_{r 0}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} E_{i 0} \tag{8-91}\\
& E_{t 0}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}} E_{i 0} \tag{8-92}
\end{align*}
$$

The ratios $E_{r 0} / E_{i 0}$ and $E_{t 0} / E_{i 0}$ are called, respectively, reflection coefficient and transmission coefficient. In terms of the intrinsic impedances, they are

$$
\begin{equation*}
\Gamma=\frac{E_{r 0}}{E_{i 0}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} \quad \text { (Dimensionless) } \tag{8-93}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau=\frac{E_{t 0}}{E_{i 0}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}} \quad \text { (Dimensionless). } \tag{8-94}
\end{equation*}
$$

Note that the reflection coefficient Γ in Eq. (8-93) can be positive or negative, depending on whether η_{2} is greater or less than η_{1}. The transmission coefficient τ, however, is always positive. The definitions for Γ and τ in Eqs. (8-93) and (8-94) apply even when the media are dissipative: that is. even when η_{1} and/or η_{2} are complex. Thus Γ and τ may themselves he complex in the genemal case. A complex Γ (or τ) simply means that a phase shift is introduced an the interface upon rellection (or transmission). Reflection and transmission coefficients are related by the following equation:

$$
\begin{equation*}
1+\Gamma=\tau \quad \text { (Dimensionless) } \tag{8-95}
\end{equation*}
$$

If medium 2 is a perfect conductor, $\eta_{2}=0$, Eqs. (8-93) and (8-94) yield $\Gamma=-1$ and $\tau=0$. Consequently, $E_{r 0}=-E_{i 0}$, and $E_{10}=0$. The incident wave will be totally reflected, and a standing wave will be produced in medium 1. The standing wave will have zero and maximum points, as discussed in Section 8-5.

If medium 2 is not a perfect conductor, partial reflection will result. The total electric field in medium 1 can be written as

$$
\begin{aligned}
\mathbf{E}_{1}(z) & =\mathbf{E}_{i}(z)+\mathbf{E}_{r}(z)=\mathbf{a}_{x} E_{i 0}\left(e^{-j \beta_{1} z}+\Gamma e^{j \beta_{1} z}\right) \\
& =\mathbf{a}_{x} E_{i 0}\left[(1+\Gamma) e^{-j \beta_{1 z}}+\Gamma\left(e^{j \beta_{1} z}-e^{-j \beta_{1 z}}\right)\right] \\
& =\mathbf{a}_{x} E_{i 0}\left[(1+\Gamma) e^{-j \beta_{1 z} z}+\Gamma\left(j 2 \sin \beta_{1 z} z\right)\right]
\end{aligned}
$$

or, in view of Eq. (8-95),

$$
\begin{equation*}
\mathbf{E}_{1}(z)=\mathbf{a}_{x} E_{i 0}\left[\tau e^{-j \beta_{1} z}+\Gamma\left(j 2 \sin \beta_{1} z\right)\right] . \tag{8-96}
\end{equation*}
$$

We see in Eq. (8-96) that $\mathrm{E}_{1}(z)$ is composed of two parts: a traveling wave with an amplitude $\tau \mathrm{E}_{i 0}$, and a standing wave with an amplitude $2 \Gamma \mathrm{E}_{i 0}$. Because of the existence of the traveling wave, $\mathbf{E}_{1}(z)$ does not go to zero at fixed distances from the interface; it merely has locations of maximum and minimum values.

The locations of maximum and minimum $\left|\mathrm{E}_{1}(z)\right|$ are conveniently found by rewriting $\mathrm{E}_{1}(z)$ as

$$
\begin{equation*}
\mathbf{E}_{1}(z)=\mathbf{a}_{x} E_{i 0} e^{-j \beta i z}\left(1+\Gamma e^{j z \beta_{1} z}\right) . \tag{8-97}
\end{equation*}
$$ Γ can be positive or negative. Consider the following two cases.

1. $\Gamma>0\left(\eta_{2}>\eta_{1}\right)$.

The maximum value of $\left|\mathbf{E}_{1}(z)\right|$ is $E_{i 0}(1+\Gamma)$, which occurs when $2 \beta_{1} z_{\max }=$ $-2 n \pi(n=0,1,2, \ldots)$, or at

$$
\begin{equation*}
z_{\max }=-\frac{n \pi}{\beta_{1}}=-\frac{n \lambda_{1}}{2}, \quad \therefore \quad n=0,1,2, \ldots \tag{8-98}
\end{equation*}
$$

The minimum yalue of $\left|\mathbf{E}_{1}(z)\right|$ is $E_{i 0}(1-\Gamma)$, which occurs when $2 \beta_{1} z_{\text {min }}=$ $-(2 n+1) \pi$, or at

$$
\begin{equation*}
z_{\min }=-\frac{(2 n+1) \pi}{2 \beta_{1}}=-\frac{(2 n+1) \lambda_{1}}{4}, \quad n=0,1,2, \ldots \tag{8-94}
\end{equation*}
$$

2. $\Gamma<0\left(\eta_{2}<\eta_{1}\right)$.

The maximum value of $\left|\mathbf{E}_{1}(z)\right|$ is $E_{i 0}(1-\Gamma)$, which occurs at $z_{\text {inin }}$ given in Eq. (8-99); and the minimum value of $\left|\mathbf{E}_{1}(\sigma)\right|$ is $E_{i 0}(1+\Gamma)$, which occurs at $z_{\text {max }}$ given in Eqi. (8-98). In other words, the locations for $\left|E_{1}(z)\right|_{\text {max }}$ and $\left|E_{1}(z)\right|_{\text {min }}$ when $\Gamma>0$ and when $\Gamma<0$ are interchanged.
The ratio of the maximum value to the minimum value of the electric field intensity of a standing wave is called the standing-wave ratio, S.

$$
\begin{equation*}
S=\frac{|E|_{\max }}{|E|_{\min }}=\frac{1+|\Gamma|}{1-|\Gamma|} \quad \text { (Dimensionless) } \tag{8-100}
\end{equation*}
$$

An inverse relation of Eq. $(8-100)$ is

$$
\begin{equation*}
|\Gamma|=\frac{S-1}{S+1} \quad \text { (Dimensionless) } \tag{8-101}
\end{equation*}
$$

While the value of Γ ranges from -1 to +1 , the value of S ranges from 1 to ∞. It is customary to express S on a logaritryic seate. The standing-wave ratio in decibels is $20 \log _{10} S$. Thus, $S=2$ corresponds 0 a standing-wave ratio of $20 \log _{10} 2=6.02 \mathrm{~dB}$ and $|\Gamma|=(2-1) /(2+1)=\frac{1}{3}$. A standing-ivave ratio of 2 dB is equivalent to $S=$ 1.26 and $|\Gamma|=0.115$.

The magnetic field intensity in medium 1 is obtained by combining $\boldsymbol{H}_{i}(z)$ and $\mathbf{H}_{r}(z)$ in Eqs. (8-87b) and (8-88b), respectively:

$$
\begin{align*}
\mathbf{H}_{1}(z) & =\mathbf{a}_{y} \frac{E_{i 0}}{\eta_{1}}\left(e^{-j \beta_{1} z}-\Gamma e^{j \beta_{1 z} z}\right) \\
& =\mathbf{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z}\left(1-\Gamma e^{i 2 \beta_{1 z}}\right) \tag{8-102}
\end{align*}
$$

This should be compared with $\mathrm{E}_{1}(z)$ in Eq. (8-97). In a dissipationless medium, Γ is real; and $\left|\mathrm{H}_{1}(z)\right|$ will be a minimum at locations where $\left|\mathrm{E}_{1}(z)\right|$ is a maximum, and vice versa.

In medium 2, $\left(\mathbf{E}_{1}, \mathbf{H}_{2}\right)$ constitute the transmitted wave propagating in $+z$ direction. From Eqs. (8-89a) and (8-94), we have

$$
\begin{equation*}
\mathbf{E}_{t}(z)=\mathbf{a}_{x} \tau E_{i 0} e^{-j \rho_{2} z} . \tag{8-103a}
\end{equation*}
$$

And, from Eqs. (8-89b) and (8-94),

$$
\begin{equation*}
\mathbf{H}_{\mathrm{t}}(\mathrm{z})=\mathbf{a}_{\mathrm{y}} \frac{\tau}{\eta_{2}} E_{i 0} e^{-j \rho_{2 z} z} . \tag{8-103b}
\end{equation*}
$$

Example 8-9 A uniform plane wàve in a lossless medium with intrinsic impedance η_{1} is incident normally onto another lossless medium with intrinsic impedance η_{2} through a plane boundary. Obtain the expressions for the time-average power densities in both media.

Sohthom: Equation (8-(1)) provides the formula for computing the time-average power density, or time-average Poynting vector:

$$
\mathscr{P _ { \mathrm { av } }}=\frac{1}{2} \mathscr{R} e\left(\mathbf{E} \times \mathrm{H}^{*}\right) .
$$

In medium 1, we use Eqs. (8-97) and (8-102),

$$
\begin{align*}
\left(\mathscr{P}_{\mathrm{av}}\right)_{1} & =\mathbf{a}_{z} \frac{E_{i 0}^{2}}{2 \eta_{1}} \mathscr{R e}\left[\left(1+\Gamma e^{j 2 \beta_{1} z}\right)\left(1-\Gamma e^{-j 2 \beta_{1} z}\right)\right] \\
& =\mathbf{a}_{z} \frac{E_{i 0}^{2}}{2 \eta_{1}} \mathscr{R e}\left[\left(1-\Gamma^{2}\right)+\Gamma\left(e^{j 2 \beta_{1} z}-e^{-j 2 \beta_{1} z}\right)\right] \\
& =\mathbf{a}_{z} \frac{E_{i 0}^{2}}{2 \eta_{1}} \mathscr{R e}\left[\left(1-\Gamma^{2}\right)+j 2 \Gamma \sin 2 \beta_{1} z\right] \\
& =\mathbf{a}_{z} \frac{E_{i 0}^{2}}{2 \eta_{1}}\left(1-\Gamma^{2}\right), \tag{8-104}
\end{align*}
$$

where Γ is a real number because both media are lossless.
In medium 2, we use Eqs. (8-103a) and ($8-103$ b) to obtain

$$
\begin{equation*}
\left(\mathscr{P}_{\mathrm{av}}\right)_{2}=\mathrm{a}_{\mathrm{z}} \frac{E_{i 0}^{2}}{2 \eta_{2}} \tau^{2} \tag{8-105}
\end{equation*}
$$

Since we are dealing with lossless media, the power flow in medium 1 must equal that in medium 2 ; that is,

$$
\left(\mathscr{P}_{\mathrm{av}}\right)_{1}=\left(\mathscr{P}_{\mathrm{av}}\right)_{2},
$$

That Eq. (8-106) is true can be readily verified by using Eqs. (8-93) and (8-94).

8-8 NORMAL INCIDENCE AT MULTIPLE DIELECTRIC INTERFACES

In certain practical situations a wave may be incident on severai layers of dielectric. media with different constitutive parameters. One such situation is the use of a dielectric coating on glass in order to reduce glare from sunlight. Another is a radome, which is a dome-shaped enclosure designed not only to protect radar installations from inclement weather but to permit the propagation of electromagnetic waves through the enclosure with as little reflection as possible. In both situations, determining the proper dielectric material and its thickness is an important design problem.

We now consider the three-region situation depicted in Fig. 8-12. A uniform plane wave traveling in the $+z$ direction in medium. $1\left(\epsilon_{1}, \mu_{1}\right)$ impinges normally at a plane boundary with medium $2\left(\epsilon_{2}, \mu_{2}\right)$, at $z=0$. Medium 2 has a finite thickness and interfaces with medium $3\left(\epsilon_{3}, \mu_{3}\right)$ at $z=d$. Reflection occurs at both $z=0$ and $z=d$. Assuming an x-polarized incident field, the total electric field intensity in medium 1 can always be written as the sum of the incident component $\mathbf{a}_{x} E_{i 0} e^{-j \beta_{1}=}$ and

Fig. 8-12 Normal incidence at multiple dielectric interfaces.
a reflected component $a_{x} E_{r o} e^{j \beta_{12}}$:

$$
\begin{equation*}
\mathbf{E}_{1}=\mathbf{a}_{x}\left(E_{i 0} e^{-j p_{1 z}}+E_{r 0} e^{j \beta_{12} z}\right) . \tag{8-107a}
\end{equation*}
$$

However, owing to the existence of a second discontinuity at $z^{\prime \prime}=d, E_{r 0}$ is no longer related to $E_{i 0}$ by Eq. (8-91) or Eq. (8-93). Within medium 2 parts of waves bounce back and forth between the two bounding surfaces, some penetrating into media 1 and 3. The reflected field in medium 1 is the sum of (a) the field reflected from the interface at $z=0$ as the incident wave impinges on it; (b) the field transmitted back into medium 1 from medium 2 after a first reflection from the interface at $z=d$; (c) the field transmitted back into medium 1 from medium 2 after a second reflection at $z=d$; and so on. The total reflected wave is, in fact, the resultant of the initial

The electric and magnetic fields in region 2 can also be represented by combinations of forward and backward waves:

$$
\begin{align*}
\mathbf{E}_{2} & =\mathbf{a}_{x}\left(E_{2}^{+} e^{-j \beta_{2} z}+E_{2}^{-} e^{j \beta_{2} z}\right) \tag{8-108a}\\
\mathbf{H}_{2} & =\mathbf{a}_{y} \frac{1}{\eta_{2}}\left(E_{2}^{+} e^{-j \beta_{2} z}-E_{2}^{-} e^{j \beta_{2} z}\right) \tag{8-108b}
\end{align*}
$$

In region 3 only a forward wave traveling in $+z$ direction exists. Thus,

$$
\begin{align*}
\mathbf{E}_{3} & =\mathbf{a}_{x} E_{3}^{+} e^{-j \beta_{3} z} \tag{8-109a}\\
\mathbf{H}_{3} & =\mathbf{a}_{y} \frac{E_{3}^{+}}{\eta_{3}} e^{-j \beta_{3} z} \tag{8-109b}
\end{align*}
$$

On the right side of Eqs. (8-107a) through (8-109b), there are a total of four unknown amplitudes: $E_{r 0}, E_{2}^{+}, E_{2}^{-}$, and E_{3}^{+}. They can be determined by solving the four boundary-condition equations reguired by the continuity of the tangential components of the electric and magnetic fields.

$$
\text { At } z=0:
$$

$$
\begin{align*}
\mathbf{E}_{1}(0) & =\mathbf{E}_{2}(0) \tag{8-110a}\\
\mathbf{H}_{1}(0) & =\mathbf{H}_{2}(0)
\end{align*}
$$

8-8.1 Wave Impedance of Total Field

We define the wave impedance of the total field at any plane parallel to the plane. boundary as the ratio of the total electric field intensity to the total magnetic field intensity. With a z-dependent uniform plane wave as was shown in Fig. 8-12, we write, in general,

$$
\begin{equation*}
Z(z)=\frac{\text { Total } E_{x}(z)}{\text { Total } H_{y}(z)} \quad(\Omega) \text {. } \tag{8-111}
\end{equation*}
$$

For a single wave propagating in the $+z$ direction in an unbounded medium, the wave impedance equals the intrinsic impedance, η, of the medium; for a single wave traveling in the $-z$ direction, it is $-\eta$ for all z.

In the case of a uniform plane wave incident from medium 1 normally on a plane boundary with an infinite medium 2, such as that illustrated in Fig. 8-11 and discussed in Section 8-7, the magnitudes of the total electric and magnetic field intensities in medium 1 are, from Eqs. (8-97) and (8-102),

$$
\begin{align*}
& E_{1 x}(z)=E_{i 0}\left(e^{-j \beta_{1} z}+\Gamma e^{j \beta_{1} z}\right), \tag{8-111a}\\
& H_{1 y}(z)=\frac{E_{i 0}}{\eta_{1}}\left(e^{-j \beta_{1} z}-\Gamma e^{j \beta_{1} z}\right) . \tag{8-111b}
\end{align*}
$$

Their ratio defines the wave impedance of the total field in medium 1 at a distance z from the boundary plane

$$
\begin{equation*}
Z_{1}(z)=\frac{E_{1 x}(z)}{H_{1 y}(z)}=\eta_{1} \frac{e^{-j \beta_{1 z} z}+\Gamma e^{j \beta_{1} z}}{e^{-j \beta_{1 z}}-\Gamma e^{j \beta_{1 z} z}}, \tag{8-112}
\end{equation*}
$$

which is obviously a function op z.
At a distance $z=-\ell$ to the left of the boundary plane, \cdot

$$
\begin{equation*}
Z_{1}(-\ell)=\frac{E_{1 x}(-\ell)}{H_{1 y}(-\ell)}=\eta_{1} \frac{e^{j \beta_{1} \ell}+\Gamma e^{-j \beta_{1} \ell}}{e^{j \beta_{1} \ell}-\Gamma e^{-j \beta_{1} \ell}} . \tag{8-113}
\end{equation*}
$$

Using the definition of $\Gamma=\left(\eta_{2}-\eta_{1}\right) /\left(\eta_{2}+\eta_{1}\right)$ in Eq. $(8-113)$, we obtain

$$
\begin{equation*}
Z_{1}(-\ell)=\eta_{1} \frac{\eta_{2} \cos \beta_{1} \ell+j \eta_{1} \sin \beta_{1} \ell}{\eta_{1} \cos \beta_{1} \ell+j \eta_{2} \sin \cdot \beta_{1} \ell} \tag{8-114}
\end{equation*}
$$

which correctly reduces to η_{1} when $\eta_{2}=\eta_{1}$. In that case, there is no discontinuity at $z=0$; hence there is no reflected wave and the total-field wave impodance is the same as the intrinsic impedance of the medium.

When we study transmission lines in the next chapter, we will find that Eqs. $(8-113)$ and $(8-114)$ are similar to the formulas for the input impedance of a transmission line of length ℓ that has a characteristic impedance η_{1} and terminates in an impedance η_{2}. There is a close similarity between the behavior of the propagation of uniform plane waves at normal incidence and the behavior of transmission lines.

If the plane boundary is perfectly conducting, $\eta_{2}=0$ and $\Gamma=-1$, and Eq. ($8-114$) becomes

$$
\begin{equation*}
Z_{1}(-\ell)=j \eta_{1} \tan \beta_{1} \ell \tag{8-115}
\end{equation*}
$$

which is the same as the input impedance of a transmission line of length 6 that has a characteristic impedance η_{1} and ferminates in a short circuit.

8-8.2 Impedance Transformation with Multiple Dielectrics

The concept of total-field wave impedance is very useful in solving problems with multiple dielectric interfaces such as the situation shown in Fig. 8-12. The total field in medium 2 is the result of multiple reflections of the two boundary planes $z=0$ and $z=d$; but it can be grouped into a wave traveling in the $+z$ direction and another traveling in the $-z$ direction. The wave impedance of the total field in medium 2 at the left-hand interface $z=0$ can be found from the right side of Eq. ($8-114$) by replacing η_{2} by η_{3}, η_{1} by η_{2}, β_{1} by β_{2}, and ℓ by d. Thus,

$$
\begin{equation*}
Z_{2}(0)=\eta_{2} \frac{\eta_{3} \cos \beta_{2} d+j \eta_{2} \sin \beta_{2} d}{\eta_{2} \cos \beta_{2} d+j \eta_{3} \sin \beta_{2} d} \tag{8-116}
\end{equation*}
$$

As far as the wave in medium 1 is concerned, it encounters a discontinuity at $z=0$ and the discontinuity can be characterized by an infinite medium with an intrinsic impedance $Z_{2}(0)$ as given in Eq. (8-116). The effective reflection coefficient at $z=0$ for the incident wave in medium 1 is

$$
\begin{equation*}
\Gamma_{0}=\frac{E_{r 0}}{E_{10}}=-\frac{H_{r 0}}{I I_{10}}=\frac{Z_{2}(0)-\eta_{1}}{Z_{2}(0)+\eta_{1}} \tag{8-117}
\end{equation*}
$$

We note that Γ_{0} differs from Γ only in that η_{2} has been replaced by $Z_{2}(0)$. Hence the insertion of a dielectric layer of thickness d and intrinsic impedance η_{2} in front of medium 3, which has intrinsic impedance η_{3}, has the effect of transforming η_{3} to $Z_{2}(0)$. Given η_{1} and η_{3}, Γ_{0} can be adjusted by suitable choices of η_{2} and d.

Once Γ_{0} has been found from Eq. (8-117), $E_{r 0}$ of the reflected wave in medium 1 can be calculated: $E_{r 0}=\Gamma_{0} E_{i 0}$. In many applications Γ_{0} and $E_{r 0}$ are the only quantities of interest; hence this impedance-transformation approach is conceptually simple and yields the desired answers in a direct manner. If the fields E_{2}^{+}, E_{2}^{-}and
ontinuity the is the.
hat Eqs. ra transles in an pagation on lines. and Eq. that has
ems .h
The - - 71
ry p. s.s
ction and 1 field in de of Eq.
$(8 \cdots 116)$
innity at will an oeffcient
(8-117)
). Hence
i in front
ing ., 10
: me . a the only ceptually , E_{2}^{-}and
E_{t} in media 2 and 3 are also desired, they tan be determined from the boundary conditions at $z=0$ and $z=d$ (see Problem P.8-23).

Example 8-10 A dielectric layer of thickness d and intrinsic impedance η_{2} is placed between media 1 and 3 having intrinsic impedances η_{1} and η_{3} respectively. Determine d and η_{2} such that no reflection occurs wheh a uniform plane wave in medium 1 impinges normally on the interface with medium 2.

Solution: With the dielectric layer interposed between media 1 and 3 as shown in Fig. 8-12, the condition of no reflectionat interface $z=0$ requires $\Gamma_{0}=0$, or $Z_{2}(0)=$ η_{1}. From Eq. $(8-116)$ we have

$$
\begin{equation*}
\eta_{2}\left(\eta_{3}^{3} \cos \beta_{2} \ddot{d}+j \eta_{2} \sin \beta_{2} d\right)=\eta_{1}\left(\eta_{2} \cos \beta_{2} d+j \eta_{3} \sin \beta_{2} d\right) . \tag{8-118}
\end{equation*}
$$

Equating the real and imaginary parts scparately, we require

$$
\begin{equation*}
\eta_{3} \cos \beta_{2} d=\eta_{1} \cos \beta_{2} d \tag{8-119}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{2}^{2} \sin \beta_{2} d=\eta_{1} \eta_{3} \sin \beta_{2} d . \tag{8-120}
\end{equation*}
$$

Equation (8-119) is satisfied if either
or
which implies that

$$
\begin{equation*}
\cos \beta_{2} d=0 \tag{8-122}
\end{equation*}
$$

$$
\begin{align*}
\beta_{2} d & =(2 n+1) \frac{\pi}{2} \\
d & =(2 n+1)^{\lambda_{3}}, \quad n=0,1,2 \ldots \tag{3-122a}
\end{align*}
$$

$$
\begin{equation*}
\eta_{3}=\eta_{1} \tag{8-121}
\end{equation*}
$$

(Wa the one hamb, if comdition (8 121) holds, Eq. (8 - 120) can be satisfied when cither (a) $\eta_{2}=\eta_{3}=\eta_{1}$, which is the trivial case of no discontinuities at all, or (b) $\sin \beta_{2} d=0$, or $d=h \lambda_{2} / 2$.

On the other hadhd, if relation ($8-122$) or $(8-122 \mathrm{a})$ holds, $\sin \beta_{2} d$ does not vanish, and Eq. $(8-120)$ can be satisfied when $\eta_{2}=\sqrt{\eta_{1} \eta_{3}}$. We have then two possibilities for the condition of no reflection.

1. When $\eta_{3}=\eta_{\mathrm{i}}$, we require

$$
d=n \frac{\lambda_{2}}{2!}, \quad n=0,1,2, \ldots
$$

that is, the thickness of the dielectric layer be a multiple of a half wavelength in the dielectric at the operating frequency. Such a dielectric layer is referred to as a half-wave dielectric window. Since $\lambda_{2}=u_{p 2} / f=1 / f \sqrt{\mu_{2} \epsilon_{2}}$, where f is the operating frequency, a half-wave dielectric window is a narrow-band device.
2. When $\eta_{3} \neq \eta_{1}$, we require

$$
\eta_{2}=\sqrt{\eta_{1} \eta_{3}}
$$

and

$$
d=(2 n+1) \frac{\lambda_{2}}{4}, \quad n=0,1,2, \ldots
$$

When media 1 and 3 are different, η_{2} should be the geometric mean of η_{1} and η_{3}, and d should be an odd multiple of a quarter wavelength in the dielectric layer at the operating frequency in order to eliminate reflection. Under these conditions the dielectric layer (medium 2) acts like a quarter-wave impedance transformer. We will refer to this term again when we study analogous trans-mission-line problems in Chapter 9.

8-9 Oblique incidence at a plane חIEI-CTR:C BOUNDARY

We now consider the case of a plane wave that is incident obliquely at an arbitrary angle of incidence θ_{i} on a plane interface between two dielectrie-media. The media are assumed to be lossless and to have different constitutive parameters $\left(\epsilon_{1}, \mu_{1}\right)$ and $\left(\epsilon_{2}, \mu_{2}\right)$, as indicated in Fig. 8-13. Because of the medium's discontinuity at the interface, a part of the incident wave is reflected and a part is transmitted. Lines $A O, O^{\prime} A^{\prime}$, and $O^{\prime} B$ are, respectively, the intersections of the wavefronts (surfaces of constant phase) of the incident, reflected, and transmitted waves with the plane of incidence. Since both the incident and the reflected waves propagate in medium 1 with the same phase velocity $u_{p 1}$, the distances $\overline{O A}{ }^{\prime}$ and $\overline{A O^{\prime}}$ must be equal. Thus, $\overline{O O}^{\prime} \sin \theta_{r}=\overline{O O^{\prime}} \sin \theta_{i}$

Fig. 8-13 Uniform plane wave incident obliquely on a plane dielectric boundary.
of η_{1} and dielectric der these mpedance ous trans
arbitrary he p-tia 1. $411 \ldots \mathrm{~d}$ ity: e ied. l.mnes urfaces of \geq plane of nedium 1 . Thus.

Equation (8-123) assures us that the angle of reflection is equal to the angle of incidence, which is Snell's law of reflection.

In medium 2, the time it takes for the transmitted wave to travel from O to B equals the time for the incident wave to travel from A to O^{\prime}. We have

$$
\begin{aligned}
& \frac{\overline{O B}}{u_{p 2}}=\frac{\overline{A O^{\prime}}}{u_{p 1}} \\
& \overline{O B} \\
& \overline{A O^{\prime}}=\frac{\overline{O O^{\prime}} \sin O_{1}}{\overline{O O^{\prime}} \sin \theta_{i}}=\frac{u_{p 2}}{u_{p 1}},
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\frac{\sin \theta_{i}}{\sin \theta_{i}}=\frac{u_{p 2}}{u_{p 1}}=\frac{n_{1}}{n_{2}}, \tag{8-124a}
\end{equation*}
$$

where n_{1} and n_{2} are indices of refraction for media $:$ and 2 respectively. The index of refruction of a medlum is the ratio of the speed of light (electromagnetic wave) in free space to that in the medium; that is, $n=c / u_{p}$. The relation in Eq. (8-124a) is known as Snell's lam of refinction. It states that of in interface between two dielectric media, the rutio of the sine the angle of refraction in medium 2 to the sine of the angle of incidence in medium 1 is equal to the inverse ratio of indices of refraction n_{1} / n_{2}.

$$
\begin{equation*}
\frac{\sin \theta_{i}}{\sin \theta_{i}}=\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}}=\sqrt{\frac{\epsilon_{r 1}}{\epsilon_{r 2}}} \tag{8-124b}
\end{equation*}
$$

Furthermore, if medium 1 is free space such that $\epsilon_{r 1}=1$ and $n_{1}=1$, Eq. ($8-124$ b) reduces to

$$
\begin{equation*}
\frac{\sin \theta_{t}}{\sin \theta_{i}}=\frac{1}{\sqrt{\epsilon_{r 2}}}=\frac{1}{n_{2}} \tag{8-124c}
\end{equation*}
$$

Since $n_{2} \geq$,it is clear that a plane wave incident obliquely at an interface with a denser medium will be bent toward the normal.

8-9.1 Total Reflection

Let us now examine Snell's law in Eq. $(8-124 \mathrm{~b})$ for $\epsilon_{1}>\epsilon_{2}$-that is, when the wave in medium 1 is infident on a less dense medium 2 . In that case, $\theta_{1}>\theta_{i}$. Since θ_{t} increases with θ_{i}, an interesting situation arises when $\theta_{t}=\pi / 2$, at which angle

354 PLANE ELECTROMAGNETIC WAVES / 8

the refracted wave will glaze along the interface; further increase in θ_{i} would result in no refracted wave, and the incident wave is then said to be totally reflected. The angle of incidence θ_{c} (which corresponds to the threshold of total reflection $\theta_{t}=\pi / 2$) is called the critical angle. We have, by setting $\theta_{\mathrm{t}}=\pi / 2 \mathrm{in}$ Eq. $(8-124 \mathrm{~b})$,

$$
\begin{equation*}
\sin \theta_{c}=\sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}} \tag{8-125a}
\end{equation*}
$$

or

$$
\begin{equation*}
0_{c}=\sin ^{-1} \sqrt{\frac{\epsilon_{2}}{\epsilon_{1}}}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) \tag{8-125b}
\end{equation*}
$$

This situation is illustrated in Fig. $8-14$ where $\mathbf{a}_{n i}, \mathbf{a}_{n r}$, and $\mathbf{a}_{n t}$ are unit vectors denoting the directions of propagation of the incident. reflected, and transmitted waves respectively.

What happens mathematicaily if θ_{i} is larger than the critical angle $\theta_{c}\left(\sin \theta_{i}>\right.$ $\left.\sin \theta_{c}=\sqrt{\epsilon_{2} / \epsilon_{1}}\right)$? From Eq. ($8-124 \mathrm{~b}$) we have

$$
\begin{equation*}
\sin \theta_{t}=\sqrt{\frac{\epsilon_{1}}{\epsilon_{2}}} \sin \theta_{i}>1 \tag{8-126}
\end{equation*}
$$

which does not yield a real solution for θ_{t}. Although $\sin \theta_{t}$ in Eq. (8-126) is still real. $\cos \theta_{t}$ becomes imaginary when $\sin \theta_{t}>1$.

$$
\begin{equation*}
\cos \theta_{\mathrm{t}}=\sqrt{1-\sin ^{2} \theta_{\mathrm{t}}}= \pm j \sqrt{\frac{\epsilon_{1}}{\epsilon_{2}} \sin ^{2} \theta_{i}-1} \tag{8-127}
\end{equation*}
$$

Fig. 8-14 Plane wave incident at critical angle, $\epsilon_{1}>\epsilon_{2}$.
yuld result ected. The in $\theta_{i}=\pi / 2$)
yectors deitted waves i) $\operatorname{c} \sin \theta_{i}>$ $(0-126)$ I is still real. $(8-127)$

In medium 2, the unit vector $a_{n t}$ in the direction of propagation of a typical transmitted (refracted) wave, as shown in Fig. 8-13, is

$$
\begin{equation*}
a_{n t}=a_{x} \sin \theta_{t}+a_{z} \cos \theta_{t} \tag{8-128}
\end{equation*}
$$

Both \mathbf{E}_{q} and \mathbf{H}_{t} vary spatially in accordance with the following factor:

$$
e^{-j \beta_{2} \mathrm{a}_{n t} \cdot \mathbf{R}}=e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)},
$$

which, when.Eqs. $(8-126)$ and $(8-127)$ for $\theta_{i}>\theta_{c}$ are used, becomes

$$
\begin{equation*}
e^{-\alpha_{2}=e^{-j \beta_{2 \times x}}} \tag{8-129}
\end{equation*}
$$

where

$$
\alpha_{2}=\beta_{2} \sqrt{\left(\epsilon_{1} / \epsilon_{2}\right) \sin ^{2} \theta_{i}-1}
$$

and

$$
\beta_{2 x}=\beta_{2} \sqrt{\epsilon_{1} / \epsilon_{2}} \sin \theta_{i}
$$

The upper sign in Ed. (8.-127) has been abandoned because it would lead to the impossible result of ant increasing ficld as z increases. We can conclude from (8-129) that for $\theta_{i}>\theta_{c}$ a wave exists along the interface (in x direction), which is attenuated exponentially (rapidly) in nedium 2 in the normal direction (z direction). This wave is tightly bound to the interface and is called a surface wave. It is illustrated in Fig. 8-14. Obviously, it is a nonuniform plane wave.

Example 8-11 A diclectuic rod or fiber of a transparent material can be used to guide light or an electromagnetic wave under the conditions of total internal reflection. Determine the minimum dielectric constant of the guiding medium so that a wave incident on one end at any angle will be confined within the rod until it emerges from the other end.

Solution: Refer to Fig. 8-15. For total internal reflection, θ_{1} must be greater than or equal to θ_{c} for the guiding dielectric medium; that is,
or, since $0_{1}=\pi / 2-0_{1}$,

$$
\begin{align*}
& \sin \theta_{1} \geq \sin \theta_{c} \\
& \cos \theta_{t} \geq \sin \theta_{c} \tag{8-130}
\end{align*}
$$

Fig. 8-15 Diclectric rod or fiber guiding electromagnetic wave by total internal reflection.

From Snell's law of refraction, Eq. (8-124c), we have

$$
\begin{equation*}
\sin \theta_{\mathrm{t}}=\frac{1}{\sqrt{\epsilon_{r 1}}} \sin \theta_{i} \tag{8-131}
\end{equation*}
$$

It is important to note here that the dielectric medium has been designated as medium 1 (the denser medium) in order to be consistent with the notation of this subsection. Combining Eqs. ($8-130$), ($8-131$), and ($8-125 a$), we obtain

$$
\sqrt{1-\frac{1}{\epsilon_{r 1}} \sin ^{2} \theta_{i}} \geq \sqrt{\frac{\epsilon_{0}}{\epsilon_{1}}}=\frac{1}{\sqrt{\epsilon_{r 1}}}
$$

which requires

$$
\begin{equation*}
\epsilon_{r 1} \geq 1+\sin ^{2} \theta_{i} \tag{8-132}
\end{equation*}
$$

Since the largest value of the right side of $(8-132)$ is reached when $\theta_{i}=\pi / 2$, we require the dielectric constant of the guiding medium to be at least 2 , which corresponds to an index of refraction $n_{1}=\sqrt{2}$. This requirement is satisfied by glass and quartz.

We observe that Snell's law of refraction in Eq. $(8-124 b)$ and the critical angle for total reflection in Eq. $(8-125$ b) are independent of the polarization of the incident electric field. The formulas for the reflection and transmission coefficients, however, are polarization-dependent. In the following two subsections we discuss perpendicular polarization and parallel polarization separately.

8-9.2 Perpendicular Polarization

For perpendicular polarization the incident electric and magnetic field intensity phasors in medium 1 are, from Eqs. (8-76a) and (8-76b):

$$
\begin{aligned}
& \mathbf{E}_{i}(x, z)=\mathbf{a}_{y} E_{i 0} e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \\
& \mathbf{H}_{i}(x, z)=\frac{E_{i 0}}{\eta_{1}}\left(-\mathbf{a}_{x} \cos \theta_{i}+\mathbf{a}_{z} \sin \theta_{i}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)}
\end{aligned}
$$

The reflected electric and magnetic fields can be obtained from Eqs. (8-79a) and (8-79b), but remember that $E_{r 0}$ is no longer equal to $-E_{i 0}$.

$$
\begin{align*}
& \mathbf{E}_{r}(x, z)=\mathbf{a}_{y} E_{r 0} e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \tag{8-134a}\\
& \mathbf{H}_{r}(x, z)=\frac{E_{r 0}}{\eta_{1}}\left(\mathbf{a}_{x} \cos \theta_{r}+\mathbf{a}_{z} \sin \theta_{r}\right) e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} . \tag{8-134b}
\end{align*}
$$

In medium 2, the transmitted electric and magnetic field intensity phasors can be similarly written as

$$
\begin{aligned}
& \mathbf{E}_{t}(x, z)=\mathbf{a}_{y} E_{t} e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \\
& \mathbf{H}_{t}(x, z)=\frac{E_{t 0}}{\eta_{z}}\left(-\mathbf{a}_{x} \cos \theta_{t}+\mathbf{a}_{z} \sin \theta_{t}\right) e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t)}\right.} .
\end{aligned}
$$

is medium ubsection.

$$
\begin{equation*}
=\pi / 2, \mathrm{we} \tag{8-132}
\end{equation*}
$$

:th correplass and ical: ye winciont in rr, pendicular 3 intensity $(8-133 a)$
$-\quad(8-133 b)$ $-79 a$ and (8-134a) hasors van (8-135a) (8-135b)

8-9 obloue incidence at a plane dielectric boundary

There arê foú ưnknown quantities in Eqs. (8-133a) through (8-135b), namely, $E_{r 0}, E_{t 0}, \theta_{r}$, and θ_{t}. Their determination follows from the requirements that the tangential components of \mathbf{E} and \mathbf{H} be continuous at the boundary $z=0$. From $E_{i y}(x, 0)+E_{r y}(x, 0)=E_{t y}(x ; 0)$, we have

$$
\begin{equation*}
E_{i 0} e^{-j \beta_{1} x \sin \theta_{1}}+E_{r 0} e^{-j \beta_{1} x \sin \theta_{r}}=E_{r 0} e^{-j \beta_{2} x \sin \theta_{r}} . \tag{8-136a}
\end{equation*}
$$

Similarly, from $H_{i x}(x, 0)+H_{r x}(x, 0)=H_{i x}(x, 0)$ we require

$$
\begin{align*}
\frac{1}{\eta_{1}}\left(-E_{i 0} \cos \theta_{i} e^{-j \beta_{1} \times \sin \theta_{i}}\right. & \left.+E_{r 0} \cos \theta_{r} e^{-j \beta_{1} x \sin \theta_{r}}\right) \\
& =-\frac{E_{10}}{\eta_{2}} \cos \theta_{1} e^{-j \beta_{2} x \sin \theta_{2}} \tag{8-136b}
\end{align*}
$$

Because Eqs. $(8-136 \mathrm{a})$ and $(8-136 \mathrm{~b})$ are to be satisfied for all x, all three exponential factors that are functions of x must be equal. Thus,

$$
\beta_{1} x \sin \theta_{i}=\beta_{1} x \sin \theta_{r}=\beta_{2} x \sin \theta_{t},
$$

which leads to Sneil's law of reflection $\left(\theta_{r}=\theta_{i}\right)$ and Snell's law of refraction ($\sin \theta_{t} /$ $\left.\sin \theta_{i}=\beta_{1} / \beta_{2}=n_{1} / n_{2}\right)$. Equations ($8-136 \mathrm{a}$) and ($8-136 \mathrm{~b}$) can now be written simply as
and

$$
\begin{equation*}
E_{i 0}+E_{r 0}=E_{t 0} \tag{8-137a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{\eta_{1}}\left(E_{i 0}-E_{r 0}\right) \cos \theta_{i}=\frac{E_{10}}{\eta_{2}} \cos \theta_{t}, \tag{8-137~b}
\end{equation*}
$$

from which $E_{r 0}$ and $E_{t 0}$ can be found in terms of $E_{i 0}$. We have
and

$$
\begin{align*}
\Gamma_{\mathrm{L}}=\frac{E_{r 0}}{E_{i 0}} & =\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{t}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{t}} \\
& =\frac{\left(\eta_{2} / \cos \theta_{i}\right)-\left(\eta_{1} / \cos \theta_{i}\right)}{\left(\eta_{2} / \cos \theta_{i}\right)+\left(\eta_{1} \cos \theta_{i}\right)} \tag{8-138}
\end{align*}
$$

$$
\begin{align*}
\tau_{1}=\frac{E_{i 0}}{E_{i 0}} & =\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{i}} \\
& \therefore \frac{2\left(\eta_{2} / \cos \theta_{1}\right)}{\left.\left(\eta_{2} / \cos \theta_{1}\right)+\left(\eta_{1}\right) \cos \theta_{i}\right)} . \tag{8-139}
\end{align*}
$$

Comparing these expressions with the formulas for the rellection and transmission coefficients at normal incidence, Eqs. (8-93) and (8-94), we see that the same formulas apply if η_{1} and η_{2} are changed to $\left(\eta_{1} / \cos \eta_{i}\right)$ and $\left(\eta_{2} / \cos \theta_{1}\right)$ respectively. When $\theta_{i}=0$, making $0_{r}=0_{1}=0$, these expressions reduce to those for normal incidence, as they

[^46]should. Furthermore, Γ_{\perp} and τ_{\perp} are related in the following way:
\[

$$
\begin{equation*}
1+\Gamma_{1}=\tau_{1} \tag{8-140}
\end{equation*}
$$

\]

which is similar to Eq. (8-95) for normal incidence.
If medium 2 is a perfect conductor, $\eta_{2}=0$. We have $\Gamma_{\perp}=-1\left(E_{r 0}=-E_{i 0}\right)$ and $\tau_{\perp}=0\left(E_{\mathrm{t} 0}=0\right)$. The tangential E field on the surface of the conductor vanishes, and no energy is transmitted across a perfectly conducting boundary, as we have noted in Sections 8-5 and 8-6.

Noting that the numerator for the reflection coefficient in Eq. (8-138) is in the form of a difference of two terms, we inquire whether there is a combination of η_{1}, η_{2}, and θ_{i}, which makes $\Gamma_{\perp}=0$ for no reflection. Denoting this particular 0_{i} by $\theta_{B \perp}$, we require

$$
\begin{equation*}
\eta_{2} \cos \theta_{B \perp}=\eta_{1} \cos \theta_{t} . \tag{8-141}
\end{equation*}
$$

Using Snell's law of refraction, we have

$$
\begin{equation*}
\cos \theta_{t}=\sqrt{1-\sin ^{2} \theta_{t}}=\sqrt{1-\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{i}} \tag{8-142}
\end{equation*}
$$

and obtain from Eq. (8-141)

$$
\begin{equation*}
\sin ^{2} \theta_{B \perp}=\frac{1-\mu_{1} \epsilon_{2} / \mu_{2} \epsilon_{1}}{1-\left(\mu_{1} / \mu_{2}\right)^{2}} . \tag{8-143}
\end{equation*}
$$

The angle $\theta_{B \perp}$ is called the Brewster angle of no reflection for the case of perpendicular polarization. For nonmagnetic media, $\mu_{1}=\mu_{2}=\mu_{0}$, the right side of Eq. (8-143) becomes infinite, and $\theta_{\beta_{1}}$ does not exist. In the case of $\epsilon_{1}=\epsilon_{2}$ and $\mu_{1} \neq \mu_{2}$, Eq. ($8-143$) reduces to

$$
\begin{equation*}
\sin \theta_{B \perp}=\frac{1}{\sqrt{1+\left(\mu_{1} / \mu_{2}\right)}} \tag{8-144}
\end{equation*}
$$

which does have a solution whether μ_{1} / μ_{2} is greater or less than unity. However, it is a very rare situation in electromagnetics that two contiguous media have the same permittivity but different permeabilities.

8-9.3 Parallel Polarization

When a uniform plane wave with parallel polarization is incident obliquely on a plane boundary, as illustrated in Fig. 8-16, the incident and reflected electric and magnetic field intensity phasors in medium 1 are, from Eqs. ($8-84 a$) through ($8-85$ b):

$$
\begin{align*}
& \mathbf{E}_{i}(x, z)=E_{i 0}\left(\mathbf{a}_{x} \cos \theta_{i}-\mathbf{a}_{z} \sin \theta_{i}\right) e^{-j \beta_{1}\left(x \sin \theta_{i}+z \cos \theta_{i}\right)} \tag{8-145a}\\
& \mathbf{H}_{i}(x, z)=\mathbf{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1}\left(x \sin 0_{1}+z \cos 0_{i}\right)} \tag{8-145b}
\end{align*}
$$

$$
\left.0=-E_{i 0}\right)
$$

r vanishes; is we have 3) is in the tion of η_{1}, - θ_{i} by $\theta_{B \perp}$,
pendicular
4. (8-143)

Eq. (8-143)
(8-144)
However, 1 have the
puely on a ectric ${ }^{\text {d }}$
h(8.):
(8-145a)
(8-145b)
Fig. 8-16 Plane wave incident obliquely on a plane dielectric boundary (paralle polarization).

$$
\begin{array}{ll}
\mathbf{E}_{r}(x, z)=E_{r 0}\left(\mathbf{a}_{x} \cos \theta_{r}+\mathbf{a}_{z} \sin \theta_{r}\right) e^{-j \beta_{1}\left(x \sin \theta_{r}-z \cos \theta_{r}\right)} \tag{8-142}\\
\mathbf{H}_{r}(x, z)=-\mathbf{a}_{y} \frac{E_{r 0}}{\eta_{1}} e^{-j \beta_{1}\left(2 \sin v_{r}-z \cos \theta_{r}\right)} . & (8-146 \mathrm{a}) \\
(8-146 \mathrm{~b})
\end{array}
$$

The transmitted electric and magnetic field intensity phasors in medium 2 are

$$
\begin{align*}
& \mathbf{E}_{t}(x, z)=E_{t 0}\left(\mathbf{a}_{x} \cos \theta_{t}-\mathrm{a}_{z} \sin \theta_{t}\right) e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \\
& \mathbf{H}_{t}(x, z)=\mathbf{a}_{y} \frac{E_{t n}}{\eta_{2}} e^{-j \beta_{2}\left(x \sin \theta_{t}+z \cos \theta_{t}\right)} \tag{8-147b}
\end{align*}
$$

Continuity requirements for the tangential components of \mathbf{E} and \mathbf{H} at $z=0$ lead again to Snell's laws of reflection and refraction, as well as to the following two equations:

$$
\begin{align*}
\left(E_{i 0}+E_{r 0}\right) \cos \theta_{i} & =E_{t 0} \cos \theta_{t} \tag{8-148a}\\
\cdot \frac{1}{\eta_{1}}\left(E_{i 0}-E_{r 0}\right) & =\frac{1}{\eta_{2}} E_{t 0} . \tag{8-148b}
\end{align*}
$$

Solving for $E_{r 0}$ and $E_{t 0}$ in terms of $E_{i 0}$, we obtain
and

$$
\begin{equation*}
\Gamma_{11}=\frac{E_{r 0}}{E_{i 0}}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}} \tag{8-149}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{11}=\frac{E_{i 0}}{E_{i 0}}=\frac{2 \eta_{2} \cos \theta_{i}}{\eta_{2} \cos \theta_{t}+\eta_{1} \cos \theta_{i}} \tag{8-150}
\end{equation*}
$$

[^47]It is easy to verify that

$$
\begin{equation*}
1+\Gamma_{\|}=\tau_{11}\left(\frac{\cos \theta_{i}}{\cos \theta_{i}}\right) \tag{8-151}
\end{equation*}
$$

Equation (8-151) is seen to be different from Eq. (8-140) for perpendicular polarization except when. $\theta_{i}=\theta_{t}=0$, which is the case for normal incidence. At normal incidence $\Gamma_{\| \|}$and $\tau_{\|}$reduce to Γ and τ given in Eqs. (8-93) and (8-94) respectively, as did Γ_{\perp} and τ_{\perp}.

If medium 2 is a perfect conductor ($\eta_{2}=0$), Eqs. ($8-149$) and ($8-150$) simplify to $\Gamma_{\|}=-1$ and $\tau_{\|}=0$ respectively, making the tangential component of the total \mathbf{E} field on the surface of the conductor vanish, as expected.

From Eq. (8-149) we find that $\Gamma_{\| \mid}$goes to zero when the angle of incidence θ_{i} equals $\theta_{B| |}$, such that

$$
\begin{equation*}
\eta_{2} \cos \theta_{t}=\eta_{1} \cos \theta_{B^{\prime \prime}} \tag{8-152}
\end{equation*}
$$

which, together with Eq. (8-142), requires

$$
\begin{equation*}
\sin ^{2} \theta_{B \| \mid}=\frac{1-\mu_{2} \epsilon_{1} / \mu_{1} \epsilon_{2}}{1-\left(\epsilon_{1} / \epsilon_{2}\right)^{2}} \tag{8-153}
\end{equation*}
$$

The angle $\theta_{B| |}$ is known as the Brewster angle of no reflection for the case of parallel polarization. A solution for Eq. ($8-153$) always exists for two contiguous nonmagnetic media. Thus, if $\mu_{1}=\mu_{2}=\mu_{0}$, a reflection-free condition is obtained when the angle of incidence in medium 1 equals the Brewster angle $\theta_{B \mid}$, such that

$$
\begin{equation*}
\sin \theta_{B| |}=\frac{1}{\sqrt{1+\left(\epsilon_{1} / \epsilon_{2}\right)}} . \tag{8-154}
\end{equation*}
$$

Because of the difference in the formulas for Brewster angles for perpendicular and parallel polarizations, it is possible to separate these two types of polarization in an unpolarized wave. When an unpolarized wave such as random light is incident upon a boundary at the Brewster angle $0_{B \| \mid}$ given by Eq. (8-153), only the component with perpendicular polarization will be rellected. Thus, a Brewster angle is also referred to as a polarizing angle. Based on this principle, quartz windows set at the Brewster angle at the ends of a laser tube are used to control the polarization of an emitted light beam.

Example 8-12 The dielectric constant of pure water is 80 . (a) Determine the Brewster angle for parallel polarization, $O_{B| |}$, and the corresponding angle of transmission. (b) A plane wave with perpendicular polarization is incident from air on water surface at $\theta_{i}=\theta_{B \| \mid}$. Find the reflection and transmission coefficients.

Solution

a) The Brewster angle of no reflection for parallel polarization can be obtained directly from Eq. (8-154):

$$
\begin{aligned}
\theta_{B| |} & =\sin ^{-1} \frac{1}{\sqrt{1+\left(1 / \epsilon_{r 2}\right)}} \\
& =\sin ^{-1} \frac{1}{\sqrt{1+(1 / 80)}}=81.0^{\circ} .
\end{aligned}
$$

The corresponding angle of transmission is, from Eq. $(8-124 \mathrm{c})$,

$$
\begin{aligned}
0_{t} & =\sin ^{-1}\left(\frac{\sin \theta_{B 11}}{\sqrt{\epsilon_{r 2}}}\right)=\sin ^{-1}\left(\frac{1}{\sqrt{\epsilon_{r 2}+1}}\right) \\
& =\sin ^{-1}\left(\frac{1}{\sqrt{81}}\right)=6.38^{\circ} .
\end{aligned}
$$

b) For an incident wave with perpendicular polarization, we use Eqs. (8-138) and $(8-139)$ to find Γ_{\perp} and τ_{\perp} at $\theta_{i}=81.0^{\circ}$ and $\theta_{t}=6.38^{\circ}$:

Thus

$$
\begin{array}{ll}
\eta_{1}=377(\Omega), & \eta_{1} / \cos \theta_{i}=2410(\Omega) \\
\eta_{2}=\frac{377}{\sqrt{\epsilon_{r 2}}}=40.1(\Omega), & \eta_{2} / \cos \theta_{\mathrm{r}}=40.4(\Omega) .
\end{array}
$$

If parallel nonmagwhen the
endicular larization s incident omponent le is also set at the tion of an
mine rhe : of transom air on

$$
\begin{align*}
\Gamma_{\perp} & =\frac{40.4-2410}{40.4+2410}=-0.967 \\
\tau_{\perp} & =\frac{2 \times 40.4}{40.4+2410}=0.033 \tag{8-154}
\end{align*}
$$

We note that the relation between Γ_{\perp} and τ_{\perp} given in Eq. $(8-140)$ is satisfied.

REVIEW QUESTIONS

R.8-1 Define uniform plane wave.
R.8-2 What is a wavefrom?
R.8-3 Writè thehomogeneous vector Helmholiz's equation for \mathbf{E} in free space.
R.8-4 Define warmumber. How is wavenumber related to wavelengh?
R.9-5 Define phase velocity.
R.8-6 Define intrinsic impedance of a medium. What is the value of the intrinsic impedance of free space?

R.8-7 What is a TEM wave?

R.8-8 Write the phasor expressions for the electric and magnetic field intensity vectors of an x-polarized uniform plane wave propagating in the z direction.
R.8-9 What is meant by the polarization of a wave? When is a wave linearly polarized? Circularly polarized?
R.8-10 Two orthogonal linearly polarized waves are combined. State the conditions under which the resultant will be (a) another lincarly polarized wave, (b) a circularly polarized wave, and (c) an elliptically polarized wave.
R.8-11 Define (a) propagation constant, (b) attenuation constant, and (c) phase constant.
R.8-12 What is meant by the skin depth of a conductor? How is it related to the attenuation constant? How does it depend on σ ? On f ?
R.8-13 What is meant by the dispersion of a signal? Give an example of a dispersive medium.
R.8-14 Define group velocity. In what ways is group velocity different from phase velocity?
R.8-15 Define Poynting vector. What is the SI unit for this vector?
R.8-16 State Poynting's theorem.
R.8-17 For a time-harmonic electromagnetic field, write the expressions in terms of electric and magnetic field intensity vectors for (a) instantaneous Poynting vector and (b) time-average Poynting vector.
R.8-18 What is a standing wave?
R.8-19 What do we know about the magnitude of the tangential components of E and H at the interface when a wave impinges normally on a perfectly conducting plane boundary?
R.8-20 Define plane of incidence.
R.8-21 What do we mean when we say an incident wave has (a) perpendicular polarization and (b) parallel polarization?
R.8-22 Define reflection coefficient and transmission coefficient. What is the relationship between them?
R.8-23 Under what conditions will reflection and transmission coefficients be real?
R.8-24 What are the values of the reflection and transmission coefficients at an interface with a perfectly conducting boundary?
R.S-25 A plane wave originating in medium $1\left(\epsilon_{1}, \mu_{1}=\mu_{0}, \sigma_{1}, m()\right.$ is incident normally on a plane interface with medium $2\left(\epsilon_{2} \neq \epsilon_{1}, \mu_{2}=\mu_{0}, \sigma_{2}=0\right)$. Under what condition will the electric field at the interface be a maximum? A minimum?
R.8-26 Define standing-wave ratio. What is its relationship with reflection coefficient?
R.8-27 What is meant by the wave impedance of the total field. When is this impedance equal to the intrinsic impedance of the medium?
ectors of an larized? Cirfitions under arized wave, tant.
\geq attenuation sive medium. velocity?
if and H at dary?
ariziztion and uship between ? interface with ormally on a ill the rric ent? sedance equal
R.8-28 Thin dielectric cbating is sprayed on optical Instruments to reduce glare. What factors determine the thickness of the coating?
R.8-29 How should the thickness of the radome in a radar installation be chosen?

R,8-30 State Snell's law' of reflection.

R.8-31 State Snell's law of refraction.

R.8-32 Define critical ahgle. When does it exist at an interface of two nonmagnetic media?
R.8-33 Define Brewster angle. When does it exist at an interface of two nonmagnetic media?
R.8-34 Why is a Brewster angle also called a polarizing angle?
R.8-35 Under what conditions will the reflection and transmission coefficients for perpendicular polarization be the same as those for parallel polarization?

PROBLEMS

P.8-1 Prove that the electric field intensity in Eq. (8-17) satisfies the homogeneous Helmholtz's equation provided that the condition in Eq. $(8-18)$ is satisfied.
P.8-2 For a harmonic uniform plane wave propagating in a simple medium. both E and H vary in accordance with the factor $\exp (-j \mathbf{k} \cdot \mathbf{R})$ as indicated in Eq. (8-21). Show that the four Maxwell's equations for uniom plane wate in a source-free region reduce to the following:

$$
\begin{aligned}
& k \times \mathbf{E}=(1) \mu \mathrm{H} \\
& \mathrm{k} \times \mathrm{H}=-(1) \in \mathrm{E} \\
& \mathrm{k} \cdot \mathbf{E}=0 \\
& \mathbf{k} \cdot \mathbf{H}=0 .
\end{aligned}
$$

P.8-3 The instantancous expression for the magnetic field intensity of a uniform plane wave propagating in the $+y$ direction in air is given by

$$
\mathrm{H}=\mathrm{a}_{2} 4^{4} \times 10^{-6} \cos \left(10^{7} \pi t-k_{0} y+\frac{\pi}{4}\right) \quad(\mathrm{A} / \mathrm{m}) .
$$

a) Determine k_{0} and the location where $H_{\text {: }}$ vanishes at $t=3(\mathrm{~ms})$.
b) Write the instantaneous expression for \mathbf{E}.
P.8-4 Show that a plane wave with an instamaneous expression for the electric field

$$
\mathbf{E}(z, t)=\mathbf{a}_{x} E_{10} \sin (\omega t-k z)+\mathbf{a}_{y} E_{20} \sin (\omega t-k z+\psi)
$$

is elliptically polarized. Find the polarization ellipse.
P.8-5 Prove the following:
a) An elliptically polarized plane wave can be resolved into right-hand and left-hand circularly polarized waves.
b) A circularly polarized plane wave can bé obtained from a superposition of two oppositely directed elliptically polarized waves.
P.8-6 Derive the following general expressions of the attenuation and phase constants for conducting media:

$$
\begin{aligned}
& \alpha=\omega \sqrt{\frac{\mu \epsilon}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}-1\right]^{1 / 2} \quad(\mathrm{~Np} / \mathrm{m}) \\
& \beta=\omega \sqrt{\frac{\mu \epsilon}{2}}\left[\sqrt{1+\left(\frac{\sigma}{\omega \epsilon}\right)^{2}}+1\right]^{1 / 2} \quad(\mathrm{rad} / \mathrm{m})
\end{aligned}
$$

P.8-7 Determine and compare the intrinsic impedance, attentuation constant (in both Np / m and dB / m), and skin depth of copper $\left[\sigma_{\mathrm{cu}}=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m})\right]$, silver $\left[\sigma_{\mathrm{ag}}=6.15 \times 10^{7}(\mathrm{~S} / \mathrm{m})\right]$, and brass $\left[\sigma_{\mathrm{br}}=1.59 \times 10^{7}(\mathrm{~S} / \mathrm{m})\right]$ at the following frequencies: (a) $60(\mathrm{~Hz})$, (b) $1(\mathrm{MHz}$), and (c) $1(\mathrm{GHz})$.
P.8-8 A $3(\mathrm{GHz}), y$-polarized uniform plane wave propagates in the $+x$ direction in a nonmagnetic medium having a dielectric constant 2.5 and a loss tangent 10^{-2}.
a) Determine the distance over which the amplitude of the propagating wave will be cut in half.
b) Determine the intrinsic impedance, the wavelength, the phase velocity, and the group velocity of the wave in the medium.
c) Assuming $\mathrm{E}=\mathrm{a}_{y} 50 \sin \left(6 \pi 10^{9} t+\pi / 3\right)$ at $x=0$, write the instantaneous expression for H for all t and x.
P.8-9 The magnetic field intensity of a linearly polarized uniform plane wave propagating in the $+y$ direction in sea water $\left[\epsilon_{r}=80, \mu_{r}=1, \sigma_{-}=4(\mathrm{~S} / \mathrm{m})\right]$ is

$$
H=\mathbf{a}_{x} 0.1 \sin \left(10^{10} \pi t-\pi / 3\right) \quad(\mathrm{A} / \mathrm{m})
$$

at $y=0$.
a) Determine the attenuation constant, the phase constant, the intrinsic impedance, the phase velocity, the wavelength, and the skin depth.
b) Find the location at which the amplitude of \mathbf{H} is $0.01(\mathrm{~A} / \mathrm{m})$.
c) Write the expressions for $\mathbf{E}(y, t)$ and $\mathbf{H}(y, t)$ at $y=0.5(\mathrm{~m})$ as functions of t.
P.8-10 Given that the skin depth for graphite at $100(\mathrm{MHz})$ is $0.16(\mathrm{~mm})$, determine (a) the conductivity of graphite, and (b) the distance that a $1(\mathrm{GHz})$ wave traveis in graphite such that its field intensity is reduced by $30(\mathrm{~dB})$.
P.8-11 Prove the following relations between group velocity u_{g} and phase velocity u_{p} in a dispersive medium:
a) $u_{g}=u_{p}+\beta \frac{d u_{p}}{d \beta}$
b) $u_{g}=u_{p}-\lambda \frac{d u_{p}}{d \lambda}$.
P.8-12 There is a continuing discussion on radiation hazards to human health. The foilowing calculations will provide a rough comparison.
a) The U.S. standard for personal safety in a microwave environment is that the power density be less than $10\left(\mathrm{~mW} / \mathrm{cm}^{2}\right)$. Calculate the corresponding standard in terms of electric field intensity. In terms of magnetic field intensity.
b) It is estimated that the earth receives radiant energy from the sun at a rate of about $1.3\left(\mathrm{~kW} / \mathrm{m}^{2}\right)$ on a sunny day. Assuming a monochromatic plane wave, calculate the amplitudes of the electric and magnetic field intensity vectors in sunlight.

$$
\mathbf{E}_{1}(x, \grave{\xi} ; t) \quad \text { and } \quad \mathbf{H}_{1}(x, z ; t)
$$

for the total field in medium 1 , using a cosine reference; and (b) the time-average Poynting vector. P.8-20 For the case of oblique incidence of a uniform plane wave with parallel polarization on a perfectly conducting plane boundary as shown in Fig. 8-10, write (a) the instantaneous expressions

$$
\mathrm{E}_{1}(x, z ; t) \text { and } \mathbf{H}_{1}(x, z ; t)
$$

for the total field in medium 1, using a sine reference; and (b) the time-average Poynting vector.
P.8-21 Determine the condition under which the magnitude of the reflection coefficient equals . that of the transmission coefficient for a uniform plane wave at normal incidence on an interface between two lossless dielectric media. What is the standing-wave ratio in dB under this condition?
P.8-22 A uniform plane wave in air with $\mathbf{E}_{i}(z)=\mathbf{a}_{x} 10 e^{-j 6 z}$ is incident normally on an interface at $z=0$ with a lossy medium having a dielectric constant 2.5 and a loss tangent 0.5 . Find the following:
a) The instantaneous expressions for $\mathbf{E}_{r}(z, t), \mathbf{H}_{r}(z, t), \mathbf{E}_{l}(z, t)$, and $\mathbf{H}_{t}(z, t)$, using a cosine reference.
b) The expressions for time-average Poynting vectors in air and in the lossy medium.
P.8-23 Consider the situation of normal incidence at a lossless dielectric slab of thickness d in air, as shown in Fig. 8-12 with

$$
\epsilon_{1}=\epsilon_{3}=\epsilon_{0} \quad \text { and } \quad \mu_{1}=\mu_{3}=\mu_{0}
$$

a) Find $E_{r 0}, E_{2}^{+}, E_{2}^{-}$, and $E_{t 0}$ in terms of $E_{i 0}, d, \epsilon_{2}$, and μ_{2}.
b) Will there be retlection at interface $z=0$ if $d=\lambda_{2} 4^{\prime}$? Explain.
P.8-24 A transparent dielectric coating is applied to glass $\left(\epsilon_{r}=4, \mu_{r}=1\right)$ to eliminate the reflection of red light $[\lambda=0.75(\mu \mathrm{~m})]$.
a) Determine the required dielectric constant and thickness of the coating.
b) If violet light [$\lambda=0.42(\mu \mathrm{~m})$] is shone normally on the coated glass, what percentage of the incident power will be reflected?
P.8-25 Refer to Fig. 8-12, which depicts three different dielectric media with two parallel interfaces. A uniform plane wave in medium 1 propagates in the $+z$ direction. Let Γ_{12} and Γ_{23} denote, respectively, the reflection coefficients between media 1 and 2 and between media 2 and 3. Express the effective reflection coefficient, Γ_{0}, at $z=0$ for the incident wave in terms of Γ_{12}, Γ_{23}, and $\beta_{2} d$.

Fig. 8-17 Plane wave incident normally onto a dielectric slab backed by a perfectly conducting plane (Problem P.8-26).
ient equals in interface condition? in interface 5. Find the ag a cosine dium. thickness d

iminate the

ec
wo parallel Γ_{12} and Γ_{23} media 2 and arms of Γ_{12},
P.8-26 A uniform plane wave with

$$
\mathbf{E}_{i}(z, t)=\mathrm{a}_{x} E_{i 0} \cos \omega\left(t-\frac{z}{u_{p}}\right)
$$

in medium $1\left(\epsilon_{1}, \mu_{1}\right)$ is incident normally onto a lossless dielectric slab $\left(\epsilon_{2}, \mu_{2}\right)$ of a thickness d backed by a perfectly conducting plane, as shown in Fig. 8-17. Find
a) $\mathbf{E}_{r}(z, t)$
b) $\mathrm{E}_{1}(z, t)$
c) $\mathrm{E}_{2}(z, t)$
d) $\left(\mathscr{P}_{\text {av }}\right)_{1}$
e) $\left(\mathscr{P}_{\text {av }}\right)_{2}$
f) Determine the thickness d that makes $\mathrm{E}_{1}(z, t)$ the same as if the dielectric slab were absent.
P.8-27 A uniform plane wave with $\dot{E}_{i}(z)=\mathbf{a}_{x} E_{i 0} e^{-j p_{0} z}$ in air propagates normally through a thin copper sheet of thickness d, as shown in Fig. $8-18$. Neglecting multiple reflections within the copper sheets, find
a) E_{2}^{+}, H_{2}^{+}
b) $\mathrm{EB}_{2} \mathrm{H}_{2}$
c) E_{30}, H_{30}
d) $\left.-\dot{\rho_{a v}}\right)_{3} /\left(: \mathscr{P}_{a v}\right)_{i}$

Calcuiate $\left(\mathscr{P}_{\text {av }}\right)_{3} /\left(\mathscr{P}_{\text {av }}\right)_{i}$ for a thickness d that equals one skin depth at $10(\mathrm{MHz})$. (Note that this pertains to the shielding effectiveness of the thin copper sheet.)

Fig. 8-18 Plane wave propagating through a thin copper sheet (Problem P.8-27).
P.8-28 A $10(\mathrm{kHz})$ parallelly polarized electromagnetic wave in air is incident obliquely on an ocean surface at a near-grazing angle $\theta_{i}=88^{\circ}$, Using $\epsilon_{r}=81, \mu_{r}=1$, and $\sigma=4(\mathrm{~S} / \mathrm{m})$ for seawater, find (a) the angle of refraction θ_{t}, (b) the transmission coefficient $\tau_{\| f},(c)\left(: \rho_{a v}, w_{d}\left(\mathscr{F}_{a v}\right)\right.$, and (d) the distance below the ocean surface where the field intensity has been diminished by $30(\mathrm{~dB})$.
P.8-29 A light ray is incicient from air obliquely on a transparent sheet of thickness d with an index of refraction n, as shown in Fig. 8-19. The angle of incidence is 0_{i}. Find (a) θ_{t}, (b) the distance ℓ_{1} at the point of exit, and (c) the amount of the lateral displacement ℓ_{2} of the emerging ray.

368 PLANE ELECTROMAGNETIC WAVES / 8

Fig. 8-19 Light-ray impinging. obliquely on a transparent sheet of refraction index n (Problem P.8-29).
P.8-30 A uniform plane wave with perpendicular polarization represented by Eqs. (8-133a) and ($8-133$ b) is incident on a plane interface at $==0$, as shown in Fig. 8-13. Assuming $\epsilon_{2}<\epsilon_{1}$ and $\theta_{i}>\theta_{c}$, (a) obtain the phasor expressions for the transmitted field ($\mathbf{E}_{t}, \mathbf{H}_{t}$), and (b) verify that the average power transmitted into medium 2 vanishes.
P.8-31 Electromagnetic wave from an underwater souree with perpendicider polarization is incident on a water-air interface at $\theta_{i}=20$. Using $\epsilon_{r}=81$ and $\mu_{n}=1$ for fresh water. lind (a) critical angle θ_{c}, (b) reflection coefficient Γ_{i}, (c) transmission coefficient τ_{1}, and (d) attenuation in dB for each wavelength into the air.
P.8-32 Glass isosceles triangular prisms shown in Fig. 8-20 are used in optical instruments. Assuming $\epsilon_{r}=4$ for glass, calculate the percentage of the incident light power reflected back by the prism.

Fig. 8-20 Light reflection by a right isosceles triangular prism (Problem P.8-32).
P.8-33 Prove that, under the condition of no reflection at an interface, the sum of the Brewster angle and the angle of refraction is $\pi / 2$ for:
a) perpendicular polarization $\left(\mu_{1} \neq \mu_{2}\right)$,
b) parallel polarization $\left(\epsilon_{1} \neq \epsilon_{2}\right)$.

P.8-34 For an incident wave with parallel polarization:

a) Find the relation between the critical angle θ_{c} and the Brewster angle $\theta_{B| |}$ for nonmagnetic media.
b) Plot θ_{c} and $\theta_{B \mid 1}$ versus the ratio $\epsilon_{1} / \epsilon_{2}$.

9 / Theory and Applications of Transmission Lines

9-1 INTRODUCTION

We have now developed an electromagnetic model with which we can analyze electromagnetic actions that occur at a distance and are caused by time-varying charges and currents. These actions are explained in terms of electromagnetic fields and waves. An isotropic or omnidirectional electromagnetic source radiates waves equally in all directions. Even when the source radiates through a highty directive antenna, its energy spreads over a wide area at harge distances. This radiated energy is not guided, and the transmission of power and information from the source to a receiver is jnefficient. This is especially true at lower frequencies for which directive antennas would have huge dimensions and, therefore, would be excessively expensive. For instance, at AM broadcast frequencies, a single half-wavelength antenna (which is only mildly directive ${ }^{\dagger}$) would be over a hundred meters long. At the $60-\mathrm{Hz}$ power frequency a wavelength is 5 million meters or $5(\mathrm{Mm})$!

For efficient point-to-point transmission of power and information, the source energy must be directed or guided. In this chapter we study transverse electromagnetic (TEM) waves guided by transmission lines. The TEM mode of guided waves is one in which \mathbf{E} and \mathbf{H} are perpendicular to each other and both are transverse to the direction of propagation along the guiding line. We have discussed the propagation of unguided TEM plane waves in the last chapter. We will now show in this chapter that many of the characteristics of TEM waves guided by transmission lines are the same as those for a uniform plane wave propagating in an unbounded dielectric medium.

The three most common types of guiding structures that support TEM waves are:
a) Parallel-plate transmission line. This type of transmission line consists of two parallel conducting plates separated by a dielectric slab of a uniform thickness. See Fig. 9-1(a)). At microwave frequencies parallcl-plate transmission lincs can be fabricated inexpensively on a dielectric substrate using printed-circuit technology. They are often called striplines.

[^48]
selectrocharges clds and -cymally allo頻 is... ro intennas ive. For which is iz power e source nagnetic es is one se to the pagation ; chapter s are the dielectric
aves are:
\therefore of two hickr ${ }^{\circ}$ liner. ${ }^{\prime}$ uit に...

Fig. 9-1 Common types of cransmission lines.
b) Tivo-wire transmission line. This transmission line consists of a pair of parallel conducting wires separated by a uniform distance. (See Fig. 9-1(b)). Examples are the whiguitous overhead power ind telephone lines seen in ruad areas and the lat lead-in lines from a roof-top antennato a television receiver.
c) Coaxial transmission the. This consists of an inner conductor and a coaxiat otiter conducting sheath separated by a dielectric medium. (See Fig. 9-1(c)). Thit structure has the important advantage of confining the clectric and magnetic fields entirely within the dielectric region. No stray fields are generated by a coaxial transmission ine, and little external interference is coupled into the line. Examples are telephone and TV cables and the input cables to high-frequency precision measuring instruments.

We should note that other wave modes more complicated than the TEM mode can propagate on all three of these types of transmission lines when the separation between the conductors is greater than certain frations of the operating wavelengh. These other transmisslon modes will be considered in the next chapter.

We will skow that the TEM wave solution of Maxwell's equations for the parallelplate guiding structure in Fig. 9-1 (a) leads directly to a pair of transmission-line equations. The general transmission-line equations can also be derived from a circuit model in terms of the resistance, inductance, conductance, and capacitance per unit length of a line. The transilion from the circuit model to the electromagnetic model is effected from a network with lumped-parameter elements (discrete resistors, inductors, and capacitors) to one with distributed parameters (continuous distributions of R, L, G, and \mathcal{C} along the line). From the transmission-line equations all the characteristics of wave propagation along a given line can be derived and studied.

The study of time-hamonic steady-state properties of tansmission lines is greatly facilitated by the use of graphical charts which avert the necessity of repeated calculations witli complex numbers. The best known and most widely used graphical chart is the Smith chart. The use of Smith chart for determining wave characteristics on a transmission line and for impedance-matching will be discussed.

9-2 TRANSVERSE ELECTROMAGNETIC WAVE ALONG A PARALLEL-PLATE TRANSMISSION LINE

Let us consider a y-polarized TEM wave propagating in the $+z$ direction along a uniform parallel-plate transmission line. Figure 9-2 shows the cross-sectional dimensions of such a line and the chosen coordinate system. For time-harmonic fields the wave equation to be satisfied in the sourceless dielectric region becomes the homogeneous Helmholtz's equation, Eq. (8-38). In the present case, the appropriate phasor solution is

$$
\begin{equation*}
\mathbf{E}=\mathbf{a}_{y} E_{y}=\mathbf{a}_{y} E_{0} e^{-\gamma z} . \tag{9-1a}
\end{equation*}
$$

The associated H field is, from Eq; (8-26),

$$
\begin{equation*}
\mathbf{H}^{\prime}=\mathbf{a}_{x} H_{x}=-\mathbf{a}_{x} \frac{E_{0}}{\eta} e^{-\gamma z}, \tag{9-16}
\end{equation*}
$$

where γ and η are, respectively, the propagation constant and the intrinsic impedance of the dielectric medium. Fringe fields at the edges of the plates are neglected. Assuming perfectly conducting plates and a lossless dielectric, we have, from Chapter 8 ,

$$
\begin{equation*}
\gamma=j \beta=j \omega \sqrt{\mu \epsilon} \tag{9-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=\sqrt{\frac{\mu}{\epsilon}} . \tag{9-3}
\end{equation*}
$$

The boundary conditions to be satisfied at the interfaces of the dielectric and the perfectly conducting planes are, from Eqs. (7-52a, b, c. and d), as follows:

At both $y=0$ and $y=d$:

$$
\begin{align*}
E_{t} & =0 \tag{9-4}\\
H_{n} & =0, \tag{9-5}
\end{align*}
$$

which are obviously satisfied because $E_{x}=E_{z}=0$ and $H_{y}=0$.

Fig. 9-2 Parallel-plate transmission line.
on along a nal dimen\therefore fields the the homoate phasor $(9-1 \mathfrak{a})$
impedance Hected As-
Ch
8
(9-2)
(9-3)
wic and the
3:

At $y=0$ (lower plate), $\mathbf{a}_{n}=\mathbf{a}_{y}$:

$$
\begin{array}{lll}
\mathbf{a}_{y} \cdot \mathbf{D}=\rho_{s \ell} & \text { or } & \rho_{s \ell}=\epsilon E_{y}=\epsilon E_{0} e^{-j \beta z} \\
\mathbf{a}_{y} \times \mathbf{H}=\mathbf{J}_{s \ell} & \text { or } & \mathbf{J}_{s \ell}=-\mathbf{a}_{z} H_{x}=\mathbf{a}_{z} \frac{E_{0}}{\eta} e^{-j \beta z} . \tag{9--7a}
\end{array}
$$

At $y=d$ (uppef plate), $\mathbf{a}_{n}=-\mathbf{a}_{y}$:

$$
\begin{array}{rll}
-\mathbf{a}_{y} \cdot \mathbf{D}=\rho_{s u} & \text { or } & \rho_{s u}=-\epsilon E_{y}=-\epsilon E_{0} e^{-j \beta z} \\
-\mathbf{a}_{y} \times \mathbf{H}=\mathbf{J}_{s u} & \text { or } & \mathbf{J}_{s u}=\mathbf{a}_{z} H_{x}=-\mathbf{a}_{z} \frac{E_{0}}{\eta} e^{-j \beta z} \tag{9-7b}
\end{array}
$$

Equations (9-6) and (9-7) indicate that surface charges and surface currents on the conducting planes vary sinusoidally with z, as do E_{y} and H_{x}. This is illustrated schematically in Fig. 9-3.

Field phasors E and \mathbf{H} in Eqs. (9-1a) and (9-1b) satisfy the two Maxwell's curl equations:

$$
\begin{equation*}
\nabla \times \mathbf{E}=-j \omega \mu \mathbf{H} \tag{9-8}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \times \mathbf{H}=j \omega \epsilon \mathbf{E} \tag{9-9}
\end{equation*}
$$

Since $\mathbf{E}=\mathbf{a}_{y} E_{y}$ and $\mathbf{H}=\mathbf{a}_{x} H_{x}$, Eqs. (9-8) and (9-9) become

$$
\begin{equation*}
\frac{d E_{y}}{d z}=j \omega \mu H_{x} \tag{9-10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d H_{x}}{d z}=j \omega \epsilon E_{y} \tag{9-11}
\end{equation*}
$$

Ordinary derivatives appear above because phasors E_{y} and H_{x} are functions of z only.

Fig. 9-3 TEM-mode fields, surface charges, and surface currents in parallel-plate transmission line.

Integrating Eq. (9-10) over y from 0 to d, we have

$$
\frac{d}{d z} \int_{0}^{d} E_{y} d y=j \omega \mu \int_{0}^{d} H_{x} d y
$$

or

$$
\begin{align*}
-\frac{d V(z)}{d z} & =j \omega \mu J_{s u}(z) d=j \omega\left(\mu \frac{d}{w}\right)\left[J_{s u}(z) \omega\right] \\
\cdot & =j \omega L I(z), \tag{9-12}
\end{align*}
$$

where

$$
V(z)=-\int_{0}^{d} E_{y} d y=-E_{y}(z) d
$$

is the potential difference or voltage between the upper and lower plates;

$$
I(z)=J_{s u}(z) w
$$

is the total current flowing in the $+z$ direction in the upper plate; and

$$
\begin{equation*}
L=\mu \frac{d}{w} \quad(\mathrm{H} / \mathrm{m}) \tag{9-13}
\end{equation*}
$$

is the inductance per unit length of the parailel-plate transmission line. The dependence of phasors $V(z)$ and $I(z)$ on z is noted explicitly in Eq. $(9-12)$ for emphasis.

Similarly, we integrate Eq. $(9-11)$ over x from 0 to w ob obtain

$$
\frac{d}{d z} \int_{0}^{w} H_{x} d x=j \omega \epsilon \int_{0}^{w} E_{y} d x
$$

or

$$
\begin{align*}
-\frac{d I(z)}{d z} & =-j \omega) \epsilon E_{y}(z) w=j \omega\left(\epsilon \frac{w}{d}\right)\left[-E_{y}(z) d\right] \\
& =j \omega C V(z), \tag{9-14}
\end{align*}
$$

where

$$
\begin{equation*}
C=\epsilon \frac{w}{d} \quad(\mathrm{~F} / \mathrm{m}) \tag{9-15}
\end{equation*}
$$

is the capacitance per unit length of the parallel-plate transmission line.
Equations (9-12) and (9-14) constitute a pair of time-harmonic transmission-line eguations for phasors $V(z)$ and $I(z)$. They may be combined to yield second-order differential equations for $V(z)$ and for $I(z)$:

$$
\begin{align*}
\frac{d^{2} V(z)}{d z^{2}} & =-\omega^{2} L C V(z) \tag{9-16a}\\
\frac{d^{2} I(z)}{d z^{2}} & =-\omega^{2} L C I(z) . \tag{9-16b}
\end{align*}
$$

The solutions of Eqs. $(9-16 a)$ and $(9-16 b)$ ate, for waves propagating in the $+z$ direction,

$$
\begin{equation*}
V(z)=V_{0} e^{-j \beta z} \tag{9-17a}
\end{equation*}
$$

and

$$
\begin{equation*}
I(z)=I_{0} e^{-J \beta z} \tag{9-17b}
\end{equation*}
$$

where the phase constant

$$
\begin{equation*}
\beta=\omega \sqrt{L C}=\omega \sqrt{\mu \epsilon} \quad(\mathrm{rad} / \mathrm{m}) \tag{9-18}
\end{equation*}
$$

is the same as that given in Eq. $(9-2)$. The relation between V_{0} and I_{0} can be found by using either Eq. $(0-12)$ or Eq. $(9-14)$:

$$
\begin{equation*}
Z_{0}=\frac{V(z)}{I(z)}=\frac{V_{0}}{I_{0}}=\sqrt{\frac{L}{C}} \quad(\Omega) \tag{9-19}
\end{equation*}
$$

which becomes, in view of the results of Eqs. (9-13) and $(9-15)$,

$$
\begin{equation*}
Z_{0}=\frac{d}{w} \sqrt{\frac{\mu}{\epsilon}}=\frac{d}{w} \eta \tag{9-20}
\end{equation*}
$$

The quantity \ddot{Z}_{0} ts the impedance at any location that looks toward an infinitely long (no rellections) transmission line. It is catled the characteristic impedane of the line. The ratio of $V(z)$ and $I(z)$ at any point on a finite line of any length terminated in Z_{0} is $Z_{0}{ }^{\dagger}$ For a parallel-plate transmission line with perfectly conducting plates of widh wand separated by a hossless diclectric slab of thickness d, the characteristic impedance Z_{0} is (d / w) cincs the intrinsic impedance η of the dielectric medium.

The velocity of propagation along the line is

$$
\begin{equation*}
u_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \epsilon}} \quad(\mathrm{~m} / \mathrm{s}) \tag{9-21}
\end{equation*}
$$

which, again, is the same as that of a TEM plane wave in the dielectric medium.

9-2.1 Lossy Parallel-Plate Transmission Lines

We have so far assumed the parallel-plate transmission line to be lossless. In actual situations loss may arise from two causes. First, the dielectric medium may have a nonvanishing loss tangent; and, second, the plates may not be perfectly conducting. To characterize these two effects we define two new parameters: G, the conductance

[^49]per unit length across the two plates; and R, the resistance per unit length of the two plate conductors.

The conductance between two conductors separated by a dielectric medium having a permittivity ϵ and a conductivity σ can be determined readily by using Eq. (5-67) when the capacitance between the two conductors is known. We have

$$
\begin{equation*}
G=\frac{\sigma}{\epsilon} C . \tag{9-22}
\end{equation*}
$$

Use of Eq. (9-15) directly yields

$$
\begin{equation*}
G=\sigma \frac{w}{d} \quad(\mathrm{~S} / \mathrm{m}) \tag{9-23}
\end{equation*}
$$

If the parallel-plate conductors have a very large but finite conductivity σ_{c} (which must not be confused with the conductivity σ of the dielectric medium), ohmic power will be dissipated in the plates. This necessitates the presence of a nonvanishing axial clectric field $a_{z} E_{\text {a }}$ at the plate surfaces, such that the average Poynting vector

$$
\begin{equation*}
\mathscr{P} \mathcal{P}_{\mathrm{av}}=\mathbf{a}_{s} P_{\sigma}=\frac{1}{2} \mathscr{h _ { k } (\mathbf { a } _ { z } E _ { z } \times \mathbf { a } _ { x } H _ { x } ^ { * })} \tag{9-24}
\end{equation*}
$$

has a y component and equals the average power per unit area dissipated in each of the conducting plates. (Obviously the cross product of $\mathbf{a}_{y} E_{y}$ and $\mathbf{a}_{x} H_{x}$ does not result in a y component.)

Consider the upper piate where the surface current density is $J_{s u}=H_{x}$. It is convenient to define a surface impedance of an imperfect conductor, Z_{s}, as the ratio of the tangential component of the electric field to the surface current density at the conductor surface.

$$
\begin{equation*}
Z_{s}=\frac{E_{t}}{J_{s}} \quad(\Omega) \tag{9-25}
\end{equation*}
$$

For the upper plate, we hàve

$$
\begin{equation*}
Z_{s}=\frac{E_{z}}{J_{s u}}=\frac{E_{z}}{H_{x}}=\eta_{c}, \tag{9-26a}
\end{equation*}
$$

where η_{c} is the intrinsic impedance of the plate conductor. Here we assume that both the conductivity σ_{c} of the plate conductor and the operating frequency are sufficiently high that the current flows in a very thin surface layer and can be represented by the surface current $J_{\text {su }}$. The intrinsic impedance of a good conductor has been given in Eq. (8-46). We have

$$
\begin{equation*}
Z_{s}=R_{s}+j X_{s}=(1+j) \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}} \quad(\Omega), \tag{9-26b}
\end{equation*}
$$

where the subscript c is used to indicate the properties of the conductor.
length of the two
electric medium dily by using Eq. . We have
detivity σ_{c} (which m), ohmic power mavishing axial ng vector
ipat . each of 'x does not result
$s J_{s u}=H_{x}$. It is ; Z_{s}, as the ratio nt density at the
we assume that 1g frequency are nd can be repred conductor has
ctor.

Substitution of Eq. $(9-26 a)$ in Eq. $(9-24)$ gives

$$
\begin{align*}
p_{\sigma} & =\frac{1}{2} \mathscr{R}_{e}\left(\left|j_{s u}\right|^{2} Z_{s}\right) \\
& =\left.\left.\frac{1}{2}| |_{s u}\right|^{2}\right|^{2} R_{s} \quad\left(\mathrm{~W} / \mathrm{m}^{2}\right) . \tag{9-27}
\end{align*}
$$

The ohmic power dissipated in a unit length of the plate having a width w is $w p_{\sigma}$, which can be expressed in terms of the total surface current, $I=w J_{s u}$, as

$$
\begin{equation*}
P_{\sigma}=w p_{\sigma}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{w}\right) \quad(\mathrm{W} / \mathrm{m}) . \tag{9-28}
\end{equation*}
$$

Equation ' $9-28$) is the power dissipated when a sinusoidal current of amplitude I flows through a resistance R_{s} / w. Thus, the effective series resistance per unit length for both plates of a parallel-plate transmission line of width w is

$$
\begin{equation*}
R=2\left(\frac{R_{s}}{w}\right)=\frac{2}{w \sqrt{\frac{\pi \mu_{c}}{\sigma_{c}}}} \quad(\Omega / \mathrm{m}) . \tag{9-29}
\end{equation*}
$$

Table 9-1 lists the expressions for the four distributed parameters (R, L, G, and C per unit length) of a parallel-plate transmission line of width w and separation d.

We note from Eq. $\left(9-26 \mathrm{~b}\right.$) that surface impedance Z_{s} has a positive reactance term X_{s} that is numerically equal to R_{s}. If the total complex power (instead of its real part, the ohmic power P_{σ}, only) associated with a unit length of the plate is considered, X_{s} will lead to an internal series inductance per unit length $L_{i}=X_{s} /(\omega)=R_{s},(\omega)$. At high frequencies, L_{i} is negligible in comparison with the external inductance L.

Table 9-1 Distributed Parameters of ParallelPlate Transmission Line (Width $=w$, Separation $=d$)

Parameter	Formula	Unit
R	$\frac{2}{w} \sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}$	Ω / m
\vdots	μ	$\frac{d}{w}$
$\vdots G$	$\sigma \frac{w}{d}$	H / m
C	$\ddots \epsilon \frac{w}{d}$	$\mathrm{~F} / \mathrm{m}$

We note in the calculation of the power loss in the plate conductors of a finite conductivity σ_{c} that a nonvanishing electric field $a_{z} E_{z}$ must exist. The very existence of this axial electric field makes the wave along a lossy transmission line strictly not TEM. However, this axial component is ordinarily very small compared to the transverse component E_{y}. An estimate of their relative magnitudes can be made as follows:

$$
\begin{align*}
\frac{\left|E_{z}\right|}{\left|E_{y}\right|} & =\frac{\left|\eta_{c} H_{x}\right|}{\left|\eta H_{x}\right|}=\sqrt{\frac{\epsilon}{\mu}}\left|\eta_{\mathrm{c}}\right| \\
& =\sqrt{\frac{\omega \epsilon \mu_{c}}{\mu \sigma_{c}}}=\sqrt{\frac{\omega \epsilon}{\sigma_{\mathrm{c}}}} . \tag{9-30}
\end{align*}
$$

For copper plates $\left[\sigma_{\mathrm{c}}=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m})\right]$ in air $\left[\epsilon=\epsilon_{0}=10^{-9} / 36 \pi(\mathrm{~F} / \mathrm{m})\right]$ at a frequency of $3(\mathrm{GHz})$,

$$
\left|E_{z}\right| \cong{ }^{\prime} 5.3 \times 10^{-5}\left|E_{y}\right| \ll\left|E_{y}\right| .
$$

Hence we retain the designation TEM as well as all its consequences. The introduction of a small E_{z} in the calculation of p_{π} and R is considered a slight perturbation.

Example 9-1 Striplines consisting of a thin metal strip separated from a conducting ground plane by a dielectric substrate are used extensively in microwave circuitry. Neglecting losses and assuming the substrate to have a thickness $0.4(\mathrm{~mm})$ and a dielectric constant 2.25 , (a) determine the required width w of the metal strip in order for the stripline to have a characteristic resistance of $50(\Omega)$, (b) determine L and C of the line, and (c) determine u_{p} along the line. (d) Repeat parts (a), (b) and (c) for a characteristic resistance of $75(\Omega)$.

Solution

a) We use Eq. (9-20) directly to find w.

$$
\begin{aligned}
w=\frac{d}{Z_{0}} \sqrt{\frac{\mu}{\epsilon}} & =\frac{0.4 \times 10^{-3}}{50} \frac{\eta_{0}}{\sqrt{\epsilon_{r}}} \\
& =\frac{0.4 \times 10^{-3} \times 377}{50 \sqrt{2.25}}=2 \times 10^{-3}(\mathrm{~m}), \text { or } 2(\mathrm{~mm}) .
\end{aligned}
$$

b) $L=\mu \frac{d}{w}=4 \pi 10^{-7} \times \frac{0.4}{2}=2.51 \times 10^{-7}(\mathrm{H} / \mathrm{m})$, or $0.251(\mu \mathrm{H} / \mathrm{m})$.

$$
C=\epsilon_{0} \epsilon_{r} \frac{w}{d}=\frac{10^{-9}}{36 \pi} \times 2.25 \times \frac{2}{0.4}=99.5 \times 10^{-12}(\mathrm{~F} / \mathrm{m}), \text { or } 99.5(\mathrm{pF} / \mathrm{m}) .
$$

c) $u_{p}=\frac{1}{\sqrt{\mu \epsilon}}=\frac{c}{\sqrt{\epsilon_{r}}}=\frac{c}{\sqrt{2.25}}=\frac{c}{1.5}=2 \times 10^{8}(\mathrm{~m} / \mathrm{s})$.
d) Since w is inversely proportional to Z_{0}, we have, for $Z_{0}^{\prime}=75(\Omega)$,

$$
\begin{aligned}
& w^{\prime}=\left(\frac{Z_{0}}{Z_{0}^{\prime}}\right) w=\frac{50}{75} \times 2=1.33(\mathrm{~mm}) \\
& L^{\prime}=\left(\frac{w}{w^{\prime}}\right) L=\left(\frac{2}{1.33}\right) \times 0.251=0.377(\mu \mathrm{H} / \mathrm{m}) . \\
& C^{\prime}=\left(\frac{w^{\prime}}{w}\right) C=\left(\frac{1.33}{2}\right) \times 99.5=66.2(\mathrm{pF} / \mathrm{m}) \\
& u_{p}^{\prime}=u_{p}=2 \times 10^{8}(\mathrm{~m} / \mathrm{s})
\end{aligned}
$$

n)] at a
ofaction tion.

9-3 GENERAL TRANSMISSION-LINE EQUATIONS

We will now derive the equations that govern general two-conductor uniform transmission lines. Tritnsmission lines differ from ordinary electric networks in one essential feature. Whereas the physical dimensions of electric networks are very much smaller than the operating wavelength, transmission lines are usually a considerable fraction of a wavelength and may even be many wavelengths long. The circuit elements in an ordinary electric network can be considered discrete and as such may be described by lumped parameters. Currents flowing in lumped-circuit elements do not vary spatially over the elements, and no standing waves exist. A transmission line, on the other hand, is a distributed-parameter network and must be described by circuit parameters that are distributed throughout its length. Except under matched conditions, standing waves exist in a transmission line.

Consider a differential length Δz of a transmission line which is described by the following four parameters:
R, resistance per unit length (both conductors), in Ω / m.
L, inductance per μ nit length (both conductors), in H / m.
G, conductance pef unit length, in S / m.
C, capacitance per unit length, in F / m.
Note that R and L are series elements, and G and C are shunt elements. Figure 9-4 shows the equivalent electric circuit of such a line segment. The quantities $v(z, t)$ and $v(z+\Delta z, t)$ denote the instantàneous voltages at z and $z+\Delta z$ respectively. Similarly, $i(z, t)$ and $i(z+\Delta z, t)$ denote the instantaneous currents at z and $z+\Delta z$. Applying Kirchhoff's-voltage law, we obtain

$$
\begin{equation*}
v(z, t)-R \Delta z i(z, t)-L \Delta z \frac{\partial l(z, t)}{\partial t}-v(z+\Delta z, t)=0 \tag{9-30}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
-\frac{p(z+\Delta z, t)-v(z, t)}{\Delta z}=R i(z, t)+L \frac{\partial i(z, t)}{\partial t} . \tag{9-30a}
\end{equation*}
$$

Fig. 9-4 Equivalent circuit of a differential length Δz of a two-conductor transmission line.

On the limit as $\Delta z \rightarrow 0$, Eq. (9-30a) becomes

$$
\begin{equation*}
-\frac{v(z, t)}{\partial z}=R i(z, t)+L \frac{\partial i(z, t)}{\partial t} \tag{9-31}
\end{equation*}
$$

Similarly, applying Kirchhoff's current law to the node N in Fig. 9-4, we have

$$
\begin{equation*}
i(z, t)-G \Delta z v(z+\Delta z, t)-C \Delta z \frac{\partial v(z+\Delta z, t)}{\lambda t}-i(z+\overline{\Delta z, t})=0 \tag{9-32}
\end{equation*}
$$

On dividing by Δz and letting Δz approach zero, Eq. (9-32) becomes

$$
\begin{equation*}
-\frac{\partial i(z, t)}{\partial z}=G v(z, t)+C \frac{\partial v(z, t)}{\partial t} \tag{9-33}
\end{equation*}
$$

Equations (9-31) and (9-33) are a pair of first-order partial differential equations in $v(z, t)$ and $i(z, t)$. They are the general transmission-line equations. ${ }^{\dagger}$

For harmonic time dependence, the use of phasors simplifies the transmissionline equations to ordinary differential equations. For a cosine reference we write

$$
\begin{align*}
v(z, t) & =\mathscr{R e}\left[V(z) e^{j \omega t}\right] \tag{9-34a}\\
i(z, t) & =\mathscr{R} e\left[I(z) e^{j \omega t}\right] \tag{9-34b}
\end{align*}
$$

where $V(z)$ and $I(z)$ are functions of the space coordinate z only, and both may be complex. Substitution of Eqs. $(9-34 a)$ and $(9-34 b)$ in Eqs. $(9-31)$ and (9-33) yields the following ordinary differential equations for phasors $V(z)$ and $I(z)$:

$$
\begin{align*}
& -\frac{d V(z)}{d z}=(R+j(\omega L) I(z) \tag{9-35a}\\
& -\frac{d I(z)}{d z}=(G+j \omega C) V(z)
\end{align*}
$$

[^50]Equations (9-35a) tnd (9-35b) are time-harmionic transmission-line equations, which reduce to Eqs. $(9-12)$ and $(9-14)$ under lossless conditions ($R=0, G=0$).

9-3.1 ${ }^{\text {* Wave Characteristlcs on an Infinite }}$ Transmission Line

$(9-31)$
we have (9-32) (9-33)
:quations
smissione write
(9-34a)
(9-34b)
a may be
33) yields

The coupled time-Harmonic transmission-line equations, Eqs. $(9-35 \mathrm{a})$ and $(9-35 \mathrm{~b})$, can be combined to solve for $V(z)$ and $\mathscr{I}(z)$. We obtain

$$
\begin{equation*}
\frac{d^{2} V(z)}{d z^{2}}=\gamma^{2} V(z) \tag{9-36a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d^{2} l(z)}{d z^{2}}=\gamma^{2} I(z) \tag{9-36~b}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\alpha+j \beta=\sqrt{(R+j \omega L)(G+j \omega C)} \quad\left(\mathrm{m}^{-1}\right) \tag{9-37}
\end{equation*}
$$

is the propagation constant whose real and imaginary parts, α and β, are the attenuation constant $(\mathrm{Np} / \mathrm{m})$ and phase constant $(\mathrm{rad} / \mathrm{m})$ of the line respectively. The nomenclature here is similar to that for plane-wave propagation in conducting media as defined in Section 8-3. These quantities are not really constants because, in general, they depend on ω in a complicated way.

The solutions of Eqs. $(9-36 \mathrm{a})$ and $(9-36 \mathrm{~b})$ are

$$
\begin{align*}
V(z) & =V^{+}(z)+V^{-}(z) \\
& =V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{9-38a}\\
I(z) & =I^{+}(z)+I^{-}(z) \\
& =I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{\gamma z}, \tag{9-38b}
\end{align*}
$$

where the plus and minus superscripts denote waves traveling in the $+z$ and $-z$ directions respectively. Wave amplitudes $V_{0}^{+}, V_{0}^{-}, I_{0}^{+}$, and I_{0}^{-}are related by Eqs. (9-35i) and (9-356), and it is casy to verify (Problem P.9-5) that

$$
\begin{equation*}
\frac{V_{0}^{+}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{I_{0}^{-}}=\frac{R+j \omega L}{\gamma} \tag{9-39}
\end{equation*}
$$

For an infinite line (actually a semi-infinite line with the source at the left end), the terms containing the $e^{\gamma 2}$ factor must vanish. There are no reflected waves; only the waves traveling in the $+z$ direction exist. We have

$$
\begin{align*}
V(z) & =V^{+}(z)=V_{0}^{+} e^{-\gamma z} \tag{9-40a}\\
I(z) & \doteq I^{+}(z)=I_{0}^{+} e^{-\gamma z} . \tag{9-40b}
\end{align*}
$$

The ratio of the yoltage and the current at any z for an infinitely long line is independent of z and is called the characteristic impedance of the line.

$$
\begin{equation*}
Z_{0}=\frac{R+j \omega L}{\gamma}=\frac{\gamma}{G+j \omega C}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} \tag{9-41}
\end{equation*}
$$

Note that γ and Z_{0} are characteristic properties of a transmission line whether or not the line is infinitely long. They depend on R, L, G, C, and ω - not on the length of the line. An infinite line simply implies that there are no reflected walves.

The general expressions for the characteristic impedance in Eq. $(9-41)$ and the propagation constant in Eq. $(9-37)$ are relatiyely complicated. The following three limiting cases have special significance.

1. Lossless Line ($R=0, G=0$).
a) Propagation constant:

$$
\begin{align*}
\gamma= & \alpha+j \beta=j \omega \sqrt{L C} \tag{9-42}\\
& \alpha=0 \tag{9-42a}\\
\beta & =\omega \sqrt{L C} \quad \text { (a linear function of } \omega) . \tag{9-42b}
\end{align*}
$$

b) Phase velocity:

$$
\begin{equation*}
u_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}} \quad \text { (constant). } \tag{9-43}
\end{equation*}
$$

c) Characteristic impedance:

$$
\begin{align*}
Z_{0}= & R_{0}+j X_{0}=\sqrt{\frac{L}{C}} \tag{9-44}\\
R_{0} & =\sqrt{\frac{L}{C}} \quad \text { (constant) } \tag{9-44a}\\
& X_{0}=0 \tag{9-44b}
\end{align*}
$$

2. Low-Loss Line ($R \ll \omega L, G \ll \omega C$). The low-loss condition is more easily satisfied at very high frequencies.
aft end), es; only
(9-40a).
is inde-
ether or cleneth
and
ng ${ }^{\text {b }}$.
(9-42)
(9-42a)
(9-42b)
asily sat-
a) Propagation constant:

$$
\begin{align*}
\gamma & =\alpha+j \beta=j \omega \sqrt{L C}\left(1+\frac{R}{j \omega L}\right)^{1 / 2}\left(1+\frac{G}{j \omega C}\right)^{1 / 2} \\
& \cong j \omega \sqrt{L C}\left(1+\frac{R}{2 j \omega L}\right)\left(1+\frac{G}{2 j \omega C}\right) \\
& \cong j \omega \sqrt{L C}\left[1+\frac{1}{2 j \omega}\left(\frac{R}{L}+\frac{G}{C}\right)\right] ; \tag{9-45}\\
& \left.\alpha \cong \frac{1}{2}\left(R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right)\right] \tag{9-45a}
\end{align*}
$$

$$
\begin{equation*}
\beta \cong \omega \sqrt{L C} \quad \text { (approximately a linear function of } \omega \text {). } \tag{9-45b}
\end{equation*}
$$

b) Phase velocity:

$$
\begin{equation*}
u_{p}=\frac{()}{\beta} \cong \frac{1}{\sqrt{l C}} \quad \text { (approximately constant). } \tag{9-46}
\end{equation*}
$$

c) Characteristic impedance:

$$
\begin{align*}
Z_{0}= & R_{0}+j X_{0}=\sqrt{\frac{L}{C}}\left(1+\frac{R}{j \omega L}\right)^{1 / 2}\left(1+\frac{G}{j \omega C}\right)^{-1 / 2} \\
\cong & \sqrt{\frac{L}{C}}\left[1+\frac{1}{2 j \omega}\left(\frac{R}{L}-\frac{G}{C}\right)\right] \tag{9-47}\\
& R_{0} \cong \sqrt{\frac{L}{C}} \tag{4-47a}\\
& X_{0} \cong-\sqrt{\frac{L}{C}} \frac{1}{2 \omega}\left(\frac{R}{L}-\frac{G}{C}\right) \cong 0 . \tag{9-47~b}
\end{align*}
$$

3. Distortionless Lihe ($R / L=G / C$). If the condition

$$
\begin{equation*}
\frac{R}{L}=\frac{G}{C} \tag{9-48}
\end{equation*}
$$

is satisfied, the expressions for both γ and Z_{0} simplify.
a) Propagation constant:

$$
\begin{align*}
\gamma & =\alpha+j \beta=\sqrt{(R+j \omega L)\left(\frac{R C}{L}+j \omega C\right)} \\
& =\sqrt{C}(R+j(\omega L) ; \tag{9-49}\\
\alpha & =R \cdot \sqrt{\frac{C}{L}} \quad \tag{9-49a}\\
\beta & =\omega \sqrt{L C} \quad \text { (a linear function of } \omega) .
\end{align*}
$$

b) Phase velocity:

$$
\begin{equation*}
u_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}} \quad \text { (constant). } \tag{9-50}
\end{equation*}
$$

c) Characteristic impedance:

$$
\begin{align*}
& Z_{0}=R_{0}+j X_{0}=\sqrt{\frac{R+j \omega L}{(R C / L)+j \omega C}}=\sqrt{\frac{L}{C}} \tag{9-51}\\
& R_{0}=\sqrt{\frac{L}{C} \quad \text { (constant) }} \tag{9-51a}\\
& X_{0}=0 . \tag{9-51b}
\end{align*}
$$

Thus, except for a nonvanishing attenuation constant, the characteristics of a distortionless line are the same as those of a lossless line; namely, a constant phase velocity ($u_{p}=1 / \sqrt{L C}$) and a constant real characteristic impedance ($\left.Z_{0}=R_{0}=\sqrt{L / C}\right)$.

A constant phase velocity is a direct consequence of the linear dependener of the phase constant β on (3. Since a sigmal asually consists of a hand of frepuencies, it is essential that the different frequency components travel along atransmission line at the same velocity in order to avoid distortion. This condition is satisfied by a lossless line and is approximated by a line with very low losses. For a lossy line, wave amplitudes will be attentuated, and distortion will result when different frequency components attenuate differently, even when they travel with the same velocity. The condition specified in Eq. (9-48) leads to both a constant α and a constant u_{p} - thus the name distortionless line.

The phase constant of a lossy transmission line is determined by expanding the expression for γ in Eq. (9-37). In general, the phase constant is not a linear function of ω; thus, it will lead to a u_{p}, which depends on frequency. As the different frequency components of a signal propagate along the line with different velocities, the signal suffers dispersion. A general, lossy, transmission line is therefore dispersive, as is a lossy dielectric (see Subsection 8-3.1).

Example 9-2 It is found that the attenuation on a $50-(\Omega)$ distortionless transmission line is $0.01(\mathrm{~dB} / \mathrm{m})$. The line has a capacitance of $0.1(\mathrm{pF} / \mathrm{m})$.
a) Find the resistance, inductance, and conductance per meter of the line.
b) Find the velocity of wave propagation.
c) Determine the percentage to which the amplitude of a voltage traveling wave decreases in $1(\mathrm{~km})$ and in $5(\mathrm{~km})$.

Solution

a) For a distortionless line,

$$
\frac{R}{L}=\frac{G}{C} .
$$

9-51b)
f a dis-
1 phase
, $\bar{L}, \bar{C})$.
e of the
ics, it is
on line
d by
e. wave
quc.
clocity.
onstant
ling the unction ent frelocities, spersive, mission

9-3.2 Transmission-Line Parameters

The electrical properties of a transmission line at a given frequency are completely characterized by its four distributed parameters R, L, G, and C. These parameters for a parallel-plate transmission line are listed in Table $9-1$. We will now obtain them for two-wire and coaxial transmission lines.

Our basic premise is that the conductivity of the conductors in a transmission line is usually so high that the effect of the series resistance on the eomputation of the propugation constant is negligible, the moplication being that the waves on the line

$$
\begin{equation*}
\gamma=j \omega \sqrt{L C}\left(1+\frac{G}{j \omega C}\right)^{1 / 2} \tag{9-52}
\end{equation*}
$$

From Eq. (8-37) we know that the propagation constant for a TEM wave in a medium with constitutive parameters $(\mu, \varepsilon, \sigma)$ is

$$
\begin{equation*}
\gamma=j \omega \sqrt{\mu \epsilon}\left(1+\frac{\sigma}{j \omega \epsilon}\right)^{1 / 2} . \tag{9-53}
\end{equation*}
$$

But

$$
\begin{equation*}
\frac{G}{C}=\frac{\sigma}{\epsilon} \tag{9-54}
\end{equation*}
$$

in accordance with Eq. (5-67); hence comparison of Eqs. (9-52) and (9-53) yields

$$
\begin{equation*}
L C=\mu \epsilon . \tag{9-55}
\end{equation*}
$$

Equation (9-55) is a very useful relation, because if L is known for a, line with a given medium, C can be determined, and vice versa. Knowing C, we can find G from Eq. (9-54). Series resistance R is determined by introducing a small axial E_{z} as a slight perturbation of the TEM wave and by finding the ohmic power dissipated in a unit length of the line, as was done in Subsection 9-2.1.

Equation (9-55), of course, also holds for a lossless line. The velocity of wave propagation on a lossless transmission line, $u_{p}=1 / \sqrt{L C}$, therefore, is equal to the velocity of propagation, $1 / \sqrt{\mu \epsilon}$, of unguided plane wave in the dielectric of the line. This fact has been pointed out in connection with Eq. (9-21) for parallel-plate lines.

1. Two-wire transmission line. The capacitance per unit length of a two-wire transmission line, whose wires have a radius a and are separated by a distance D, has been found in Eq. (4-47). We have

$$
\begin{equation*}
C=\frac{\pi \epsilon}{\cosh ^{-1}(D / 2 a)} \quad(\mathrm{F} / \mathrm{m}) \tag{9-56}
\end{equation*}
$$

From Eqs. (9-55) and (9-54), we obtain

$$
\begin{equation*}
L=\frac{\mu}{\pi} \cosh ^{-1}\left(\frac{D}{2 a}\right) \quad(\mathrm{H} / \mathrm{m}) \tag{9-57}
\end{equation*}
$$

and

$$
\begin{equation*}
G=\frac{\pi \sigma}{\cosh ^{-1}(D / 2(i)} \quad \cdots(\mathrm{S} / \mathrm{m}) \tag{9-58}
\end{equation*}
$$

To determine R, we go back to Eq. (9-27) and express the ohmic power dissipated per unit length of both wires in terms of p_{σ}. Assuming the current

[^51]line with an find G it axial E : dissipated y of wave rual he :line. This lines. wire transnce D; has $(9-56)^{\dagger}$ $(9-57)^{\dagger}$

mic power he current
$J_{s}(\mathrm{~A} / \mathrm{m})$ to flow in a very thin surface layer, the current in each wire is $I=2 \pi a J_{s}$, and
\[

$$
\begin{equation*}
P_{n}=2 \pi a p_{\sigma}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi a}\right) \quad(\mathrm{W} / \mathrm{m}) \tag{9-59}
\end{equation*}
$$

\]

Hence the series resistance per unit length for both wires is

$$
\begin{equation*}
R=2\left(\frac{R_{s}}{2 \pi a}\right)=\frac{1}{\pi a} \sqrt{\frac{\pi \mu_{c}}{\sigma_{c}}} \quad(\Omega / \mathrm{m}) \tag{9-60}
\end{equation*}
$$

In deriving Eqs. (9-59) and (9-60), we have assumed the surface current J_{s} to be uniform over the circumference of both wites. This is an approximation, inasmuch. as the proximity of the two wires tends to make the surface current nonuniform.
2. Coaxial transntilssion line. The external inductance per unit length of a coaxial transmission lifie with a center conductor of radius a and an outer conductor of inner radius b hias been found in Eq. (6-124):

$$
\begin{equation*}
L=\frac{\mu}{2 \pi} \ln \frac{b}{a} \quad(\mathrm{H} / \mathrm{m}) \tag{9-61}
\end{equation*}
$$

From Eq. (9-55), we obtain

$$
\begin{equation*}
C=\frac{2 \pi \epsilon}{\ln (b / a)} \quad(\mathrm{F} / \mathrm{m}) \tag{9-62}
\end{equation*}
$$

and

$$
\begin{equation*}
G=\frac{2 \pi \sigma}{\ln (b / a)} \quad(\mathrm{S} / \mathrm{m}) \tag{9-63}
\end{equation*}
$$

To determine K, we again returra to Eq. (9-27), where $J_{s i}$ on the surface of the center conductor is different from $J_{s o}$ on the inner surface of the outer conductor. We must haye

$$
\begin{equation*}
I=2 \pi a J_{s i}=2 \pi b J_{s o} . \tag{9-64}
\end{equation*}
$$

 respectively,

$$
\begin{align*}
& P_{\sigma i}=2 \pi c p_{\sigma i}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi a}\right) \tag{9-65a}\\
& P_{\sigma o}=2 \pi b p_{\sigma o}=\frac{1}{2} I^{2}\left(\frac{R_{s}}{2 \pi b}\right) . \tag{9-65b}
\end{align*}
$$

Table 9-2 Distributed Parameters of Two-Wire and Coaxial Transmission Lines

Parameter	Two-Wire Line	Coaxial Line	Unit
R	$\frac{R_{s}}{\pi a}$	$\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)$	Ω / m
L	$\frac{\mu}{\pi} \cosh ^{-1}\left(\frac{D}{2 a}\right)$	$\frac{\mu}{2 \pi} \ln \frac{b}{a}$	H / m
\therefore	$\frac{\pi \sigma}{\cosh ^{-1}(D / 2 a)}$	$\frac{2 \pi \sigma}{\ln (b / a)}$	S / m
G	$\frac{\pi \epsilon}{\cosh ^{-1}(D / 2 a)}$	$\frac{2 \pi \epsilon}{\ln (b / a)}$	F / m

Note: $R_{\mathrm{s}}=\sqrt{\pi f / \mu_{\mathrm{c}} / \sigma_{\mathrm{c}}} ; \cosh ^{-1}(D / 2 a) \cong \ln (D / a)$ if $(D / 2 a)^{2} \gg 1$. Internal inductance is not inctuded.

From Eqs. (9-65a) and (9-65b), we obtain the resistance per unit length:

$$
\begin{equation*}
R=\frac{R_{s}}{2 \pi}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{1}{2 \pi} \sqrt{\frac{\pi \mu_{c}}{\sigma_{c}}}\left(\frac{1}{a}+\frac{1}{b}\right) \quad(\Omega / \mathrm{m}) \tag{9-66}
\end{equation*}
$$

The R, L, G, C parameters for two-wire and coaxial transmission lines are listed in Table 9-2.

9-3.3 Aftenuation Constant from

Power Relations

The attenuation constant of a traveling wave on a transmission line is the real part of the propagation constant; it can be determined from the basic definition in Eq. (9-37):

$$
\begin{equation*}
\alpha=\mathscr{M}(\gamma)=\mathscr{R}_{\Omega}[\sqrt{(R+j \omega L)(G+j \omega C)}] . \tag{9-67}
\end{equation*}
$$

The attenuation constant can also be found from a power relationship. The phasor voltage and phasor current distributions on an infinitely long transmission line (no reflections) may be written as. (Eqs. (9-40a) and (9-40b) with the plus superscript dropped for simplicity):

$$
\begin{align*}
V(z) & =V_{0} e^{-(\alpha+j \beta) z} \tag{9-68a}\\
I(z) & =\frac{V_{0}}{Z_{0}} e^{-(\alpha+j \beta) z} . \tag{9-68b}
\end{align*}
$$ rition in Eq. ionship. The rumsmission e plipsuper-

The time-average power propagated along the ne at any z is

$$
\begin{align*}
P(z) & =\frac{1}{2} \mathscr{R}\left[V(z) I^{*}(z)\right] \\
& =\frac{V_{0}^{2}}{2\left|Z_{0}\right|^{2}} R_{0} e^{-2 a z} \tag{9-69}
\end{align*}
$$

The law of conservation of energy requires that the rate of decrease of $P(z)$ with distance along the line equals the time-average power loss P_{L} per unit length. Thus,

$$
\begin{aligned}
-\frac{\partial P(z)}{\partial z} & =P_{L}(z) \\
& =2 \alpha P(z)
\end{aligned}
$$

from which we obtain the following formula:

$$
\begin{equation*}
\alpha=\frac{P_{\mathrm{L}}(z)}{2 P(z)} \quad(\mathrm{Np} / \mathrm{m}) \tag{9-70}
\end{equation*}
$$

Example 9-3

a) Use Eq. $(9-70)$ to find the attenuation constant of a lossy transmission line with distributed parameters R, L, G and C.
b) Specialize the result in part (a) to obtain the attenuation constants of a low-loss line and of a distortionless line.

Solution

a) For a lossy transthission line the time-average power loss per unit length is

$$
\begin{align*}
P_{L}(z) & =\frac{1}{2}\left[|I(z)|^{2} R+|V(z)|^{2} G\right] \\
& =\frac{V_{0}^{2}}{2\left|Z_{0}\right|^{2}}\left(R+G\left|Z_{0}\right|^{2}\right) e^{-2 \alpha z} . \tag{9-71}
\end{align*}
$$

Substitution of Eqs. $(9-69)$ and $(9-71)$ in Eq. $(9-70)$ gives

$$
\begin{equation*}
\alpha=\frac{1}{2 R_{0}}\left(R+G\left|Z_{0}\right|^{2}\right) \quad(\mathrm{Np} / \mathrm{m}) \tag{9-72}
\end{equation*}
$$

b) For a low toss line, $Z_{0} \cong R_{0}=\sqrt{L / C}$, Eq. (9-72) becomes

$$
\begin{align*}
\alpha & \cong \frac{1}{2}\left(\frac{R}{R_{0}}+G R_{0}\right) \\
& =\frac{1}{2}\left(R \sqrt{\frac{C}{L}}+G \sqrt{\frac{L}{C}}\right) \tag{9-72a}
\end{align*}
$$

which checks with Eq. (9-45). For a distortionless line, $Z_{0}=R_{0}=\sqrt{L / C}$, Eq. (9-72a) applies, and

$$
\alpha=\frac{1}{2} R \sqrt{\frac{C}{L}}\left(1+\frac{G}{R} \frac{L}{C}\right),
$$

which, in view of the condition in Eq. (9-48), reduces to

$$
\begin{equation*}
\alpha=R \sqrt{\frac{C}{L}} . \tag{9-72b}
\end{equation*}
$$

Equation (9-72b) is the same as Eq. (9-49a).

9-4 WAVE Characteristics On' FINITE TRANSMISSION LINES

In Subsection 9-3.1 we indicated that the general solutions for the time-harmonic one-dimensional Helmholtz equations, Eqs. $(9-36 \mathrm{a})$ and $(9-36 \mathrm{~b})$, for transmission lines are

$$
\begin{equation*}
V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{\gamma z} \tag{9-73a}
\end{equation*}
$$

and

$$
\begin{equation*}
I(z)=I_{0}^{+} e^{-y z}+I_{0}^{-} e^{\gamma z}, \tag{9-73b}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{V_{0}^{+}}{I_{0}^{+}}=-\frac{V_{0}^{-}}{I_{0}^{-}}=Z_{0} . \tag{9-74}
\end{equation*}
$$

For infinitely long lines there can be only forward waves traveling in the $+z$ direction, and the second terms on the right side of Eqs. (9-73a) and (9-73b), representing refiected waves, vanish. This is also true for finite lines terminated in a characteristic impedance; that is, when the lines are matched. From circuit theory we know that a maximum transfer of power from a given voltage source to a load occurs under "matched conditions" when the load impedance is the complex conjugate of the source impedance (Problem P.9-11). In transmission line terminology, a line is matched when the load impedance is equal to the characteristic impedance (not the complex conjugate of the characteristic impedance) of the line.

Fig. 9-5 Finite transmission line terminated with load impedance Z_{L}.

Let us now consider the general case of a firtite transmission line having a characteristic impedance Z_{b} terminated in an arbitraty load impedance Z_{L}, as depicted in Fig. 9-5. The length of the line is ℓ. A sinusoidal voltage source $V_{g} \not 0^{\circ}$ with an internal impedance Z_{g} is conflected to the line at $z=0$. In such a case,

$$
\begin{equation*}
\left(\frac{V}{I}\right)_{z=\ell}=\frac{V_{\mathrm{L}}}{I_{\mathrm{L}}}=Z_{\mathrm{L}} \tag{9-75}
\end{equation*}
$$

which obviously canhot be satisficd without the second terms on the right side of Eqs. $(9-73 \mathrm{a})$ and $(9-73 \mathrm{~b})$ unless $Z_{\mathrm{L}}=Z_{0}$. Thus, reflected waves exist on unmatched lines.

Given the characteristic γ and Z_{0} of the line and its length ℓ, there are four unknowns $V_{0}^{+}, V_{0}^{-}, I_{0}^{+}$, and I_{0}^{-}in Eqs. (9-73a) and (9-73b). These four unknowns are not all independent because they are constrained by the relations at $z=0$ and at $z=\ell$. Both $V(z)$ and $I(z)$ can be expressed either in terms of V_{i} and I_{i} at the input end (Problem P.9-12), or in terms of the conditions at the load end. Consider the latter case.

Let $z=\ell$ in Eqs. $(9-73 \mathrm{a})$ and $(9-73 \mathrm{~b})$. We have

$$
\begin{align*}
& V_{\mathrm{L}}=V_{0}^{+} e^{-\gamma \epsilon}+V_{0}^{-} e^{\gamma \epsilon} \tag{9-76a}\\
& I_{\mathrm{L}}=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma \epsilon}-\frac{V_{0}^{-}}{Z_{0}} e^{\gamma \epsilon} \tag{9-76b}
\end{align*}
$$

Solving Eqs. $(9-76 \mathrm{a})$ and $(9-76 \mathrm{~b})$ for V_{0}^{--}and V_{0}^{-}, we have

$$
\begin{align*}
& V_{0}^{+}=\frac{1}{2}\left(V_{\mathrm{L}}^{\vdots}+I_{\mathrm{L}} Z_{0}\right) e^{\gamma \ell} \tag{9-77a}\\
& V_{0}^{\bar{\omega}}=\frac{1}{2}\left(V_{\mathrm{L}}+I_{\mathrm{L}} Z_{0}\right) e^{-\gamma l} . \tag{9-77~b}
\end{align*}
$$

Substituting Eq. $(9-75)$ in Eqs. $(9-77 \mathrm{a})$ and $(9-77 \mathrm{~b})$, and using the results in Eqs. ($9-73 \mathrm{a}$) and $(9-73 \mathrm{~b})$, we obtain

$$
\begin{align*}
& V(z)=\frac{I_{\mathrm{L}}}{2}\left[\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma(\epsilon-z)}+\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-\gamma(\epsilon-z)}\right] \tag{9--78a}\\
& I(z)=\frac{I_{\mathrm{L}}}{2 Z_{0}}\left[\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma(\epsilon-z)}-\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-\gamma(\epsilon-z)}\right] \tag{9-78b}
\end{align*}
$$

Since ℓ and z appear toge ther in the combination $(\ell-z)$, it is expedient to introduce a new variable $z^{\prime}=\ell-z$, which is the distance measured backward from the load. Equations (9-78a) and (9-78b) then become

$$
\begin{align*}
& \left|\left|y^{\prime}\right| \cdots\right|\left(Z_{1},+Z_{1}\right){ }_{2}\left|\left(Z_{1}, Z_{11}\right) y^{\prime}\right| \tag{a}\\
& I\left(z^{\prime}\right)=\frac{I_{\mathrm{L}}}{2 Z_{0}}\left[\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma z^{\prime}}-\left(Z_{\mathrm{L}}-Z_{0}\right) e^{-\gamma z^{\prime}}\right] \tag{9-79b}
\end{align*}
$$

We note here that although the same symbols V and I are used in Eqs. $(9-79 \mathrm{a})$ and $(9-79 \mathrm{~b})$ as in Eqs. $(9-78 \mathrm{a})$ and $(9-78 \mathrm{~b})$, the dependence of $V\left(z^{\prime}\right)$ and $I\left(z^{\prime}\right)$ on z^{\prime} is different from the dependence of $V(z)$ and $I(z)$ on z.

The use of hyperbolic functions simplifies the equations above. Recalling the relations

$$
e^{\gamma z^{\prime}}+e^{-\gamma r^{\prime}}=2 \cosh \gamma z^{\prime} \quad \text { and } \quad e^{\gamma z^{\prime}}-e^{-\gamma z^{\prime}}=2 \sinh \gamma z^{\prime},
$$

we may write Eqs. (9-79a) and (9-79b) as

$$
\begin{align*}
& V\left(z^{\prime}\right)=I_{\mathrm{L}}\left(Z_{\mathrm{L}} \cosh \gamma z^{\prime}+Z_{0} \sinh \gamma z^{\prime}\right) \tag{9-80a}\\
& I\left(z^{\prime}\right)=\frac{I_{\mathrm{L}}}{Z_{0}}\left(Z_{\mathrm{L}} \sinh \gamma z^{\prime}+Z_{0} \cosh \gamma z^{\prime}\right), \tag{9-80b}
\end{align*}
$$

which can be used to find the voltage and current at any point along a transmission line in terms of I_{L}, Z_{L}, γ, and Z_{0}.

The ratio $V\left(z^{\prime}\right) / I\left(z^{\prime}\right)$ is the impedance when we look toward the load end of the line at a distance z^{\prime} from the load.

$$
\begin{equation*}
Z\left(z^{\prime}\right)=\frac{V\left(z^{\prime}\right)}{I\left(z^{\prime}\right)}=Z_{0} \frac{Z_{\mathrm{L}} \cosh \gamma z^{\prime}+Z_{0} \sinh \gamma z^{\prime}}{Z_{\mathrm{L}} \sinh \gamma z^{\prime}+Z_{0} \cosh \gamma z^{\prime}} \tag{9-81}
\end{equation*}
$$

or

$$
\begin{equation*}
Z\left(z^{\prime}\right)=Z_{0} \frac{Z_{\mathrm{L}}+Z_{0} \tanh \gamma z^{\prime}}{Z_{0}+Z_{\mathrm{L}} \tanh \gamma z^{\prime}} \tag{9-82}
\end{equation*}
$$

At the source end of the line, $z^{\prime}=\ell$, the generator looking into the line sees an input impedance Z_{i}.

$$
\begin{equation*}
Z_{i}=\left(Z_{\substack{z=0 \\ z^{\prime}=\ell}}=Z_{0} \frac{Z_{\mathrm{L}}+Z_{0} \tanh \gamma \ell}{Z_{0}+Z_{\mathrm{L}} \tanh \gamma \ell}\right. \tag{9-83}
\end{equation*}
$$

As far as the conditions at the generator are concerned, the terminated finite transmission line can be replaced by Z_{i}, as shown in Fig. 9-6. The input voltage V_{i} and input current I_{i} in Fig. $9-5$ are found easily from the equivalent circuit in Fig. 9-6.

Fig. 9-6 Equivalent circuit for finite transmission line in Figure 9-5 at generator end.
ransmission 1 end of the
sees an input

1 finite transstage V_{i} and t inl Fig. 9-6. 2 transmission

They are

$$
\begin{align*}
& V_{i}=\frac{Z_{i}}{Z_{g}+Z_{i}} V_{g} \tag{9-84a}\\
& I_{i}=\frac{V_{g}}{Z_{g}+Z_{i}} . \tag{9-84b}
\end{align*}
$$

Of course, the voltage and current at any other location on line cannot be determined by using the equivalent circuit in Fig. 9-6.

The average power delivered by the generator to the input terminals of the line is

$$
\begin{equation*}
\left(P_{\mathrm{av}}\right)_{l}=\frac{1}{2} \mathscr{R} e\left[V_{i} I_{i}^{*}\right]_{z=0, z^{\prime}=l} . \tag{9-85}
\end{equation*}
$$

The average power delivered to the load is

$$
\begin{align*}
\left(P_{\mathrm{av}}\right)_{\mathrm{L}} & =\frac{1}{2} \mathscr{R} c\left[V_{\mathrm{L}} I_{\mathrm{L}}^{*}\right]_{z=\ell, z^{\prime}=0} \\
& =\frac{1}{2}\left|\frac{V_{\mathrm{L}}}{Z_{\mathrm{L}}}\right|^{2} R_{\mathrm{L}}=\frac{1}{2}\left|I_{\mathrm{L}}\right|^{2} R_{\mathrm{L}} . \tag{9-86}
\end{align*}
$$

For a lossless line, conservation of power requires that $\left(P_{\mathrm{av}}\right)_{i}=\left(P_{\mathrm{av}}\right)_{\mathrm{L}}$,
A particularly important special case is when a line is terminated with its characteristic impedance; that is, when $Z_{i}=Z_{0}$. The input impedance, Z_{i} in Eq. (9-83), is seen to be equal to Z_{0}. As a matter of fact, the impedance of the line looking toward the load at any distance z^{\prime} from the load is, from Eq. (9-82),

$$
\begin{equation*}
Z\left(z^{\prime}\right)=Z_{0} \quad \because \quad\left(\text { for } Z_{\mathrm{L}}=Z_{0}\right) \tag{9-87}
\end{equation*}
$$

The oltage and cufrent equations in Eqs. (9-78a) and (9-78b) reduce to

$$
\begin{align*}
V(z) & =\left(I_{\mathrm{L}} Z_{0} e^{\gamma \ell}\right) e^{-\gamma z}=V_{i} e^{-\gamma z} \tag{9-88a}\\
I(z) & =\left(I_{\mathrm{L}} \mathrm{e}^{v /}\right) e^{-y z}=I_{i} e^{-\gamma z} . \tag{9-88b}
\end{align*}
$$

Equations ($9-88 \mathrm{a}$) and $(9-88 \mathrm{~b})$ correspond to the pair of voitage and current equa-tions-Eqs. $(9-40 \mathrm{a})$ and $(9-40 \mathrm{~b})$-representing waves traveling in $+z$ direction, and there are no reflected wi.ves. Hence, when a finite transmission line is terminated with its own characteristic impedance (when a finite transmission line is matched), the voltage and current distributions on the line are exactly the same as though the line had been extended to infinity.

Example 9-4. A signal generator having an internal resistance $1(\Omega)$ and an opencircuit voltage $v_{g}(t)=0 .: \cos 2 \pi 10^{8} t(\mathrm{~V})$ is connected to a $50(\Omega)$ lossless transmission line. The line is $4(\mathrm{~m})$ lorg, and the velocity of wave propagation on the line is $2.5 \times$ $10^{8}(\mathrm{~m} / \mathrm{s})$. For a matched load, find (a) the instantaneous expressions for the voltage and current at an arbitrary location on the line, (b) the instantaneous expressions
for the voltage and current at the load, and (c) the average power transmitted to the load.

Solution

a) In order to find the voltage and current at an arbitrary location on the line, it is first necessary to obtain those at the input end ($z=0, z^{\prime}=\ell$). The given quantities are as follows.

$$
\begin{aligned}
V_{g} & =0.3 / 0^{\circ}(\mathrm{V}), \quad \text { a phasor with a cosine reference } \\
Z_{g} & =R_{g}=1(\Omega) \\
Z_{0} & =R_{0}=50(\Omega) \\
\omega & =2 \pi \times 10^{8}(\mathrm{rad} / \mathrm{s}) \\
u_{p} & =2.5 \times 10^{8}(\mathrm{~m} / \mathrm{s}) \\
l & =4(\mathrm{~m}) .
\end{aligned}
$$

Since the line is terminated with a matched load, $Z_{i}=Z_{0}=50(\Omega)$. The voltage and current at the input terminals can be evaluated from the equivalent circuit in Fig. 9-6. From Eqs. (9-84a) and (9-84b) we have

$$
\begin{aligned}
& V_{i}=\frac{50}{1+50} \times 0.3 / 0^{\circ}=0.2940^{\circ}(\mathrm{V}) \\
& I_{i}=\frac{0.3 / 0^{\circ}}{1+50}=0.00590^{\circ}(\mathrm{A}) .
\end{aligned}
$$

As only forward-traveling waves exist on a matched line, we use Eqs. (9-68a) and ($9-68$ b) for, respectively, the voltage and current at an arbitrary location. For the given line, $\alpha=0$ and

$$
\beta=\frac{\omega}{u_{p}}=\frac{2 \pi \times 10^{8}}{2.5 \times 10^{8}}=0.8 \pi(\mathrm{rad} / \mathrm{s}) .
$$

Thus,

$$
\begin{aligned}
V(z) & =0.294 e^{-j 0.8 \pi z}(\mathrm{~V}) \\
I(z) & =0.0059 e^{-j 0.8 \pi z}(\mathrm{~A}) .
\end{aligned}
$$

These are phasors. The corresponding instantaneous expressions are, from Eqs. ($9-34 \mathrm{a}$) and ($9-34 \mathrm{~b}$),

$$
\begin{aligned}
v(z, t) & =\mathscr{R} e\left[0.294 e^{j\left(2 \pi 10^{8_{t}}-0.8 \pi z\right)}\right] \\
& =0.294 \cos \left(2 \pi 10^{8} t-0.8 \pi z\right)(\mathrm{V}) \\
i(z, t) & =\mathscr{R} e\left[0.0059 e^{j\left(2 \pi 10^{\left.8_{t}-0.8 \pi z\right)}\right]}\right. \\
& =0.0059 \cos \left(2 \pi 10^{8} t-0.8 \pi z\right)(\mathrm{A}) .
\end{aligned}
$$

ted to the
e line, it is ven quan-
b) At the load, $z=\ell=4(\mathrm{~m})$,

$$
\begin{aligned}
v(4, t) & =0.294 \cos \left(2 \pi 10^{8} t-3.2 \pi\right)(\mathrm{V}) \\
i(4, t) & =0.0059 \cos \left(2 \pi 10^{8} t-3.2 \pi\right)(\mathrm{A})
\end{aligned}
$$

c) The average power transmitted to the load on a lossless line is equal to that at the input terminals.

$$
\begin{aligned}
\left(P_{\mathrm{av}}\right)_{\mathrm{L}} & =\left(P_{\mathrm{uv}}\right)_{i}=\frac{1}{2} \mathscr{R c}\left[V(z) I^{*}(z)\right] \\
& =\frac{1}{2}(0.294 \times 0.0059)=8.7 \times 10^{-4}(\mathrm{~W})=0.87(\mathrm{~mW})
\end{aligned}
$$

9-4.1 Transmission Lines as Circuit Elements

Not only can transmission lines be used as wave-guiding structures for transferring power and information from one point to another, but at ultrahigh frequencies UHF: from $300(\mathrm{MHz})$ t.) $3(\mathrm{GHz})$; wavelength, from $1(\mathrm{~m})$ to $0.1(\mathrm{~m})$ - they may serve as circuit elements. At these frequencies, ordinary lumped-circuit elements are difficult to make, and stray fields become important. Sections of transmission lines can be designed to give an inductive or capacitive impedance and are used to match an arbitrary load to the internal impedance of a generator for maximum power transfer. The required length of such lines as circuit elements becomes practical in the UHF range.

In most cases transmission-line segments can be considered lossless: $\gamma=j \beta$. $Z_{0}=R_{0}$ and $\tanh \gamma t=\tanh (j \beta \prime)=j \tan \beta \ell$. The formula in Eq. (9-83) for the input impedance Z_{i} of a lossless line of length ℓ terminated in Z_{L} becomes

$$
\begin{equation*}
Z_{i}=R_{0} \frac{Z_{\mathrm{L}}+j R_{0} \tan \beta \ell}{R_{0}+j Z_{\mathrm{L}} \tan \beta \ell} \tag{6}
\end{equation*}
$$

(Lossless line)
We now consider several important special cases.

1. Open-circuit termination $\left(Z_{L} \rightarrow \infty\right)$. We have, from Eq. (9-89),

$$
\begin{equation*}
Z_{i}=j X_{i o}^{2}=-\frac{j R_{0}}{\tan \beta \ell}=-j R_{0} \cot \beta \ell \tag{9-90}
\end{equation*}
$$

Equation- $(9-90)$ shows that the input impedance of an open-circuited lossless
 becatuse the function wot β cern be cidier positive or negative. deperndang on the value of $\beta \ell(=2 \pi / / \lambda)$. Figure $9-7$ is a plot of $X_{i 0}=-R_{0} \cot \beta f$ versus ℓ. We see that $X_{i c}$ can assume all values from $-\infty$ to $+\infty$. Table9-3 lists some important properties of $X_{i o}$.

Fig. 9-7 Input reactance of open-circuited transmission line.

Table 9-3 Input Reactance of Open-Circuited Line, $X_{\text {io }}$

$/$	β	$X_{i \prime}$
$(n-1) \frac{\lambda}{2}<\ell<(2 n-1) \frac{\lambda}{4}$	$(n-1) \frac{\pi}{4}<\beta \ell<(2 n-1) \frac{\pi}{2}$	Capacitive
$(2 n-1) \frac{\lambda}{4}<\ell<n \frac{\lambda}{2}$	$(2 n-1) \frac{\pi}{2}<\beta \ell<n \pi$	Inductive
$(2 n-1) \frac{\lambda}{4}$	$(2 n-1) \frac{\pi}{2}$	0

$n=1,2,3, \ldots$

When the length of an open-circuited line is very short in comparison with a wavelength, $\beta \ell \ll 1$, we can obtain a very simple formula for its capactive reactance by noting that $\tan \beta \ell \cong \beta \ell$. From Eq. (9-90) we have

$$
\begin{equation*}
Z_{i}=j X_{i o} \cong-j \frac{R_{0}}{\beta \ell}=-j \frac{\sqrt{L / C}}{\omega \sqrt{L C \ell}}=-j \frac{1}{\omega C \ell}, \tag{9-91}
\end{equation*}
$$

which is the impedance of a capacitance of $C \ell$ farads.
2. Short-circuit termination $\left(Z_{\mathrm{L}}=0\right)$. In this case, Eq. (9-89) reduces to

$$
\begin{equation*}
Z_{i}=j X_{i \mathrm{~s}}=j R_{0} \tan \beta \ell . \tag{9-92}
\end{equation*}
$$

Since $\tan \beta \ell$ can range from $-\infty$ to $+\infty$, the input impedance of a short-circuited lossless line can also be either purely inductive or purely capacitive, depending on the value of $\beta \ell$. Figure $9-8$ is a graph of $X_{\text {is }}$ versus ℓ, and some important properties of $X_{i s}$ are listed in Table 9-4. .

Fig. 9-8 Input reactance of short-circuited transmission line.

Table 9-4 Input Reactance of Short-Circuited Line, $X_{\text {is }}$

i	$\beta \ell$	$X_{\text {is }}$
$(n-1) \frac{\lambda}{2}<\ell<(2 n-1) \frac{\lambda}{4}$	$(n-1) \frac{\pi}{4}<\beta \ell<(2 n-1) \frac{\pi}{2}$	Inductive
$(2 n-1) \frac{\lambda}{4}<i<n \frac{\lambda}{2}$	$(2 n-1) \frac{\pi}{2}<\beta \ell<n \pi$	Capacitive
$n \frac{\lambda}{2}$	$n \pi$.

$n=1,2,3, \ldots$
parison with pactive reac-
ort- jited 2 , depending ie important

It is instructive to note that in the range where $X_{i o}$ is capacitive $X_{i s}$ is inductive, and vice versa. The input reactances of open-circuited and short-circuited lossless transmission lines are the same if their lengths differ by an odd multiple of $\lambda / 4$. When the length of a short-circuited line is very short in comparison with a wavelength, $\beta \ell \ll 1$ Eq. (9-92) becomes approximately

$$
\begin{equation*}
Z_{i}=j X_{i s} \cong j R_{0} \beta \ell=j \sqrt{\frac{L}{C}} \omega \sqrt{L C} \ell=j \omega L \ell \tag{9-93}
\end{equation*}
$$

which is the impedance of an inductance of $L \ell$ henries.
3. Quarter-wave sections $(\ell=\lambda / 4, \beta \ell=\pi / 2)$. When the length of a line is an odd multiple of $\lambda / 4, \ell=(2 n-1) \lambda / 4,(n=1,2,3, \ldots)$,

$$
\begin{gathered}
\beta \ell=\frac{2 \pi}{\lambda}(2 n-1) \frac{\lambda}{4} \doteq(2 n-1) \frac{\pi}{2} \\
\tan \beta \ell=\tan \left[(2 n-1) \frac{\pi}{2}\right] \rightarrow \pm \infty
\end{gathered}
$$

and Eq. (9-89) becomes

$$
\begin{equation*}
Z_{i}=\frac{R_{0}^{2}}{Z_{\mathrm{L}}} \quad \text { (Quarter-wave line). } \tag{9-94}
\end{equation*}
$$

Hence, a quarter-wave lossless line transforms the load impedance to the input terminals as its inverse multiplied by the square of the characteristic resistance; it is often referred to as a quarter-wave transformer. An open-circuited, quarter-wave line appears as a short circuit at the input terminals, and a short-circuited quarterwave line appears as an open circuit. Actually, if the series resistance of the line itself is not neglected, the input impedance of a short-circuited, quarter-wave line is an impedance of a very high value similar to that of a parallel resonant circuit.
4. Half-wave sections ($\ell=\lambda / 2, \beta \ell=\pi)$. When the length of a line is an integral multiple of $\lambda / 2, \ell=n \lambda / 2(n=1,2,3, \ldots)$,

$$
\begin{gathered}
\beta \prime-\frac{2 \pi}{\lambda}\binom{n \lambda}{2}=n \pi \\
\tan \beta \epsilon=0
\end{gathered}
$$

and Eq. (9-89) reduces to

$$
\begin{equation*}
Z_{i}=Z_{\mathrm{L}} \quad \text { (Half-wave line). } \tag{9-95}
\end{equation*}
$$

Equation (9-95) states that a half-wave lossless line transfers the load impedance to the input terminals without change.

Open- and short-circuit terminations are easily provided on a transmission line. By measuring the input impedance of a line section under open- and short-circuit conditions, we can determine the characteristic impedance and the propagation constant of the line. The following expressions follow directly from Eq. (9-83).

Open-circuited line $Z_{L} \rightarrow \infty$:

$$
\begin{equation*}
Z_{i o}=Z_{0} \text { coth } \gamma \ell . \tag{9-96}
\end{equation*}
$$

Short-circuited line, $Z_{\mathrm{L}}=0$:

$$
\begin{equation*}
Z_{i s}=Z_{0} \tanh \gamma \ell . \tag{9-97}
\end{equation*}
$$

From Eqs. (9-96) and (9-97) we have

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{i 0} Z_{i s}} \tag{9-98}
\end{equation*}
$$

Equations (9-98) ahd (9-99) apply whether or not the line is lossy.
Example 9-5 The open-circuit and short-circuit impedances measured at the input terminals of a very low-loss transmission line of length $1.5(\mathrm{~m})$, which is less than a quarter wavelength, are respectively $-j 54.6$ (Ω) and $j 103$ (Ω). (a) Find Z_{n} and γ of the line. (b) Without changing the operating frequency, find the input impedance of a short-circuited line that is twice the given length. (c) How long should the shortcircuited line be in order for it to appear as an open circuit at the input terminals?

Solution: The given quantities are

$$
Z_{i a}=-j 54.6, \quad Z_{i s}=j 103, \quad \ell=1.5 .
$$

a) Using Eqs. (9-98) and (9-99), we find

$$
\begin{gathered}
Z_{0}=\sqrt{-j 54.6(j 103)}=75(\Omega) \\
y=\frac{1}{1.5} \tanh ^{-1} \sqrt{\frac{j 103}{-j 54.6}}=\frac{j}{1.5} \tan ^{-1} 1.373=j 0.628(\mathrm{rad} / \mathrm{m}) .
\end{gathered}
$$

b) For a short-circuited line twice as long, $\varphi=3.0(\mathrm{~m})$,

$$
\gamma \ell=j 0.628 \times 3.0=j 1.884(\mathrm{rad}) .
$$

The input impedance is, from Eq. (9-97),

$$
\begin{aligned}
Z_{\text {is }} & =75 \tanh (j 1.884)=j 75 \tan 108^{\circ} \\
& =j 75(-3.08)=-j 231(\Omega) .
\end{aligned}
$$

Note that $Z_{i s}$ for the $3(\mathrm{~m})$ line is now a capactive reactance, whereas that for the $1.5(\mathrm{~m})$ line in part (a) is an inductive reactance. We may conclude from Table $9-4$ that $1.5(\mathrm{~m})<2 / 4<3.0(\mathrm{~m})$.
c) In order for a short-circuited line to appear as an open circuit at the input terminals, it should be an odd multiple of a quarter-wavelength long.

$$
i=\frac{2 \pi}{\beta}=\frac{2 \pi}{0.628}=10(\mathrm{~m}) .
$$

Hence the required line length is

$$
\begin{aligned}
i & =\frac{\lambda}{4}+(n-1) \frac{\lambda}{2} \\
& =2.5+5(n-1)(\mathrm{m}), \quad n=1,2,3, \ldots
\end{aligned}
$$

9-4.2 Lines with Resistive Termination

When a transmission line is terminated in a load impedance Z_{L} different from the characteristic impedance Z_{0}, both an incident wave (from the generator) and a reflected wave (from the load) exist. Equation (9-79a) gives the phasor expression for the voltage at any distance $z^{\prime}=\ell-z$ from the load end. Note that, in Eq. (9-79a), the term with $e^{y z^{\prime}}$ represents the incident voltage wave and the term with $e^{-\gamma z^{\prime}} \mathrm{re}$ presents the reflected voltage wave. We may write

$$
\begin{align*}
V\left(z^{\prime}\right) & =\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma z^{\prime}}\left[1+\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}} e^{-2 y z^{\prime}}\right] \\
& =\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma z^{\prime}}\left[1+\Gamma e^{-2 \gamma z^{\prime}}\right] \tag{9-100a}
\end{align*}
$$

where

$$
\begin{equation*}
\Gamma=\frac{Z_{1}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=|\Gamma|^{j \mu_{1}} \quad \text { (Dimensionlcss) } \tag{9}
\end{equation*}
$$

is the ratio of the complex amplitudes of the reflected and incident voltage waves at the load $\left(z^{\prime}=0\right)$ and is called the voltage reflection coefficient of the load impedance Z_{L}. It is of the same form as the definition of the reflection coefficient in Eq. (8-93) for a plane wave incident normally on a plane interface between two dielectric media. It is, in general, a complex quantity with a magnitude $|\Gamma| \leq 1$. The current equation corresponding to $V\left(z^{\prime}\right)$ in Eq. $(9-100 \mathrm{a})$ is, from Eq. $(9-79 \mathrm{~b})$.

$$
\begin{equation*}
I\left(z^{\prime}\right)=\frac{I_{\mathrm{L}}}{2 Z_{0}}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{y z^{\prime}}\left[1-\Gamma e^{-2 \gamma z^{\prime}}\right] \tag{9-100b}
\end{equation*}
$$

The current reflection coefficient defined as the ratio of the complex amplitudes of the reflected and incident current waves, I_{0}^{-} / I_{0}^{+}, is different from the voltage reflection coefficient. As a matter of fact, the former is the negative of the latter, inasmuch as $I_{0}^{-} / I_{0}^{+}=-V_{0}^{+} / V_{0}^{+}$, as is evident from Eq. (9-74). In what follows, we shall refer only to the voltage reflection coefficient.

For a lossless transmission line, $\gamma=j \beta$, Eqs. (9-100a) and ($9-100 \mathrm{~b}$) become

$$
\begin{align*}
V\left(z^{\prime}\right) & =\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+R_{0}\right) e^{j \beta z^{\prime}}\left[1+\Gamma e^{-j 2 \beta z^{\prime}}\right] \\
& =\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+R_{0}\right) e^{j \beta z^{\prime}}\left[1+|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 \beta z^{\prime}\right)}\right] \tag{9-102a}
\end{align*}
$$

and

$$
\begin{equation*}
I\left(z^{\prime}\right)=\frac{I_{L}}{2 R_{0}}\left(Z_{L}+R_{0}\right) e^{j \beta z^{\prime}}\left[1-|\Gamma| e^{j\left(\theta_{\mathrm{r}}-2 \beta z^{\prime}\right)}\right] \tag{9-102b}
\end{equation*}
$$

rent from the tor) and a reexpression for 1 Eq. ($9-79 \mathrm{a})$, with $e^{-y z^{\prime}}$ re-
ad; edance in L.4..(8.93) fectric media. rent cquation
ex amplitudes le voltage reter, inasmuch we shall refer
i become

The voltage and current phasors on a lossless line are more easily visualized from Eqs. (9-80a) ahd (9-80b) by setting $\gamma=j \beta$ and $V_{\mathrm{L}}=I_{\mathrm{L}} Z_{\mathrm{L}}$. Noting that $\cosh j \theta=$ $\cos \theta$, and $\sinh j \theta=j \sin \theta$, we obtain

$$
\begin{align*}
& V\left(z^{\prime}\right)=V_{\mathrm{L}} \cos \beta z^{\prime}+j I_{\mathrm{L}} R_{0} \sin \beta z^{\prime} \tag{9-103a}\\
& I\left(z^{\prime}\right)=I_{\mathrm{L}} \cos \beta z^{\prime}+j \frac{V_{\mathrm{L}}}{R_{0}} \sin \beta z^{\prime} \tag{9-103b}
\end{align*}
$$

(Lossless line)
If the terminating impedance is purely resistive, $Z_{\mathrm{L}}=R_{\mathrm{L}}, V_{\mathrm{L}}=I_{\mathrm{L}} R_{\mathrm{L}}$, the voltage and current magnltudes are given by

$$
\begin{align*}
\left|V\left(z^{\prime}\right)\right| & =V_{\mathrm{L}} \sqrt{\cos ^{2} \beta z^{\prime}+\left(R_{0} / R_{\mathrm{L}}\right)^{2} \sin ^{2} \beta z^{\prime}} \tag{9-104a}\\
\left.\mid I z^{\prime}\right) \mid & =I_{\mathrm{L}} \sqrt{\cos ^{2} \beta z^{\prime}+\left(R_{\mathrm{L}} / R_{0}\right)^{2} \sin ^{2} \beta z^{\prime}} \tag{9-104~b}
\end{align*}
$$

where $R_{0}=\sqrt{L / C}$. Plots of $\left|V\left(z^{\prime}\right)\right|$ and $\left|I\left(z^{\prime}\right)\right|$ as functions of z^{\prime} are standing waves with their maxima and minima occurring at fixed locations along the line.

Analogously to the plane-wave case in Eq. $(8-100)$, we define the ratio of the maximum to the mittimum voltages along a finite, terminated line as the standing-wave ratio, S :

$$
s=\left\lvert\, \begin{align*}
& \left.\left|V_{\text {wnx }}\right|=\frac{1+|r|}{\left|V_{\text {minu }}\right|} \right\rvert\, \quad . \quad \text { (Dimensionless). } \tag{9-105}
\end{align*}\right.
$$

The inverse relation of Eq. (9-105) is

$$
\begin{equation*}
|\Gamma|=\frac{S-1}{S+1} \quad \text { (Dimensionless) } \tag{9-106}
\end{equation*}
$$

It is clear from Eqs. $(9-105)$ and $(9-106)$ that on a lossless transmission line

$$
\begin{array}{lll}
\Gamma=0, & S=1 & \text { when } Z_{\mathrm{L}}=Z_{0} \text { (Matched load) } \\
\Gamma=-1, & S \rightarrow \infty & \text { when } Z_{\mathrm{L}}=0 \text { (Short circuit) } \\
\Gamma=+1, & S \rightarrow \infty & \text { when } Z_{\mathrm{L}} \rightarrow \infty \text { (Open circuit) }
\end{array}
$$

Because of the wide range of S, it is customary to express it on a logarithmic scale: $20 \log _{10}$ Sin (dB). Standing-wave ratio s defined in terms of $\left|I_{\text {max }}\right| /\left|I_{\text {min }}\right|$ results in the same expression as that defined in terms of $\left|V_{\text {max }}\right| /\left|V_{\text {minl }}\right|$ in Eq. (9-105). A high standingwave ratio on a line is undesirable because it tesults in a large power loss.

Examination of Eqs. (9-102a) and $(9-102 \mathrm{~b})$ reveals that $\left|V_{\text {max }}\right|$ and $\left|I_{\text {min }}\right|$ occur together when $\left(\left|{ }^{j \beta z^{\prime}}\right|=1\right.$, independent of $\left.z^{\prime}\right)$:

$$
\begin{equation*}
\theta_{\Gamma}-2 \beta z_{M}^{\prime}=-2 n \pi ; \quad(n=0,1,2, \ldots) \tag{9-107}
\end{equation*}
$$

On the other hand, $\left|V_{\min }\right|$ and $\left|I_{\text {max }}\right|$ occur together when

$$
\begin{equation*}
\theta_{\Gamma}-2 \beta z_{m}^{\prime}=-(2 n+1) \pi, \quad(n=0,1,2, \ldots) . \tag{9-108}
\end{equation*}
$$

For resistive terminations on a lossless line, $Z_{\mathrm{L}}=R_{\mathrm{L}}, Z_{0}=R_{0}$, and Eq. (9-101) simplifies to

$$
\begin{equation*}
\Gamma=\frac{R_{\mathrm{L}}-R_{0}}{R_{\mathrm{L}}+R_{0}} \quad \text { (Resistive load). } \tag{9-109}
\end{equation*}
$$

The voltage reffection coefficient is therefore purely real. Two cases are possible.

1. $R_{L}>R_{0}$. In this case, Γ is positive real and $\theta_{\Gamma}=0$. At the termination, $z^{\prime}=0$, and condition ($9-107$) is satisfied (for $n=0$). This means that a voltage maximum (current minimum) will occur at the terminating resistance. Other maxima of the voltage standing wave (minima of the current standing wave) will be located at $2 \beta z^{\prime}=2 n \pi$, or $z^{\prime}=n \lambda / 2(n=1,2, \ldots)$ from the load.
2. $R_{\mathrm{L}}<R_{0}$. Equation $(9-109)$ shows that Γ will be negative real and $\theta_{\mathrm{T}}=-\pi$. At the termination, $z^{\prime}=0$, and condition ($9-108$) is satisfied (for $n=0$). A voltage minimum (current maximum) will occur at the terminating resistance. Other minima of the voltage standing wave (maxima of the current standing wave) will be located at $z^{\prime}=n \lambda / 2(n=1,2, \ldots)$ from the load. The roles of the voltage and current standing waves are interchanged from those for the case of $R_{\mathrm{L}}>R_{0}$.
Figure 9-9 illustrates some typical standing waves for a lossless line with resistive termination.

The standing waves on an open-circuited line are similar to those on a resistanceterminated line with $R_{\mathrm{L}}>R_{0}$, except that the $\left|V\left(z^{\prime}\right)\right|$ and $\left|I\left(z^{\prime}\right)\right|$ curves are now magnitudes of sinusoidal functions of the distance z^{\prime} from the load. This is seen from Eqs. (9-104a) and (9-104b), by letting $R_{\mathrm{L}} \rightarrow \infty$. Of course, $I_{\mathrm{L}}=0$, but V_{L} is finite. We have

$$
\begin{align*}
\left|V\left(z^{\prime}\right)\right| & =V_{\mathrm{L}}\left|\cos \beta z^{\prime}\right| & (9-11(0 \mathrm{a}) \\
\left|I\left(z^{\prime}\right)\right| & =\frac{V_{\mathrm{L}}}{R_{0}}\left|\sin \beta z^{\prime}\right| . & (9-110 \mathrm{~b}) \tag{9-110b}
\end{align*}
$$

All the minima go to zero. For an open-circuited line, $\Gamma=1$ and $S \rightarrow \infty$.

Fig. 9-9 Voltage and current standing waves on resistance-terminated lossless lines.
q. $(9-101)$
ossible.
ion, $z^{\prime}=0$, : maximum xima of the z located at
$r=-\pi . A t$

1. A voltage ance. Other g wave) will voltar ind $R_{1}>k_{0}$.
with , wistive
a resistancere now magis seen from $t V_{L}$ is finite.
∞.

Fig. 9-10 Voltage ahd current standing waves on open- and short-circuited lossless lines.

On the other hand, the standing waves on a short-circuited line are similar to those on a resistarice-terminated line with $R_{\mathrm{L}}<R_{0}$. Here $R_{\mathrm{L}}=0, V_{\mathrm{L}}=0$, but I_{L} is finite. Equations ($9-104 \mathrm{a}$) and ($9-104 \mathrm{~b}$) reduce to

$$
\begin{align*}
\left|V\left(z^{\prime}\right)\right| & =I_{\mathrm{L}} R_{0}\left|\sin \beta z^{\prime}\right| \tag{9-111a}\\
\left|I\left(z^{\prime}\right)\right| & =I_{\mathrm{L}}\left|\cos \beta z^{\prime}\right| . \tag{9-1116}
\end{align*}
$$

Typical standing waves for open- and short-circuited lossless lines are shown in Fig. 9-10.

Example 9-6 The standing-wave ratio S on a transmission line is an easily measurable quantity. (a) Show how the value of a terminating resistance on a lossless line of known charactetistic impedance R_{0} can be determined by measuring S. (b) What is the impedance of the line looking toward the load at a distance equal to one quarter of the operating wavelength?

Solution:

a) Since the terminating impedance is purely resistive, $Z_{\mathrm{L}}=R_{\mathrm{L}}$, we can determine whether R_{L} is greater than R_{0} (if there are voltage maxima at $z^{\prime}=0, \lambda / 2, \lambda$, etc.) or whether R_{L} is less than R_{0} (if there are voltage minima at $z^{\prime}=0, \lambda / 2, \lambda$, etc.). This can be easily ascertained by measurements.

First, if $R_{\mathrm{L}}>R_{0}, \theta_{\Gamma}=0$. Both $\left|V_{\text {max }}\right|$ and $\left|I_{\text {min }}\right|$ occur at $\beta z^{\prime}=0$; and $\left|V_{\text {min }}\right|$ and $\left|I_{\text {max }}\right|$ occut at $\beta z^{\prime}=\pi / 2$. We have, from Eqs. (9-102a) and ($9-102 \mathrm{~b}$),

$$
\begin{aligned}
& \left|V_{\max }^{`}\right|=V_{\mathrm{L}}, \quad\left|V_{\min }\right|=V_{\mathrm{L}} \frac{R_{0}}{R_{\mathrm{L}}}, \\
& \left|I_{\text {win }}\right|=I_{\mathrm{L},}, \quad\left|I_{\max }\right|=I_{\mathrm{L}} \frac{R_{\mathrm{L}}}{R_{0}},
\end{aligned}
$$

Thus,

$$
\frac{\left|V_{\text {max }}\right|}{\left|V_{\text {min }}\right|}=|\cdot| I_{\text {max }}| |=S=\frac{R_{\mathrm{L}}}{R_{0}}
$$

or

$$
\begin{equation*}
R_{\mathrm{L}}=S R_{0} \tag{9-112}
\end{equation*}
$$

Second, if $R_{\mathrm{L}}<R_{0}, \theta_{\Gamma}=-\pi$. Both $\left|V_{\text {min }}\right|$ and $\left|I_{\text {max }}\right|$ occur at $\beta z^{\prime}=0$; and $\left|V_{\max }\right|$ and $\left|I_{\min }\right|$ occur at $\beta z^{\prime}=\pi / 2$. We have

$$
\begin{array}{ll}
\left|V_{\text {min }}\right|=V_{\mathrm{L}}, & \left|V_{\text {max }}\right|=V_{\mathrm{L}} \frac{R_{0}}{R_{\mathrm{L}}} \\
\left|I_{\text {max }}\right|=I_{\mathrm{L}}, & \left|I_{\text {min }}\right|=I_{\mathrm{L}} \frac{R_{\mathrm{L}}}{R_{0}} .
\end{array}
$$

Therefore,

$$
\frac{\left|V_{\max }\right|}{\left|V_{\min }\right|}=\frac{\left|I_{\text {max }}\right|}{\left|I_{\text {min }}\right|}=S=\frac{R_{0}}{R_{\mathrm{L}}}
$$

or

$$
\begin{equation*}
R_{\mathrm{L}}=\frac{R_{0}}{S} . \tag{9-113}
\end{equation*}
$$

b) The operating wavelength, λ, can be determined from twice the distance between two neighboring voltage (or current) maxima or minima. At $z^{\prime}=\lambda / 4, \beta z^{\prime}=\pi / 2$. $\cos \beta z^{\prime}=0$, and $\sin \beta z^{\prime}=1$. Equations $(9-103 a)$ and $(9-103 b)$ become

$$
\begin{aligned}
V(\lambda / 4) & =j I_{\mathrm{L}} R_{0} \\
I(\lambda / 4) & =j \frac{V_{\mathrm{L}}}{R_{0}}
\end{aligned}
$$

(Question: What is the significince of the j in these equations?) The ratio of $V(2 / 4)$ to $I(\lambda / 4)$ is the input impedance of a quarter-wavelength, resistively terminated, lossless line.

$$
\begin{aligned}
Z_{\mathrm{i}}\left(z^{\prime}=\lambda / 4\right)=R_{\mathrm{i}} & =\frac{V(\lambda / 4)}{T(\lambda / 4)} \\
& =\frac{R_{0}^{2}}{R_{\mathrm{L}}} .
\end{aligned}
$$

This result is anticipated because of the impedance-transformation property of a quarter-wave line given in Eq. (9-94).

9-4.3 Lines with Arbitrary Termination

In the preceding subsection we notedthat the standing wave on a resistively terminated lossless transmission line is such that a voltage maximum (a current minimum) occurs at the termination where $z^{\prime}=0$ if $R_{\mathrm{L}}>R_{0}$, and a voltage minimum (a current maximum) occurs there if $R_{\mathrm{L}}<R_{0}$. What will happen if the terminating impedance is not a pure resistance? It is intuitively correct to expect that a voltage maximum or minimum will not occur at the termination, and that both will be shifted away from the termination. In this subsection we will.show that information on the direction and amount of this shift can be used to determine the terminating impedance.

Let the termindting (or load) impedanct be $Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}$, and assume the voltage standing wave on the line to look like that depicted in Fig. $9-11$. We note that neither a voltage maximum nor a voltage minimum appears at the load at $z^{\prime}=0$. If we let the standing wave continue, say, by an extra distance ℓ_{m}, it will reach a minimum. The voltage minimum is where it should be if the original terminating impedance Z_{L} is replaced by a line section of length ℓ_{m} terminated by a pure resistance $R_{m}<R_{0}$, as shown in the figure. The voltage distribution on the line to the left of the actual termination (where $z^{\prime}>0$) is not changed by this replacement.

The fact that athy complex impedance can be obtained as the input impedance of a section of lossleds line terminated in a resistive load can be seen from Eq. (9-89). Using R_{m} for Z_{L} and ℓ_{m} for ℓ, we have

$$
\begin{equation*}
R_{i}+j X_{\mathrm{i}}=R_{0} \frac{R_{m}+j R_{0} \tan \beta \ell_{m}}{R_{\mathrm{i}}+j R_{m} \tan \beta f_{m}} . \tag{9-114}
\end{equation*}
$$

The real and imaghary parts of Eq. $(9-114)$ form two equations, from which the two unknowns, R_{m} and $/ m$, can be solved (see Problem P.9-24).

The load impedance: Z_{1}, can be determined experimentally by measuring the standing-wave ratio S and the distance z_{m}^{\prime} in Fig. 9-11. (Remember that $z_{m}^{\prime}+\ell_{m}=$ $\lambda / 2$.) The procedure is as follows:

1. Find $|\Gamma|$ from S. Use $|\Gamma|=\frac{S-1}{S+1}$ from Eq. (9-106).
2. Find θ_{Γ} from $z_{m}^{\prime \prime}$. Use $\theta_{r}=2 \beta z_{m}^{\prime}-\pi$ for $n=0$ from Eq. $(9-108)$.

Fig. 9-11 Voltage standing wave on line terminated by arbitrary impedance and equivalent line section with pure resistive load.
3. Find Z_{L}, which is the ratio of Eqs. $(9-102 \mathrm{a})$ and $(9-102 b)$ at $z^{\prime}=0$:

$$
\begin{equation*}
Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}=R_{0} \frac{1+|\Gamma| e^{j \theta_{\mathrm{r}}}}{1-|\Gamma| e^{j_{\mathrm{r}}}} . \tag{9-115}
\end{equation*}
$$

The value of R_{m} that, if terminated on a line of length ℓ_{m}, will yield an input impedance Z_{L} can be found easily from Eq. (9-114). Since $R_{m}<R_{0}, R_{m}=R_{0} / S$.

The procedure leading to Eq. $(9-115)$ is used to determine Z_{L} from a measurement of S and of z_{m}^{\prime}, the distance from the termination to the first voltage minimum. Of course, the distance from the termination to a voitage maximum could be used instead of z_{m}^{\prime}. However, the voltage minima of a standing wave are sharper than the voltage maxima. The former, therefore, can be located more accurately than the latter, and it is preferable to find unknown quantities in terms of S and z_{m}^{\prime}.

Example 9-7 The standing-wave ratio on a lossless $50-(\Omega)$ transmission line terminated in an unknown load impedance is found to be 3.0 . The distance between successive voltage minima is $20(\mathrm{~cm})$, and the first minimum is located at $5(\mathrm{~cm})$ from the load. Determine (a) the rellection coellicient 1 ', and (b) the load impedance Z_{L}. In addition, find (c) the equivalent length and terminating resistance of a line such that the input impedance is equal to Z_{L}.

Solution

a) The distance between successive voltage minima is half a wavelength.

$$
\lambda=2 \times 0.2=0.4(\mathrm{~m}), \quad \beta=\frac{2 \pi}{\lambda}=\frac{2 \pi}{0.4}=5 \pi(\mathrm{rad} / \mathrm{m}) .
$$

Step 1: We find the magnitude of the reflection coefficient, $|\Gamma|$, from the standingwave ratio $S=3$.

$$
|\Gamma|=\frac{S-1}{S+1}=\frac{3-1}{3+1}=0.5
$$

Step 2: Find the angle of the reflection coefficient, θ_{Γ}, from

$$
\begin{aligned}
\theta_{\mathrm{r}} & =2 \beta z_{m}^{\prime}-\pi=2 \times 5 \pi \times 0.05-\pi=-0.5 \pi(\mathrm{rad}) \\
\Gamma & =|\Gamma| e^{j \theta_{\mathrm{r}}}=0.5 e^{-j 0.5 \pi}=-j 0.5 .
\end{aligned}
$$

b) The load impedance Z_{L} is determined from Eq. (9-115):

$$
Z_{\mathrm{L}}=50\left(\frac{1-j 0.5}{1+j(0.5}\right)=50(0.60-j 0.80)=30-j 40(\Omega) .
$$

c) Now we find R_{m} and ℓ_{m} in Fig. 9-11. We may use Eq. (9-114)

$$
30-j 40=50\left(\frac{R_{m}+j 50 \tan \beta \ell_{m}}{50+j R_{m} \tan \beta \ell_{m}}\right)
$$

(1) 115)
an input
R_{0} / S.
isurement imum. Of 1 be used r than the the latter,
n line terebetween at 5 (cm) mpedance 2 of aine
and solve the simultaneous equations obtained from the real and imaginary parts for R_{m} and $\beta \ell_{m}$. Actually, we know $z_{m}^{\prime}+\ell_{m}=\lambda / 2$ and $R_{m}=R_{0} / S$. Hence, ${ }^{\dagger}$

$$
\ell_{m}=\frac{\lambda}{2}-z_{m}^{\prime}=0.2-0.05=0.15(\mathrm{~m})
$$

and

$$
R_{m}=\frac{50}{3}=16.7(\Omega) .
$$

9-4.4 Transmission-Line Circuits

Our discussions on the properties of transmission lines so far have been restricted primarily to the effects of the load on the input impedance and on the characteristics of voltage and curtent waves. No attention has been paid to the generator at the "other end," which is the source of the waves. Just as the constraint (the boundary condition), $V_{\mathrm{L}}=I_{\mathrm{L}} Z_{\mathrm{L}}$, which the voltage V_{L} and the current I_{L} must satisfy at the load end $\left(z=\ell, z^{\prime}=0\right)$, a constraint exists at the generator end where $z=0$ and $z^{\prime}=\ell$. Let a voltage generator V_{g} with an internal impedance Z_{g} represent the source connected to a finite transmission line of length ℓ that is terminated in a load impedance Z_{L}, as shown in Fig. 9-5. The additional constraint at $z=0$ will enable the voltage and current anywhere on the line to be expressed in terms of the source characteristics $\left(V_{g}, Z_{\theta}\right)$, the line characteristics $\left(\gamma, Z_{0}, \ell\right)$, and the load impedance $\left(Z_{\mathrm{L}}\right)$. The constraint at $z=0$ is

$$
\begin{equation*}
V_{i}=V_{g}-I_{i} Z_{g} . \tag{9-116}
\end{equation*}
$$

But, from Eqs. (9-100a) and (9-100b),

$$
\begin{equation*}
\dot{V}_{i}=\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\mathfrak{V}}\left[1+\Gamma e^{-2 \vartheta v}\right] \tag{9-117a}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{i}=\frac{I_{\mathrm{L}}}{2 Z_{0}}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\mathscr{} r}\left[1-\Gamma e^{-2 火}\right] . \tag{9-117b}
\end{equation*}
$$

Substitution of Eqs. (9-117a) and (9-117b) in Eq. (9-116) enables us to find

$$
\begin{equation*}
\frac{I_{\mathrm{L}}}{2}\left(Z_{\mathrm{L}}+Z_{0}\right) e^{\gamma e}=\frac{V_{g} Z_{0}}{Z_{0}+Z_{\theta}} \frac{1}{\left[1-\Gamma_{g} \Gamma e^{-2 \gamma t}\right]}, \tag{9-118}
\end{equation*}
$$

where -

$$
\begin{equation*}
\mathrm{I}_{g}=\frac{Z_{\mu}-Z_{0}}{Z_{g}+Z_{0}} \tag{9-119}
\end{equation*}
$$

[^52]is the voltage reflection coefficient of the generator end. Using Eq. (9-118) in Eqs. ($9-100 \mathrm{a}$) and ($9-100 \mathrm{~b})$, we obtain
\[

$$
\begin{equation*}
V\left(z^{\prime}\right)=\frac{V_{g} Z_{0}}{Z_{0}+Z_{g}} e^{-\gamma_{z}}\left(\frac{1+\Gamma e^{-2 \gamma z^{\prime}}}{1-\Gamma{ }_{g} \Gamma e^{-2 \gamma^{\prime}}}\right) . \tag{9-120a}
\end{equation*}
$$

\]

Similarly,

$$
\begin{equation*}
I\left(z^{\prime}\right)=\frac{V_{g}}{Z_{0}+Z_{g}} e^{-\gamma z}\left(\frac{1-\Gamma e^{-2 y y^{\prime}}}{1-\Gamma_{g} \Gamma e^{-2 \gamma^{\prime}}}\right) . \tag{9-120b}
\end{equation*}
$$

Equations (9-120a) and (9-120b) are analytical phasor expressions for the voltage and current at any point on a finite line fed by a sinusoidal voltage source V_{g}. These are rather complicated expressions, but their significance can be interpreted in the following way. Let us concentrate our attention on the voltage equation ($9-120 \mathrm{a}$); obviously the interpretation of the current equation-($9-120 \mathrm{~b}$) is quite similar. We expand Eq. $(9-120 a)$ as follows:

$$
\begin{align*}
V\left(z^{\prime}\right) & =\frac{V_{g} Z_{0}}{Z_{0}+V_{g}} e^{-\gamma z}\left(1+\Gamma e^{-2 \gamma z^{\prime}}\right)\left(1-\Gamma_{g} \Gamma e^{-2 \gamma \ell}\right)^{-1} \\
& =\frac{V_{g} Z_{0}}{Z_{0}+Z_{g}} e^{-\gamma z}\left(1+\Gamma e^{-2 \gamma z^{\prime}}\right)\left(1+\Gamma_{g} \Gamma e^{-2 \gamma \ell}+\Gamma^{2} \Gamma_{g}^{2} e^{-4 \gamma \ell}+\cdots\right) \\
& =\frac{V_{g} Z_{0}}{Z_{0}+Z_{g}}\left[e^{-\gamma z}+\left(\Gamma e^{-\gamma g}\right) e^{-\gamma z^{\prime}}+\Gamma_{g}\left(\Gamma e^{-2 \gamma \ell}\right) e^{-\gamma z}+\cdots\right] \\
& =V_{1}^{+}+V_{1}^{-}+V_{2}^{+}+V_{2}^{-}+\cdots, \tag{9-121}
\end{align*}
$$

where

$$
\begin{align*}
V_{1}^{+} & =\frac{V_{g} Z_{0}}{Z_{0}+Z_{g}} e^{-\gamma z}=V_{M} e^{-\gamma z} \tag{9-121a}\\
V_{1}^{-} & =\Gamma\left(V_{M} e^{-\gamma}\right) e^{-\gamma z^{\prime}} \tag{9-121b}\\
V_{2}^{+} & =\Gamma_{g}\left(\Gamma V_{M} e^{-2 \gamma g}\right) e^{-\gamma z} . \tag{9-121c}
\end{align*}
$$

The quantity

$$
\begin{equation*}
V_{M}=\frac{V_{0} Z_{0}}{Z_{0}+Z_{g}} \tag{9-122}
\end{equation*}
$$

is the complex amplitude of the voltage wave initially sent down the transmission line from the generator. It is obtained directly from the simple circuit shown in Fig. 9-12(a). The phasor V_{1}^{+}in Eq. $(9-121 \mathrm{a})$ represents the initial wave traveling in the
118) in Eqs.
for the volte source V_{g}. interpreted ge equation Ob) is quite

```
(9-121)
``` (9-121c)
ransturssion lown in Fig. reling in the

(a)
(b)

Fig. 9-12 A transthission-line circuit and traveling waves.
\(+z\) direction. Before this wave reaches the load impedance \(Z_{L}\). it sees \(Z_{0}\) of the line as if the line were lnfinitely long.

When the first wave \(V_{1}^{+}=V_{M} e^{-\gamma=}\) reaches \(Z_{\mathrm{L}}\) at \(z=\ell\), it is reflected because of mismatch, resulting in a wave \(V_{1}^{-}\)with a complex amplitude \(\Gamma\left(V_{M} e^{-\because}\right)\) traveling in the \(-z\) direction. As the wave \(V_{1}^{-}\)returns to the generator at \(z=0\), it is again reflected for \(Z_{g} \neq Z_{0}\), giving rise to a second wave \(V_{2}^{+}\)with a complex amplitude \(\Gamma_{"}\left(\Gamma V_{M} e^{-2 ; 6}\right)\) traveling in \(+z\) direction. This process continues indefinitely with reflections at both ends, and the resulting standing wave \(V\left(z^{\prime}\right)\) is the sum of all the waves traveling in both directions. This is illustrated schematically in Fig. 9-12(b). In practice, \(\gamma=\alpha+j \beta\) has a real part, and the attenuation effect of \(e^{-\alpha t}\) diminishes the amplitude of a reflected wave each time the wave transverses the length of the line.

When the line is terminated with a matched load, \(Z_{\mathrm{L}}=Z_{0}, \Gamma=0\), only \(V_{1}^{+}\) exists, and it stops at the matched load with no reflections. If \(Z_{\mathrm{L}} \neq Z_{0}\) but \(Z_{g}=Z_{0}\) (if the internal impedance of the generator is matched to the line), then \(\Gamma \neq 0\) and \(\Gamma_{\theta}=0\). As a consequence, both \(V_{1}^{+}\)and \(V_{1}^{-}\)exist, and \(V_{2}^{+}, V_{2}^{-}\)and all higher-order reflections vanish.

Example 9-8 A \(100-(\mathrm{MHz})\) generator with \(V_{g}=1010^{\circ}(\mathrm{V})\) and internal resistance \(50(\Omega)\) is connected to a lossless \(50(\Omega)\) air line that is \(3.6(\mathrm{~m})\) long and terminated in a \(25+j 25(\Omega)\) load. Find (a) \(V(z)\) at a location \(z\) from the generator, (b) \(V_{i}\) at the input terminals and \(V_{\mathrm{L}}\) at the load, (c) the voltage standing-wave ratio on the line, and (d) the average power delivered to the load.

Solution: Reloritig to lig. y-5, the given quantities are
\[
\begin{aligned}
V_{g} & =10 Q^{c}(\mathrm{~V}), \quad Z_{g}=50(\Omega), \quad f=10^{8}(\mathrm{~Hz}) \\
R_{0} & =50(\Omega), \quad Z_{\mathrm{L}}=25+j 25=35.36 / 45^{\circ}(\Omega) . \quad \ell=3.6(\mathrm{~m}) .
\end{aligned}
\]

Thus,
\[
\begin{aligned}
& \beta=\frac{\omega}{c}=\frac{2 \pi 10^{8}}{3 \times 10^{8}}=\frac{2 \pi}{3}(\mathrm{rad} / \mathrm{m}), \quad \beta \ell=2.4 \pi(\mathrm{rad}) \\
& \Gamma=\frac{Z_{\mathrm{L}}-Z_{0}}{Z_{\mathrm{L}}+Z_{0}}=\frac{(25+j 25)-50}{(25+j 25)+50}=\frac{-25+j 25}{100+j 25}=\frac{35.36 / 135^{\circ}}{103.1 / 14^{\circ}} \\
& \quad=0.343 / 121^{\circ}=0.343 / 0.672 \pi
\end{aligned} \quad \begin{aligned}
& \Gamma_{\theta}=0 .
\end{aligned}
\]
a) From Eq. \((9-120 \mathrm{a})\), we have
\[
\begin{aligned}
V(z) & =\frac{V_{g} Z_{0}}{Z_{0}+Z_{g}^{,}} e^{-j \beta z}\left[1+\Gamma e^{-j 2 \beta(\epsilon-z)}\right] \\
& =\frac{10(50)}{100} e^{-j 2 \pi z / 3}\left[1+0.343 e^{j(0.672-4.8) \pi} e^{j 4 \pi z / 3}\right] \\
& =5\left[e^{-j 2 \pi z / 3}+0.343 e^{j(2 z / 3-0.128) \pi}\right](V)
\end{aligned}
\]

We see that, because \(\Gamma_{g}=0, V(z)\) is the superposition of only two traveling waves, \(V_{1}^{+}\)and \(V_{1}^{-}\), as defined in Eq. \((9-121)\).
b) At the input terminals,
\[
\begin{aligned}
V_{i} & =V(0)=5\left(1+0.343 e^{-j 0.128 n}\right) \\
& =5(1.316-j 0.134) \\
& =6.61 \angle-5.82^{\circ}(\mathrm{V}) .
\end{aligned}
\]

At the load,
\[
\begin{aligned}
V_{L} & =V(3.6)=5\left[e^{-j 0.4 \pi}+0.343 e^{j 0.272 \pi}\right] \\
& =5(0.534-j 0.692)=3.46 /-52.3^{\circ}(\mathrm{V}) .
\end{aligned}
\]
c) The voltage standing-wave ratio is
\[
S=\frac{1+|\Gamma|}{1-|\Gamma|}=\frac{1+0.343}{1-0.343}=2.04
\]
d) The average power delivered to the load is
\[
P_{\mathrm{av}}=\frac{1}{2}\left|\frac{V_{\mathrm{L}}}{Z^{\mathrm{L}}}\right|^{2} R_{\mathrm{L}}=\frac{1}{2}\left(\frac{3.46}{35.4}\right)^{2} \times 25=0.119(\mathrm{~W})
\]

It is interesting to compare this result with the case of a matched load when \(Z_{\mathrm{L}}=Z_{0}=50+j 0(\Omega)\). In that case, \(\Gamma=0\),
\[
\left|V_{\mathrm{L}}\right|=\left|V_{i}\right|=\frac{V_{g}}{2}=5(\mathrm{~V})
\]
and a maximum average:power is delivered to the load:
\[
\text { Maximum } P_{\mathrm{av}}=\frac{V_{\mathrm{L}}^{2}}{2 R_{\mathrm{L}}}=\frac{5^{2}}{2 \times 50}=0.25(\mathrm{~W})
\]
which is considerably larger than the \(P_{\mathrm{av}}\) calculated for the unmatched load in part (d).

9-5 THE SMITH CHART
Transmission-line dalculations-such as the determination of input impedance by Eq. \((9-89)\), reflection coefficient by.Eq. \((9-101)\), and load impedance by Eq. (\(9-115\))-often involve tedious manipulations of complex numbers. This tedium can be alleviated by using a graphical method of solution. The best known and most widely used graphical chart is the Smith chart devised by P. H. Smith. \({ }^{+}\)Stated succinctly, a Smith chart is a graphical plot of normalized resistance and reactance functions in the reflection-coefficient plane.

In order to understand how the Smith chart for a lossless transmission line is constructed, let us examine the voltage reflection coefficient of the load impedance defined in Eq. (9-101):
\[
\begin{equation*}
\because-Z_{1}-R_{1}-\| \|^{\prime N_{1}} \tag{1}
\end{equation*}
\]

Let the load impedance \(Z_{L}\) be normalized with respect to the characteristic impedance \(R_{0}=\sqrt{L / C}\) of the line.
\[
\begin{equation*}
z_{\mathrm{L}}=\frac{Z_{\mathrm{L}}}{R_{0}}=\frac{R_{\mathrm{L}}}{R_{0}}+j \frac{X_{\mathrm{L}}}{R_{0}}=r+j x \quad \text { (Dimensionless) } \tag{9-123}
\end{equation*}
\]
where \(r\) and \(x\) are the normalized resistance and normalized reactance respectively. Equation (9-101) can be rewritten as
\[
\begin{equation*}
\Gamma=\Gamma_{r}+j \Gamma_{i}=\frac{z_{L}-1}{z_{L}+1} \tag{9-124}
\end{equation*}
\]
where \(\Gamma_{r}\) and \(\Gamma_{i}\) are the real and imaginary parts of the voltage reflection coefficient \(\Gamma\) respectively. The inverse relation of Eq. \((9-124)\) is
\[
\begin{equation*}
z_{\mathrm{L}}=\frac{1+\Gamma}{1-\Gamma}=\frac{1+|\Gamma| e^{j \theta_{\Gamma}}}{1-|\Gamma| e^{j \theta_{\Gamma}}} \tag{9-125}
\end{equation*}
\]
or
\[
\begin{equation*}
r+j x=\frac{\left(1+\Gamma_{r}\right)+j \Gamma_{i}}{\left(1-\Gamma_{r}\right)-j \Gamma_{i}} \tag{9-126}
\end{equation*}
\]
\({ }^{\dagger}\) P. H. Smith, "Transmission-line calculator," Electronics, vol. 12, p. 29, January 1939; and "An improved transmission-line calculator," Electronics, vol. 17, p: 130, January 1944.

Multiplying both the numerator and the denominator of Eq. \((9-126)\) by the complex conjugate of the denominator, and separating the real and imaginary parts, we obtain
\[
\begin{equation*}
r=\frac{1-\Gamma_{r}^{2}-\Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}} \tag{9-127a}
\end{equation*}
\]
and
\[
\begin{equation*}
x=\frac{2 \Gamma_{i}^{2}}{\left(1-\Gamma_{r}\right)^{2}+\Gamma_{i}^{2}} . \tag{9-127b}
\end{equation*}
\]

If Eq. (9-127a) is plotted in the \(\Gamma_{r}-\Gamma_{i}\) plane for a given value of \(r\), the resulting graph is the locus for this \(r\). The locus can be recognized when the equation is rearranged as
\[
\begin{equation*}
\left(\Gamma_{r}-\frac{\dot{r}}{1+r}\right)^{2}+\Gamma_{i}^{2}=\left(\frac{1}{1+r}\right)^{2} \tag{9-128a}
\end{equation*}
\]

It is the equation for a circle having a radius \(1 /(1+r)\) and centered at \(\Gamma_{r} \dot{=} r /(1+r)\) and \(\Gamma_{i}=0\). Different values of \(r\) yield circles of different radii with centers at different positions on the \(\Gamma_{r}\)-axis. A family of \(r\)-circles are shown in solid lines in Fig. 9-13. Since \(|\Gamma| \leq 1\), only that part of the graph lying within the unit circle on the \(\Gamma_{r}-\Gamma_{i}\) plane is meaningful; everything outside can be disregarded.

Fig. 9-13 Smith chart with rectangular coordinates.
: complex we obtain \((9-127 a)\) (9-127b) : retulting tion is re-
\(=r(1!+r)\) 1t different Fig. 9-13. he \(r_{r}-r_{i}\)

Several sallent properties of the \(r\)-circles are noted as follows:
1. The centers of all \(r\)-circles lie on the \(\Gamma_{r}\)-dxis.
2. The \(r=0\) circle, having a unity radius and centered at the origin, is the largest.
3. The \(r\)-circles become progressively smiller as \(r\) increases from 0 toward \(\infty\), ending at the \(\left(\Gamma_{r}=1, \Gamma_{i}=0\right)\) point.
4. All \(r\)-circles pass through the \(\left(\Gamma_{r}=1, \Gamma_{l}=0\right)\) point.

Similarly, Eq. (9-127b) may be rearranged as
\[
\begin{equation*}
\therefore\left(\Gamma_{r}-1\right)^{2}+\left(\Gamma_{i}-\frac{1}{x}\right)^{2}=\left(\frac{1}{x}\right)^{2} \tag{9-128b}
\end{equation*}
\]

This is the equation for a circle having radius \(1 /|x|\) and centered at \(\Gamma_{r}=1\) and \(\Gamma_{i}=\) \(1 / x\). Different values of \(x\) yield circles of different radii with centers at different positions on the \(\Gamma_{r}=1\) line. A family of the portions of \(x\)-circles lying inside the \(|\Gamma|=1\) boundary are shown in dashed lines in Fig. 9-13. The following is a list of several salient properties of the \(x\)-circles.
1. The centers of all \(x\)-circles lie on the \(\Gamma_{r}=1\) line; those for \(x>0\) (inductive reactance) lie above the \(\Gamma_{r}\)-axis, and those for \(x<0\) (capacitive reactance) lie below the \(\Gamma_{r}\)-uxis.
2. The \(x=0\) circle becomes the \(\Gamma_{r}\)-axis.
3. The \(x\)-circles become progressively smaller as \(|x|\) increases from 0 toward \(\infty\), ending at the (\(\Gamma_{r}=1, \Gamma_{i}=0\)) point.
4. All \(x\)-circles pass through the \(\left(\Gamma_{r}=1, \Gamma_{i}=0\right)\) point.

A Smith chart is a chart of \(r\) - and \(x\)-circles in the \(\Gamma_{r}-\Gamma_{i}\) plane for \(|\Gamma| \leq 1\). It can be proved that the \(r\) - and \(x\)-circles are everywhere orthogonal to one another. The intersection of an \(r\)-circle and an \(x\)-circle defines a point that represents a normalized load impedance \(z_{\mathrm{L}}=r+j x\). The actual load impedance is \(Z_{\mathrm{L}}=R_{0}(r+j x)\). Since a Smith chart plots the normalized impedance, it can be used for calculations concerning a lossless transmission line with an abilary chatacteristic impedance.

As an illustration, point \(P\) in Fig. \(9-13\) is the intersection of the \(r=1.7\) circle and the \(x=0.6\) circle. Hence it represents \(z_{\mathrm{L}}=1.7+j 0.6\). The point \(P_{s c}\) at \(\left(\Gamma_{r}=-1\right.\), \(\Gamma_{i}=0\)) corresponds to \(r=0\) and \(x=0\) and, therefore, represents a short-circuit. The point \(P_{o c}\) at (\(\Gamma_{r}=1, \Gamma_{i} \doteq 0\)) corresponds to an infinite impedance and represents an open-circuit.

The Smith chart ir Fig. 9-13 is marked with \(\Gamma_{r}\) and \(\Gamma_{i}\) rectangular coordinates. The same chart can be marked with polar coordinates, such that every point in the \(\Gamma\)-plane is specified by a magnitude \(\Gamma \mid\) and a phase angle \(\theta_{\Gamma}\). This is illustrated in Fig. 9-14, where several \(|\Gamma|\)-circles are shown in dotted lines and some \(\theta_{\Gamma}\)-angles are marked around the \(|\Gamma|=1\) circle: The \(|\Gamma|\)-circles are normally not shown on commercially available Smith charts; but once the point representing a certain

Fig. 9-14 Smith chart with polar coordinates.
\(z_{\mathrm{L}}=r+j x\) is located, it is a simple matter to draw a circle centered at the origin through the point. The fractional distance from the center to the point (compared with the unity radius to the edge of the chart) is equal to the magnitude \(|\Gamma|\) of the load reflection coefficient; and the angle that the line to the point makes with the real axis is \(\theta_{\Gamma}\). This graphical determination circumvents the need for computing \(\Gamma\) by Eq. (9-124).

Each \(|\Gamma|\)-circle intersects the real axis at two points. In Fig. \(9-14\) we designate the point on the positive-real axis \(\left(O P_{c c}\right)\) as \(P_{M}\) and the point on the negative-real axis (\(O P_{s c}\)) as \(P_{m}\). Since \(x=0\) along the real axis, \(P_{M}\) and \(P_{m}\) both represent situations with a purely resistive load, \(Z_{\mathrm{L} .}=R_{\mathrm{t}}\). Obviously \(R_{\mathrm{t}}>R_{0}\) at \(P_{\mathrm{M}}\), where \(r>1\); and \(R_{\mathrm{L}}<R_{0}\) at \(P_{m}\), where \(r<1\). \(\ln \mathrm{Eq}\). \((9-112)\) we found that \(S=R_{\mathrm{L}} / R_{0}=r\) for \(R_{\mathrm{L}}>R_{0}\). This relation enables us to say immediately, without using Eq. (9-105), that the value of the \(r\)-circle passing through the point \(P_{M}\) is numerically equal to the stand-ing-wave ratio. Similarly, we conclude from Eq. (9-113) that the value of the r-circle passing through the point \(P_{m}\) on the negative-real axis.is numerically equal to \(1 / S\). For the \(z_{L}=1.7+j 0.6\) point, marked \(P\) in Fig. 9 14, we find \(|\Gamma|=\frac{1}{3}\) and \(0_{\Gamma}=28\). At \(P_{M}, r=S=2.0\). These results can be verified analytically.

In summary, we note the following:
1. All \(|\Gamma|\)-circles are centered at the origin, and their radii vary uniformly from 0 to 1 .
2. The angle, medsured from the positive real axis, of the line drawn from the origin through the pdint representing \(z_{\mathrm{L}}\) equals \(\theta_{\Gamma}\).
3. The value of the \(r\)-circle passing through the intersection of the \(|\Gamma|\)-circle and the positive-real axis equals the standing-wave ratio \(S\).
So far we have based the construction of the Smith chart on the definition of the voltage reflection coefficient of the load impedance, as given in Eq. (9-101). The input impedance looking toward the load at a distance \(z^{\prime}\) from the load is the ratio of \(V\left(z^{\prime}\right)\) and \(I\left(z^{\prime}\right)\). From Eqs. (\(9-100\) a) and \((9-100 \mathrm{~b}\)) we have, by writing \(j \beta\) for \(\gamma\) for a lossless line,
\[
\begin{equation*}
Z_{i}\left(z^{\prime}\right)=\frac{V\left(z^{\prime}\right)}{I\left(z^{\prime}\right)}=Z_{0}\left[\frac{1+\Gamma e^{-j 2 \beta z^{\prime}}}{1-\Gamma e^{-j 2 \beta z^{\prime}}}\right] \tag{9-129}
\end{equation*}
\]

The normalized input impedance is
where
\[
\begin{align*}
z_{i}=\frac{Z_{i}}{Z_{0}} & =\frac{1+\Gamma e^{-j 2 \beta z^{\prime}}}{1-\Gamma e^{-j 2 j \beta z}} \\
& =\frac{1+|\Gamma| e^{j \phi}}{1-|\Gamma| e^{j \phi}}, \tag{9-130}
\end{align*}
\]
he origin sompared \([\Gamma]\) of the with the lputing \(\Gamma\)
designate ative-real situations \(>1\); and \(R_{\mathrm{L}}>R_{0}\). . that the he standie r-circle 1/S. For \(=28 \bigcirc\) om 0 to 1 .
\[
\begin{equation*}
\phi=\theta_{\Gamma}-2 \beta z^{\prime} . \tag{9-131}
\end{equation*}
\]

We note that Eq. (9-130) relating \(z_{\mathrm{i}}\) and \(\Gamma e^{-j 2 / 2 z^{\prime}}=|\Gamma| e^{j i \phi}\) is of exactly the same form as Eq. (9-125) rolditing \(z_{L}\) and \(\Gamma=|\Gamma|{ }^{\mu \rho^{j}}\). In fact, the latter is a special case of the former for \(z^{\prime}=0\left(\phi=\theta_{\Gamma}\right)\). The magnitude, \(|\Gamma|\), of the reflection coefficient and, therefore, the standing-wave ratio \(S\), are not changed by the additional line length \(z^{\prime}\). Thus, just as we can use the Smith chart to find \(|\Gamma|\) and \(\theta_{\Gamma}\) for a given \(z_{L}\) at the load, we can keep \(|\Gamma|\) constant and subtract (rotate in the clockwise direction) from \(\theta_{\Gamma}\) an angle equal to \(2 \beta z^{\prime}=4 \pi z^{\prime} / \lambda\). This will locate the point for \(|\Gamma| e^{i \phi}\), which determines \(z_{i}\), the normalized input impedance looking into a lossless line of characteristic impedance \(R_{0}\), length \(z^{\prime}\), and a normalized load impedance \(z_{\mathrm{L}}\). Two additional scales in \(\Delta z^{\prime} / \lambda\) are usually provided along the perimeter of the \(|\Gamma|=1\) circle for easy reading of the phase change \(2 \beta\left(\Delta z^{\prime}\right)\) due to a change in line length \(\Delta z^{\prime}\) : the outer scale is marked "wavelengths towdid generator" in the clockwise direction (increasing z"); and the inner scale is marked "wavelengths toward load" in the counterclockwise direction (decreasing \(z^{\prime}\)). Figure \(9-15\) is a typical Smith chart, which is commercially available. \({ }^{\dagger}\) It has a complicated appearance, but actually it consists merely of constant \(r\) and constant- \(x\) circles. We note that a change of half-a-wavelength in line length (\(\Delta z^{\prime}=\lambda / 2\)) corresponds to a \(\angle \beta\left(\Delta z^{\prime}\right)=2 \pi\) change in \(\phi\). A complete revolution around a \(|\Gamma|\)-circle returns to the same point and results in no change in impedance, as was asserted in Eq. (9-95).

\footnotetext{
\({ }^{+}\)All of the Smith charts used in this book are xeprinted with permission of Emeloid Industries, Inc., New Jersey.
}

Fig. 9-15 The Smith chart.

In the following we shall illustrate the use of the Smith chart for solving some typical transmission-line problems by several examples.

Erample9-9. Use the Smith chart to find the input impedance of a section of a \(50-(\Omega)\) lossless transmission line which is 0.1 . wavelength long and is terminated in a short-circuit.

Solution: Given:
\[
\begin{aligned}
z_{\mathrm{L}} & =0 \\
R_{\mathrm{C}} & =50(\Omega) \\
z^{\prime} & =0.1 \lambda
\end{aligned}
\]
1. Enter the Smith chart at the intersection of \(r=0\) and \(x=0\) (Point \(P_{s c}\) on the extreme left of chart. See Fig. 9-16.)
2. Move along the perimeter of the chart \((|\Gamma|=1)\) by 0.1 "wavelengths toward generator" in a clockwise direction to \(P_{1}\).
3. At \(P_{1}\) read \(r=0\) and \(x \cong 0.725\), or \(z_{i}=j 0.725\). Thus, \(Z_{i}=R_{0} z_{i}=50(j 0.725)=\) \(j 36.3(\Omega)\). (The linput impedance is purely inductive.)

This result can be checked readily by using Eq. (9-92).
\[
\begin{aligned}
Z_{1} & =j R_{0} \tan \beta l=j 50 \tan \left(\frac{2 \pi}{\lambda}\right) 0.1 \lambda \\
& =j 50 \tan j 6=j 36.4(\Omega)
\end{aligned}
\]

Example 9-10 A lossless transmission line of length \(0.434 \%\) and characteristic impedance \(100(\Omega)\) is terminated in an impedance \(260+j 180(\Omega)\). Find (a) the voltage reflection coefficient, (b) the standing-wave ratio, (c) the input impedance, and (d) the location of a voltage maximum on the line. -

Solution: Given .
\[
\begin{aligned}
z^{\prime} & =0.434 \lambda \\
R_{0} & =100(\Omega) \\
Z_{\mathrm{L}} & =260+j 180(\Omega)
\end{aligned}
\]
a) We find the voltage reflection coefficient in several steps:
1. Enter the Smith chart at \(z_{\mathrm{L}}=Z_{\mathrm{L}} / R_{0}=2.6+j 1.8\) (Point \(P_{2}\) in Fig. 9-16.)
2. With the center at the origin, draw a circle of radius \(\overline{O P}_{2}=|\Gamma|=0.60\). (The radius of the chart \(\overline{O P}_{s c}\) equals unity.)
3. Draw the straight line \(O P_{2}\) and extend it to \(P_{2}^{\prime}\) on the periphery. Read 0.220 on "wavelengths toward generator" scale. The phase angle \(\theta_{r}\) of the rellection coefficient is \((0.250-0.220) \times 4 \pi=0.12 \pi\) (rad) or \(21^{\circ}\). (We multiply the change in wavelengths by \(4 \pi\) because angles on the Smith chart are measured in \(2 \beta z^{\prime \prime}\) cr \(4 \pi z^{\prime} / \lambda\). A half-wavelength change in line length corresponds to a complete arviution on the Smith chart.) The answer to part (a) is then
\[
\Gamma=|\Gamma| e^{j \theta r}=0.60 / 21^{\circ}
\]
b) The \(|\Gamma|=0.60\) circle intersects with the positive-real axis \(O P_{o c}\) at \(r=S=4\). Thus the voltage standing-wave ratio is 4 .

418 THEORY AND APPLICATIONS OF TRANSMISSION LINES / 9

Fig. 9-16 Smith-chart calculations for Examples 9-9 and 9-10.
c) To find the input impedance, we proceed as follows:
1. Move \(P_{2}^{\prime}\) at 0.220 by a total of 0.434 "wavelengths toward generator," first to 0.500 (same as 0.000) and then further to \(0.154[(0.500-0.220)+0.154=0.434]\) to \(P_{3}^{\prime}\).
2. Join \(O\) and \(P_{3}^{\prime}\) by a straight line which intersects the \(|\Gamma|=0.60\) circle at \(P_{3}\).
3. Read \(r=0.69\) and \(x=1.2\) at \(P_{3}\). Hence,
\[
Z_{i}=R_{0} z_{l}=100(0,69+j 1.2)=69+j 120(\Omega) .
\]
d) In going from \(P_{1}\) to \(P_{3}\), the \(|\Gamma|=0.60\) circle intersects the positive-real axis \(O P_{o c}\) at \(P_{M}\) where the voltage is a maximum. Thus, a voltage maximum appears at (\(0.250-0.220\)) or \(0.030 \lambda\) from the load.

Example 9-11 Solve Example 9-7 by using the Smith chart. Given
\[
\begin{aligned}
& R_{0}=50(\Omega) \\
& S=3.0 \\
& \lambda=2 \times 0.2=0.4(\mathrm{~m})
\end{aligned}
\]

First voltage minimum at \(z_{m}^{\prime}=0.05(\mathrm{~m})\),
find (a) \(\Gamma\), (b) \(Z_{\mathrm{L}}\), (c) " \(t_{m}\), and \(R_{m}\) (Fig. 9-11).

\section*{Solution}
a) On the positive-real axis \(O P_{o c}\) locate the point \(P_{M}\) at which \(r=S=3.0\) (see Fig. \(9-17)\). Then \(\overline{O P}_{M}=|\Gamma|=0.5\left(\overline{O P}_{n c}=1.0\right)\). We cannot find \(\theta_{L}\) until we have located the point that represents the normalized load impedance.
b) We use the following procedure to find the load impedance on the Smith chart:
1. Draw a circle centered at the origin with radius \(\overline{O P}_{M}\), which intersects with the negative-real axis \(O P_{s c}\) at \(P_{m}\) where there will be a voltage minimum.
2. Since \(z_{m}^{\prime} / \hat{\lambda}=0.05 / 0.4=0.125\), move from \(P_{s c} 0.125\) "wavelengths toward load" in the counterclosewise direction to \(P_{L}^{\prime}\).
3. Join \(O\) and \(P_{\mathrm{L}}^{\prime}\) by a straight line, intersecting the \(|\Gamma|=0.5\) circle at \(P_{\mathrm{L}}\). This is the point representing the normalized load impedance.
4. Read the angle \(\angle P_{o c} O P_{\mathrm{L}}^{\prime}=90^{\circ}=\pi / 2(\mathrm{rad})\). There is no need to use a protractor, because \(\angle P_{o c} O P_{\llcorner }^{\mathrm{L}}=4 \pi(0.250-0.125)=\pi / 2\). Hence \(\theta_{\Gamma}=-\pi / 2(\mathrm{rad})\), or \(\Gamma=0.5 /-90^{\circ}=-j 0.5\).
5. Read at \(P_{\mathrm{L}}, z_{\mathrm{L}}=0.60-j 0.80\), which gives
\[
Z_{L}=50(0.60-j 0.80)=30-j 40(\Omega) .
\]
c) The equivalent line length and the terminating resistance can be found easily.
\[
\begin{aligned}
& \quad \rho_{m}=\frac{\lambda}{2}-z_{m}^{\prime}=0.2-0.05=0.15(\mathrm{~m}) \\
& \mathrm{R}_{m}=\frac{\mathrm{R}_{0}}{S}=\frac{50}{3}=16.7(\Omega) .
\end{aligned}
\]

All the above results are the same as those obtained in Example 9-7, but no calculations with complex numbers are needed in using the Smith chart.

Fig. 9-17 Smith-chart calculations for Example 9-11.

\section*{9-5.1 Smith-Chart Calculations for Lossy Lines}

In discussing the use of the Smith chart for transmission-line calculations, we have assumed the line to be lossless. This is normally a satisfactory approximation for we generally deal with relatively short sections of low-loss lines. The lossless assumption enables us to say, following Eq. \((9-130)\), that the magnitude of the \(\Gamma e^{-j 2 \beta z^{\prime}}\) term
does not change with line length \(z^{\prime}\) and that we can find \(z_{i}\) from \(z_{L}\), and vice versa, by moving along the \(\mid \Gamma\)-circle by an angle equal to \(2 \beta z^{\prime}\).

For a lossy line of a sufficient length \(\ell\), such that \(2 \alpha \ell\) is not negligible compared to unity, Eq. \((9-130)\) must be amended to read
\[
\begin{align*}
z_{i} & =\frac{1+\Gamma e^{-2 \alpha z^{\prime}} e^{-j 2 \beta z^{\prime}}}{1-\Gamma e^{-2 \alpha z^{\prime}} e^{-j 2 \beta z^{\prime}}} \\
& =\frac{1+|\Gamma| e^{-2 \alpha z^{\prime}} e^{j \phi}}{1-|\Gamma| e^{-2 \alpha z^{\prime}} e^{j \phi}} \quad \quad \phi=\theta_{\Gamma}-2 \beta z^{\prime} \tag{9-132}
\end{align*}
\]

Hence, to find \(z_{i}\) ftom \(z_{L}\), we cannot simply move along the \(|\Gamma|\)-circle; auxiliary calculations are necessary in order to account for the \(e^{-2 \alpha z^{\prime}}\) factor. The following example illustrates what has to be done.
Example 9-12 The input impedance of a short-circuited lossy transmission line of length \(2(\mathrm{~m})\) and chatacteristic impedance \(75(\Omega)\) (approximately real) is \(45+j 225(\Omega)\).
(a) Find \(\alpha\) and \(\beta\) of the line. (b) Determine the input impedance if the short-circuit is replaced by a load impedance \(Z_{\mathrm{L}}=67.5-j 45(\Omega)\).

\section*{Solution}
a) The short-circuit load is represented by the point \(P_{s c}\) on the extreme left of the Smith impedance chart.
1. Enter \(z_{i 1}=(45+j 225) / 75=0.60+j 3.0\) in the chart as \(P_{1}\) (Fig. 9-18).
2. Draw a straight line from the origin \(O\) through \(P_{1}\) to \(P_{1}^{\prime}\).
3. Measure \(\overline{O P}_{1} / \overline{O P_{1}^{\prime}}=0.89=e^{-2 x \prime}\). It follows that
\[
\alpha=\frac{1}{2 \ell} \ln \left(\frac{1}{0.89}\right)=\frac{1}{4} \ln 1.124=0.029(\mathrm{~Np} / \mathrm{m})
\]
4. Record that the arc \(P_{s c} P_{1}^{\prime}\) is 0.20 "wavelengths toward generator." We have \(\ell / \lambda=0.20\) and \(2 \beta \ell=4 \pi \ell / \lambda=0.8 \pi\). Thus,
\[
\beta=\frac{0.8 \pi}{2 \ell}=\frac{0.8 \pi}{4}=0.2 \pi(\mathrm{rad} / \mathrm{m})
\]
b) To find the input impedance for \(Z_{1}=67.5-j 45(\Omega)\) :
1. Enter \(z_{L}=Z_{L} / Z_{0}=(67.5-j 45) / 75=0.9-j 0.6\) on the Smith chart as \(P_{2}\).
2. Draw a straight line from \(O\) through \(P_{2}\) to \(P_{2}^{\prime}\) where the "wavelengths toward generator" reading is 0.364 .
3. Draw a \(|\Gamma|\)-circle centered at \(O\) with radius \(\overline{O P}_{2}\).
4. Move \(P_{2}^{\prime}\) along the perimeter by 0.20 "wavelengths toward generator" to \(P_{3}^{\prime}\) at \(0.364+0.20=0.564\) or 0.064 .
5. Join \(P_{3}^{\prime}\) and \(O\) by a straight line, intersecting the \(|\Gamma|\)-circle at \(P_{3}\).
6. Mark on line \(O P_{3}\) a point \(P_{i}\) such that \(\overline{O P}_{i} / \overline{O P_{3}}=e^{-2 \alpha \ell}=0.89\).
7. At \(P_{i}\), read \(z_{i}=0.64+j 0.27\). Hence,
\[
Z_{1}=75(\dot{0} .64+j 0.27)=48.0+j 20.3(\Omega) .
\]

Fig. 9-18 Smith-chart calculations for lossy transmission line (Example 9-12).

\section*{9-6 TRANSMISSION-LINE IMPEDANCE MATCHING}

Transmission lines are used for the transmission of power and information. For radio-frequency power transmission it is highly desirable that as much power as possible is transmitted from the generator to the load and as little power as possible is lost on the line itself. This will require that the load be matched to the characteristic

9-6.1
impedance of the lithe so that the standing-wave ratio on the line is as close to unity as possible. Fot information transmission it is essential that the lines be matched because reflections from mismatched loads and junctions will result in echoes and distort the information-carrying signal. In this section we discuss several methods for impedance-matching on lossless transmission lines. We note parenthetically that the methods we defelop will be of little consequence to power transmission by \(60(\mathrm{~Hz})\) lines inasmuch as these lines are generally very short compared to the \(5(\mathrm{Mm})\) wavelength and the line losses are appreciable. Sixty-hertz power-line circuits are usually analyzed in terms of equivalent lumped electrical networks.

\section*{9-6.1 Impedance Matchlhg by Quarter-Wave Transformer}

A simple method for matching a resistive load \(R_{\mathrm{L}}\) to a lossless transmission line of a characteristic impedance \(R_{0}\) is to insert a quarter-wave transformer with a characteristic impedance \(R_{0}^{\prime}\) such that
\[
\begin{equation*}
R_{0}^{\prime}=\sqrt{R_{0} R_{\mathrm{L}}} \tag{9-133}
\end{equation*}
\]

Since the length of the quarter-wave line depends on wavelength, this matching method is frequency-sensitive, as are all the other methods to be discussed.

Example 9-13 A signal generator is to feed equal power through a lossless air transmission line with a characteristic impedance \(50(\Omega)\) to two separate resistive loads, \(64(\Omega)\) and \(25(\Omega)\). Quarter-wave transformers are used to match the loads to the \(50(\Omega)\) line, as shown in Fig. 9-19. (a) Determine the required characteristic impedances of the quarter-wave lines. (b) Find the standing-wave ratios on the matching line sections.

Fig. 9-19 Impedance matching by quarter-wave lines (Example 9-13).

\section*{Solution}
a) To feed equal power to the two loads, the input resistance at the junction with the main line looking toward each load must be equal to \(2 R_{0} . R_{i 1}=R_{i 2}=\) \(2 R_{0}=100(\Omega)\).
\[
\begin{aligned}
& R_{01}^{\prime}=\sqrt{R_{i 1} R_{\mathrm{L} 1}}=\sqrt{100 \times 64}=80(\Omega) \\
& R_{02}^{\prime}=\sqrt{R_{\mathrm{i} 2} R_{\mathrm{L} 2}}=\sqrt{100 \times 25}=50(\Omega)
\end{aligned}
\]
b) Under matched conditions, there are no standing waves on the main transmission line (\(S=1\)). The standing-wave ratios on the two matching line sections are

Matching section No. 1
\[
\begin{aligned}
& \Gamma_{1}=\frac{R_{\mathrm{L}_{1}}-R_{01}^{\prime}}{R_{\mathrm{L} 1}+R_{01}^{\prime}}=\frac{64-80}{64+80}=-0.11 \\
& S_{1}=\frac{1+\left|\Gamma_{\Gamma}\right|}{1-\left|\Gamma_{1}\right|}=\frac{1+0.11}{1-0.11}=1.25
\end{aligned}
\]

Matching section No. 2
\[
\begin{aligned}
& \Gamma_{2}=\frac{R_{\mathrm{L} 2}-R_{02}^{\prime}}{R_{\mathrm{L} 2}+R_{02}^{\prime}}=\frac{25-50}{25+50}=-0.33 \\
& S_{2}=\frac{1+\left|\Gamma_{2}\right|}{1-\left|\Gamma_{2}\right|}=\frac{1+0.33}{1-0.33}=1.99
\end{aligned}
\]

Ordinarily the main transmission line and the matching line sections are essentially lossless. In that case both \(R_{0}\) and \(R_{0}^{\prime}\) are purely real and Eq. (9-133) will have no solution if \(R_{\mathrm{L}}\) is replaced by a complex \(Z_{\mathrm{L}}\). Hence quarter-wave transformers are not useful for matching a complex load impedance to a low-loss line.

In the following subsection we will discuss a method for matching an arbitrary load impedance to a line by using a single open- or short-circuited line section (a single stub) in parallel with the main line and at an appropriate distance from the load. Since it is more convenient to use admittances instead of impedances for parallel connections, we first examine how the Smith chart can be used to make admittance calculations.

Let \(Y_{\mathrm{L}}=1 / Z_{\mathrm{L}}\) denote the load admittance. The normalized load impedance is
\[
\begin{equation*}
z_{\mathrm{L}}=\frac{Z_{\mathrm{L}}}{R_{0}}=\frac{1}{R_{0} Y_{\mathrm{L}}}=\frac{1}{y_{\mathrm{L}}} \tag{9-134}
\end{equation*}
\]
where
\[
\begin{align*}
y_{\mathrm{L}} & =Y_{\mathrm{L}} / Y_{0}=Y_{\mathrm{L}} / G_{0} \quad \text { (Dimensionless) },
\end{align*}
\]
ion with \(=R_{i 2}=\)

Fig. 9-20 Finding admittance from impedance (Example 9-14).
is the normalized load admittance having normalized conductance \(g\) and normalized susceptance \(b\) as its real and imaginary parts respectively. Equation (\(9-134\)) suggests that a quarter-wave liste wilh a unity normalized characteristic impedance will tansform \(z_{L}\) to \(y_{L}\), and vice versa. On the Smith chart we need only to move the point representing \(z_{\mathrm{L}}\) along the \(|\Gamma|\)-circle by a quarter-wavelength in order to locate the point representing \(y_{L}\). Since a \(i / 4\)-change in line length \(\left(\Delta z^{\prime} / \lambda=\frac{1}{4}\right)\) corresponds to a change of \(\pi\) radians \(\left(2 \beta \Delta z^{\prime}=\pi\right)\) on the Smith chart, the points representing \(z_{L}\). and \(y_{\mathrm{L}}\) are then diametrically opposite to each other on the \(|\Gamma|\)-circle. This observation enables us to find \(y_{\mathrm{L}}\) from \(z_{\mathrm{L}}\), and \(z_{\mathrm{L}}\) from \(y_{\mathrm{L}}\), on the Smith chart in a very simple manner.
re essenwill have mers are
arbitrary ection (a from the rparallel mittance adance is

Example 9-14 Given \(Z_{\mathrm{L}}=95+j 20(\Omega)\), find \(Y_{\mathrm{L}}\).

Solution: This problem has nothing to do with any transmission line. In order to use the Smith chart, we can choose an arbitrary normalizing constant; for instance, \(R_{0}=50(\Omega)\). Thus,
\[
z_{\mathrm{L}}=\frac{1}{50}(95+j 20)=1.9+j 0.4
\]

Enter \(z_{1}\) as point \(P_{1}\) on the Smith chart in Fig. 9-20. The point \(P_{2}\) on the other side of the line joining \(P_{1}\) and \(O\) represents \(y_{L}: \overline{O P}_{2}=\overline{O P}_{1}\).
\[
Y_{\mathrm{L}}=\frac{1}{R_{0}} y_{\mathrm{L}}=\frac{1}{50}(0.5-j 0.1)=10-j 2(\mathrm{mS}) .
\]

Example 9-15 Find the input admittance of an open-circuited line of characteristic impedance \(300(\Omega)\) and length \(0.04 \lambda\).

Fig. 9-21 Finding input admittance of open-circuited line (Example 9-15).

\section*{Solution}
1. For an open-circuited line, we start from the point \(P_{o c}\) on the extreme right of the impedance Smith chart, at 0.25 in Fig. 9-21.
2. Move along the perimeter of the chart by 0.04 "wavelengths toward generator" to \(P_{3}\) (at 0.29).
3. Draw a straight line from \(P_{3}\) through \(O\), intersecting at \(P_{3}^{\prime}\) on the opposite side.
4. Read at \(P_{3}^{\prime}\)
\[
y_{i}=0+j 0.26 .
\]

Thus,
\[
Y_{i}=\frac{1}{300}(0+j 0.26)=j 0.87(\mathrm{mS})
\]

In the preceding two examples we have made admittance calculations by using the Smith chart as an impedance chart. The Smith chart can also be used as an admittance chart, in which case the \(r\) and \(x\) circles would be \(g\) and \(b\) circles. The points representing an open- and short-circuit termination would be the points on the extreme left and the extreme right, respectively, on an admittance chart. For Example 9-15, we could then start from extreme left point on the chart, at 0.00 in Fig. 9-21, and move 0.04 "wavelengths toward generator" to \(P_{3}^{\prime}\) directly.

\section*{9-6.2 Single-Stub Matching}

We now tackle the problem of matching a load impedance \(Z_{\mathrm{L}}\) to a lossless line that has a characteristic impedance \(R_{0}\) by placing a single short-circuited stub in parallel with the line, as shown in Fig. 9-22. This is the single-stub method for impedance matching. We need to determine the length of the stub, \(\ell\), and the distance from the load, \(z^{\prime}\), such that the impedance of the parallel combination to the right of points \(B-B^{\prime}\) equals \(R_{0}\). Short-circuited stubs are usually used in preference to open-circuited

stubs because an infinite terminating impedance is more difficult to realize than a zero terminating inmpedance for reasons of radiation from an open end and coupling effects with neighbbring objects. Moreover, a short-circuited stub of an adjustable length and a constant eharacteristic resistahce is much easier to construct than an open-circuited one: Of course, the difference in the required length for an opencircuited stub and that for a short-circuited stub is an odd multiple of a quarterwavelength.

The parallel combination of a line terminated in \(Z_{\mathrm{L}}\) and a stub at points \(B-B^{\prime}\) in Fig. 9-22 suggests that it is advantageous to analyze the matching requirements in terms of admittahces. The basic requirement is
\[
\begin{align*}
Y_{i} & =Y_{B}+Y_{S} \\
& =Y_{0}=\frac{1}{R_{0}} . \tag{9-i36}
\end{align*}
\]

In terms of normalized admittances, Eq. \((9-136)\) becomes
\[
\begin{equation*}
1=g_{B}+y_{s}, \tag{9-137}
\end{equation*}
\]
where \(y_{B}=R_{0} Y_{B}\) is for the load section and \(y_{s}=R_{0} Y_{s}\) is for the short-circuited stub. However, since the input admittance of a short-circuited stub is purely susceptive, \(y_{s}\) is purely imaginary. As a consequence, Eq. (9-137) can be satisfied only if
and
\[
\begin{align*}
& y_{B}=1+j b_{B} \tag{9-138a}\\
& y_{s}=-j b_{B}, \tag{9-138b}
\end{align*}
\]
where \(b_{B}\) can be either positive or negative. Our objectives, then, are to find the length \(d\) such that the admittance, \(y_{B}\), of the load section looking to the right of terminals \(B-B^{\prime}\) has a unity real part and to find the length \(\ell_{B}\) of the stub required to cancel the imaginary parr.

Fig: 9-22 Impedance matching by single-stub method.

Using the Smith chart as an admittance chart, we proceed as follows for singlestub matching:
1. Enter the point representing the normalized load admittance \(y_{\mathrm{L}}\).
2. Draw the \(|\Gamma|\)-circle for \(y_{\mathrm{L}}\), which will intersect the \(g=1\) circle at two points. At these points \(y_{B 1}=1+j b_{B 1}\) and \(y_{B 2}=1+j b_{B 2}\). Both are possible solutions.
3. Determine load-section lengths \(d_{1}\) and \(d_{2}\) from the angles between the point representing \(y_{\mathrm{L}}\) and the points representing \(y_{B 1}\) and \(y_{B 2}\).
4. Determine stub lengths \(\ell_{B 1}\) and \(\ell_{B 2}\) from the angles between the short-circuit point on the extreme right of the chart to the points representing \(-j b_{B 1}\) and \(-j b_{B 2}\) respectively.
The following example will illustrate the necessary steps.
Example 9-16 A \(50-(\Omega)\) transmission line is connected to a load impedarice \(Z_{\mathrm{L}}=\) \(35-j 47.5(\Omega)\). Find the position and length of a short-circuited stub required to match the line.

Solution: Given
\[
\begin{aligned}
R_{0} & =50(\Omega) \\
Z_{\mathrm{L}} & =35-j 47.5(\Omega) \\
z_{\mathrm{L}} & =Z_{\mathrm{L}} / R_{0}=0.70-j 0.95
\end{aligned}
\]
1. Enter \(z_{\mathrm{L}}\) on the Smith chart as \(P_{1}\) (Fig. 9-23).
2. Draw a \(|\Gamma|\)-circle centered at \(O\) with radius \(\overline{O P}_{1}\).
3. Draw a straight line from \(P_{1}\) through \(O\) to point \(P_{2}^{\prime}\) on the perimeter, intersecting the \(|\Gamma|\)-circle at \(P_{2}\), which represents \(y_{\mathrm{L}}\). Note 0.109 at \(P_{2}^{\prime}\) on the "wavelengths toward generator" scale.
4. Note the two points of intersection of the \(|\Gamma|\)-circle with the \(g=1\) circle.
\[
\begin{array}{ll}
\text { At } P_{3}: & y_{B 1}=1+j 1.2=1+j b_{B 1} ; \\
\text { At } P_{4}: & y_{B 2}=1-j 1.2=1+j b_{B 2} .
\end{array}
\]
5. Solutions for the position of the stub:
\[
\begin{array}{ll}
\text { For } P_{3}\left(\text { from } P_{2}^{\prime} \text { to } P_{3}^{\prime}\right): & d_{1}=(0.168-0.109) \lambda=0.059 \lambda ; \\
\text { For } P_{4}\left(\text { from } P_{2}^{\prime} \text { to } P_{4}^{\prime}\right): & d_{2}=(0.332-0.109) \lambda=0.223 \lambda .
\end{array}
\]
6. Solutions for the length of short-circuited stub to provide \(y_{s}=-j b_{B}\) :

For \(P_{3}\) (from \(P_{s c}\) on the extreme right of chart to \(P_{3}^{\prime \prime}\), which represents \(-j b_{B_{1}}=\) -j1.2):
\[
\ell_{B 1}=(0.361-0.250) \lambda=0.111 \lambda ;
\]

For \(P_{4}\) (from \(P_{s c}\) to \(P_{4}^{\prime \prime}\), which represents \(-j b_{B 2}=j 1.2\)):
\[
\therefore \quad \ell_{B 2}=(0.139+0.250) \hat{\lambda}=0.389 \lambda
\]

Fig. 9-23 Construction for single-stub matching.

In general, the solution with the shorter lengths is preferred unless there are other practical constraints. The exact length, \(\ell_{B}\), of the short-circuited stub may require fine adjustments in the actual matching procedure; hence the shorted matching sections are sometimes called stub tuners.

The use of Smith chart in solving impedance-matching problems avoids the manipulation of complex numbers and the computation of tangent and arc-tangent

\section*{430 \\ THEORY AND APPLICATIONS OF TRANSMISSION LINES / 9}
functions; but graphical constructions are needed, and graphical methods have limited accuracy. Actually the analytical solutions of impedance-matching problems are relatively simple, and eisy access to a computer may diminish the reliance on the Smith chart and, at the same time, yield more accurate results.

For the single-stub matching problem illustrated in Fig. 9-22, we have, from Eq. (9-89),
\[
\begin{equation*}
z_{B}=\frac{\left(r_{\mathrm{L}}+j x_{\mathrm{L}}\right)+j t}{1+j\left(r_{\mathrm{L}}+j x_{\mathrm{L}}\right) t}, \tag{9-139}
\end{equation*}
\]
where
\[
\begin{equation*}
t=\tan \beta d \tag{9-140}
\end{equation*}
\]

The normalized input admittance to the right of points \(B-B^{\prime}\) is
\[
\begin{equation*}
y_{B}=\frac{1}{z_{B}}=g_{B}+j y_{B} \tag{9-141}
\end{equation*}
\]
where
and
\[
\begin{equation*}
g_{B}=\frac{r_{\mathrm{L}}\left(1-x_{\mathrm{L}} t\right)+r_{\mathrm{L}} t\left(x_{\mathrm{L}}+t\right)}{r_{\mathrm{L}}^{2}+\left(x_{\mathrm{L}}+t^{2}\right.} \tag{9-142a}
\end{equation*}
\]
\[
\begin{equation*}
b_{B}=\frac{\mathrm{t}_{\mathrm{L}}^{2} t-\left(1-x_{\mathrm{L}}\right)\left(x_{1}+t\right)}{r_{\mathrm{L}}^{2}+\left(x_{\mathrm{L}}+t\right)^{2}} \tag{9-142b}
\end{equation*}
\]

A perfect match requires the simultaneous satisfaction of Eqs. (9-138a) and (9-138b). Equating \(g_{B}\) in Eq. \((9-142 \mathrm{a})\) to unity, we have
\[
\begin{equation*}
\left(r_{\mathrm{L}}^{2}-1\right) t^{2}-2 x_{\mathrm{L}} t+\left(r_{\mathrm{L}}-r_{\mathrm{L}}^{\mathrm{I}}-x_{\mathrm{L}}^{2}\right)=0 \tag{9-143}
\end{equation*}
\]

Solving Eq. (9-143), we obtain
\[
t=\left\{\begin{array}{lll}
\frac{1}{r_{\mathrm{L}}-1}\left\{x_{\mathrm{L}} \pm \sqrt{r_{\mathrm{L}}\left[\left(1-r_{\mathrm{L}}\right)^{2}\right.}-x_{\mathrm{L}}^{2}\right] \\
-\frac{x_{\mathrm{L}}}{2}, & r_{\mathrm{L}}=1 & r_{\mathrm{L}} \neq 1
\end{array} \quad(9-144 \mathrm{a})\right.
\]

The required length \(d\) can be found from Eqs. \((9-140)\), \((9-144 \mathrm{a})\), and (\(9-144 \mathrm{~b})\) :
\[
\frac{d}{\lambda}= \begin{cases}\frac{1}{2 \pi} \tan ^{-1} t, \quad t \geq 0 \tag{9-145a}\\ \frac{1}{2 \pi}\left(\pi+\tan ^{-1} t\right), & t<0\end{cases}
\]

Similarly, from Eqs. \((9-138 b)\) and \((9-142 b)\), we obtain
\[
\frac{\ell}{\lambda}= \begin{cases}\frac{1}{2 \pi} \tan ^{-1}\left(\frac{1}{b_{B}}\right), & b_{B} \geq 0 \tag{9-146a}\\ \frac{1}{2 \pi}\left[\pi+\tan ^{-1}\left(\frac{1}{b_{B}}\right)\right], & b_{B}<0\end{cases}
\]

Of course, such accuracies are seldom needed in an actual problem; but these answers have been obtained easily without a Smith chart.

9-6.3 Double-Stub Matching
The method of impedance matching by means of a single stub described in the preceding subsection can be used to match any atbitrary, nonzero, finite load impedance to the characteristic resistance of a line. However, the single-stub method requires that the stub be altached to the main linie at a specific point which varies as the load impedance is changed. This requirement often presents practical difficulties because the specified junction point may occur at an undesirable location from a mechanical viewpoint. Furthermore, it is very difficult to build a variable-length coaxial line with a constant characteristic impedance. In such cases, an alternative method for impedance-matching is to use two short-circuited stubs attached to the main line at fixed positions, as shown in Fig. 9-24. Here, the distance \(d_{0}\) is fixed and arbitrarily chosen (such as \(\lambda / 16, \lambda / 8,3 \lambda / 16,3 \lambda / 8^{\circ}\), etc.), and the lengths of the two stub tuners are adjusted to match a given load impedatice \(Z_{\mathrm{L}}\) to the main line. This scheme is the double-stub method for impedance matching.

In the arrangement in Fig. 9-24, a stub of length \(\ell_{A}\) is connected directly in parallel with the load impedance \(Z_{\mathrm{L}}\) at terminals \(A-A^{\prime}\), and a second stub of length

Fig. 9-24 Impedance matching by double-stub method.
\(\ell_{B}\) is attached at terminals \(B-B^{\prime}\) at a fixed distance \(d_{o}\) away. For impedance matching with a main line that has a characteristic resistance \(R_{0}\), we demand the total input admittance at terminals \(B-B^{\prime}\), looking toward the load, to equal the characteristic conductance of the line; that is,
\[
\begin{align*}
Y_{l} & =Y_{\mathrm{B}}+Y_{\mathrm{sB}} \\
& =Y_{0}=\frac{1}{R_{0}} . \tag{9-147}
\end{align*}
\]

In terms of normalized admittances, Eq. (9-147) becomes
\[
\begin{equation*}
1=y_{B}+y_{s B} . \tag{9-148}
\end{equation*}
\]

Now, since the input admittance \(y_{s B}\) of a short-circuited stub is purely imaginary, Eq. (9-148) can be satisfied only if
\[
\begin{equation*}
y_{B}=1+j h_{n} \tag{9-149;1}
\end{equation*}
\]
and
\[
\begin{equation*}
y_{s B}=-j b_{B} \tag{2}
\end{equation*}
\]

Note that these requirements are exactly the same as those for single-stub matching.
On the Smith admittance chart, the point representing \(y_{B}\) must lie on the \(g=1\) circle. This requirement must be translated by a distance \(d_{0} / \lambda\) "wavelengths toward load"; that is, \(y_{A}\) at terminals \(A-A^{\prime}\) must lie on the \(g=1\) circle rotated by an angle \(4 \pi d_{o} / \lambda\) in the counterclockwise direction. Again, since the input admittance \(y_{s A}\) of the short-circuited stub is purely imaginary, the real part of \(y_{A}\) must be solely contributed by the real part of the normalized load admittance, \(g_{\mathrm{L}}\). The solution (or solutions) of the double-stub matching problem is then determined by the intersection (or intersections) of the \(g_{\mathrm{L}}\)-circle with the rotated \(g=1\) circle. The procedure for solving a double-stub matching problem on the Smith admittance chart is as follows.
1. Draw the \(g=1\) circle. This is where the point representing \(y_{B}\) should be located.
2. Draw this circle rotated in the counterclockwise direction by \(d_{g} / \lambda\) "wavelengths toward load." This is where the point representing \(y_{A}\) should be located.
3. Enter the \(y_{\mathrm{L}}=g_{\mathrm{L}}+j b_{\mathrm{L}}\) point.
4. Draw the \(g=g_{\mathrm{L}}\) circle, intersecting the rotated \(g=1\) circle at one or two points where \(y_{A}=g_{L}+j b_{A}\).
5. Mark the corresponding \(y_{B}\)-points on the \(g=1\) circle: \(y_{B}=1+j b_{B}\).
6. Determine stub length \(\ell_{A}\) from the angle between the point representing \(y_{A}\) and the point representing \(y_{\mathrm{L}}\).
7. Determine stub length \(\ell_{B}\) from the angle between the point representing \(-j b_{B}\) and \(P_{s c}\) on the extreme right.
e matching total input aracteristic
imaginary,
(9-149a)
\((9,+49 b)\)
hematchink.
in. \(=1\)
Eths toward
by an angle
fance \(y_{s A}\) of solely consolution (or \(y\) the intere procedure chart is as
a be located. wavelengths nted.
\(r\) two points
htin and
enting \(-j b_{B}\)

Example 9-17 A \(50-(\Omega)\) transmission line is connected to a load impedance \(Z_{\mathrm{L}}=\) \(60+j 80(\Omega)\). A double-stub tuner spaced an elghth of a wavelength apart is used to match the load to the line, as shown in Fig. 9-24. Find the required lengths of the short-circuited stubs.

Solution: Given \(R_{0}=50(\Omega)\) and \(Z_{\mathrm{L}}=60^{\circ}+\int 80(\Omega)\), it is easy to calculate
\[
y_{\mathrm{L}}=\frac{1}{z_{\mathrm{L}}}=\frac{R_{0}}{Z_{\mathrm{L}}}=\frac{50}{60+j 80}=0.30-j 0.40
\]
(We could find \(y_{\mathrm{t}}\) on the Smith chart by locating the point diametrically opposite to \(z_{\mathrm{L}}=(60+j 80) / 50=1.20+j 1.60\), but this would clutter up the chart too much.) We follow the procedure outlined above.
1. Draw the \(g=1\) dircle (Fig. 9-25).
2. Rotate this \(g=1\) circle by \(\frac{1}{8}\) "wavelengths toward load" in the counterclockwise direction. The atigle of rotation is \(4 \pi / 8\) (rad) or \(90^{\circ}\).
3. Enter \(y_{\mathrm{L}}=0.30-j 0.40\) as \(P_{\mathrm{L}}\).
4. Mark the two points of intersection, \(P_{A 1}\) and \(P_{A 2}\), of the \(g_{\mathrm{L}}=0.30\) circle with the rotated \(\eta=1\) circk.
\[
\begin{aligned}
& \text { At } P_{A 1}, \text { read } y_{A 1}=0.30+j 0.29 \\
& \text { At } P_{A 2}, \text { read } y_{A \cdot 2}=0.30+j 1.75
\end{aligned}
\]
5. Use a compass centered at the origin \(O\) to mark the points \(P_{B 1}\) and \(P_{B 2}\) on the \(g=1\) circle corresponding, respectively, to the points \(P_{A 1}\) and \(P_{A 2}\).
\[
\begin{aligned}
& \text { At } P_{B 1}, \text { read } y_{B 1}=1+j 1.38 \\
& \text { At } P_{B 2}, \text { read } y_{B 2}=1-j 3.4
\end{aligned}
\]
6. Determine the required stub lengths \(\ell_{A 1}\) and \(\ell_{A 2}\) from
\[
\begin{aligned}
& \left(y_{s A}\right)_{1}=y_{A 1}-y_{2}-j 0.69, \quad \ell_{A 1}=(0.097+0.250) \lambda=0.347 \lambda\left(\text { Point } A_{1}\right) \\
& \left(y_{s A}\right)_{2}=y_{A 2}-y_{L}=j 2.11, \quad \ell_{A 2}=(0.179+0.250) \lambda=0.429 \lambda\left(\text { Point } A_{2}\right)
\end{aligned}
\]
7. Determine the required stub lengths \(\ell_{B 1}\) and \(\ell_{B 2}\) from:
\[
\begin{array}{ll}
\left(y_{s B}\right)_{1}=-j 138, & \grave{\ell}_{B 1}=(0.350-0.250) \lambda=0.100 \lambda\left(\text { Point } B_{1}\right) \\
-\left(y_{s B}\right)_{2}=13.4, & \digamma_{B 2}=(0.205+0.250) \lambda=0.455 \lambda\left(\text { Point } B_{2}\right)
\end{array}
\]

Examinátion of the construction in Fig. 9-25 reveals that if the point \(P_{\mathrm{L}}\), representing the nofmalized lcad \(a<m i t t a n c e ~ y_{\mathrm{L}}=g_{\mathrm{L}}+j b_{\mathrm{L}}\) lies within the \(g=2\) circle (if \(g_{L}>2\)), then the \(g=g_{L}\) circle does notintersect with the rotated \(g=1\) circle and no solution exists for double-stub matching with \(d_{o}=\lambda / 8\). This region for no solution varies with the chosen distance \(d_{0}\) between the stubs (Problem P.9-38). In such cases

Fig. 9-25 Construction for double-sub matching.
impedance matching by the double-stub method can be achieved by adding an appropriate line section between \(Z_{\mathrm{L}}\) and terminals \(A-A^{\prime}\), as illustrated in Fig. 9-26 (Problem P.9-37).

An analytical solution of the double-stub impedance matching problem is, of course, also possible, albeit more involved than that of the single-stub problem

Fig. 9-26 Double-stub irıpedance matching with added load-line section.
developed in the preceding subsection. The more ambitious reader may wish to obtain such an analytical solution and write a computer program for determining \(d_{\mathrm{L}} / \lambda, \ell_{A} / \lambda\), and \(\ell_{B} / \lambda\) in terms of \(z_{\mathrm{L}}\) and \(d_{o} / \lambda\).

\section*{REVIEW QUESTIONS}
R.9-1 Discuss the similarities and dissimilarities of uniform plane waves in an unbounded media and TEM waves along transmission lines.
R.9-2 What are the three most common types of guiding structures that support TEM waves?
R.9-3
lines Compare the advantages and disadvantages of coaxial cables and two-wire transmission lines.
R.9-4 Write the trantsmission-line equations for a lossless parallel-plate line supporting TEM waves.
R.9-5 What are striplines?
R.9-6 Describe how the characteristic impedance of a parallel-plate transmission line depends on plate width and dielectric thicknes̀s.
R.9-7 Compare the velocity of TEM-wave propagation along a parallel-plate transmission
line with that in an line with that in àn unbounsed medium.
R.9-8 Define sarjace impedance. How is surface impedance related to the power dissipated in a plate conductor?
R.9-10 State the difference between the surface resistance and the resistance per unit length of a parallel-plate transmission line.
R.9-11 What is the essential difference between a transmission line and an ordinary electric network?
R.9-12 Explain why waves along a lossy transmission line cannot be purely TEM.
R.9-13 Write the general transmission-line equations for arbitrary time dependence and for time-harmonic time dependence.
R.9-14 Define propagation constant and characteristic impedance of a transmission line. Write their general expressions in terms of \(R, L, G\), and \(C\) for sinusoidal excitation.
R.9-15 What is the phase relationship between the voltage and current waves on an infinitely long transmission line?
R.9-16 What is meant by a "distortionless line"? What relation must the distributed parameters of a line satisfy in order for the line to be distortionless?
R.9-17 Outline the procedure for determining the distributed parameters of a transmission line.
R.9-18 Show how the attenation constant of a transmission line is determined from the propagated power and the power lost in the line per unit length.
R.9-19 What does "matched transmission linc" mean?
\(\cdots\)
R.9-20 On what factors does the input impedance of a transmission line depend?
R.9-21 What is the input impedance of an open-circuited lossless transmission line if the length of the line is (a) \(\lambda / 4\), (b) \(\lambda / 2\), and (c) \(3 \lambda / 4\) ?
R.9-22 What is the input impedance of a short-circuited lossless transmission line if the length of the line is (a) \(\lambda / 4\), (b) \(\lambda / 2\), and (c) \(3 \lambda / 4\) ?
R.9-23 Is the input reactance of a transmission line \(\lambda / 8\) long inductive or capacitive if it is (a) open-circuited, and (b) short-circuited?
R.9-24 On a line of length \(\ell\), what is the relation between the line's characteristic impedance and propagation constant and its open- and short-circuit input impedances?
R.9-25 What is a "quarter-wave transformer"? Why is it not useful for matching a complex load impedance to a low-loss line?
R.9-26 What is the input impedance of a lossless transmission line of length \(\ell\) that is terminated in a load impedance \(Z_{\mathrm{L}}\) if (a) \(\ell=\lambda / 2\), and (b) \(\ell=\lambda\) ?
R.9-27 Define voltage reflection coefficient. Is it the same as "current reflection coefficient"? Explain.
R.9-28 Define standing-wave ratio. How is it related to voltage and current reflection coefficients?
R.9-29 What are \(\Gamma\) and \(S\) for a line with an open-circuit termination? A short-circuit termination?
R.9-30 Where do the minima of the voltage standing wave on a lossless line with a resistive termination occur (a) if \(R_{\mathrm{L}}>R_{0}\), and (b) if \(R_{\mathrm{L}}<R_{0}\) ?
a R. 9-31 Explain how the value of a terminating resistance can be determined by measuring the standing-wave ratio on a lossless transmission line.
R.9-32 Explain how the value of an arbitrary termintting impedance on a lossless transmission line can be determinied ty standing-wave measurements on the line.
R.9-33 A voltage generator having an internal impedance \(Z_{g}\) is connected at \(t=0\) to the input terminals of a lossless ttitrismission line of length \(\ell\). The line has a characteristic impedance \(Z_{0}\) and is terminated with a load impedance \(Z_{L}\). At what time will a steady state on the line be reached if (a) \(Z_{0}=Z_{0}\) and \(Z_{\mathrm{L}}=Z_{0}\), (b) \(Z_{\mathrm{L}}=Z_{0}\) but \(Z_{g} \neq Z_{0}\), (c) \(Z_{g}=Z_{0}\) but \(Z_{\mathrm{L}} \neq Z_{0}\), and (d) \(Z_{g} \neq Z_{0}\) and \(Z_{\mathrm{L}} \neq Z_{0}\) ?
R.9-34 What is a Smith chart and why is it useful in making transmission-line calculations?
R.9-35 Where is the polnt representing a matched lodd on a Smith chart?
R.9-36 For a given load impedance \(Z_{L}\) on a lossless line of characteristic impedance \(Z_{0}\), how do we use a Smith chart to determine (a) the reflection coefficient and (b) the standing-wave ratio".
R.9-37 Why does a chadnge of half-a-wavelength in line length correspond to a complete revolution on a Smith chart?
R.9-38 Given an impedance \(Z=R+j X\), what procedure do we follow to find the admittance \(Y=1 / Z\) on a Smith chart ?
R.9-39 Given an admittance \(Y=G+j B\), how do we use a Smith chart to find the impedance \(Z=1 / Y\) ?
R.9-40 Where is the polht representing a short-circuit on a Smith admittance chart?
R.9-41 Is the standing-wave atio constant on a transmission tine even when the line is lossy? Explain.
R.9-42 Can a Smith chlart b: used for impedance calculations on a lossy transmission line? Explain.
R.9-43 Why is it more convenient to use a Smith chart as an admittance chart for solving impedance-matching problems than to use it as an impedance chart?
R.9-44 Explain the single-stub method for impedance matching on a transmission line.
R.9-45 Explain the double-stub method for impedance matching on a transmission line.
R.9-46 Compare the relative advantages and disadvantages of the single-stub and the doublestub methods of impedance matching.

\section*{PROBLEMS}
P.9-1 Neglecting fringe fields, prove analytically that a \(y\)-polarized TEM wave that propagates along a paralle「-plate tratlsmission line in \(+z\) direction has the following properties: \(\partial E_{y} / \partial x=0\) and \(\partial H_{x} / \partial y=0\).
P.9-2 The electric and magnetic fields of a general TEM wave traveling in the \(+z\) direction along a transmission line may have both \(x\) and ycomponents, and both components may be functions of the transverse dimensions.
a) Find the relationt among \(E_{x}(x, y), E_{y}(x, y), H_{x}(x, y)\), and \(H_{y}(x, y)\).

1

\section*{438 THEORY AND APPLICATIONS OF TRANSMISSION LINES / 9}
b) Verify that all the four field components in part (a) satisfy the two-dimensional Laplace's equation for static fields.
P.9-3 Consider lossless stripline designs for a given characteristic impedance.
a) How should the dielectric thickness, \(d\), be changed for a given plate width, \(w\), if the dielectric constant, \(\epsilon_{r}\), is doubled?
b) How should \(w\) be changed for a given \(d\) if \(\epsilon_{r}\) is doubled?
c) How should \(w\) be changed for a given \(\epsilon_{r}\) if \(d\) is doubled?
d). Will the velocity of propagation remain the same as that for the original line after the changes specified in parts (a), (b), and (c)? Explain.
P.9-4 Consider a transmission line made of two parallel brass strips:- \(\sigma_{c}=1.6 \times 10^{7}(\mathrm{~S} / \mathrm{m})-\) of width \(20(\mathrm{~mm})\) and separated by a lossy dielectric slab- \(\mu=\mu_{0}, \epsilon_{r}=3, \sigma=10^{-3}(\mathrm{~S} / \mathrm{m})\)-of thickness \(2.5(\mathrm{~mm})\). The operating frequency is 500 MHz .
a) Calculate the \(R, L, G\), and \(C\) per unit length.
b) Compare the magnitudes of the axial and transverse components of the electric field.
c) Find \(\gamma\) and \(Z_{10}\).

\section*{P.9-5 Verify Eq. (9-39).}
P.9-6 Show that the attenuation and phase constants for a transmission line with perfect conductors separated by a lossy dielectric that, has a complex permittivity \(\epsilon=\epsilon^{\prime}-j \epsilon^{\prime \prime}\) are, respectively,
\[
\begin{align*}
& \alpha=\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}-1}\right]^{1 / 2} \quad(\mathrm{~Np} / \mathrm{m}) \tag{9-142a}\\
& \beta=\omega \sqrt{\frac{\mu \epsilon^{\prime}}{2}}\left[\sqrt{1+\left(\frac{\epsilon^{\prime \prime}}{\epsilon^{\prime}}\right)^{2}+1}\right]^{1 / 2} \quad(\mathrm{rad} / \mathrm{m}) \tag{9-142b}
\end{align*}
\]
P.9-7 In the derivation of the approximate formulas of \(\gamma\) and \(Z_{0}\) for low-loss lines in Subsection \(9-3.1\), all terms containing the second and higher powers of \((R / \omega L)\) and \((G / \omega C)\) were neglected in comparison with unity. At lower frequencies better approximations than those given in Eqs. (9-45) and (9-47) may be required. Find new formulas for \(\gamma\) and \(Z_{0}\) for low-loss lines that retain terms containing \((R / \omega L)^{2}\) and \((G / \omega C)^{2}\). Obtain the corresponding expression for phase velocity.
P.9-8 Obtain approximate expressions for \(\gamma\) and \(Z_{0}\) for a lossy transmission line at very low frequencies such that \(\omega L \ll R\) and \(\omega C \ll G\).
P.9-9 The following characteristics have been measured on a lossy transmission line at 100 MHz :
\[
\begin{aligned}
Z_{0} & =50+j 0(\Omega) \\
\alpha & =0.01(\mathrm{~dB} / \mathrm{m}) \\
\beta & =0.8 \pi(\mathrm{rad} / \mathrm{m}) .
\end{aligned}
\]

Determine \(R, L, G\), and \(C\) for the line.
P.9-10 It is desired to construct uniform transmission lines using polyethylene (\(\epsilon_{r}=2.25\)) as the dielectric medium. Assuming negligible losses, (a) find the distance of separation for a \(300-(\Omega)\), two-wire line, where the radius of the conducting wires is \(0.6(\mathrm{~mm})\); and (b) find the inner radius of the outer conductor for a \(75-(\Omega)\) coaxial line, where the radius of the center conductor is \(0.6(\mathrm{~mm})\).

ne after the
\(\vdots\)
\(10^{7}(\mathrm{~S} / \mathrm{m})-\mathrm{C}\)
\({ }^{3}(\mathrm{~S} / \mathrm{m})\)-of
ctric ficld.
P.9-13 A DC genertor of voltage \(V_{g}\) and internal resistance \(R_{g}\) is connected to a lossy transmission line characterized by a resistance per unit length \(R\) and a conductance per unit length \(G\).
a) Write the governing voltage and current transmission-line equations.
b) Find the gerteral solutions for \(V(z)\) and \(I(z)\).
c) Specialize the solutions in part (b) to those for an infinite line.
d) Specialize the solutions in part (b) to those for a finite line of length \(\ell\) that is terminated in a load resistance \(R_{\mathrm{L}}\).
P.9-14 A generator with añopen-circuit voltage \(v_{8}(t)=10 \sin 8000 \pi r(V)\) and internal impedance \(7_{a}-40+j 30(\Omega)\) is conneded 0 a \(50-(\Omega 2)\) distortionless line. The line has a resistance of \(0.5(\Omega 2 / \mathrm{m})\). and its lossy dielectric mediem has a loss tangent of \(0.18 \%\). The line is \(50(\mathrm{~km})\) long and is terminated in a matched load. Find (a) the instantaneous expressions for the voltage and current at an arbitrary location on the line, (b) the instantaneous expressions for the voltage and current at the load, and (c) the average power transmitted to the load.
P.9-15 The input impedance of an open- or short-circuited lossy transmission line has both a resistive and a reactive component. Prove that the input impedance of a very short section \(\ell\) of a slightly lossy line (\(\alpha \ell_{i} \ll 1\) and \(\beta \ell \ll 1\)) is approximately
a) \(Z_{\text {in }}=(R+j \omega L) /\) with a short-circuit termination.
b) \(Z_{\text {in }}=(G-j \omega C) /\left[G^{2}+(\omega C)^{2}\right] \ell\) with an open-circuit termination.
P.9-16 A 2-(m) losstess transmission line having a characteristic impedance \(50(\Omega)\) is terminated with an impedance \(40+j 30(\Omega)\) at an operating frequency of \(200(\mathrm{MHz})\). Find the input impedance.
P.9-17 The open-circuit and short-circuit impedances measured at the input terminals of a transmissiort line \(4(\mathrm{~m})\) long are, respectively, \(250 /-50^{\circ}(\Omega)\) and \(360 / 20^{\circ}(\Omega)\).
a) Detefimine \(Z_{0}, \alpha\), and \(\beta\) of the line.
b) Determine \(R, L, G\), and \(C\).
P.9-18 A lossless quarter-wave line section of characteristic impedance \(R_{0}\) is terminated with an inductive load impedance \(Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}\).
a) Prove that the input impedance is effectively a resistance \(R_{i}\) in parallel with a capacitive reactance \(X_{i}\). Determine \(R_{7}\) and \(X_{i}\) in terms of \(R_{0}, R_{\mathrm{L}}\), and \(X_{\mathrm{L}}\).
b) Find the ratio of the magnitude of the voltage at the input to that at the load (voltage tranysmation rato, \(\left.\left|V_{\text {in }}\right| /\left|V_{1},\right|\right)\) in terms of \(Z_{1}\) and \(Z_{\mathrm{L}}\).
P.9-19 A 75- \((\Omega)\) lossless line is terminated in a load impedance \(Z_{\mathrm{L}}=R_{\mathrm{L}}+j X_{\mathrm{L}}\).
a) What must be the relation between \(R_{\mathrm{L}}\) and \(X_{\mathrm{L}}\) in order that the standing-wave ratio on ine line be 3 ?
b) Find \(X_{L}\), if \(R_{L}=150(\Omega)\).
c) Where does the voltage minimum nearest to the load occur on the line for part (b)?
\(=2^{\circ}\) sthe for a \(\quad 00(\Omega)\), re inner radius tor is \(0.6(\mathrm{~mm})\).
P.9-20 Consider a lossless transmission line.
a) Determine the line's characteristic resistance so that it will have a minimum possible standing-wave ratio for a load impedance \(40+j 30(\Omega)\).
b) Find this minimum standing-wave ratio and the corresponding voltage reflection coefficient.
c) Find the location of the voltage minimum nearest to the load.
P.9-21 A lossy transmission line with characteristic impedance \(Z_{0}\) is terminated in an arbitrary load impedance \(Z_{l}\).
a) Express the standing-wave ratio \(S\) on the line in terms of \(Z_{0}\) and \(Z_{L}\).
b) Find in terms of \(S\) and \(Z_{0}\) the impedance looking toward the load at the location of a voltage maximum.
c) Find the impedance looking toward the load at a location of a voltage minimum.
P.9-22 A transmission line of characteristic impedance \(R_{0}=50(\Omega)\) is to be matched to a load impedance \(Z_{1}=40+j 10(\Omega)\) through a length/' of mother transmission line of chatacteristic impedance \(R_{1}^{\prime}\). Find the required /' and \(R_{1}^{\prime}\) for matehing.
P.9-23 The standing-wave ratio on a lossless \(300-(\Omega)\) transmission line terminated in an unknown load impedance is 2.0 , and the nearest voltage minimum is at a distance \(0.3 \lambda\) from the load. Determine (a) the reflection coefficient \(\Gamma\) of the load, (b) the unknown load impedance \(Z_{\mathrm{L}}\), and (c) the equivalent length and terminating resistance of a line, such that the input impedance is equal to \(Z_{L}\).
P.9-24 Obtain from Eq. (9-114) the formulas for finding the length \(\ell_{m}\) and the terminating resistance \(R_{m}\) of a lossless line having a characteristic impedance \(R_{0}\) such that the input impedance equals \(Z_{i}=R_{i}+j X_{i}\).
P.9-25 Obtain an analytical expression for the load impedance \(Z_{\mathrm{L}}\) connected to a line of characteristic impedance \(Z_{0}\) in terms of standing-wave ratio \(S\) and the distance, \(z_{m}^{\prime} / \lambda\), of the voltage minimum closest to the load.
P.9-26 A sinusoidal voltage generator with \(V_{\theta}=0.1 / 0^{\circ}(\mathrm{V})\) and internal impedance \(Z_{\theta}=R_{0}\) is connected to a lossless transmission line having a characteristic impedance \(R_{0}=50(\Omega)\). The line is \(\ell\) meters long and is terminated in a load resistance \(R_{L}=25(\Omega)\). Find (a) \(V_{i}, I_{i}, V_{\mathrm{L}}\), and \(I_{L} ;\) (b) the standing-wave ratio on the line; and (c) the average power delivered to the load. Compare the result in part (c) with the case where \(R_{\mathrm{L}}=50(\Omega)\).
P.9-27 A sinusoidal voltage generator \(v_{g}=110 \sin \omega t(\mathrm{~V})\) and internal impedance \(Z_{g}=50\) (\(\Omega\)) is connected to a quarter-wave lossless line having a characteristic impedance \(R_{0}=50\) (\(\Omega\)) that is terminated in a purely reactive load \(Z_{\mathrm{L}}=j 50(\Omega)\).
a) Obtain voltage and current phasor expressions \(V\left(z^{\prime}\right)\) and \(I\left(z^{\prime}\right)\).
b) Write the instantaneous voltage and current expressions \(v\left(z^{\prime}, t\right)\) and \(i\left(z^{\prime}, t\right)\).
c) Obtain the instantaneous power and the average power delivered to the load.
P.9-28 The characteristic impedance of a given lossless transmission line is \(75(\Omega)\). Use a Smith chart to find the input impedance at \(200(\mathrm{MHz})\) of such a line that is (a) \(1(\mathrm{~m})\) long and opencircuited, and (b) \(0.8(\mathrm{~m})\) long and short-circuited. Then (c) determine the corresponding input admittances for the lines in parts (a) and (b).
P.9-29 A load impedatice \(30+\rho 10(\Omega)\) is connected to a lossless transmission line of length 0.1012 and characteristic Impedance \(50(\Omega)\). Use a Smith chart to find (a) the standing-wave ratio, (b) the voltage reflection coefficient, (c) the input impedance, (d) the input admittance, and (e) the location of the voltage minimum on the line.
P.9-30 Repeat problem P \(9-29\) for a load impedance \(30-j 10(\Omega)\).
P.9-31 In a laboratory, experiment conducted on a \(50-(\Omega)\) lossless transmission line terminated in an unknown load impedance; it is found that the standing-wave ratio is 2.0. The successive voltage minima are \(25(\mathrm{~cm})\) apart and the first minimum occurs at \(5(\mathrm{~cm})\) from the load. Find (a) the load impedance, and (b) the reflection coefficient of the load. (c) Where would the first voltage minimum be lotated if the load were replaced by a short-circuit?
P.9-32 The input impedance of a short-circuited lossy transmission line of length \(1.5(\mathrm{~m})(<\hat{\lambda} / 2)\) and characteristic impedance \(100(\Omega)\) (approximately real) is \(40-j 280(\Omega)\).
a) Find \(\alpha\) and \(\beta\) of the line.
b) Determine the input impedance if the short-circuit is replaced by a load impedance \(Z_{\mathrm{L}}=50+j 50(\Omega)\).
c) Find the input impedance of the short-circuited line for a line length \(0.15 \lambda\).
P.9-33 A dipole anterina having an input impedance of \(73(\Omega)\) is fed by a \(200-(\mathrm{MHz})\) source through a \(300-(\Omega)\) twoswire transmission line. Design a quarter-wave two-wire air line with a \(2-(\mathrm{cm})\) spacing to match the antenna to the \(300-(\Omega)\) line.
P.9-34 The single-stub meitiod is used to match a load impedance \(25+j 25(\Omega)\) to a \(50-(\Omega)\) transmission line.
a) Find the required length and position of a short-circuited stub made of a section of the same \(50-(\Omega)\) line.
b) Repeat part (a) assuming the short-circuited stub is made of a section of a line that has a characteristic impedance of 75 (\(\Omega\)).
P.9-35 A load impedance can be matched to a transmission line also by using a single stub placed in series with the load tt an appropriate location, as shown in Fig. 9-27. Assuming \(Z_{\mathrm{L}}=25+\) \(j 25(\Omega), R_{0}=50(\Omega)\), and \(R_{0}^{\prime}=35(\Omega)\), find \(d\) and \(\ell\) required for matching.

Fig. 9-27 Impedance matching by a series stub.
P.9-36 The double-stub method is used to match a load impedance \(100+j 100(\Omega)\) to a lossless transmission line of characteristic impedance \(300(\Omega)\). The spacing between the stubs is \(3 \% / 8\), with
one stub connected directly in parallel with the load. Determine the lengths of the stub tuners if (a) they are both short-circuited, and (b) if they are both open-circuited.
P.9-37 If the load impedance in Problem P.9-36 is changed to \(100+j 50(\Omega)\), one discovers that a perfect match using the double-stub method with \(d_{0}=3 \lambda / 8\) and one stub connected directly across the load is not possible. However, the modified arrangement shown in Fig. 9-26 can be used to match this load with the line.
a) Find the minimum required additional line length \(d_{L}\).
b) Find the required lengths of the short-circuited stub tuners, using the minimum \(d_{L}\) found in part (a).
P.9-38 The double-stub method shown in Fig. 9-24 cannot be used to match certain loads to a line with a given characteristic impedance. Determine the regions of load admittances on a Smith admittance chart for which the double-stub arrangement in Fig. 9-24 cannot lead to a match for \(d_{0}=\lambda / 16, \lambda / 4,3 \lambda / 8\), and \(7 \lambda / 16\).

\section*{10-1 INTRODUCTION}

In the preceding chapter we studied the characteristic properties of transverse electromagnetic (TEM) waves guided by transmission lines. The TEM mode of guided waves is one in which the clectric and magnetic fields are perpendicular to each other and both are transwerse tc the direction of propagation along the guiding line. One of the salient propertles of TEM waves guided by conducting lines of negligible resistance is that the velocity of propagation of a wave of any frequency is the same as that in an unbounded dielectric medium. This was pointed out in connection with Eq. (\(9 z^{21)}\) and was reinforced by Eq. (9-55).

TEM waves, however, are not the only mode of guided waves that can propagate on transmission lines; nor are the three types of transmission lines (parallel-plate, two-wire, and coaxial) mentioned in Section 9-1 the only possible wave-guiding structures. As a matter of fact, we see from Eqs. (9-45a) and (9-49a) that the atteruation constant resulting from the finite conductivity of the lines increases with \(R\). the resistance per unit line length, that, in turn, is proportional to \(\sqrt{f}\) in accordance with Tables 9-1 and 9-2. Hence the attenuation of TEM waves tends to increase monotonically with frequency and would be prohibitively high in the microwave range.

In this chapter we first present a general analysis of the characteristics of the waves propagating along uniform guiding structures. Waveguiding structures are called waveguides, of which the three types of transmission lines are special cases. The basic governing equations will be examined. We will see that, in addition to transverse electromagnetic (TEM) waves, which have no field components in the direction of propagation, both transverse magnetic (TM) waves with a longitudinal electric-field component and transverse electric (TE) waves with a longitudina! magnetic-field eomponent can also exist. Both TM and TE modes have characteristic cutoff frequencies. Waves of frequencies below the cutoff frequency of a particular mode cannot propagate, and power and signal transmission at that mode is possibie only for frequencies highe; than the cutoff frequency. Thus, waveguides operating in TM and TE modes are like high-pass filters.

Also in this chapter we will reexamine the field and wave characteristics of parallel-plate waveguides with emphasis on TM and TE modes and show that all
transverse field components can be expressed in terms of \(E_{z}\) (\(z\) being the direction of propagation) for TM waves, and in terms of \(H_{z}\) for TE waves. The attenuation constants resulting from imperfectly conducting plates will be determined for TM and TE waves, and we will find that the attenuation constant depends, in a complicated way, on the mode of the propagating wave, as well as on frequency. For some modes the attenuation may decrease as the frequency increases; for other modes, the attenuation may reach a minimum as the frequency exceeds the cutoff frequency by a certain amount.

Electromagnetic waves can propagate through hollow' metal pipes of an arbitrary cross section. Without electromagnetic theory it would not be possible to explain the properties of hollow waveguides. We will see that single-conductor waveguides cannot support TEM waves. We will examine in detail the fields, the current and charge distributions, and the propagation characteristics of rectangular waveguides. Both TM and TE modes will be discussed. An analysis of the properties of circular waveguides requires a familiarity with Bessel functions as a consequence of manipulating Maxwell's equations in cylindrical coordinates. Circular waveguides will not be studied in this book. In many applications wave propagation in a rectangular waveguide in the dominant (\(\mathrm{TE}_{10}\)) mode is desirable because the electric field in the guide is polarized in a fixed direction.

Electromagnetic waves can also be guided by an open dieiectric-slab waveguide. The fields are essentially confined within the dielectric region and decay rapidly away from the slab surface in the transverse plane. For this reason, the waves supported by a dielectric-slab waveguide are called surface waves. Both TM and TE modes are possible. We will examine the field characteristics and cutoff frequencies of those surface waves.

At microwave frequencies, ordinary lumped-parameter elements (such as inductances and capacitances) connected by wires are no longer practical as resonant circuits because the dimensions of the elements would have to be extremely small, because the resistance of the wire circuits becomes very high as a result of the skin effect, and because of radiation. All of these difficulties are alleviated if a hollow conducting box is used as a resonant device. Because the box is enclosed by conducting walls, electromagnetic fields are confined inside the box and no radiation can occur. Moreover, since the box walls provide large areas for current flow, losses are extremely small. Consequently, an enclosed conducting box can be a resonator of a very high \(Q\). Such a box, which is essentially a segment of a waveguide with closed end faces, is called a cavity resonator. We will discuss the different mode patterns of the fields inside rectangular cavity resonators.

\section*{10-2 GENERAL WAVE behavicrs along. UNIFORM GUIDING STRUCTURES}

In this section we examine some gencral characteristics for waves propagating along straight guiding structures with a uniform cross section. We will assume that the waves propagate in the \(+z\) direction with a propagation constant \(\gamma=\alpha+j \beta\) that
firection enuation for TM : a comncy. For or other he cutoff urbitrary , explain veguides rent and a reguides. of circuuence of veguides a rectanaric field :ve: e. rapudy ives supand TE :quencies
ih as inresonant ty small, the skin a hollow nducting an occur. extremely
y high \(Q\).
\(\therefore\) faces, is the fields
ng along that the \(-j \beta\) that
is yet to be determined. For harmonic time dependence with an angular frequency \(\omega\), the dependence on \(z\) ahd \(t\) for all field components can be described by the exponential factor
\[
\begin{equation*}
e^{-\gamma z} e^{j \omega t}=e^{(j \omega t-\gamma z)}=e^{-\alpha z} e^{j(\omega t-\beta z)} . \tag{10-1a}
\end{equation*}
\]

As an example, for a cosine reference we may write the instantaneous expression for the \(\mathbf{E}\) field as.
\[
\begin{equation*}
\mathbf{E}(x, y, z ; t)=\mathscr{R}_{\epsilon}\left[\mathbf{E}^{0}(x, y) e^{\left(j \omega t-y_{z}\right)}\right], \tag{10-1b}
\end{equation*}
\]
where \(\mathrm{E}^{0}(x, y)\) is a two-dimensional vector phasor that depends only on the crosssectional coordinates. The instantaneous expression for the \(\mathbf{H}\) field can be written in a similar way. Hence in using a phasor representation in equations relating field quantities, we may replace partial derivatives with respect to \(t\) and \(z\) simply by products with \((j \omega)\) and (\(-\gamma\)) respectively; the common factor \(e^{(j \omega t-i z)}\) can be dropped.

We consider a stra.ght waveguide in the form of a dielectric-filled metal tube having an arbitrary cross section and lying along the \(z\) axis, as shown in Fig. 10-1. According to Eqs. (7-86) and (7-87), the electric and magnetic field intensities in the charge-free dieletric region inside satisify the following homogeneous vector Helmholta's equations:
\[
\begin{equation*}
\nabla^{2} \mathrm{E}+k^{2} \mathrm{E}=0 \tag{10-2a}
\end{equation*}
\]
and
\[
\begin{equation*}
\nabla^{2} \mathbf{H}+k^{2} \mathbf{H}=0, \tag{10-2b}
\end{equation*}
\]
where E and H are three-dimensional vector phasors; and \(k\) is the wavenumber
\[
\begin{equation*}
k=\omega \sqrt{\mu \epsilon} . \tag{10-3}
\end{equation*}
\]

The three-dimensional Laplacian operator \(\nabla^{2}\) may be broken into two parts: \(\nabla_{u_{1} u_{2}}^{2}\) for the cross-sectional coordinates and \(\nabla_{=}^{2}\) for the longitudinal coordinate. For waveguides with a rectangular cross section, we use Cartesian coordinates:
\[
\begin{align*}
\nabla^{2} \mathrm{E} & =\left(\nabla_{x y}^{2}+\nabla_{z}^{2}\right) \mathrm{E}=\left(\nabla_{x y}^{2}+\frac{\partial^{2}}{\partial z^{2}}\right) \mathrm{E} \\
& =\nabla_{x y}^{2} \mathrm{E}+\gamma^{2} \mathrm{E} . \tag{10-4}
\end{align*}
\]

Combination of Eqs. (\(1(1-2 \mathrm{a}\)) and (\(10-4\)) gives
\[
\begin{equation*}
\nabla_{x y}^{2} \mathbf{E}+\left(\gamma^{2}+k^{2}\right) \mathbf{E}=0 . \tag{10-5}
\end{equation*}
\]

Fig. 10-1 A uniform waveguide with an arbitrary cross section.

Similarly, from Eq. (10-2b) we have
\[
\begin{equation*}
\nabla_{x y}^{2} \mathrm{H}+\left(\gamma^{2}+k^{2}\right) \mathbf{H}=0 . \tag{10-6}
\end{equation*}
\]

We note that each of Eqs. (\(10-5\)) and (10-6) is really three second-order partial differential equations, one for each component of \(\mathbf{E}\) and H . The exact solution of these component equations depends on the cross-sectional geometry and the boundary conditions that a particular field component must satisfy at conductor-dielectric interfaces. We note further that by writing \(\nabla_{r \phi}^{2}\) for the transversal operator \(\nabla_{x y}^{2}\), Eqs. (10-5) and (10-6) become the governing equations for waveguides with a circular cross section.

Of course, the various components of \(\mathbf{E}\) and \(\mathbf{H}\) are not all independent, and it is not necessary to solve all six second-order partial differential equations for the six components of E and H . Let us examine the interrelationships among the six components in Cartesian coordinates by expanding the two source-free curl equations. Eqs. (7-85a) and (7-85b):
\[
\begin{align*}
& \frac{\text { From } \nabla \times \mathrm{E}=-j \omega \mu \mathrm{H}:}{\frac{\partial E_{z}^{0}}{\partial y}+\gamma E_{y}^{0}=-j \omega \mu H_{x}^{0}} \\
& -\gamma E_{x}^{0}-\frac{\partial E_{z}^{0}}{\partial x}=-j \omega \mu H_{s}^{0} \tag{10-7a}\\
& \frac{\partial E_{x}^{0}}{\partial x}-\frac{\partial E_{x}^{0}}{\partial y}=-j \omega \mu H_{z}^{0}
\end{align*}
\]
\[
\begin{array}{ll}
\frac{\text { From } \nabla \times H=j \omega \epsilon \mathrm{E}:}{} \\
\frac{\partial H_{z}^{0}}{\hat{c} y}+\gamma H_{y}^{0}=j \omega \epsilon E_{x}^{0} & (10-8 \mathrm{a}) \\
-\gamma H_{x}^{0}-\frac{\partial H_{z}^{0}}{\partial x}=j \omega \epsilon E_{y}^{0} & (10-8 \mathrm{~b}) \\
\frac{\partial H_{y}^{0}}{\partial x}-\frac{\partial H_{x}^{0}}{\hat{c} y}=j \omega \epsilon E_{z}^{0} & (10-8 \mathrm{c})
\end{array}
\]

Note that partial derivatives with respect to \(z\) have been replaced by multiplications by (\(-\eta\)). All the component field quantities in the equations above are phasors that depend only on \(x\) and \(y\), the common \(e^{-i z}\) factor for \(z\)-dependence having been omitted. By manipulating these equations, we can express the transverse field components \(H_{x}^{0}, H_{y}^{0}, E_{x}^{0}\), and \(E_{y}^{0}\) in terms of the two longitudinal components \(E_{z}^{0}\) and \(H_{3}^{0}\). For instance. Eqs. (\(10-7 \mathrm{a}\)) and (\(10-8 \mathrm{~b}\)) can be combined to eliminate \(E_{y}^{0}\) and obtain \(H_{x}^{0}\) in terms of \(E_{z}^{0}\) and \(H_{z}^{0}\). We have
\[
\begin{align*}
& H_{x}^{0}=-\frac{1}{h^{2}}\left(\gamma \frac{\partial H_{z}^{0}}{\partial x}-j \omega \epsilon \frac{\partial E_{z}^{0}}{\partial y}\right) \tag{10-9}\\
& H_{y}^{0}=-\frac{1}{h^{2}}\left(\gamma \frac{\partial I_{z}^{0}}{\partial y}+j \omega \epsilon \frac{\partial E_{z}^{0}}{\partial x}\right) \tag{10-10}\\
& E_{x}^{0}=-\frac{1}{h^{2}}\left(\gamma \frac{\partial E_{z}^{0}}{\partial x}+j \omega \mu \frac{\hat{c} H_{z}^{0}}{\partial y}\right) \tag{10-11}\\
& E_{y}^{0}=-\frac{1}{h^{2}}\left(\gamma \frac{\hat{c} E_{z}^{0}}{\partial y}-j \omega \mu \frac{\partial H_{z}^{0}}{\partial x}\right), \tag{10-12}
\end{align*}
\]

\section*{10-2.1 Transverse Electromagnetic Waves}
Since \(E_{2}=0\) and \(H_{=}=0\) for TEM waves within a guide, we see that Eqs. (\(10-9\)) through (\(10-12\)) constitute a set of trivial solutions (all field components vanish) unless the denominator \(h^{2}\) also equals zero. In other words, TEM waves exist only when
\[
\begin{gather*}
\gamma_{\text {TEM }}^{2}+k^{2}=0 \tag{10-1+}\\
\gamma_{\text {TEM }}=j k=j \omega \sqrt{\mu \epsilon}, \tag{10-15}
\end{gather*}
\]
or
which is exactly the same expression for the propagation constant of a uniform plane wave in an unbounded inedium characterized by constitutive parameters \(\epsilon\) and \(\mu\). We recall that Eq. \((10-15)\) also holds for a TEM wave on a lossless transmission line. It follows that the velocity of propagation (phase velocity) for TEM waves is
We can obtain the ratio between \(E_{x}^{0}\) and \(H_{y}^{0}\) from Eqs. (10-7b) and (10-8a) by setting \(E_{z}\) and \(H_{z}\) to zero. This ratio is called the wave impedance. We have
\[
\begin{equation*}
Z_{\mathrm{TEM}}=\frac{\mathrm{E}_{x}^{0}}{\mathrm{H}_{y}^{0}}=\frac{j \omega \mu}{\gamma_{\mathrm{TEM}}}=\frac{\gamma_{\mathrm{TEM}}}{j \mu \epsilon}, \tag{10-17}
\end{equation*}
\]
which becomes, in view of Eq. (10-15),
\[
\begin{equation*}
\left.Z_{\mathrm{TEM}}=\sqrt{\frac{\mu}{\epsilon}}=\eta \quad \text { (}\right) \tag{10-18}
\end{equation*}
\]

We note that \(Z_{\text {TEM }}\) is the same as the intrinsic impedance of the dielectric medium, as given in Eq. (8-25). Equations (10-16) and (\(10-18\)) assert that the phase velocity. and the wave impedance for TEM waves are independent of the frequency of the waves.

Letting \(E_{:}^{0}=0\) in Eq. \((10-7 \mathrm{a})\) and \(H_{z}^{0}=0\) in Eq. \((10-8 \mathrm{~b})\); we obtain
\[
\begin{equation*}
\frac{E_{y}^{0}}{H_{x}^{0}}=-Z_{\text {TEM }}=-\sqrt{\frac{\mu}{\epsilon}} . \tag{10-19}
\end{equation*}
\]

Equations (10-17) and (10-19) can be combined to obtain the following formula for a TEM wave propagating in the \(+z\) direction:
\[
\begin{equation*}
\mathrm{H}=\frac{1}{Z_{\text {TEM }}} \mathbf{a}_{=} \times \mathrm{E} \quad(\mathrm{~A} / \mathrm{m}), \tag{10-20}
\end{equation*}
\]
which, again, reminds us of a similar relation for a uniform plane wave in an unbounded medium - see Eq. (8-24).

Single-conductor waveguides cannot support TEM waves. In Section 6-2 we pointed out that magnetic flux lines always close upon themselves. Hence, if a TEM wave were to exist in a waveguide, the field lines of B and H would form closed loops in a transverse plane. However, the generalized Ampère's circuital law, Eq. (7-38b), requires that the line integral of the magnetic field (the magnetomotive force) around any closed loop in a transverse plane must equal the sum of the longitudinal conduction and displacement currents through the loop. Without an inner conductor, there is no longitudinal conduction current inside the waveguide. By definition, a TEM wave does not have an \(E_{z}\) component; consequently, there is no longitudinal displacement current. The total absence of a longitudinal current inside a waveguide leads to the conclusion that there can be no closed loops of magnetic field lines in any transverse plane. Therefore, we conclude that TEM waves cannot exist in a single-conductor hollow (or dielectric-filled) waveguide of any shape. On the other hand, assuming perfect conductors, a coaxial transmission line having an inner conductor can support TEM waves; so can a two-conductor stripline and a two-wire transmission line. When the conductors have losses, waves along transmission lines are strictly no longer TEM, as noted in Section' 2.

\section*{10-2.2 Transverse Magnetic Waves}

Transverse magnetic (TM) waves do not have a component of the magnetic field in the direction of propagation, \(H_{z}=0\). The behavior of TM waves can be analyzed by solving Eq. (10-5) for E. subject to the boundary conditions of the guide and using

Eqs. (10-9) through (10-12) to determine the other components. Writing Eq. (10-5) for \(E_{i}\), we have
or
\[
\begin{equation*}
\nabla_{x y}^{2} E_{z}^{0}+\left(\gamma^{2}+k_{0}^{2}\right) E_{z}^{0}=0 \tag{10-21}
\end{equation*}
\]
\[
\begin{equation*}
\nabla_{x y}^{2} E_{z}^{0}+h^{2} E_{\underline{2}}^{0}=0 \tag{10-22}
\end{equation*}
\]

Equation (\(10-22\)) is a second-order partial differential equation, which can be solved for \(E_{z}^{0}\). In thitsection we wish only to discuss the general properties of the various wave types. The actual solution of Eq. (10-22) will wait until subsequent sections when we examine patticular waveguides.

For TM waves, we set \(H_{z}=0\) in Eqs. (10-9) through (10-12) to obtain
\[
\begin{align*}
& H_{x}^{0}=\frac{j \omega \epsilon}{h^{2}} \frac{\dot{\partial} E_{z}^{0}}{\partial \dot{y}} \tag{10-23a}\\
& H_{y}^{0}=-\frac{j \omega \epsilon}{h^{2}} \frac{\partial E_{z}^{0}}{\partial x} \tag{10-23b}\\
& E_{x}^{0}=-\frac{\gamma}{h^{2}} \frac{\partial E_{z}^{0}}{\partial x} \tag{10-23c}\\
& E_{y}^{0}=-\frac{\gamma}{h^{2}} \frac{\partial E_{z}^{0}}{\partial y} . \tag{10-23~d}
\end{align*}
\]

It is convenient to combin.e Eqs. (\(10-23 \mathrm{c}\)) and (\(10-23 \mathrm{~d}\)) and write
\[
\begin{equation*}
\left(\mathbf{E}_{x y}^{0}\right)_{T M}=\mathbf{a}_{x} E_{x}^{0}+\mathbf{a}_{y} E_{y}^{0}=-\frac{\gamma}{h^{2}} \nabla_{x y} E_{z}^{0} \quad(\mathrm{~V} / \mathrm{m}), \tag{10-24}
\end{equation*}
\]
where
\[
\begin{equation*}
\nabla_{x y} E_{z}^{0}=\left(\mathbf{a}_{x} \frac{\hat{\partial}}{\hat{\partial} x}+\mathbf{a}_{y} \frac{\hat{\partial}}{\partial y}\right) E_{z}^{0} \tag{10-25}
\end{equation*}
\]
denotes the gradient of \(l_{z}^{\circ}\) in the transverse plane. Equation (10-24) is a concise formula for finding \(E_{x}^{0}\) and \(E_{y}^{0}\) from \(E_{z}^{0}\).

The transverse components of magnetic field intensity, \(H_{x}\) and \(H_{y}\), can be determined simply from \(E_{x}\) ard \(E_{y}\) on the introduction of the wave impedance for the TM mode. We have, from Eqs. (10-23),
\[
\begin{equation*}
\therefore_{\mathrm{rM}}=\frac{E_{x}^{0}}{H_{j}^{0}}=-\frac{E_{Y}^{0}}{H_{x}^{0}}=\frac{\gamma}{j \omega \epsilon} \quad(\Omega) . \tag{10-26}
\end{equation*}
\]
field in zed by © using
field intensities holds for TM waves:
\[
\begin{equation*}
\mathrm{H}=\frac{1}{Z_{\mathrm{TM}}}\left(\mathrm{a}_{:} \times \mathrm{E}\right) \quad(\mathrm{A} / \mathrm{m}) \tag{10-27}
\end{equation*}
\]

Equation (\(10-27\)) is seen to be of the same form as Eq. \((10-20)\) for TEM waves.
When we undertake to solve the two-dimensional homogeneous Helmholtz equation, Eq. (10-22); subject to the boundary conditions of a given waveguide, we will discover that solutions are possible only for discrete values of \(h\). There may be an infinity of these discrete valucs, but solutions are not possible for all values of \(h\). The values of \(h\) for which a solution of Eq. (10-22) exists are called the charracteristic values or eigencalues of the boundary-value problem. Each of the eigenvalues determines the characteristic properties of a particular TM mode of the given waveguide.

In the following sections we will also discover that the eigenvalues of the various waveguide problems are real numbers. From Eq. (10-13) we have
\[
\begin{align*}
y & =\sqrt{h^{2}-h^{2}} \\
& =\sqrt{h^{2}-\omega^{2}} \mu \epsilon \tag{10-28}
\end{align*}
\]

Two distinct ranges of the values for the propagation constant are noted, the dividing point being \(\gamma=0\), where
\[
\begin{equation*}
\omega_{c}^{2} \mu \epsilon=h^{2} \tag{10-29}
\end{equation*}
\]
or
\[
\begin{equation*}
f_{\mathrm{c}}=\frac{h}{2 \pi \sqrt{\mu \epsilon}} \quad(\mathrm{~Hz}) \tag{10-30}
\end{equation*}
\]

The frequency, \(f_{c}\), at which \(\gamma=0\) is called a cutoff frequency. The value of \(f_{c}\) for a particular mode in a waveguide depends on the eigencalue of this mode. Using Eq. (\(10-30\)), we can write Eq. \((10-28)\) as
\[
\begin{equation*}
\gamma=h \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}} \tag{10-31}
\end{equation*}
\]

The two distinct ranges of \(\gamma\) can be defined in terms of the ratio \(\left(f / f_{c}\right)^{2}\) as compared to unity.
a) \(\left(\frac{f}{f_{c}}\right)^{2}>1\), or \(f>f_{c}\). In this range, \(\omega^{2} \mu \varepsilon>h^{2}\) and \(y\) is imaginary. We have. from Eq. (10-28),
\[
\begin{equation*}
\gamma=j \beta=j k \sqrt{1-\left(\frac{h}{k}\right)^{2}}=j k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} . \tag{10-32}
\end{equation*}
\]

It is a propagating mode with a phase constant \(\beta\) :
\[
\begin{equation*}
\beta=k \sqrt{\mathrm{t}}-\left(\frac{f_{\mathrm{c}}}{\mathrm{f}}\right)^{2} \quad(\mathrm{rad} / \mathrm{m}) \tag{10-33}
\end{equation*}
\]

The corresponding wavelength in the guide is
and impedance of propagating TM modes in a waveguide is purely resistive and is always less than the intrinsic impedance of the dielectric medium. The variation of \(Z_{\mathrm{TM}}\) versus \(f f_{c}\) for \(f>f_{c}\) is sketched in Fig. 10-2.

Fig. 10-2 Normalized wave impedances for propagating TM and TE waves.
b) \(\left(\frac{f}{f_{c}}\right)^{2}<1\), or \(f<f_{c}\). When the operating frequency is lower than the cutoff frequency, \(\gamma\) is real and Eq. (10-31) can be written as
\[
\begin{equation*}
\gamma=\alpha=h \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}, \quad f<f_{c}, \tag{10-39}
\end{equation*}
\]
which is, in fact, an attenuation constant. Since all field components contain the propagation factor \(e^{-\gamma z}=e^{-\alpha z}\), the wave diminishes rapidly with \(z\) and is said to be evanescent. Therefore a waveguide exhibits the property of a high-pass filter. For a given mode, only waves with a frequency higher than the cutoff frequency of the mode can propagate in the guide.

Substitution of Eq. (10-39) in Eq. \((10-26)\) gives the wave impedance of TM modes for \(f<f_{c}\) :
\[
\begin{equation*}
Z_{\mathrm{TM}}=-j \frac{h}{\omega \epsilon} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}, \quad f<f_{c} \tag{10-40}
\end{equation*}
\]

Thus, the wave impedance of evanescent TM modes at frequencies below cutoff is purely reactive, indicating that there is no power llow associated with evanescent waves.

\section*{10-2.3 Transverse Electric Waves}

Transverse electric (TE) waves do not have a component of the electric field in the direction of propagation, \(E_{z}=0\). The behavior of \(T E\) waves can be analyzed by first solving Eq. (10-6) for \(H_{2}\) :
\[
\begin{equation*}
\nabla_{x y}^{2} H_{z}+h^{2} H_{z}=0 \tag{10-41}
\end{equation*}
\]

Proper boundary conditions at the guide walls must be satisfied. The transverse field components can then be found by substituting \(H_{z}\) into the reduced Eqs. (10-9) through (10-12) with \(E_{z}\) set to zero. We have
\[
\begin{align*}
H_{x}^{0} & =-\frac{\gamma}{h^{2}} \frac{\partial H_{z}^{0}}{\partial x} \tag{10-42a}\\
H_{y}^{0} & =-\frac{\gamma}{h^{2}} \frac{\partial H_{z}^{0}}{\partial y} \tag{10-42b}\\
E_{x}^{0} & =-\frac{j \omega \mu}{h^{2}} \frac{\partial H_{z}^{0}}{\partial y} \tag{10-42c}\\
E_{y}^{0} & =\frac{j \omega \mu}{h^{2}} \frac{c}{c} \frac{H_{z}^{0}}{\partial x} . \tag{10-42~d}
\end{align*}
\]

Combining Eqs. (10-42a) and (10-42b); we obtain
\[
\begin{equation*}
\left(\mathbf{H}_{x y}^{0}\right)_{\mathrm{TE}}=\mathbf{a}_{x} H_{x}^{0}+\mathbf{a}_{y} H_{y}^{0}=-\frac{\gamma}{h^{2}} \nabla_{x y} H_{z}^{0} \quad(\mathrm{~A} / \mathrm{m}) . \tag{10-43}
\end{equation*}
\]

We note that Eq. (10-43) is entirely similar to Eq. (10-24) for TM modes.
The transverse components of electric field intensity, \(E_{x}^{0}\) and \(E_{y}^{0}\), are related to those of magnetic field intensity through the wave impedance. We have, from Eqs. (10-42a, b, c, and d),
\[
\begin{equation*}
Z_{\mathrm{TE}}=\frac{E_{x}^{0}}{H_{y}^{0}}=-\frac{E_{y}^{0}}{H_{x}^{0}}=\frac{j \omega \mu}{\gamma} \quad(\Omega) . \tag{10-44}
\end{equation*}
\]

Note that \(Z_{\text {TE }}\) in Eq. (10-44) is quite different from \(Z_{\text {TM }}\) in Eq. (10-26) because ; for TE waves. unlike \(\gamma_{\text {rem }}\), is not equal to \(j 11 \sqrt{\mu \epsilon}\). Equations (\(10-42 \mathrm{c}\)), (\(10-42 \mathrm{~d}\)). and (10 44) ean now be combined to give the following vector formula:
\[
\begin{equation*}
E=-Z_{T E}\left(a_{0} \times \mathrm{H}\right) \quad(\mathrm{V} / \mathrm{m}) \tag{10-45}
\end{equation*}
\]

Inasmuch as we have not changed the relation between \(\gamma\) and \(h\), Eqs. (10-28) through (\(10-31\)) pertaining to TM waves also apply to TE waves. There are also two distinct ranges of \(\gamma\), depending on whether the operating frequency is higher or lower than the cutof frequency, \(f_{c}\), given in Eq. (10-30).
a) \(\left(\frac{f}{f_{c}}\right)^{2}>1\), or \(f>f_{c}\). In this range \(y\) is imaginary, and we have a propagating mode. The expression for \(\gamma\) is the same as that given in Eq. (10-32):
\[
\begin{equation*}
\gamma=j \beta=j k \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} . \tag{10-46}
\end{equation*}
\]

Consequently, the formulas for \(\beta, \lambda_{g}, u_{\rho}\), and \(u_{g}\) in Eqs. (10-33), (10-34), (10-36), and (10-37), respectively, also hold for TE waves. Using Eq. (10-46) in Eq. (10-44), we obtain
\[
\begin{equation*}
Z_{\mathrm{TE}}=\frac{\eta}{\sqrt{1-\left(f_{c}(f)^{2}\right.}} \quad(\Omega) \tag{10-47}
\end{equation*}
\]
which is obviously diferen from the expression for \(Z_{\mathrm{Tm}}\) in \(\mathrm{Eq} .(10-38\)). Eypation (10-47) indicates thal the ware impredane of propatyating TEE modes in a wareguide
 medium. The variation of \(Z_{\text {TE }}\) versus \(f / f_{c}\) for \(f>f_{c}\) is also sketched in Fig. 10-2.

\section*{454}
b) \(\left(\frac{f}{f_{c}}\right)^{2}<1\), or \(f<f_{c}\). In this case, \(y\) is real and we have an evanescent or nonpropagating mode
\[
\begin{equation*}
\gamma=\alpha=h \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}, \quad f<f_{c} . \tag{10-48}
\end{equation*}
\]

Substitution of Eq. (10-48) in Eq. (10-47) gives the wave impedance of TE modes for \(f<f_{c}\).
\[
\begin{equation*}
Z_{\mathrm{TE}}=j \frac{\omega \mu}{h \sqrt{1-\left(f / f_{c}\right)^{2}}}, \quad f<f_{c}, \tag{10-49}
\end{equation*}
\]
which is purely reactive, indicating again that there is no power flow for evanescent waves at \(f<f_{c}\).

Example 10-1 (a) Determine the wave impedance and guide wavelength at a frequency equal to twice the cutoff frequency in a waveguide for TEM, TM, and TE modes. (b) Repeat part (a) for a frequency equal to one-half of the cutoff frequency.

\section*{Solurion}
a) At \(f=2 f_{c}\). which is above the cutoff frequency, we have propagating modes. The appropriate formulas are listed in Table 10-1.
\[
\begin{aligned}
& \text { At } f=2 f_{c},\left(f_{c} / f\right)^{2}=\frac{1}{4}, \sqrt{1-\left(f_{c} / f\right)^{2}}=\sqrt{3} / 2=0.866 . \text { Thus, } \\
& \qquad \begin{array}{rlrl}
& i_{\mathrm{TEM}} & =\eta & \\
Z_{\mathrm{TM}} & =0.866 \eta<\eta & i_{\mathrm{TM}}=1.155 \lambda>\lambda \\
Z_{\mathrm{TE}} & =1.155 \eta>\eta & \lambda_{\mathrm{TE}} & =1.155 \lambda>\lambda .
\end{array}
\end{aligned}
\]

Table 10-1 Wave Impedances and Guide Wavelengths for \(f>f_{c}\)
\begin{tabular}{|c|c|c|}
\hline Mode & Wave Impedance, \(\%\) & (inide Wavelength, \(\lambda_{\prime \prime}\) \\
\hline TEM & \(\eta=\sqrt{\frac{\mu}{\epsilon}}\) & \(\lambda=\frac{1}{f \sqrt{\mu \epsilon}}\) \\
TM & \(\eta \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}\) & \(\frac{\lambda}{\sqrt{1-\left(f_{c} / f\right)^{2}}}\) \\
TE & \(\frac{\eta}{\sqrt{1-\left(f_{c} / f\right)^{2}}}\) & \(\frac{\lambda}{\sqrt{1-\left(f_{c} / f\right)^{2}}}\) \\
\hline
\end{tabular}

Fig. 10-3 An \(\omega\) - \(\beta\) diagram for waveguide.
b) At \(f=f_{c} / 2<f_{c}\), the waveguide modes are evanescent and guide wavelength has no significance. We now have
\[
\begin{aligned}
Z_{\mathrm{TE} 4} & =\eta \\
Z_{\mathrm{TM}} & =-j \frac{h}{\omega \epsilon} \sqrt{1-\left(\frac{f}{f_{c}}\right)^{2}}=-j 0.276 h_{/} f_{c} \epsilon \\
Z_{\mathrm{TE}} & =j \frac{\omega \mu}{h \sqrt{1-\left(f / f_{c}\right)^{2}}}=j 3.63 \int_{c} \mu / h
\end{aligned}
\]

We note thä̈t \(\ddot{Z}_{\text {TEM }}\) does not change with frequency because TEM waves do not exhibit a cutoff property. Both \(Z_{\mathrm{TM}}\) and \(Z_{\mathrm{TE}}\) become imaginary for evanescent modes at \(f<f_{c}\); their values depend on the eigenvalue \(h\), which is a characteristic of the particular TM or TE mode.

For propagating modes, \(\gamma=j \beta\) and the variation of \(\beta\) versus frequency determines the characteristics of a wave along a guide. It is therefore useful to plot and examine an \(\omega\) - \(\beta\) diagram.' Figure \(10-3\) is such a diagram in which the dashed line through the origin represents the \(\omega-\beta\) relationship for TEM mode. The constant slope of this straight line is \(\omega / \beta=u=1 / \sqrt{\mu \epsilon}\), which is the same as the velocity of light in an unbounded dielectric medium with constitutive parameters \(\mu\) and \(\epsilon\).

The solid curve above the dashed line depicts a typical \(\omega-\beta\) relation for either a TM or a Tr: propagaling mode, given by lic. (10 -33). We can write
\[
\begin{equation*}
\dot{\omega}=\frac{\beta u}{\sqrt{1-\left(f_{c} / f\right)^{2}}} \tag{10-50}
\end{equation*}
\]

The \(\omega\) - \(\beta\) curve intersects the \(\omega\)-axis \((\beta=0)\) at \(\omega=\omega_{c}\). The slope of the line joining the origin and any point, such as \(P\), on the curve is equal to the phase velocity, \(u_{p}\), for a particular mode having a cutoff frequency \(f_{c}\) and operating at a particular

\footnotetext{
\({ }^{\dagger}\) Also referred to as a Brillouin diayram.
}

\section*{456 WAVEGUIDES AND CAVITY RESONATORS / 10}

Fig. 10-4 Relation between attenuation constant and operating frequency for evanescent modes (Example 10-2).
frequency. The local slope of the \(\omega-\beta\) curve at \(P\) is the group velocity, \(u_{q}\). We note that, for propagating TM and TE waves in a waveguide, \(u_{p}>u\) and \(u_{g}<u\). In fact, Eqs. (10-36) and (\(10-37\)) show that
\[
\begin{equation*}
u_{z} u_{g}=u^{2} . \tag{10-51}
\end{equation*}
\]

As the operating frequency increases much above the cutoff frequency, both \(u_{p}\) and \(u_{g}\) approach \(u\) asymptotically. The exact value of \(\omega_{c}\) depends on the eigenvalue \(h\) in Eq. (\(10-30\)) - that is, on the particular TM or TE mode in a waveguide of a given cross section. Methods for determining \(h\) will be discussed when we examine different types of waveguides.

Example 10-2 Obtain a graph showing the relation between the attenuation constant \(\alpha\) and the operating frequency \(f\) for evanescent modes.

Solution: For evanescent TM or TE modes, \(f<f_{c}\) and Eq. (10-39) or (10-48) applies. We have
\[
\begin{equation*}
\left(\frac{f_{c}}{h} \alpha\right)^{2}+f^{2}=f_{c}^{2} \tag{10-52}
\end{equation*}
\]

Hence the graph of \(\left(f_{c} \alpha / h\right)\) plotted versus \(f\) is a circle centered at the origin and having a radius \(f_{c}\). This is shown in Fig. 10-4. The value of \(\alpha\) for any \(f<f_{c}\) can be found from this quarter of a circle.

\section*{10-3 PARALLEL-PLATE V/AVEGUIDE}

In Section 9-2 we discussed the characteristics of TEM waves propagating along a parallel-plate transmission line. It was then pointed out, and again emphasized in subsection 10-2.1, that the field behavior for TEM modes bears a very close resemblance to that for uniform plane waves in an unbounded dielectric medium. However, TEM modes are not the only type of waves that can propagate along
perfectly conducting parallel-plates separated by a dielectric. A parallel-plate waveguide can also support TM and TE waves. The characteristics of these waves are examined separately in following subsections.

\section*{10-3.1 TM Waves between Parallel Plates}

Consider the parallel-plate waveguide of two perfectly conducting plates separated by a dielectric medium with constitutive parameters \(\epsilon\) and \(\mu\), as shown in Fig. 10-5. The plates are assumed to be infinite in extent in the \(x\)-direction. This is tantamount to assuming that the fields do not vary in the \(x\)-direction and that edge effects are negligible. Let us suppose that TM waves \(\left(H_{z}=0\right)\) propagate in the \(+z\) direction. For harmonic time dependence, it is expedient to work with equations relating field quantities with the common factor \(e^{j(\omega t-\gamma z)}\) omitted. We write the phasor \(E_{z}(y, z)\) as \(E_{z}^{0}(y) e^{-y z}\). Equation (10-22) then becomes
\[
\begin{equation*}
\frac{d^{2} E_{z}^{0}(y)}{d y^{2}}+h^{2} E_{z}^{0}(y)=0 \tag{10-53}
\end{equation*}
\]

The solution of Eq. (10-53) must satisfy the boundary conditions
\[
E_{:}^{\prime}(y)=0 \quad \text { at } y=0 \quad \text { and } \quad y=b
\]

From Section 4-5 we corclude that \(E_{z}^{0}(y)\) must be of the following form \((h=n \pi ; b)\) :
\[
\begin{equation*}
E_{=}^{0}(y)=A_{n} \sin \left(\frac{n \pi y}{b}\right) \tag{10-54a}
\end{equation*}
\]
where the amplitude \(A_{n}\) depends on the strength of excitation of the particular TM wave. The only other nonzero field components are obtained from Eqs. (10-23a) and \((10-23 \mathrm{~d})\). Keeping in mind that \(\partial E_{z} / \partial x=0\) and omitting the \(e^{-\% z}\) factor, we have
\[
\begin{align*}
& H_{x}^{0}(y)=\frac{j \omega \epsilon}{h} A_{n} \cos \left(\frac{n \pi y}{b}\right) \tag{10-54b}\\
& I_{n}^{\prime \prime}(y)=-\frac{\gamma}{h} \cdot A_{n} \cos \binom{n \pi}{b} . \tag{10-54c}
\end{align*}
\]

-Fig. 10-5 An infinite parallel-plate waveguide.

The \(\gamma\) in Eq. \((10-54 \mathrm{c})\) is the propagation constant that can be determined from Eq. (10-28):
\[
\begin{equation*}
\gamma=\sqrt{\left(\frac{n \pi}{b}\right)^{2}-\omega^{2} \mu \epsilon} \tag{10-55}
\end{equation*}
\]

Cutoff frequency is the frequency that makes \(\gamma=0\). We have
\[
\begin{equation*}
f_{c}=\frac{n}{2 b \sqrt{\mu \epsilon}} \quad(\mathrm{~Hz}) \tag{10-56}
\end{equation*}
\]
which, of course, checks with Eq. (10-30). Waves with \(f>f_{c}\) propagate with a phase constant \(\beta\), given in Eq. (\(10-33\)); and waves with \(f \leq \int_{c}\) are evanescent.

Depending on the value of \(n\), there are different possible propagating TM modes (eigenmodes) corresponding to the different cigenvalues \(h\). Thus. there are the TM, \(\operatorname{mode}(n=1)\) with cutofl frequency \(\left(f_{c}\right)_{1}=1 / 2 b \sqrt{\mu \epsilon}\). the \(\mathrm{TM}_{2} \cdot \operatorname{mode}(n=2)\) with \(\left(f_{c}\right)_{2}=\) \(1 / b \sqrt{\mu \epsilon}\), and so on. Each mode has its own characteristic phase constant, guide wavelength, phase velocity, group velocity, and wave impedance; they can be determined from, respectively, Eqs. (\(10-33\)), (\(10-34\)). (\(10-36\)), (\(10-37\)), and (\(10-38\)). When \(n=0, E_{E}=0\), and only the transverse components \(H_{x}\) and \(E_{y}\) exist. Hence TM \({ }_{0}\) mode is the TEM mode, for which \(f_{c}=0\). The mode having the lowest cutoff frequency is called the dominant mode of the waveguide. For parallel-plate waveguides, the dominant mode is the TEM mode.

Example 10-3 (a) Write the instantaneous field expressions for \(\mathrm{TM}_{1}\) mode in a parallel-plate waveguide. (b) Sketch the electric and magnetic field lines in the \(y z\)-plane.

\section*{Solution}
a) The instantaneous field expressions for the \(\mathrm{TM}_{1}\) mode are obtained by multiplying the phasor expressions in Eqs. (10-54a), (10-54b), and (10-54c) with \(e^{j(\omega t-\beta z)}\) and taking the real part of the product. We have, for \(n=1\),
\[
\begin{align*}
& \dot{E}_{z}(y, z ; t)=A_{1} \sin \left(\frac{\pi y}{b}\right) \cos (\omega t-\beta z) \tag{10-57a}\\
& E_{y}(y, z ; t)=\frac{\beta b}{\pi} A_{1} \cos \left(\frac{\pi y}{b}\right) \sin (\omega t-\beta z) \tag{10-57b}\\
& H_{x}(y, z ; t)=-\frac{\omega \epsilon b}{\pi} A_{1} \cos \left(\frac{\pi y}{b}\right) \sin (\omega t-\beta z), \tag{10-57c}
\end{align*}
\]
where
\[
\begin{equation*}
\beta=\sqrt{\omega^{2} \mu \epsilon-\left(\frac{\pi}{b}\right)^{2}} . \tag{10-58}
\end{equation*}
\]
ha phasay
M modes the \(\mathrm{TM}_{1}\) ith \(\left(f_{c}\right)_{2}=\) ant, guide be deter38). en M. Jde :queñcy is the domi-
node in a : yz-plane.
by multi-\(-54 c\)) with
(10-57a)
(10-57b)
(! 7c)
(10-58)
b) In the \(y-z\) plane E has both a \(y\) and a \(z\) component, the equation of the electric field lines at a glven \(t\) can be found from the relation:
\[
\begin{equation*}
\frac{d y}{E_{y}}=\frac{d z}{E_{z}} \tag{10-59}
\end{equation*}
\]

For example, at \(t=0\), Eq. (10-59) can be written as
\[
\begin{equation*}
\frac{d y}{d z}=\frac{E_{y}(y, z ; 0)}{E_{z}(y, z ; 0)}=-\frac{\beta b}{\pi} \cot \left(\frac{\pi y}{b}\right) \tan \beta z, \tag{10-60}
\end{equation*}
\]
which gives the slope of the electric ficld lines. Equation \((10-60)\) can be integrated to give
\[
\begin{equation*}
\cos \beta z=\frac{\cos \left(\pi y_{0} / b\right)}{\cos (\pi y / b)}, \tag{10-61}
\end{equation*}
\]
which is the equation of the electric field line for a particular \(y_{0}\) at \(z=0\). Different values of \(y_{n}\) give dificerent loci. Several such electric field lines are drawn in Fig. 10-6. The field lines repeat themselves for every change of \(\beta=\) by \(2 \pi\) rad.

Since \(H\) has on:y an \(x\) component, the magnetic field lines are everywhere perpendicular to the \(y\)-z plane. For the \(\mathrm{TM}_{1}\) mode at \(t=0\), Eq. \((10-57 \mathrm{c})\) becomes
\[
\begin{equation*}
H_{x}(y ; z ; 0)=\frac{\omega \epsilon b}{\pi} A_{1} \cos \left(\frac{\pi y}{b}\right) \sin \beta z \tag{10-62}
\end{equation*}
\]

The density of \(H_{x}\) lines varies as \(\cos (\pi y / b)\) in the \(y\) direction and as \(\sin \beta=\) in the \(z\) direction. This is also sketched in Fig. 10-6. At the conducting plates \((y=0\) and \(y=b\), , there arc surface currents because of a discontinuity in the tangential magnetic field and surface charges because of the presence of a normal electric field. (Problem 10-s).

Fig. 10-6 Field lines tor \(\mathrm{TM}_{1}\) mode in parallel-plate waveguide.

Example 10-4 Show that the field solution of a propagating \(\mathrm{TM}_{1}\) wave in a parallelplate waveguide can be interpreted as the superposition of two plane waves bouncing back and forth obliquely between the two conducting plates.

Solution: This can be seen readily by writing the phasor expression of \(E_{:}^{0}(y)\) from Eq. (10-54a) for \(n=1\) and with the factor \(e^{-j \beta z}\) restored. We have
\[
\begin{align*}
E_{z}(y, z) & =A_{1} \sin \left(\frac{\pi y}{b}\right) e^{-j \beta z}=\frac{A_{1}}{2 j}\left(e^{j \pi y / b}-e^{-j \pi y / b}\right) e^{-j \beta z} \\
& =\frac{A_{1}}{2 j}\left[e^{-j(\beta z-\pi y / b)}-e^{-j(\beta z z \pi y / b)}\right] . \tag{10-63}
\end{align*}
\]

From Chapter 8 we recognize that the first term on the right side of Eq. (10-63) represents a plane wave propagating obliquely in the \(+z\) and \(-y\) directions with phase constants \(\beta\) and \(\pi / b\) respectively. Similarly, the second term represents, a plane wave propagating obliquely in the \(+z\) and \(+y\) directions with the same phase constants \(\beta\) and \(\pi / b\) as those of the first plane wave. Thus, a propagating \(\mathrm{TM}_{1}\) wave in a parallel-plate waveguide can be regarded as the superposition of two planc waves, as depicted in Fig. 10-7.

In Subsection 8-6.2 on reflection of a parallelly polarized plane wave incident obliquely at a conducting boundary plane, we obtained an expression for the longitudinal component of the total \(\mathbf{E}_{1}\) field that is the sum of the longitudinal components of the incident \(\mathrm{E}_{i}\) and the reflected \(\mathrm{E}_{r}\). To adapt the coordinate designations of Fig. 8-10 to those of Fig. 10-5, \(x\) and \(z\) must be changed to \(z\) and \(-y\) respectively. We rewrite \(E_{x}\) of Eq. (8--86a) as
\[
E_{z}(y, z)=E_{i 0} \cos \theta_{i}\left(e^{j \beta_{1} y \cos \theta_{i}}-e^{-j \beta_{1} y \cos \theta_{i}}\right) e^{-j \beta_{1} z \sin \theta_{i}}
\]

Comparing the exponents of the terms in this equation with those in Eq. (10-63), we obtain two equations:
\[
\begin{align*}
& \beta_{1} \sin \theta_{i}=\beta \tag{10-64a}\\
& \beta_{1} \cos \theta_{i}=\frac{\pi}{b} . \tag{10-64b}
\end{align*}
\]

Fig. 10-7 Propagating wave in parallel-plate waveguide as superposition of two plane waves.
saralletouncing se conwave in waves,

\section*{acir} he a comrations stively.
(The field amplitudes Involved in these equations are of no importance in the present consideration.) Solution of Eqs. \((10-64 \mathrm{ai})\) and (\(10-64 \mathrm{~b})\) gives
\[
\quad \beta=\sqrt{\beta_{1}^{2}-\left(\frac{\pi}{b}\right)^{2}}=\sqrt{\dot{\omega}^{2} \mu \epsilon-\left(\frac{\pi}{b}\right)^{2}}
\]
which is the same as Eq. (10-58), and
\[
\begin{equation*}
\cos \theta_{i}=\frac{\pi}{\beta_{1} b}=\frac{\lambda}{2 b}, \tag{10-65}
\end{equation*}
\]
where \(\lambda=2 \pi / \beta_{1}\) is the wavelength in the unbounded dielectric medium.
We obscrve that a solution of Eq. (10-65) for \(0_{i}\) exists only when \(\lambda / 2 b \leq 1\). At \(\lambda / 2 b=1\). or \(f=u / \lambda=1 / 2 h \sqrt{\mu \epsilon}\). which is the cutoff frequency in Eq. (10-56) for \(n=1, \cos \theta_{i}=1\), and \(\theta_{i}=0\). This corresponds to the case when the waves bounce back and forth in the \(y\) direction, normal to the parallel plates, and there is no propagation in the \(z \operatorname{direction}\left(\beta=\beta_{i} \sin \theta_{i}=0\right)\). Propagation of \(\mathrm{TM}_{1}\) mode is possible only when \(i<i_{c}=2 b\) or \(f>f_{c}\). Both \(\cos \theta_{i}\) and \(\sin \theta_{i} \operatorname{can}\) be expressed in terms of cutoff frequency \(f_{c}\). Ftom Eqs. \((10-65)\) and \((10-64 a)\) we have
and
\[
\begin{equation*}
\cos \theta_{i}=\frac{i}{i_{c}}=\frac{f_{c}}{f} \tag{10-66a}
\end{equation*}
\]
\[
\begin{equation*}
\sin \theta_{i}=\frac{\dot{i}}{i_{g}}=\frac{u}{u_{p}}=\sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} . \tag{10-66b}
\end{equation*}
\]

Equation (10-66b) is in agreement with Eqs. (10-34) and (10-36).

\section*{10-3.2 TE Waves between Parallei Plates}

For transverse electric waves, \(E_{z}=0\), we solve the following equation for \(H_{z}^{0}(y)\), which is a simplified version of Eq. (10-41) with no \(x\)-dependence.
\[
\begin{equation*}
\frac{d^{2} H_{z}^{0}(y)}{d y^{2}}+h^{2} H_{z}^{0}(y)=0 \tag{10-67}
\end{equation*}
\]

We note that \(H_{z}(y, z)=H_{:}^{2}(y) e^{-i z}\). The boundary conditions to be satisfied by \(H_{i}^{0}(y)\) are obtained from Eq. \(\left(1(1-42 c)\right.\). Since \(E_{x}\) must vanish at the surfaces of the conducting plates, we require
\[
\frac{d H^{\prime}(y)}{d y}=0 \quad \text { at } y=0 \quad \text { and } \quad y=b
\]

Thercfore the proper solution of E4. (10-67) is of the form
\[
\begin{equation*}
H_{=}^{\circ}(y)=B_{n} \cos \left(\frac{n \pi y}{b}\right) \tag{10-68a}
\end{equation*}
\]

\section*{462}
where the amplitude \(B_{n}\) depends on the strength of excitation of the particular TE wave. We obtain the only other nonzero field components from Eqs. (\(10-42 \mathrm{~b}\)) and (\(10-42 \mathrm{c}\)), keeping in mind that \(\partial H_{z} / \delta x=0\) :
\[
\begin{align*}
& H_{y}^{0}(y)=\frac{\gamma}{h} B_{n} \sin \left(\frac{n \pi y}{b}\right) \tag{10-68b}\\
& E_{x}^{0}(y)=\frac{j \omega \mu}{h} B_{n} \sin \left(\frac{n \pi y}{b}\right) . \tag{10-68c}
\end{align*}
\]

The propagation constant \(\gamma\) in Eq. \((10-68 \mathrm{~b})\) is the same as that for TM waves given in Eq. (\(10-55\)). Inasmuch as cutoff frequency is the frequency that makes \(\gamma=0\), the cutoff frequency for the \(T E_{n}\) mode in a parallet-plate waveguide is exactly the same as that for the \(T M_{n}\) mode given in Eq. (10-56). For \(n=0\), both \(H_{y}\) and \(E_{x}\) vanish; hence the \(\mathrm{TE}_{0}\) mode does not exist'in a parallel-plate waveguide.

Example 10-5 (a) Write the instantaneous field expressions for the \(\mathrm{TE}_{1}\) mode in a parallel-plate waveguide. (b) Sketch the electric and magnetic field lines in the \(y\)-: plane.

\section*{Solution}
a) The instantaneous field expressions for the \(\mathrm{TE}_{1}\) mode are obtained by taking the real part of the products of the phasor expressions in Eqs. (10-68a), (10-68b), and (\(10-68 \mathrm{c}\)) with \(e^{j(\omega t-\beta z)}\). We have, for \(n=1\),
\[
\begin{align*}
& H_{z}(y, z ; t)=B_{1} \cos \left(\frac{\pi y}{b}\right) \cos (\omega t-\beta z) \tag{10-69a}\\
& H_{y}(y, z ; t)=-\frac{\beta b}{\pi} B_{1} \sin \left(\frac{\pi y}{b}\right) \sin (\omega t-\beta z) \tag{10-69b}\\
& E_{x}(y, z: t)=-\frac{\omega \mu b}{\pi} B_{1} \sin \left(\frac{\pi y}{b}\right) \sin (\omega t-\beta z), \tag{10-69c}
\end{align*}
\]
where the phase constant \(\beta\) is given by Eq. (10-58), same as that for the \(\mathrm{TM}_{1}\) mode.
b) In the \(y-z\) plane E has only an \(x\) component. At \(t=0\), Eq. (\(10-69 \mathrm{c}\)) becomes
\[
\begin{equation*}
E_{x}(y . z ; 0)=\frac{\omega \mu b}{\pi} B_{1} \sin \left(\frac{\pi y}{b}\right) \sin \beta z . \tag{10-70}
\end{equation*}
\]
- Thus the density of \(E_{x}\) lines varies as \(\sin (\pi y / b)\) in the \(y\) direction and as \(\sin \beta z\) in the \(z\) direction; \(E_{x}\) lines are sketched as dots and crosses in Fig. 10-8.

The magnetic field has both a \(y\) and \(a=\) component. The equation of the magnetic field lines at \(t=0\) can be found from the following relation:
\[
\begin{equation*}
\frac{d y}{d z}=\frac{H_{y}(y, z: 0)}{H_{z}(y, z ; 0)}=\frac{\beta b}{\pi} \tan \left(\frac{\pi y}{b}\right) \tan \beta z . \tag{10-71}
\end{equation*}
\]

10-3.3

Fig. 10-8 Field lines for \(\mathrm{TE}_{1}\) mode in parallel-plate waveguide.
Upon integration, Eq. (10-71) gives
\[
\begin{equation*}
\cos \beta z=\frac{\sin \left(\pi \psi_{0} / b\right)}{\sin (\pi y / b)}, \tag{10-72}
\end{equation*}
\]
which is the equation of the magnetic field line for a particular \(y_{0}\) at \(z=0\). Several such lifes are drawn in Fig. 10-8 for different values of \(y_{0}\). The field lines repeat themselves for every change of \(\beta z\) by \(2 \pi\) rad.

\section*{10-3.3 Attenuation in Parallel-Flate}

\section*{Waveguides}

Attenuation in any waveguide (not just the parallel-plate waveguide) arises from two sources: lossy dielectric and imperfectly conducting walls. Losses modify the electric and maynetic fields within the guide, making exact solutions difficult to obtain. However, in practical wayeguides the losses are usually very small, and we will assume that the transverse field patterns of the propagating modes are not affected by them. A real part of the propagation constant now appears as the attenuation constant, which accounts for power losses. The attenuation constant consists of two parts:
\[
\begin{equation*}
\therefore \alpha=\alpha_{d}+\alpha_{c} \tag{10-73}
\end{equation*}
\]
where \(\alpha_{d}\) is the attenuatio 1 constant due to losses in the dielectric and \(x_{c}\) is that due to ohmic power loss in the imperfectly conducting walls.

We will now consider the amenmation constants for TEM, TM, and TE modes sepmaticly.

TEM Modes The attenuation constant for-TEM modes on a parallel-plate transmission line has been discu.sed in Subsection 9-3.3. From Eq. (9-72) and Table 9-1
we have approximately
\[
\begin{equation*}
\alpha_{d}=\frac{G}{2} R_{0}=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}}=\frac{\sigma}{2} \eta \quad(\mathrm{~Np} / \mathrm{m}) . \tag{10-73a}
\end{equation*}
\]
where \(\epsilon, \mu\), and. \(\sigma\) are, respectively, the permittivity, permeability, and conductivity of the dielectric medium. In Eq. (\(10-73 \mathrm{a}\)) \(\eta=\sqrt{\mu / \epsilon}\) is the intrinsic impedance of the dielectric if the dielectric is lossless. Also from Eq. (9-72) and Table 9-1 we have
\[
\begin{equation*}
\alpha_{c}=\frac{R}{2 R_{0}}=\frac{1}{b} \sqrt{\frac{\pi f}{\sigma_{c}}} \quad(\mathrm{~Np} / \mathrm{m}) \tag{10-73b}
\end{equation*}
\]
where \(\sigma_{\mathrm{c}}\) is the conductivity of the metal plates. We note that. for TEM modes. \(x_{d}\) is independent of frequency, and \(\alpha_{c}\) is proportional to \(\sqrt{f}\). We note further that \(\alpha_{d} \rightarrow 0\) as \(\sigma \rightarrow 0\) and that \(\alpha_{c} \rightarrow 0\) as \(\sigma_{c} \rightarrow \infty\), as expected.

TM Modes The attenuation constant due to losses in the dielectric at frequencies above \(f_{c}\) can be found from Eq. (10-55) by substituting \(\epsilon_{d}=\epsilon \pm(\sigma / j \omega)\) for \(\epsilon\). We have
\[
\begin{align*}
\gamma & =j\left[\omega^{2} \mu \epsilon\left(1-\frac{j \sigma}{\omega \epsilon \epsilon}\right)-\left(\frac{n \pi}{h}\right)^{2}\right]^{1 / 2} \\
& =j \sqrt{\omega^{2} \mu \epsilon-\left(\frac{n \pi}{b}\right)^{2}}\left\{1-j \omega \mu \sigma\left[\omega^{2} \mu \epsilon-\left(\frac{n \pi}{b}\right)^{2}\right]^{-1}\right\}^{1 / 2} \\
& \cong j \sqrt{\omega^{2} \mu \epsilon-\left(\frac{n \pi}{b}\right)^{2}}\left\{1-\frac{j \omega \mu \sigma}{2}\left[\omega^{2} \mu \epsilon-\left(\frac{n \pi}{b}\right)^{2}\right]^{-1}\right\} . \tag{10-74}
\end{align*}
\]

Only the first two terms in the binomial expansion for the second line in Eq. (10-74) are retained in the third line under the assumption that
\[
\omega \mu \sigma \ll \omega \omega^{2} \mu \epsilon-\left(\frac{n \pi}{b}\right)^{2} .
\]

From Eq. (10-56) we see that
\[
\frac{n \pi}{b}=2 \pi f_{c} \sqrt{\mu \bar{\mu}} .
\]

With this relation, Eq. (10-74) becomes
\[
\gamma=\alpha_{d}+j \beta=\frac{\sigma}{2} \sqrt{\frac{\mu}{\epsilon}} \frac{1}{\sqrt{1-\left(f_{c} / f\right)^{2}}}+j \omega \sqrt{\mu \epsilon} \sqrt{1-\left(f_{c} / f\right)^{2}},
\]
from which we obtain
\[
\begin{equation*}
\alpha_{t l}=\frac{\pi}{2 \sqrt{1}-\left(f_{c} / J\right)^{2}} \quad(\mathrm{~Np} / \mathrm{m}) \tag{10-75}
\end{equation*}
\]

\[
\begin{equation*}
\beta=\omega \sqrt{\mu \epsilon} \sqrt{1-\left(f_{c} / f\right)^{2}} \quad(\mathrm{rad} / \mathrm{m}) . \tag{10-76}
\end{equation*}
\]

Thus \(\alpha_{d}\) for TM modes decreases when frequency increases.
To find the atterfuation constant due to tosses in the imperfectly conducting plates, we use Eq. (9-70), which was derived from the law of conservation of energy. Thus,
\[
\begin{equation*}
\alpha_{c}=\frac{P_{L}(z)}{2 P(z)} \tag{10-77}
\end{equation*}
\]
where \(P(z)\) is the time-average power flowing through a cross section (say, of width \(w)\) of the waveguide, and \(P_{L}(z)\) is the time-average power lost in the two plates per unit length. For TM modes we use Eqs. (\(10-54 \mathrm{~b}\)) and (\(10-54 \mathrm{c}\)):
\[
\begin{align*}
P(z) & =w \int_{0}^{b}-\frac{1}{2}\left(E_{y}^{0}\right)\left(H_{x}^{0}\right)^{*} d y \\
& =\frac{w \omega \in \beta}{2}\left(\frac{b A_{n}}{n \pi}\right)^{2} \int_{0}^{b} \cos ^{2}\left(\frac{n \pi y}{b}\right) d y \\
& =w \omega \epsilon \beta b\left(\frac{b A A_{n}}{2 n \pi}\right)^{2} . \tag{10-78a}
\end{align*}
\]

The surface current densities on the upper and lower plates have the same magnitude. On the lower plate where \(y=0\), we have
\[
\left|J_{s=1}^{0}\right|=\left|H_{x}^{0}(y=0)\right|=\frac{\omega \in h A_{n}}{n \pi}
\]

The total power loss per unit length in two plates of width \(w\) is
\[
\begin{equation*}
P_{L}(z)=2 w\left(\frac{1}{2}\left|J_{s z}^{0}\right|^{2} R_{s}\right)=w\left(\frac{\omega \in b A_{n}}{n \pi}\right)^{2} R_{s} . \tag{10-78b}
\end{equation*}
\]

Substitution of Eqs. (\(10-78 \mathrm{Ba}\)) and (\(10-78 \mathrm{~b}\)) in Eq. (10-77) yields
\[
\begin{equation*}
\alpha_{c}=\frac{2 \omega \epsilon R_{s}}{\beta b}=\frac{2 R_{s}}{\eta b \sqrt{1-\left(f_{c} / f\right)^{2}}} \quad(\mathrm{~Np} / \mathrm{m}) \tag{10-79}
\end{equation*}
\]
where, from Eq. (9-26b),
\[
\begin{equation*}
R_{s}=\sqrt{\frac{\pi j \mu_{c}}{\sigma_{v}}} \quad(\Omega) \tag{10-80}
\end{equation*}
\]

The use of Eq. (10-80) in Eq. (10-79) gives the explicit dependence of \(\alpha_{c}\) on \(f\) for TM modes. . .
\[
\begin{equation*}
x_{c}=\frac{v}{\eta b} \sqrt{n \mu_{c} l_{c}} \frac{1}{\sigma_{c}} \frac{1}{\sqrt{\left(f_{c} / f\right)\left[1-\left(f_{c} / f\right)^{2}\right]}} \tag{10-81}
\end{equation*}
\]

A sketch of the normalized \(\alpha_{c}\) is shown in Eig. 10-9, which reveals the existence of a minimum.

we solve the following second-order partial diferential equation:
\[
\begin{equation*}
-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+h^{2}\right) E_{z}^{0}(x, y)=0 \tag{10-85}
\end{equation*}
\]

Here we use the method of separation of variables discussed in Section \(4-5\) by letting
\[
\begin{equation*}
E_{:}^{0}(x, z)=X(x) Y(y) \tag{10-86}
\end{equation*}
\]

Substituting Eq. (10-86) in Eq. (10-85) and dividing the resulting equation by \(X(x) Y(y)\), we have
\[
\begin{equation*}
-\frac{1}{X(x)} \frac{d^{2} X(x)}{d x^{2}}=\frac{1}{Y(y)} \frac{d^{2} Y(y)}{d y^{2}}+h^{2} . \tag{10-87}
\end{equation*}
\]

Now we argue that, since the left side of Eq. (10-87) is a function of \(x\) only and the right side is a function of \(y\) only, both sides must equal a constant in order for the equation to hold for all values of \(x\) and \(y\). Calling this constant \(k_{x}^{2}\), we obtain two separate ordinary differential cquations:
\[
\begin{align*}
& \frac{d^{2} X(x)}{d x^{2}}+k_{x}^{2} X(x)=0 \tag{10-88}\\
& \frac{d^{2} Y(y)}{d y^{2}}+k_{y}^{2} \dot{Y}(y)=0 \tag{10-89}
\end{align*}
\]
where
\[
\begin{equation*}
k_{y}^{2}=h^{2}-k_{x}^{2} . \tag{10-90}
\end{equation*}
\]

The possible solutions of Eqs. (10-88) and (10-89) are listed in Table 4-1, Section 4-5. The appropriate forms to be chosen must satisfy the following boundary conditions.
1. In the \(x\) direction:
2. In the \(y\) direction:
\[
\begin{align*}
& E_{\Xi}^{0}(0, y)=0 \tag{10-91a}\\
& E_{:}^{0}(a, y)=0 . \tag{10-91b}
\end{align*}
\]
\[
\begin{align*}
& E_{z}^{0}(x ; 0)=0 \tag{10-910}\\
& E_{z}^{0}(x, b)=0 . \tag{10-91d}
\end{align*}
\]

Obviously, then, we must choose:
\(X(x)\) in the form of \(\sin k_{x} x\),
\[
k_{x}=\frac{m \pi}{a}, \quad m=1,2,3, \ldots
\]
\(Y(y)\) in the form of \(\sin k_{y} y\),
\[
k_{y}=\frac{n \pi}{b} . \quad n=1,2,3, \ldots
\]

Fig. 10-9 Normalized attenuation constant due to finite conductivity of the plates in parallel-plate waveguide.

TE Modes In Subsection 10-3.2 we noted that the expression for the propagation constant for TE waves between parallel plates is the same as that for TM waves. It follows that the formula for \(\alpha_{d}\) in Eq. (10-75) holds for TE modes as well.

In order to determine the attenuation constant \(\alpha_{c}\) due to losses in the imperfectly conducting plates, we again apply Eq. (\(10-77\)). Of course, the field expressions in Eqs. (\(10-68 \mathrm{a}),(10-68 \mathrm{~b}\)), and (\(10-68 \mathrm{c}\)) for TE modes must now be used. We have
\[
\begin{align*}
P(z) & =w \int_{0}^{b} \frac{1}{2}\left(E_{x}^{\prime}\right)\left(H_{y}^{\prime \prime}\right)^{*} d y \\
& =\frac{w \omega \mu \beta}{2}\left(\frac{b B_{n}}{n \pi}\right)^{2} \int_{0}^{b} \sin ^{2}\left(\frac{n \pi y}{b}\right) d y \\
& =w \omega \mu \beta b\left(\frac{b B_{n}}{2 n \pi}\right)^{2} \tag{10-82a}
\end{align*}
\]
and
\[
\begin{align*}
P_{L}(z) & =2 w\left(\frac{1}{2}\left|J_{s}^{0}\right|^{2} R_{s}\right) \\
& =w\left|H_{z}^{0}(y=0)\right|^{2} R_{s}=w B^{2} R_{s} . \tag{10-82b}
\end{align*}
\]

Consequently,
\[
\begin{align*}
\alpha_{c} & =\frac{P_{t}(z)}{2 P(z)}=\frac{2 R_{s}}{\omega \mu \mu \beta b}\left(\frac{n \pi}{b}\right)^{2} \\
& =\frac{2 R_{s} f_{c}^{2}}{\eta b f^{2} \sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& =\frac{2}{\eta b} \sqrt{\frac{\pi \mu_{c} f_{c}}{\sigma_{c}}} \sqrt{\frac{\left(f_{c} / f\right)}{1-\left(f_{c} / f\right)^{2}}} . \tag{10-83}
\end{align*}
\]

A normalized \(\alpha_{c}\) curve based on Eq. (10-83) is also sketched in Fig. 10-9. Unlike \(\alpha_{c}\) for TM modes, \(\alpha_{c}\) for TE modes does not have a minimum but decreases monotonically as \(f\) increases.
and the proper solution for \(E_{2}^{0}(x, y)\) is
\[
\begin{equation*}
E_{2}^{0}(x, y)=E_{0} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \quad(\mathrm{V} / \mathrm{m}) \tag{10-92}
\end{equation*}
\]

From Eq. (10-90), we have
\[
\begin{equation*}
h^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2} \tag{10-93}
\end{equation*}
\]

The other field components are obtained from Eqs. (10-23a) through (10-23d):
where
\[
\begin{align*}
& E_{x}^{0}\left(x, y:=-\frac{\gamma}{h^{2}}\left(\frac{m \pi}{a}\right) E_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right)\right. \tag{10-94a}\\
& E_{y}^{0}\left(x, y=-\frac{\gamma}{h^{2}}\left(\frac{n \pi}{b}\right) E_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right)\right. \tag{10-94b}\\
& H_{x}^{0}\left(x, y=\frac{j \omega \epsilon \epsilon}{h^{2}}\left(\frac{n \pi}{b}\right) E_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right)\right. \tag{10-94c}\\
& H_{y}^{0}\left(x, y=-\frac{j \omega \epsilon}{h^{2}}\left(\frac{m \pi}{a}\right) E_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right),\right. \tag{10-94d}
\end{align*}
\]
\[
\begin{equation*}
\gamma=j \beta=j \sqrt{\omega^{2} \mu \epsilon-\left(\frac{m \pi}{a}\right)^{2}-\left(\frac{n \pi}{b}\right)^{2}} . \tag{10-95}
\end{equation*}
\]

Every combination of the integers \(m\) and \(n\) defines a possible mode that may be designated as the \(\mathrm{TM}_{m n}\) node; thus there are a double infinite number of TM modes. The first subscript denotes the number of half-cycle variations of the fields in the \(x\)-direction, and the second subscript denotes the number of half-cycle variations of the fields in the \(y\) direction. The cutoff of a particular mode is the condition that makes \(\gamma\) vanish. For the \(\mathrm{TM}_{\text {wn }}\) mode, the cutoff frequency is
\[
\begin{equation*}
\left(f_{c}\right)_{m n}=\frac{1}{2 \pi \sqrt{\mu \epsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}} \quad(\mathrm{~Hz}) \tag{10-96a}
\end{equation*}
\]
which checks with Eq. (10-30). Alternatively, we may write
\[
\begin{equation*}
\lambda)_{1 m n}=\frac{2}{\left(\frac{m}{a}\right)^{2}+\left(\frac{11}{b}\right)^{2}} \tag{10}
\end{equation*}
\]
where \(\lambda_{c}\) is the cutoff wavelength.

For TM modes, neither m nor \(n\) can be zero. (Do you know why?) Hence, \(\mathrm{TM}_{11}\) mode has the lowest cutoff frequency of all TM modes in a rectangular waveguide. The expressions for the phase constant \(\beta\) and the wave impedance \(Z_{T M}\) for propagating modes in Eqs. (\(10-33\)) and (\(10-38\)), respectively, apply here directly.

Example 10-6 (a) Write the instantaneous field expressions for the TM:1 mode in a rectangular waveguide of sides \(a\) and \(b\). (b) Sketch the electric and magnetic field lines in a typical \(x-y\) plane and in a typical \(y-z\) plane.

\section*{Solution}
a) The instantaneous field expressions for the \(\mathrm{TM}_{11}\) mode are obtained by multiplying the phasor expressions in. Eqs. (10-92) and (\(10-94 \mathrm{a}\)) through (\(10-94 \mathrm{~d}\)) with \(e^{j(\omega t-\rho \beta)}\) and then taking the real part of the product. We have, for \(m=n=1\).
\[
\begin{array}{ll}
E_{x}(x, y, z ;!)=\frac{\beta}{h^{2}}\binom{\pi}{a} E_{0} \cos \binom{\pi}{a} \sin \binom{\pi}{b} \sin (\omega t-\beta z) & (10-97: 1) \\
E_{y}(x, y, z ; t)=\frac{\beta}{h^{2}}\left(\frac{\pi}{b}\right) E_{0} \sin \left(\frac{\pi}{a} x\right) \cos \left(\frac{\pi}{b} y\right) \sin (\omega t-\beta z) & (10-97 b) \\
E_{z}(x, y, z ; t)=E_{0} \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{b} y\right) \cos (\omega t-\beta z) & (10-97 \mathrm{c}) \\
H_{x}(x, y, z ; t)=-\frac{\omega \epsilon}{h^{2}}\left(\frac{\pi}{b}\right) E_{0} \sin \left(\frac{\pi}{a} x\right) \cos \left(\frac{\pi}{b} y\right) \sin (\omega t-\beta z) & (10-97 \mathrm{~d}) \\
H_{y}(x, y, z ; t)=\frac{\omega \epsilon}{h^{2}}\left(\frac{\pi}{a}\right) E_{0} \cos \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{h} y\right) \sin (\omega t-\beta z) & (10-97 \mathrm{e}) \\
H_{z}(x, y, z ; t)=0, \tag{10-97f}
\end{array}
\]
where
\[
\begin{equation*}
\beta=\sqrt{k^{2}-h^{2}}=\sqrt{\omega^{2} \mu \epsilon-\left(\frac{\pi}{a}\right)^{2}-\left(\frac{\pi}{b}\right)^{2}} . \tag{10-98}
\end{equation*}
\]
b) In a typical \(x-y\) plane, the slopes of the electric field and magnetic field lines are
\[
\begin{align*}
& \left(\frac{d y}{d x}\right)_{E}=\frac{a}{b} \tan \left(\frac{\pi}{a} x\right) \cot \left(\frac{\pi}{b} y\right) \tag{10-99a}\\
& \left(\frac{d y}{d x}\right)_{H}=-\frac{b}{a} \cot \left(\frac{\pi}{a} x\right) \tan \left(\frac{\pi}{b} y\right) . \tag{10-99b}
\end{align*}
\]

These equations are quite similar to Eq. (10-60) and can be used to sketch the \(\mathbf{E}\) and \(\mathbf{H}\) lines shown in Fig. 10-11(a). Note that from Eqs. (10-99a) and (10-99b)
\[
\left(\frac{d y}{d x}\right)_{E}\left(\frac{d y}{d x}\right)_{H}=-1 .
\]
ode in \(c\) field
..

ines are 10-99a)

stch we :0-99b)

\section*{10-4.2 TE Waves in Rectangular Waveguides}

For transverse electric waves, \(E_{z}=0\), we solve Eq. \((10-41)\) for \(H_{z}\). We write
\[
\begin{equation*}
H_{z}(x, y, z)=H_{z}^{0}(x, y) e^{-y z} \tag{10-100}
\end{equation*}
\]
where \(H_{=}^{0}(x, z)\) satisfies the following second-order partial differential equation:
\[
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+h^{2}\right) H_{z}^{0}(x, y)=0 \tag{10-101}
\end{equation*}
\]

Equation (\(10-101\)) is seen to be of exactly the same form as Eq. (10-85). The solution for \(H_{z}^{0}(x, y)\) must satisfy the following boundary conditions.
1. In the \(x\)-direction:
\[
\begin{array}{rlrl}
\frac{\partial H_{z}^{0}}{\partial x} & =0\left(E_{y}=0\right) & \text { at } & x=0 \\
\frac{\partial H_{z}^{0}}{\hat{c} x}=0\left(E_{y}=0\right) & \text { at } & x=a . \tag{10-102b}
\end{array}
\]
2. In the \(y\) direction:
\[
\begin{array}{lll}
\frac{\partial H_{z}^{0}}{\partial y}=0\left(E_{x}=0\right) & \text { at } & y=0 \\
\frac{\partial H_{z}^{0}}{\partial y}=0\left(E_{x}=0\right) & \text { at } & y=b . \tag{10-102~d}
\end{array}
\]

It is readily verified that the appropriate solution for \(H_{(}^{0}(x, y)\) is
\[
\begin{equation*}
H_{z}^{0}(x, y)=H_{0} \cos \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \quad(\mathrm{A} / \mathrm{m}) . \tag{10-103}
\end{equation*}
\]

The relation between the eigenvalue \(h\), and \((m \pi / a)\) and \((n \pi / b)\) is the same as that given in Eq. (10-93) for TM modes.

The other field components are obtained from Eqs. (10-42a) through (\(10-42 \mathrm{~d}\)):
\[
\begin{array}{ll}
E_{x}^{0}(x, y)=\frac{j \omega \mu}{h^{2}}\left(\frac{n \pi}{b}\right) H_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right)- & (10-104 \mathrm{a}) \\
E_{y}^{0}(x, y)=-\frac{j(0 \mu}{h^{2}}\left(\frac{m \pi}{a}\right) H_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{h} y\right) & (10-104 b) \\
H_{x}^{0}(x, y)=\frac{\gamma}{h^{2}}\left(\frac{m \pi}{a}\right) H_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) & (10-104 \mathrm{c}) \\
H_{y}^{0}(x, y)=\frac{\gamma}{h^{2}}\left(\frac{n \pi}{b}\right) H_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right), & (10-104 \mathrm{~d}) \tag{10-104d}
\end{array}
\]
where \(y\) has the same expression as that given in Eq. (10-95) for TM modes.
Equation (10-96a) for cutoff frequency also applies here. For TE modes, either \(m\) or \(n\) (but not both) can be zero. If \(a>b\), the cutoff frequency is the lowest when \(m=1\) and \(n=0\) :
\[
\begin{equation*}
\left(f_{\mathrm{c}}\right)_{\mathrm{T} \varepsilon_{10}} \doteq \frac{1}{2 a \sqrt{\mu \epsilon}}=\frac{u}{2 a} \quad(\mathrm{~Hz}) . \tag{10-105}
\end{equation*}
\]

The corresponding cutoff wavelength is
\[
\begin{equation*}
\left(i_{\mathrm{c}}\right) \mathrm{FE}, 1, \tag{10-106}
\end{equation*}
\]

Hence the \(\mathrm{TE}_{10}\) mode is the dominant mode of a rectangular waveguide with \(a>b\). Because the \(T E_{10}\) mode has the lowest attenuation of all modes in a rectangular waveguide and its electric field is definitely polarized in one direction everywhere, it is of particular practical importance.

Example 10-7 (a) Write the instantaneous field expressions for the \(T E_{10}\) mode in a rectangular waveguide having sides \(a\) and \(b\). (b) Sketch the electric and magnetic field lines in typical \(x-y, y-z\), and \(x-z\) planes: (c) Sketch the surface currents on the guide walls.

\section*{Solution}
a) The instantaneous field expressions for the dominant \(T E_{10}\) mode are obtained by multiplying the phasor expressions in Eqs. (10-103) and (10-104a) through (\(10-104 \mathrm{~d}\)) with \(\mathrm{e}^{\mathrm{j}\left(\omega t-\beta_{z}\right)}\) and then taking the real part of the product. We have, for \(m=1\) and \(n=0\),
\[
\begin{align*}
& E_{x}(x, y, z ; t)=0 \tag{10-107a}\\
& E_{y}(x, y, z ; t)=\frac{(\beta h t}{h^{2}}\left(\frac{\pi}{a}\right) H_{0} \sin \left(\frac{\pi}{a} x\right) \sin (\omega t-\beta z) \tag{10-107b}\\
& E_{z}(x, y, z ; t)=0 \tag{10-107c}\\
& H_{x}(x, y, z ; t)=-\frac{\beta}{h^{2}}\left(\frac{\pi}{a}\right) H_{0} \sin \left(\frac{\pi}{a} x\right) \sin (\omega t-\beta z) \tag{10-107~d}\\
& H_{y}(x, y, z ; t)=0 \tag{10-107e}\\
& H_{z}(x, y, z ; t)=H_{0} \cos \left(\frac{\pi}{a} x\right) \cos (\omega t-\beta z), \tag{10-107f}
\end{align*}
\]
where
\[
\begin{equation*}
\beta=\sqrt{k^{2}-h^{2}}=\sqrt{\omega^{2} \mu \epsilon-\left(\frac{\pi}{a}\right)^{2}} . \tag{10-108}
\end{equation*}
\]
b) We see from Fecs. (10) 107a) through (10-107f) that the \(T E_{10}\) mode has onf. three nonzero field components - namely, \(E_{y}, H_{x}\), and \(H_{z}\). In a typical \(x-y\) plane, say, when \(\sin (\omega t-\beta=)=1\), both \(E_{y}\) and \(H_{x}\) vary as \(\sin (\pi x ; a)\) and are independent of \(y\), as shown in Fig. 10-12(a).

In a typical \(y-z\) plane, for example, at \(x=a / 2\) or \(\sin (\pi x / a)=1\) and \(\cos (\pi x / a)=0\), we only have \(E_{y}\) and \(H_{x}\), both of which vary sinusoidally with \(\beta z\). A sketch of \(E_{y}\) and \(H_{x}\) at \(t=0\) is given in Fig. 10-12(b).

The sketch in an \(x-z\) plane will show all three nonzero field components \(E_{y,}, H_{x}\), and \(H_{e}\). The slope of the \(H\) lines at \(t=0\) is governed by the following equation:
\[
\begin{equation*}
\left(\frac{d x}{d z}\right)_{11}=\frac{\beta}{h^{2}}\left(\frac{\pi}{a}\right) \tan \left(\frac{\pi}{a} x\right) \tan \beta z, \tag{10-109}
\end{equation*}
\]
which can be used to draw the H lines in Fig. 10-12(c). These lines are independent on !
c) The surface current density on guide walls, \(j_{s}\), is related to the magnetic field intensity by Eq. (7-50) \()\) :
\[
\begin{equation*}
\mathrm{J}_{s}=\mathrm{a}_{n} \times \mathrm{H} \tag{10-110}
\end{equation*}
\]

Fig. 10-12 Field lines for \(\mathrm{TE}_{10}\) mode in rectangular waveguide.

Fig. 10-13 Surface currents on guide walls for \(T E_{: 0}\) mode in rectangular waveguide.

where \(\mathbf{a}_{n}\) is the outward normal to the wall surface and \(\mathbf{H}\) is the magnetic field intensity at the wall. We have, at \(t=0\),
\[
\begin{align*}
& \mathbf{J}_{s}(x=0)=-\mathbf{a}_{y} H_{z}(0, y, z ; 0)=-\mathbf{a}_{s} H_{0} \cos \beta z \tag{10-111a}\\
& \mathbf{J}_{s}(x=a)=\mathbf{a}_{y} H_{z}(a, y, z ; 0)=\mathbf{J}_{s}(x=0) \tag{10-111b}\\
& \mathbf{J}_{s}(y=0)=\mathbf{a}_{x} H_{z}(x ; 0, z ; 0)-\mathbf{a}_{z} H_{x}(x, 0, z ; 0) \\
& \tag{10-111c}\\
& =\mathbf{a}_{x} H_{0} \cos \left(\frac{\pi}{a} x\right) \cos \beta z-\mathrm{a}_{=} \frac{\beta}{h^{2}}\left(\frac{\pi}{a}\right) H_{0} \sin \left(\frac{\pi}{a} x\right) \sin \beta z \\
& \mathbf{J}_{s}(y=b)=-\mathbf{J}_{s}(y=0) .
\end{align*}
\]

The surface current; on the inside walls at \(x=0\) and at \(y=b\) are sketched in Fig. 10-13.

\section*{10-4.3 Attenuation in Rectangular Waveguides}

Altenuation for propagating modes results when there are losses in the dielectric and in the imperfectly conducting guide walls. Because these losses are usually very small, we will assume, as in the casc of parallel-plate waveguides, that the transverse field patterns are not appreciably affected by the losses. The attenuation constant due to losses in the dielectric cin be obtained by substituting \(\epsilon_{a}=\epsilon+(\sigma\); \(j(\omega)\) for \(\epsilon\) in Eq. \((10-95)\). The result is exactly the same as that given in Eq. \((10-75)\), which is repeated below:
\[
\begin{equation*}
\alpha_{d}=\frac{\sigma \eta}{2 \sqrt{1-\left(f_{c} f\right)^{2}}} \tag{10-112}
\end{equation*}
\]
where \(\sigma\) and \(\eta\) are the conductivity and intrinsic impedance of the dielectric medium respectively, and \(f_{c}\) is given by Eq. (10-96a).

To determine the attenuation constant due to wall losses, we make use of Eq. (10-77). The derivations: of \(\alpha_{c}\) for the general \(\mathrm{TM}_{m n}\) and \(T E_{m n}\) modes tend to be tedious. Below we obtain the formula for the dominant \(T E_{10}\) mode, which is the most important of all propagating modes in a rectangular waveguide.

For the \(T E_{10}\) mode the only nonzero field components are \(E_{y}, H_{x}\), and \(H_{z}\). Letting \(m=1, n=0\), and \(h=(\pi / a)\) in Eqs. (\(10-104 b\)) and (\(10-104 \mathrm{c}\)), we calculate the time-average power fowing through a cross section of the waveguide:
\[
\begin{align*}
P(i) & \int_{n}^{n} \int_{11}^{a}!\left(H: n H r_{0}^{\prime \prime}\right)^{+} d d y \\
= & \frac{1}{2} \omega \mu \beta\left(\frac{a}{\pi}\right)^{2} H_{0}^{2} \int_{0}^{b} \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} x\right) d x d y \\
= & \omega u \beta a b\left(\frac{a H_{0}}{2 \pi}\right)^{2} . \tag{10-113}
\end{align*}
\]

In order to calculate the time-average power lost in the conducting walls per unit length, we must consider all four walls. From Eqs. (\(10-110\)), (\(10-103\)), and (\(10-104 \mathrm{c}\)) we see that
and
\[
\begin{equation*}
\mathbf{J}_{s}^{0}(x=0)=\mathbf{J}_{s}^{0}(x=a)=-\mathbf{a}_{y} H_{z}^{0}(x=0)=-\mathbf{a}_{y} H_{0} \tag{10-114a}
\end{equation*}
\]
\[
\begin{align*}
\mathbf{J}_{s}^{0}(y=0)=-\mathbf{J}_{s}^{0}(y=b) & =\mathbf{a}_{x} H_{(}^{0}(y=0)-\mathbf{a}_{=} H_{x}^{0}(y=0) \\
& =\mathbf{a}_{x} H_{0} \cos \left(\frac{\pi}{a} x\right)-\mathbf{a}_{\mathbf{z}} \frac{\beta a}{\pi} H_{0} \sin \left(\frac{\pi}{a} x\right) . \tag{10-114b}
\end{align*}
\]

The total power loss is then double the sum of the losses in the walls at \(x=0\) and at \(y=0\). We have
\[
P_{L}(z)=2\left[P_{L}(z)\right]_{x=0}+2\left[P_{L}(z)\right]_{v=0},
\]
where
\[
\begin{equation*}
\left[P_{L}(z)\right]_{x=0}=\int_{0}^{b} \frac{1}{2}\left|J_{s}^{0}(x=0)\right|^{2} R_{s} d y=\frac{b}{2} H_{0}^{2} R_{s} \tag{10-116a}
\end{equation*}
\]
and
\[
\begin{align*}
{\left[P_{L}(z)\right]_{y=0} } & =\int_{0}^{a} \frac{1}{2}\left[\left|J_{s x}^{0}(y=0)\right|^{2}+\left|J_{s z}^{0}(y=0)\right|^{2}\right] R_{s} d x \\
& =\frac{a}{4}\left[1+\left(\frac{\beta a}{\pi}\right)^{2}\right] H_{0}^{2} R_{s} . \tag{10-116b}
\end{align*}
\]

Substitution of Eqs. \((10-116 a)\) and \((10-116 b)\) in Eq. \((10-115)\) yields
\[
\begin{align*}
P_{L}(z) & =\left\{b+\frac{a}{2}\left[1+\left(\frac{\beta a}{\pi}\right)^{2}\right]\right\} H_{0}^{2} R_{s} \\
& =\left[b+\frac{a}{2}\left(\frac{f}{f_{c}}\right)^{2}\right] H_{0}^{2} R_{s} . \tag{10-117}
\end{align*}
\]

The last expression is the result of recognizing that
\[
\begin{equation*}
\beta=\sqrt{\omega \omega^{2} \mu \epsilon-\left(\frac{\pi}{a}\right)^{2}}=\omega \sqrt{\mu \epsilon} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}} . \tag{10-118}
\end{equation*}
\]

Inserting Eqs. (10-113) and (10-117) in Eq. (10-77), we obtain
\[
\begin{align*}
\left(\alpha_{c}\right)_{\mathrm{EE}_{10}} & =\frac{R_{s}\left[1+(2 b / a)\left(f_{c} / f\right)^{2}\right]}{\eta b \sqrt{1-\left(f_{c} / f\right)^{2}}} \\
& =\frac{1}{\eta b} \sqrt{\frac{\pi f \mu_{\mathrm{c}}}{\sigma_{c[1}\left[1-\left(f_{c} / f\right)^{2}\right]}}\left[1+\frac{2 b}{a}\left(\frac{f_{c}}{f}\right)^{2}\right] \quad(\mathrm{Np} / \mathrm{m}) . \tag{10-119}
\end{align*}
\]

Equation (\(10+118\)) reveals a rather complicated dependence of \(\left(\alpha_{c}\right)_{\mathrm{TE}_{10}}\) on the ratio \(\left(f_{c} / f\right)\). It tends to infinity when \(f\) is close to the cutoff frequency, decreases toward a minimum as \(f\) increases, and increases again steadily for further increases in \(f\).

For a given guide width \(a\), the attenuation decreases as \(b\) increases. However, increasing \(b\) also decreases the cutoff frequency of the next higher-order mode \(T E_{1:}\) (or \(\mathrm{TM}_{11}\)), with the consequence that the available bandwidth for the dominant \(T E_{10}\) mode (the range of frequencies over which \(T E_{10}\) is the only possible propagating mode) is reduced. The usual compromise is to choose the ratio \(b / a\) in the neighborhood of \(\frac{1}{2}\).

Example 10-8 A TE 10 wave at \(10(\mathrm{GHz})\) propagates in a brass \(-\sigma_{6}=1.57 \times\) \(10^{7}(\mathrm{~S} / \mathrm{m})\) - rectangular waveguide with inner dimensions \(a=1.5(\mathrm{~cm})\) and \(b=\) \(0.6(\mathrm{~cm})\), which is filled with polyethylene \(-\epsilon_{r}=2.25, \mu_{r}=1\), loss tangent \(=4 \times 10^{-4}\). Determine (a) the phase constant, (b) the guide wavelength, (c) the phase velocity, (d) the wave impedance, (e) the attenuation constant due to loss in the dielectric, and (\(f\)) the attenuation constant due to loss in the guide walls.

Solution: At \(f=10^{10}(\mathrm{Az})\), the wavelength in unbounded polyethylene is
\[
i=\frac{u}{f}=\frac{3 \times 10^{5}}{\sqrt{2.25} \times 10^{10}}=\frac{2 \times 10^{8}}{10^{10}}=0.02(\mathrm{~m})
\]

The cutoff frequency for the \(T E_{10}\) mode is, from Eq. (10-105),
\[
f_{c}=\frac{u}{2 c}=\frac{2 \times 10^{8}}{2 \times\left(1.5 \times 10^{-2}\right)}=0.667 \times 10^{10}(\mathrm{~Hz})
\]
a) The phase constant is, from Eq. (10-118),
\[
\begin{aligned}
\beta & =\frac{\omega}{u} \sqrt{1-\left(\frac{f_{c}}{f}\right)^{2}}=\frac{2 \pi 10^{10}}{2 \times 10^{8}} \sqrt{1-0.667^{2}} \\
& =74.5 \pi=234(\mathrm{rad} / \mathrm{m})
\end{aligned}
\]
b) The guide wavelengti is, from Eq. (10-34),
\[
i_{g}=\frac{i}{\sqrt{1-\left(f_{c} / f\right)^{2}}}=\frac{0.02}{0.745}=0.0268(\mathrm{~m})
\]
c) The phase velocity is, from Eq. \((10-36)\),
\[
u_{p}=\frac{u}{\sqrt{1-\left(f_{c} / f\right)^{2}}}=\frac{2 \times 10^{8}}{0.745}=2.68 \times 10^{8}(\mathrm{~m} / \mathrm{s})
\]
d) The wave impedance is, from Eq. (10-47),
\[
\left(Z_{\mathrm{TE}}\right)_{10}=\frac{\sqrt{\mu / \epsilon}}{\sqrt{1-\left(f_{\mathrm{c}} / f\right)^{2}}}=\frac{377 / \sqrt{2.25}}{0.745}=337.4(\Omega) .
\]
e) The attenuation constant due to loss in dielectric is obtained from Eq. (10-112). The effective conductivity for polyethylene at \(10(\mathrm{GHz})\) can be determined from the given loss tangent by using Eq. (7-93):

Thus,
\[
\begin{aligned}
\sigma=4 \times 10^{-4} \omega \epsilon & =4 \times 10^{-4} \times\left(2 \pi \times 10^{10}\right) \times\left(\frac{2.25}{36 \pi} \times 10^{-9}\right) \\
& =5 \times 10^{-4}(\mathrm{~S} / \mathrm{m}) .
\end{aligned}
\]
\[
\begin{aligned}
\alpha_{d}=\frac{\sigma}{2} Z_{\mathrm{TE}}=\frac{5 \times 10^{-4}}{2} \times 337.4 & =0.084(\mathrm{~Np} / \mathrm{m}) \\
& =0.73(\mathrm{~dB} / \mathrm{m})
\end{aligned}
\]
f) The attenuation constant due to loss in the guide walls is found from Ey. (10-119). We have, from Eq. (9-26b).
\[
\begin{gathered}
\dot{R}_{s}=\sqrt{\frac{\pi f \mu_{c}}{\sigma_{c}}}=\sqrt{\frac{\pi 10^{10}\left(4 \pi \pi 10^{-7}\right)}{1.57 \times 10^{7}}}=0.0501(\Omega) \\
\alpha_{c}=\frac{R_{s}\left[1+(2 b / a)\left(f_{c} / f\right)^{2}\right]}{\eta b \sqrt{1-\left(f_{c} / f\right)^{2}}}=\frac{0.0501\left[1+(0.6 / 1.5)(0.667)^{2}\right]}{251 \times 0.006 \times 0.745}
\end{gathered}=0.0526(\mathrm{~Np} / \mathrm{m}) .
\]

\section*{10-5 DIELECTRIC WAVEGUIDES}

In previous sections we discussed the behavior of electromagnetic waves propagating along waveguides with conducting walls. We now show that dielectric slabs and rods without conducting walls can also support guided-wave modes that are confined essentially within the dielectric medium.

Figure \(10-14\) shows a longitudinal cross section of a dielectric-slab waveguide of thickness \(d\). For simplicity we consider this a problem with no dependence on

Fig. 10-14 A longitudinal cross-section of a dielectric-slab waveguide.
the \(x\) coordinate. Let \(\epsilon_{d}\) and \(\dot{\mu}_{d}\) be, respectively, the permittivity and permeability of the dielectric slab, which is situated in free space \(\left(\epsilon_{0} ; \mu_{0}\right)\). We assume that the dielectric is lossless and that wayes propagate in the \(+z\) direction. The behavior of TM and TE modes will now be analyzed separately.

10-5.1 TM Waves along a Dielectric Slab
For transverse thagnetic waves, \(H_{z}=0\). Since there is no \(x\)-dependence, Eq. (10-53) applies. We have
\[
\begin{equation*}
\frac{d^{2} E_{z}^{0}(y)}{d y^{2}}+h^{2} E_{z}^{0}(y)=0 \tag{10-120}
\end{equation*}
\]
where
\[
\begin{equation*}
h^{2}=\gamma^{2}+\omega^{2} \mu \epsilon \tag{10-121}
\end{equation*}
\]

Solutions of Eq. (\(10-120\)) must be considered in both the slab and the free-space regions, and they must be matched at the boundaries.

In the slab region we assume that the waves propagate in the \(+z\) direction without attenuation (lossless dielectric); that is, we assume
\[
\begin{equation*}
\gamma=j \beta \tag{10-122}
\end{equation*}
\]

The solution of Eq. (10-120) in the dielectric slab may contain both a sine term and a cosine term, which are respectively an odd and an even function of \(y\) :
\[
\begin{equation*}
E_{:}^{0}(y)=E_{0} \sin k_{y} y+E_{e} \cos k_{y} y, \quad|y| \leq \frac{d}{2} \tag{10-123}
\end{equation*}
\]
where
\[
\begin{equation*}
k_{y}^{2}=\omega_{1}^{2} \mu_{d} \epsilon_{d}-\beta^{2}=h_{u}^{2} . \tag{10-124}
\end{equation*}
\]

In the free-space regions \(y>d / 2\) and \(y<-d / 2\)), the waves must decay exponentially so that they are guided along the slab and do not radiate away from it. We have
\[
E_{:}^{o}(y)= \begin{cases}C_{u} e^{-x(y-d / 2)}, & y \geq \frac{d}{2} \tag{10-125a}\\ C_{l} e^{x(y+d / 2)}, & y \leq-\frac{d}{2}\end{cases}
\]
where
\[
\begin{equation*}
\alpha^{2}=\beta^{2}-\omega^{2} \mu_{0} \epsilon_{0}=-h_{0}^{2} . \tag{10-126}
\end{equation*}
\]

Equations (\(10-124\)) and (\(10-126\)) are called dispersion relations because they show the nonlinear dependence of the phase constant \(\beta\) on \(\omega\).

At this stage we have not yet determined the values of \(k_{y}\) and \(\alpha\); nor have we found the relationships among the amplitudes \(E_{0}, E_{c}, C_{u}\), and \(C_{l}\). In the following, we will consider the odd and even TM modes separately.
a) Odd TM Modes. For odd TM modes, \(E_{:}^{0}(y)\) is described by a sine function that is antisymmetric with respect to the \(y=0\) plane. The only other field components, \(E_{y}^{0}(y)\) and \(H_{x}^{0}(y)\), are obtained from Eqs. (10-23d) and (10-23a) respectively.
i) In the dielectric region, \(|y| \leq d / 2\) :
\[
\begin{align*}
& E_{\Xi}^{o}(y)=E_{0} \sin k_{y} y \tag{10-127a}\\
& E_{y}^{o}(y)=-\frac{j \beta}{k_{y}} E_{o} \cos k_{y} y \tag{10-127b}\\
& H_{x}^{o}(y)=\frac{j \omega \epsilon_{d}}{k_{y}} E_{0} \cos k_{y} y . \tag{10-127c}
\end{align*}
\]
ii) In the upper free-space region, \(y \geq d / 2\) :
\[
\begin{align*}
& E_{z}^{0}(y)=\left(E_{0} \sin \frac{k_{y} d}{2}\right) e^{-\alpha(y-d / 2)} \tag{10-128a}\\
& E_{y}^{0}(y)=-\frac{j \beta}{\alpha}\left(E_{o} \sin \frac{k_{y} d}{2}\right) e^{-\alpha(y-d / 2)} \tag{10-128b}\\
& H_{x}^{0}(y)=\frac{j \omega \epsilon_{0}}{\alpha}\left(E_{0} \sin \frac{k_{y} d}{2}\right) e^{-(y-d / 2)} \tag{10-128c}
\end{align*}
\]
where \(C_{u}\) in Eq. (10-125a) has been set to equal \(E_{0} \sin \left(k_{y} d / 2\right)\), which is the value of \(E_{=}^{0}(y)\) in Eq. (10-127a) at the upper interface, \(y=d / 2\).
iii) In the lower free-space region, \(y \leq-d / 2\) :
\[
\begin{align*}
& \dot{E}_{z}^{0}(y)=-\left(E_{o} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)} \tag{10-129a}\\
& E_{y}^{0}(y)=-\frac{j \beta}{\alpha}\left(E_{o} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)} \tag{10-129b}\\
& H_{x}^{0}(y)=\frac{j \omega E_{0}}{\alpha}\left(E_{o} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)}, \tag{10-129c}
\end{align*}
\]
where \(C_{t}\) in Eq. \((10-125 \mathrm{~b})\) has been set to equal \(-E_{q} \sin \left(k_{y} d / 2\right)\), which is the value of \(E_{(}^{0}(y)\) in Eq. \((10-127 \mathrm{a})\) at the lower interface \(y=-d / 2\).
Now we must determine \(k_{y}\) and \(\alpha\) for a given angular frequency of excitation \(\omega\). The continuity of \(H_{x}\) at the dielectric surface requires that \(H_{x}^{0}(d / 2)\) computed

The other nonzero field components, \(E_{y}^{0}\) and \(H_{x}^{0}\), both inside and outside the dielectric slab can be obtained in exactly the same manner as in the case of odd TM modes (see Problem P.10-25): Instead of Eq. (10-130), the characteristic relation between \(k_{y}\) and \(\alpha\) now becomes
\[
\begin{equation*}
\frac{\alpha}{k_{y}}=-\frac{\epsilon_{0}}{\epsilon_{d}} \cot \frac{k_{y} d}{2} \quad \text { (Even TM modes) } \tag{10-135}
\end{equation*}
\]
which can be used in conjunction with Eq. (10-131b) to determine the transverse wavenumber \(k_{y}\) and the transverse attenuation constant \(\alpha\). The several solutions correspond to the several even TM modes that can exist in the dielectric slab waveguide of thickness \(d\). Of course, in this case a conducting plane cannot be placed at \(y=0\) without disturbing the whole field structure.
From Eqs. (10-124) and (\(10-126\)), it is easy to see that the phase constant, \(\beta\), of propagating TM waves lies between the intrinsic phase constant of the free space, \(k_{0}=\omega \sqrt{\mu_{0} \epsilon_{0}}\). and that of the dielectric, \(k_{d}=\omega \sqrt{\mu_{d} \epsilon_{d}}\); that is.
\[
\omega \sqrt{\mu_{0} \epsilon_{0}}<\beta<\omega \sqrt{\mu_{d} \epsilon_{d}} .
\]

As \(\beta\) approaches the value of \(\omega \sqrt{\mu_{0} \epsilon_{0}}\), Eq. (\(10-126\)) indicates that \(\alpha\) approaches zero. An absence of attenuation means that the waves are no longer bound to the slab. The limiting frequencies under this condition are called the cutoff frequencies of the dielectric waveguide. From Eq. (10-124) we have \(k_{y}=\omega_{c} \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\) at cutoff. Substitution into Eqs. (\(10-132\)) and (\(10-135\)) with \(\alpha\) set to zero yields the following relations for TM modes. At cut-off:
\[
\begin{gather*}
\frac{\text { Odd TM Modes }}{\tan \left(\frac{\omega_{c o} d}{2} \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\right)=0} \\
\pi f_{c o} d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}=(n-1) \pi, \\
n=1,2,3, \ldots \\
f_{c o}=\frac{(n-1)}{d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}} \tag{10-136b}
\end{gather*}
\]
(10-136a)
\[
\begin{gathered}
\frac{\text { Even TM Modes }}{\cot \left(\frac{\omega_{c e} d}{2} \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\right)=0} \\
\pi f_{c e} d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}=\left(n-\frac{1}{2}\right) \pi, \\
n=1,2,3, \ldots \\
f_{c e}=\frac{\left(n-\frac{1}{2}\right)}{d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}}
\end{gathered}
\]

It is seen that \(\int_{c o}=0\) for \(n=1\). This means that the lowest-order odd TM mode can propagate along a dielectric-slab waveguide regardless of the thickness of the slab. As the frequency of a given TM wave increases beyond the corresponding cutoff frequency, \(x\) increases and the wave clings more tightly to the slab.
ie the of odd eristic
sverse utions c slab not be
\[
1
\]
\(\therefore \beta\), of space,
s zerr. es.
of the cutoff. lowing

\section*{10-5.2 TE Waves along a Dielectric Slab}

For transverse electric waves, \(E_{=}=0\), and Eq. (10-67) applies
\[
\begin{equation*}
\frac{d^{2} H_{2}^{0}(y)}{d y^{2}}+k_{v}^{2} H_{(}^{0}(y)=0, \tag{10-137}
\end{equation*}
\]
where \(k_{y}\) has been defined in Eq. \((10-124)\). The solution for \(H_{z}^{0}(y)\) may also contain both a sine term and a cosine term:
\[
\begin{equation*}
H_{y}^{0}(y)=H_{o} \sin k_{y} y+H_{e} \cos k_{y} y, \quad|y| \leq \frac{d}{2} \tag{10-138}
\end{equation*}
\]

In the free-space regions \((y>d / 2\) and \(y<-d / 2)\), the waves must decay exponentially We write
\[
\left.H_{=}^{0} y\right)= \begin{cases}C_{u}^{\prime} e^{-x(y-d / 2)}, & y \geq \frac{d}{2} \tag{10-138a}\\ C_{i}^{\prime} e^{(y-d / 2)}, & y \leq-\frac{d}{2}\end{cases}
\]
where \(\alpha\) is defined in Eq. (10-126). Following the same procedure as used for TM waves, we consider the odd and even TE modes separately. Besides \(H^{0}(y)\), the only other field components afe \(H_{y}^{0}(y)\) and \(E_{x}^{0}(y)\), which can be obtained from Eqs. (1042b) and (10-42c).
a) Odd TE Modes
i) In the dielectric region, \(|\cdot|=d / 2\) :
\[
\begin{align*}
& H_{y}^{0}\left(y^{\prime}\right)=H_{0} \sin k_{y} y^{\prime} \tag{10-139a}\\
& H_{y}^{0}(y)=-\frac{j \beta}{k_{y}} H_{0} \cos k_{y} y^{\prime} \tag{10-1346}\\
& E_{y}^{0}(y)=-\frac{j\left(0 \mu_{d}\right.}{k_{y}} H_{0} \cos k_{y} y \tag{10-1390}
\end{align*}
\]
ii) In the upper free-space region, \(y \geq d / 2\) :
\[
\begin{align*}
& H_{y}^{0}(y)=-\frac{j \beta}{2}\left(H_{0} \sin \frac{k_{c} d}{2}\right) e^{-x\left(y-d_{2}\right)} \quad(10-140 \mathrm{~b}) \\
& E_{x}^{0}(y)=-\frac{j \omega \mu_{0}}{\alpha}\left(H_{0} \sin \frac{k_{y} d}{2}\right) e^{-\alpha(y-d i z)} . \tag{10-140c}
\end{align*}
\]
iii) In the lower free-space region, \(y \leq-d / 2\) :
\[
\begin{align*}
& H_{z}^{0}(y)=-\left(H_{0} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)} \tag{10-141a}\\
& H_{y}^{0}(y)=-\frac{j \beta}{\alpha}\left(H_{0} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)} \tag{10-141b}\\
& E_{x}^{0}(y)=-\frac{j \omega \mu_{0}}{\alpha}\left(H_{0} \sin \frac{k_{y} d}{2}\right) e^{\alpha(y+d / 2)} . \tag{10-141c}
\end{align*}
\]

A relation between \(k_{y}\) and \(\alpha\) can be obtained by equating \(E_{x}^{0}(y)\). given in Eqs. \((10-139 \mathrm{c})\) and \((10-140 \mathrm{c})\), at \(y=d / 2\). Thus,
\[
\begin{equation*}
\frac{\alpha}{k_{y}}=\frac{\mu_{0}}{\mu_{d}} \tan \frac{k_{y} d}{2} \quad \text { (Odd TE modes). } \tag{10-142}
\end{equation*}
\]
which is seen to be closely analogous to the characteristic equation, Eq. (10-130), for odd TM modes. Equations (10-131b) and (10-142) can becombined in the manner of Eq. (\(10-132\)) to find \(k_{y}\) graphically. From \(k_{y} . x\) can be found from Eq. (\(10-131 \mathrm{~b}\)).

From a position of looking down from above. the surface impedance of the dielectric slab is
\[
\begin{equation*}
Z_{s}=\frac{E_{x}^{0}}{H_{z}^{0}}=-j \frac{\omega \mu_{0}}{x} \quad \text { (TE modes) } \tag{10-143}
\end{equation*}
\]
which is a capacitive reactance. Hence. "TE surfoce ware can be supherted by " capacitive surface.
b) Even TE Modes. For even TE modes, \(H_{(}^{9}(y)\) is described by a cosine function that is symmetric with respect to the \(y=0\) piane.
\[
\begin{equation*}
H_{:}^{0}\left(y^{\prime}\right)=H_{\mathrm{c}} \cos k_{y}!, \quad|y| \leq d / 2 . \tag{10-144}
\end{equation*}
\]

The other nonzero field components, \(H_{y}^{0}\) and \(E_{x}^{0}\), both inside and outside the dielectric slab can be obtained in the same manner as for odd TE modes (see Problem P.10-27). The characteristic relation between \(k_{y}\) and \(\alpha\) is closely analogous to that for even TM modes as given in Eq. (10-135):
\[
\begin{equation*}
\frac{\alpha}{k_{y}}=-\frac{\mu_{0}}{\mu_{d}} \cot \frac{k_{y} d}{2} \quad \text { (Even TE modes). } \tag{10.145}
\end{equation*}
\]

It is easy to see that the expressions for the cutolf frequencies given in Eqs. (10-136a, b) apply also to TE modes. The characteristic relations for all the propagating modes along a dielectric-slab waveguide of a thickness \(d\) are listed in Table 10-2.
Table 10-2 Characteristic Relations for Dielectric-Slab Waveguide \({ }^{\dagger}\)
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{2}{|c|}{ Mode } & Characteristic Relation & Cutoff Frequency \\
\hline \multirow{3}{*}{ TM } & Odd & \(\left(\alpha / k_{y}\right)=\left(\epsilon_{0} / \epsilon_{d}\right) \tan \left(k_{y} d / 2\right)\) & \(f_{c o}=(n-1) / d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\) \\
\cline { 2 - 4 } & Even & \(\left(\alpha / k_{y}\right)=-\left(\epsilon_{0} / \epsilon_{d}\right) \cot \left(k_{y} d / 2\right)\) & \(f_{c e}=\left(n-\frac{1}{2}\right) / d \sqrt{\mu_{d} \epsilon_{0}-\mu_{0} \epsilon_{0}}\) \\
\hline \multirow{2}{*}{ TE } & Odd & \(\left(\alpha / k_{y}\right)=\left(\mu_{0} / \mu_{d}\right) \tan \left(k_{y} d / 2\right)\) & \(f_{c o}=(n-1) / d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\) \\
\cline { 2 - 4 } & Even & \(\left(\alpha / k_{y}\right)=-\left(\mu_{0} / \mu_{d}\right) \cos \left(k_{y} d / 2\right)\) & \(f_{c e}=\left(n-\frac{1}{2}\right) / d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}\) \\
\hline
\end{tabular}
\({ }^{\dagger} \alpha=\left[\omega^{2}\left(\mu_{d} \epsilon_{\mathrm{d}}-\mu_{0} \epsilon_{0}{ }^{\prime}-k_{\mathrm{r}}^{2}\right]^{1 / 2}\right.\).

Example 10-9 A dielectric-slab waveguide with constitutive parameters \(\mu_{d}=\mu_{0}\) and \(\epsilon_{d}=2.50 \epsilon_{0}\) is situated in free space. Determine the minimum thickness of the slab so that a TM or TE vave of the even type at a frequency 20 GHz may propagate along the guide.

Solution: The lowest TM and TE waves of the even type have the same cutoff frequency along a dielectric-slab waveguide:

Letting \(n=1\), we have
\[
f_{c}=\frac{n-\frac{1}{2}}{d \sqrt{\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}}} .
\]
ed by a
nction
ice the
jes (sce anal-
in Ecs. all re listed
1-142)
\(-130)\),
in the
from
of the
-
\[
f_{c}=\frac{c}{2 d \sqrt{\frac{\mu_{d} \epsilon_{d}}{\mu_{0} \epsilon_{0}}-1}}
\]

Therefore,
\[
\begin{aligned}
d_{\min } & =\frac{c}{2 f \sqrt{\frac{\mu_{d}}{\mu_{0} \varepsilon_{0}}-1}} \\
& =\frac{3 \times 10^{3}}{2 \times 20<10^{9} \sqrt{2.5-1}}=6.12 \times 10^{-3}(\mathrm{~m}) \text { or } 6.12(\mathrm{~mm}) .
\end{aligned}
\]

Example 10-10 (a) Obtain an approximate expression for the decaying rate of the dominant TM surface wate ouside of a very thin defectric-stab waveguide (b) Find the time-average power per unit width transmitted in the transverse direction along the guide.

\section*{Solution}
a) The dominant TM wave is the odd mode having a zero cutoff frequency \(f_{c o}=0\) for \(n=1\), independent of the slab thickness (see Table 10-2). With a slab
that is very thin compared to the operating wavelength; \(k_{y} d / 2 \ll 1, \tan \left(k_{y} d / 2\right)\) \(\cong k_{y} d / 2\), and Eq. \((10-130)\) becomes
\[
\begin{equation*}
\alpha \cong \frac{\epsilon_{0}}{2 \epsilon_{d}} k_{y}^{2} d \tag{10-146}
\end{equation*}
\]

Using Eq. (10-131a), Eq. (10-146) can be written approximately as
\[
\begin{equation*}
\alpha \cong \frac{\epsilon_{0}}{2 \epsilon_{d}} \omega^{2}\left(\mu_{d} \epsilon_{d}-\mu_{0} \epsilon_{0}\right) d \quad(\mathrm{~Np} / \mathrm{m}) \tag{10-147}
\end{equation*}
\]

In Eq. (10-147), it hás been assumed that \(\alpha d / 2 \ll \epsilon_{d} / \epsilon_{0}\).
b) The time-average Poynting vector in the \(+z\) direction in the dielectric slab is
\[
\mathscr{P}_{c v}=\frac{1}{2} \mathscr{R c}\left(-\mathbf{a}_{y} E_{y} \times \mathbf{a}_{x} H_{x}\right) .
\]

Using Eqs. (10-127b) and (10-127c), we have \(P_{u r}=a_{z} P_{u r}\) and
\[
\begin{align*}
P_{a v} & =2 \int_{0}^{d / 2} \mathscr{P}_{a v} d y=\frac{\left(\omega \epsilon_{d} \beta\right.}{k_{y}^{2}} E_{o}^{2} \int_{0}^{d / 2} \cos ^{2}\left(k_{y} y\right) d y \\
& =\frac{\omega \epsilon_{d} \beta}{2 k_{y}^{2}} E_{0}^{2}\left[d+\frac{1}{k_{y}} \sin \left(k_{y} d\right)\right] \quad(\mathrm{W} / \mathrm{m}), \tag{10-148}
\end{align*}
\]
where
\[
\begin{equation*}
k_{y} \cong \omega \sqrt{\mu_{d} \epsilon_{d}}-\mu_{0} \epsilon_{0} \tag{10-148a}
\end{equation*}
\]
and
\[
\begin{equation*}
\beta \cong \omega \sqrt{\mu_{0} \epsilon_{0}} \tag{10-148~b}
\end{equation*}
\]

In this section we have studied the characteristics of TM and TE waves guided by dielectric slabs. The same principles govern the transmission of light waves along round quartz fibers that form optical waveguides. Optical waveguides are of great importance as transmission media for communication systems because of their lowloss and large-bandwidth properties. Their analysis requires the knowledge of Bessel functions which we do not assume in this book.

\section*{10-6 CAVITY RESONATORS}

We have previously pointed out that at UHF (300 MHz to 3 GHz) and higher frequencies, ordinary lumped-circuit elements such as \(R, L\), and \(C\) are difficult to make. and stray fields become important. Circuits with dimensions comparable to the operating wavelength hecome eflicient radiators and will interfere with other circuits and systems. Furthermore, conventional wire circuits tend to have a high effective resistance both because of energy loss through radiation and as a result of skin effect. To provide a resonant circuit at UHF and higher frequencies, we look to an enclosure (a cavity) completely surrounded by conducting walls. Such a shielded enclosure confines electromagnetic fields inside and furnishes large areas for current flow. thus eliminating radiation and high-resistance effects. These enclosures have natural

Fig. 10-15 Excitation of cavity modes by a coaxial line.
resonant frequencies anc: a very high \(Q\) (quality factor), and are called cavity resonators. In this section we will-study the properties of rectangular cavity resonators.

Consider a rectanguiar waveguide with both ends closed by a conducting wall. The interior dimensions of the cavity are a. \(h\), and \(d\), as shown in Fig. 10-15. Since both TM and TE mode; can exist in a rectangular guide, we expect TM and TE modes in a rectangular resonator too. However, the designation of TM and TE modes in a resonator is not unique because we are free to choose \(x\) or \(y\) or \(z\) as the "direction of propagation"; that is, there is no unique "longitudinal direction." For example, a TE mode with respect to the \(=\) axis could be a TM mode with respect to the \(y\) axis.

For our purposes, we choose the \(z\) axis as the reference "direction of propagation." In actuality, the existenc: of conducting end walls at \(z=0\) and \(z=d\) gives rise to multiple reflections and sets up standing waves; no wave propagates in an enclosed cavity. A three-symbol (mnp) subscript is needed to designate a TM or TE stand-ing-wave pattern in a cavity resonator.

\section*{10-6.1 TM \(M_{m n p}\) Modes}

The expressions for the transverse variations of the field components for \(\mathrm{TM}_{m n}\) modes in a waveguide have been given in Eqs. (10-92) and (10-94a, b, c, d). Note that the longitudimal variation for a wave traveling in the \(+z\) direction is described by the factor \(e^{-:=}\)or \(e^{-j 2:}\), as indicated in Eq. (\(10-84\)). This wave will be reflected by the end wall at \(z=d\); and the reflected wave, going in the \(-z\) direction, is described by a factor \(e^{j \beta z}\). The superposition of a term with \(e^{-j \beta=}\) and another of the same amplitude \({ }^{\dagger}\) with \(e^{j \beta=}\) results in a standing wave of the \(\sin \beta z\) or \(\cos \beta z\) type. Which should it be? The answer to this question depends on the particular field component.

\footnotetext{
\({ }^{+}\)The reflection coefficient at a perfect conductor is -1 .
}

Consider the transverse component \(E_{y}(x, y, z)\). Boundary conditions at the conducting surfaces require that it be zero at \(z=0\) and \(z=d\). This means that (1) its \(z\)-dependence be of the \(\sin \beta z\) type and that (2) \(\beta=p \pi / d\). The same argument applies to the other transverse electric field component \(E_{x}(x, y, z)\).

Recalling that the appearance of the factor \((-\gamma)\) in Eqs. (\(10-94 a\)) and (10-94b) is the result of a differentiation with respect to \(z\); we conclude that the other components \(E_{z}(x, y, z), H_{x}(x, y, z)\), and \(H_{y}(x, y, z)\), which do not contain the factor \((-\gamma)\), must vary according to cos \(\beta z\). We have then, from Eqs. (10-92) and (10-94a, b, c, d). the following phasors of the field components for \(\mathrm{TM}_{\text {mup }}\) modes in a rectangular cavity resonator.
\[
\begin{align*}
& E_{z}(x, y, z)=E_{0} \sin \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \cos \left(\frac{p \pi}{d} z\right) \tag{10-149a}\\
& E_{x}(x, y, z)=-\frac{1}{h^{2}}\left(\frac{m \pi}{a}\right)\left(\frac{p \pi}{d}\right) E_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{h} y\right) \sin \left(\frac{p \pi}{d} z\right) \tag{10-149b}\\
& E_{y}(x, y, z)=-\frac{1}{h^{2}}\left(\frac{n \pi}{b}\right)\left(\frac{p \pi}{d}\right) E_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \sin \left(\frac{p \pi}{d} z\right) \tag{10-149c}\\
& H_{x}(x, y, z)=\frac{j \omega \epsilon}{h^{2}}\left(\frac{n \pi}{b}\right) E_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \cos \left(\frac{p \pi}{d} z\right) \tag{10-149~d}\\
& H_{y}(x, y, z)=-\frac{j \omega \epsilon}{h^{2}}\left(\frac{m \pi}{a}\right) E_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \cos \left(\frac{p \pi}{d} z\right), \tag{10-149e}
\end{align*}
\]
where
\[
\begin{equation*}
h^{2}=\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2} \tag{10-149f}
\end{equation*}
\]

From Eq. (10-95), we obtain the following expression for the resonant frequency for \(\mathrm{TM}_{m n p}\) modes:
\[
\omega_{m n p}=\frac{1}{\sqrt{\mu \epsilon}} \sqrt{\left(\frac{m \pi}{a}\right)^{2}+\left(\frac{n \pi}{b}\right)^{2}+\left(\frac{p \pi}{d}\right)^{2}}
\]
or
\[
\begin{equation*}
f_{m n p}=\frac{u}{2} \sqrt{\left(\frac{m}{a}\right)^{2}+\left(\frac{n}{b}\right)^{2}+\left(\frac{p}{d}\right)^{2}} \quad(\mathrm{~Hz}) \tag{10-150}
\end{equation*}
\]

\section*{10-6.2 TE mnp Modes}

For \(\mathrm{TE}_{m n p}\) modes \(\left(E_{z}=0\right.\)), the phasor expressions for the standing-wave field components can be written from Eqs. (10-103) and (10-104a, b. c, d). We follow the same rules as those we used for \(\mathrm{TM}_{m n}\) modes; namely, (1) the transverse (tangential) electric field components must vanish at \(z=0\) and \(z=d\), and (2) the factor \(\gamma\) indicates
at the hat (1) zument 0-94b) at comir \((-\gamma)\), b: c, d), ingular
\(-149 a) a\)
-149b)
j-149c)

3-14. .)
\(0-144 \mathrm{e})\)
()-149f)
equency
:eld inthe same ingential) indicates
a negative partial differentiation with respect to \(z\). The first rule requires a \(\sin (p \pi z / d)\) factor in \(E_{x}\left(x_{;} y ; z\right)\) and \(E_{y}(x, y, z)\), as well as in \(H_{z}(x, y, z)\); and the second rule indicates a \(\cos (p i z / d)\) factor in \(H_{x}(x, y, z)\) and \(H_{y}(x, y, z)\), and the replacement of \(\gamma\) by \(-(p \pi / d)\). Thus,
\[
\begin{align*}
& H_{z}(x, y, z)=H_{0} \cos \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \sin \left(\frac{p \pi}{d} z\right) \tag{10-151a}\\
& E_{x}(x, y, z)=\frac{j \omega \mu}{h^{2}}\left(\frac{n \pi}{b}\right) H_{0} \cos \left(\frac{n \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \sin \left(\frac{p \pi}{d} z\right) \tag{10-151~b}\\
& E_{y}(x, y, z)=-\frac{j \omega \mu}{h^{2}}\left(\frac{m \pi}{a}\right) H_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \sin \left(\frac{p \pi}{d} z\right) \tag{10-151c}\\
& H_{x}(x, y, z)=-\frac{1}{h^{2}}\left(\frac{n \pi}{a}\right)\left(\frac{p \pi}{d}\right) H_{0} \sin \left(\frac{m \pi}{a} x\right) \cos \left(\frac{n \pi}{b} y\right) \cos \left(\frac{p \pi}{d} z\right) \tag{10-151d}\\
& H_{y}(x, y, z)=-\frac{1}{h^{2}}\left(\frac{1 \pi}{b}\right)\left(\frac{p \pi}{d}\right) H_{0} \cos \left(\frac{m \pi}{a} x\right) \sin \left(\frac{n \pi}{b} y\right) \cos \left(\frac{p \pi}{d} z\right), \tag{10-151e}
\end{align*}
\]
where \(h^{2}\) has been given in Eq. (10-149f). The expression for resonant frequency, \(f_{m n p}\), remains the same as that obtained for \(\mathrm{TM}_{\text {mnp }}\) modes in Eq. (10-150). Different modes having the same resonant frequency are called degenerate modes. The mode with the lowest resonant frequency for a given cavity size is referred to as the dominamt mode.

A particular mode n a cavity resonator-(or a waveguide) may be excited from a coaxial line by means of a small probe or loop antenna. In Fig. 10-15(a) a probe is shown that is the tip of the inner conductor of a coaxial cable and protrudes into a cavity at a location where the electric field is a maximum for the desired mode. The probe is, in fact, an antenna that coupies electromagnetic energy into the resonator. Alternatively, a cavity resonator may be excited through the introduction of a small loop at a piace where the magnetic flux of the desired mode linking the loop is a maximum. Figure \(10-15(\mathrm{~b})\) illustrates such an arrangement. Of course, the source frequency from the coasal line must be the same as the resonant frequency of the desired mode in the cavity.

As an example, for the \(\mathrm{TE}_{101}\) mode in an \(a \times b \times d\) rectangular cavity, there are only three nonzero field components:
\[
\begin{align*}
& E_{y}=-\frac{j(\omega) \mu \pi}{h^{2} a} H_{1}, \sin \left(\frac{\pi}{a} x\right) \sin \left(\frac{\pi}{d} z\right) \tag{10-152a}\\
& H_{x}=-\frac{\pi^{2}}{h^{2} a d} H_{0} \cdot \sin \left(\frac{\pi}{a} x\right) \cos \left(\frac{\pi}{d} z\right) \tag{10-152b}\\
& H_{=}=H_{0} \cos \left(\frac{\pi}{a} \cdot x\right) \sin \left(\frac{\pi}{d} z\right) . \tag{10-152c}
\end{align*}
\]

This mode may be excited by a probe inserted in the center region of the top or bottom face where \(E_{\text {, }}\) is maximum, as shown in Fig. 10-15a, or by a loop to couple
a maximum \(H_{x}\) placed inside the front or back face, as shown in Fig. \(10-15\) b. The best location of a probe or a loop is affected by the impedance-matching requirements of the microwave circuit of which the resonator is a part.

A commonly used method for coupling energy from a waveguide to a cavity resonator is the introduction of a hole or iris at an appropriate location in the cavity wall. The field in the waveguide at the hole must have a component that is favorable in exciting the desired mode in the resonator.

Example 10-11 Determine the dominant modes and their frequencies in an airfilled rectangular cavity resonator for (a) \(a>b>d\), (b) \(a>d>b\), and (c) \(a=b=d\), where \(a, b\), and \(d\) are the dimensions in the \(x, y\), and \(z\) directions respectively.

Solution: With the \(z\) axis chosen as the reference "direction of propagation": First, for \(\mathrm{TM}_{m n}\) modes, Eqs. (\(10-149 \mathrm{a} . \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\)) show that neither \(m\) nor \(n\) can be zero, but that \(p\) can be zero; second, for \(\mathrm{TE}_{\text {mn }}\), modes, Eqs. (\(10-151 \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\)) show that cither \(m\) or \(n\) (but not both \(m\) and \(n\)) can be zero, but that \(p\) cannot be zero. Thus. the modes of the lowest orders are
\[
\mathrm{TM}_{110}, \quad \mathrm{TE}_{011,}, \quad \text { and } T E_{101}
\]

The resonant frequency for both TM and TE modes is given by Eq. (10-150).
a) For \(a>b>d\) : The lowest resonant frequency is
\[
f_{110}=\frac{c}{2} \sqrt{\frac{1}{a^{2}}+\frac{1}{b^{2}}},
\]
where \(c\) is the velocity of light in free space. Therefore \(\mathrm{TM}_{110}\) is the dominant mode.
b) For \(a>d>b\) : The lowest resonant frequency is
\[
f_{101}=\frac{c}{2} \sqrt{\frac{1}{a^{2}}+\frac{1}{d^{2}}}
\]
and \(\mathrm{TE}_{101}\) is the dominant mode.
c) For \(a=b=d\), all three of the lowest-order modes (namely, \(\mathrm{TM}_{110}, \mathrm{TE}_{011}\), and \(T E_{101}\)) have the same field patterns. The resonant frequency of these degenerate modes is
\[
f_{110}=\frac{c}{\sqrt{2 a}}
\]

\section*{10-6.3 Quality Factor of Cavity Resonator}

A cavity resonator stores energy in the electric and magnetic fields for any particular mode pattern. In any practical cavity the walls have a finite conductivity; that is, a nonzero surface resistance, and the resulting power loss causes a decay of the stored
energy. The quality factor, or \(Q\), of a resonator, like that of any resonant circuit. is a measure of the bandwidth of the resonator and is defined as
\[
\begin{equation*}
Q=2 \pi \frac{\text { Time-average energy stored at a resonant frequency }}{\text { Energy dissipated in one period of this frequency }} \tag{10-153}
\end{equation*}
\]
(Dimensionless)
Let \(W\) be the total time-average energy in a cavity resonator. We write
\[
\begin{equation*}
W=W_{c}+W_{m}, \tag{10-154}
\end{equation*}
\]
where \(W_{e}\) and \(W_{m}\) dencte the energies stored in the electric and magnetic fields respentively. If \(P_{L}\) is the cime-average power dissipated in the cavity, then the energy dissipated in one period is \(P_{L}\) divided by frequency, and Eq. \((10-153)\) can be written as
\[
\begin{equation*}
Q=\frac{\omega W}{P_{L}} \quad \text { (Dimensionless). } \tag{10-155}
\end{equation*}
\]

In determining the \(Q\) of \(a\) cavity at a resonant frequency, it is customary to assume that the loss is smail eno agh to allow the use of the field patterns without loss.

We will now find the \(Q\) of an \(a \times b \times d\) cavity for the \(T E_{101}\) mode that has three nonzero field components given in Eqs. (\(10-152 \mathrm{a}, \mathrm{b}\), and c). The time-average stored electric energy is
\[
\begin{align*}
W_{\mathrm{e}} & =\frac{\epsilon_{0}}{4} \int\left|L_{i}\right|^{2} d x \\
& =\frac{\epsilon_{0} \omega^{2} \mu_{0}^{2} \pi^{2}}{4 h^{4} \sigma^{2}} H_{0}^{2} \int_{0}^{a} \int_{0}^{b} \int_{0}^{a} \sin ^{2}\left(\frac{\pi}{a} x\right) \sin ^{2}\left(\frac{\pi}{d} z\right) d x d y d z \\
& =\frac{\epsilon_{0} \omega_{0}^{2}, \mu_{0}^{2} a^{2}}{4 \pi^{2}} H_{0}^{2}\left(\frac{a}{2}\right) b\left(\frac{d}{2}\right)=\frac{1}{4} \epsilon_{0} \mu_{0}^{2} a^{3} b d f_{101}^{2} H_{0}^{2}, \tag{10-156a}
\end{align*}
\]
where we have used \(h^{2}:=(\pi / a)^{2}\) from Eq. (10-i49f). The total time-average stored magnetic energy is
\[
\begin{align*}
W_{m}= & \frac{\mu_{0}}{4} \int\left\{\left|H_{x}\right|^{2}+\mid H_{z}^{2}\right\} d v \\
= & \frac{\mu_{0}}{4} H_{0}^{2} \int_{0}^{4} \int_{0}^{a} \int_{0}^{a}\left\{\frac{\pi^{4}}{h^{4} a^{2} d^{2}} \sin ^{2}\left(\frac{\pi}{a} x\right) \cos ^{2}\left(\frac{\pi}{d} z\right)\right. \\
& \left.+\cos ^{2}\left(\frac{\pi}{a} x\right) \sin ^{2}\left(\frac{\pi}{d} z\right)\right\} d x d y d z \\
= & \frac{\mu_{0}}{4} H_{0}^{2}\left\{\frac{a^{2}}{d^{2}}\left(\frac{1}{2}\right) b\left(\frac{d}{2}\right)+\left(\frac{a}{2}\right) b\left(\frac{d}{2}\right)\right\}=\frac{\mu_{0}}{16} a b d\left(\frac{a^{2}}{d^{2}}+1\right) H_{0}^{2} . \tag{10-156b}
\end{align*}
\]

From Eq. (10-150), the resonant frequency for the \(\mathrm{TE}_{101}\) mode is
\[
\begin{equation*}
f_{101}=\frac{1}{2 \sqrt{\mu_{0} \epsilon_{0}}} \sqrt{\frac{1}{a^{2}}+\frac{1}{d^{2}}} \tag{10-157}
\end{equation*}
\]

Substitution of \(f_{101}\) from Eq. (10-157) in Eq. (10-156a) proves that at the resonant frequency \(W_{e}=W_{m}\). Thus,
\[
\begin{equation*}
W=2 W_{e}=2 W_{m}=\frac{\mu_{0} H_{0}^{2}}{8} a b d\left(\frac{a^{2}}{d^{2}}+1\right) . \tag{10-158}
\end{equation*}
\]

To find \(\dot{P}_{L}\), we note that the power loss unit area is
\[
\begin{equation*}
\mathscr{P}_{a v}=\frac{1}{2}\left|J_{s}\right|^{2} R_{s}=\frac{1}{2}\left|H_{t}\right|^{2} R_{s}, \tag{10-159}
\end{equation*}
\]
where \(\left|H_{t}\right|\) denotes the magnitude of the tangential component of the magnetic field at the cavity walls. The power loss in the \(z=d\) (hack) wall is the same as that in the \(z=0\) (front) wall. Similarly, the power loss in the \(x=a\) (left) wall is the same as that in the \(x=0\) (right) wall: and the power loss in the \(y\) f (upper) wall is the same as that in the \(y=0\) (lower) wall. We have
\[
\begin{align*}
P_{L}= & \oint \mathscr{P}_{a v} d s=R_{s}\left\{\int_{0}^{b} \int_{0}^{a}\left|H_{x}(z=0)\right|^{2} d x d y+\int_{0}^{a} \int_{0}^{b}\left|H_{z}(x=0)\right|^{2} d y d z\right. \\
& \left.+\int_{0}^{d} \int_{0}^{a}\left|H_{x}\right|^{2} d x d z+\int_{0}^{d} \int_{0}^{a}\left|H_{z}\right|^{2} d x d z\right\} \\
= & \frac{R_{s} H_{0}^{2}}{2}\left\{\frac{a^{2}}{d}\left(\frac{b}{d}+\frac{1}{2}\right)+d\left(\frac{b}{a}+\frac{1}{2}\right)\right\} . \tag{10-160}
\end{align*}
\]

Using Eqs. (\(10-158\)) and (\(10-160\)) in Eq. (\(10-155\)), we obtain
\[
Q_{101}=\frac{\pi f_{101} \mu_{0} a b d\left(a^{2}+d^{2}\right)}{R_{s}\left[2 b\left(a^{3}+d^{3}\right)+a d\left(a^{2}+d^{2}\right)\right]}
\]
where \(f_{101}\) has been given in Eq. (10-157).
Example 10-12 (a) What should be the size of a hollow cubic cavity made of copper in order for it to have a dominant resonant frequency of \(10(\mathrm{GHz})\) ? (b) Find the \(Q\) at that frequency.

\section*{Solution}
a) For a cubic cavity, \(a=b=d\) : From Example \(10-11\), we know that \(\mathrm{TM}_{110}\), \(T E_{011}\), and \(\mathrm{TE}_{101}\) are degenerate dominant modes having the same field patterns, and that
\[
f_{101}=\frac{3 \times 10^{8}}{\sqrt{2} a}=10^{10}(\mathrm{~Hz}) .
\]

\section*{Therefore}
\[
\begin{aligned}
a=\frac{3 \times 10^{8}}{\sqrt{2} \times 10^{10}} & =2.12 \times 10^{-2}(\mathrm{~m}) \\
& =21.2(\mathrm{~cm})
\end{aligned}
\]
b) The expression of \(Q\) in Eq. (\(10-161\)) for a cubic cavity reduces to
\[
\begin{equation*}
Q_{101}=\frac{\pi f_{101} \mu_{0} a l}{3 R_{5}}=\frac{a}{3} \sqrt{\pi f_{101} \mu_{0} \sigma} . \tag{10-162}
\end{equation*}
\]

For copper, \(\sigma=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m})\), we have
\[
Q_{101}=\left(\frac{2.12}{3} \times 10^{-2}\right) \sqrt{\pi 10^{10}\left(4 \pi 10^{-7}\right)\left(5.80 \times 10^{7}\right)}=10,700 .
\]

The \(Q\) of a cavity resonator is. thus, extremely high compared with that obtainable from lumped L-C resonant circuits. In practice, the preceding value is somewhat lower due to losses through feed connections and surface irregularities.

\section*{REVIEW QUESTIONS}
R.10-1 Why are the common types of iransmission lines not useful for the long-distance signal transmission of microwave: frequencies in the TEM mode? .
R.10-2 What is meant by a cutoff frequency of a waveguide?
R.10-3 Why are lumped-parameter elements connected by wires not useiul as resonant circuits at microwave frequencies?
R.10-4 What is the governing equation for electric and magnetic field intensity phasors in the dielectric region of a straight waveguide with a uniform cross section?
R.10-5 What are the three basic types of propagating waves in a uniform waveguide?
R.10-6 Define wave impt dance.
R.10-7 Explain why single-conductor hollow or dielectric-filled waveguides cannot support TEM waves.
R.10-8 Discuss the analytical procedure for studying the characteristics of TM waves in a waveguide.
R.10-9 Discuss the analytical procedure for studying the charauteristics of TE waves in a waveguice.-
R.10-10 What are eigenvalies of a boundary-value problem?
R.10-11 Can a waveguide have more than one cutoff frequency? On what factors does the cutoff frequency of a waveguiae depend.
R.10-12 What is an ecanencent mode?
R.10-13 Is the guide wavelength of a propagating wave in a waveguide longer or shorter than the wavelength in the corresponding unbounded dielectric medium?
R.10-14 In what way does the wave impedance in a waveguide depend on frequency:
a) For a propagating TEM wave?
b) For a propagating TM wave?
c) For a propagating TE wave?
R.10-15 What is the significance of a purely reactive wave impedance?
R.10-16 Can one tell from an \(\omega-\beta\) diagram whether a certain propagating mode in a waveguide is dispersive? Explain.
R.10-17 Explain how one determines the phase velocity and the group velocity of a propagating mode from its \(\omega-\beta\) diagram.
R.10-18 What is meant by an eigenmode?
R.10-19 On what factors does the cutoff frequency of a parallel-plate waveguide depend?
R.10-20 What is meant by the dominant mode of a waveguide? What is the dominant mode of a parallei-plate waveguide?
R.10-21 Can a TM or TE wave with a wavelength \(3(\mathrm{~cm})\) propagate in a parallel-plate waveguide whose plate separation is \(1(\mathrm{~cm}) ? 2(\mathrm{~cm})\) ? Explain.
R.10-22 Compare the cutoff frequencies of \(\mathrm{TM}_{0}, \mathrm{TM}_{n}, \mathrm{TM}_{m}(m>n)\), and \(\mathrm{TE}_{n}\) modes in a parallel-plate waveguide.
R.10-23 Does the attenuation constant due to dielectric losses increase or decrease with frequency.for TM and TE modes in a parailel-plate waveguide?
R.10-24 Discuss the essential differences in the frequency behavior of the attenuation caused by finite plate conductivity in a parallel-piate waveguide for TEM. TM, and TE modes.
R.10-25 State the boundary conditions to be satisficd by \(E_{z}\) for \(T M\) waves in a rectangular waveguide.
R.10-26 Which TM mode has the lowest cutoff frequency of all the TM modes in a rectangular waveguide?
R.10-27 State the boundary conditions to be satisfied by \(H_{z}\) for TE waves in a rectangular waveguide.
R.10-28 Which mode is the dominant mode in a rectangular waveguide if (a) \(a>b\), (b) \(a<b\). and (c) \(a=b\) ?
R.10-29 What is the cutoff wavelength of the \(T E_{10}\) mode in a rectangular waveguiue?
R.10-30 Which are the nonzero field components for the \(T E_{10}\) mode in a rectangular waveguide?
R.10-31 Discuss the general attenuation behavior caused by wall losses as a function of frequency for the \(T E_{10}\) mode in a rectangular waveguide.

R.10-32 Discuss the factors that affect the choice of the linear dimensions \(a\) and \(b\) for the cross section of a rectangular waveguide.
R.10-33 Why is it necessary that the permittivity of the dielectric slab in a dielectric waveguide be larger than that of the surrounding medium?

\section*{R.10-34 What are dispersion refations?}
R.10-35 Can a dielectric-slab waveguide support an infinite number of discrete TM and TE modes? Explain.
R.10-36 What kind of surface can support a TM surface wave? A TE surface wave?
R.10-37 What is the dominant mode in a dielectric-slab waveguide? What is its cutoff frequency?
R.10-38 Does the attenuation of the waves outside a dielectric slab waveguide increase or . decrease with slab thickness?
R.10-39 What are cavity resonators? What are their most desirable properties?
R.10-40 Are the field patterns in a cavity resonator traveling waves or standing waves? How do they differ from those in 1. waveguide?
R.10-41 In terms of field patterns what does the \(\mathrm{TM}_{110}\) mode signify? The \(\mathrm{TE}_{123}\) mode?
R.10-42 What is the expreision for the resonant frequency of \(\mathrm{TM}_{m n p}\) modes in a rectangular cavity resonator of dimensic ns \(a \times b \times d\) ? Of \(\mathrm{TE}_{m n p}\) modes? .
R.10-43 What is meant by legenerate modes?
R.10-44 What are the mod es of the lowest orders in a rectangular caviry resonator?
R.10-45 Define the quality factor, \(Q\), of a resonator.
R.10-46 Explain why the measured \(Q\) of a cavity resonator is lower than the calculated value.

\section*{PROBLEMS}
P.10-1 Starting from the two time-harmonic Maxwells curl equations in cylindrical coordinates, Eqs. (\(7-85 \mathrm{a}\)) and (\(7-\left\{5 b\right.\)), express the transverse field components \(E_{r}, E_{\phi}, H_{r}\), and \(H_{\phi}\) in terms of the longitudinal cormponents \(E_{\text {: }}\) and \(H_{\text {: }}\). What equations must \(E_{\text {: }}\) and \(H_{\text {: }}\) satisfy?
P.10-2 In studying the ware behavior in a straight waveguide having a uniform but arbitrary cross section, it is expedient to find general formulas expressing the transverse field components in terms of their longitudinal components. We write
\[
\begin{aligned}
\mathbf{E} & =\mathbf{E}_{T}+\mathbf{a}_{z} E_{Z} \\
\mathbf{H} & =\mathbf{H}_{r}+\mathbf{a}_{2} H_{z} \\
\boldsymbol{\nabla} & =\boldsymbol{\nabla}_{T}-\mathbf{a}_{z} \frac{\hat{\partial}}{\hat{\partial} Z},
\end{aligned}
\]
where the subscript \(T\) denotes "transverse." Prove the following relations for time-harrionic excitation:
a) \(\mathrm{E}_{T}=-\frac{1}{h^{2}}\left(\gamma \nabla_{T} E_{Z}-\mathbf{a}_{z} j \omega \mu \times \nabla_{T} H_{z}\right)\)
b) \(\mathbf{H}_{T}=-\frac{1}{h^{2}}\left(\gamma \nabla_{T} H_{z}+\mathbf{a}_{z} j \omega \in \times \nabla_{T} E_{z}\right)\),
(10-163b)
where \(h^{2}\) is that given in Eq. (10-13).
P.10-3 For rectangular waveguides,
a) plot the universal circle diagrams reiating \(u_{g} / u\) and \(\beta / k\) versus \(f_{c} / f\),
b) plot the universal graphs of \(u / u_{p} . \beta / k\), and \(i_{q} / \lambda\) versus \(f / f_{c}\),
c) find \(u_{p} / u, u_{g} / u, \beta / k\), and \(i_{g} / \lambda\) at \(o f=1.25 f_{c}\).
P.10-4 Sketch the \(\sigma\) - \(\beta\) diagram of a parallel-plate waveguide separated by a dielectric slab of thickness \(b\) and constitutive parancters \((\epsilon, \mu)\) for \(\mathrm{TM}_{1}, \mathrm{TM}_{2}\), , and \(\mathrm{TM}_{3}\) modes. Discuss
a) how \(b\) and the constitutive parameters affect the diagram.
b) whether the same curves apply to TE modes.

P.10-5 Obtain the expressions for the surface charge density and the surface current density for \(\mathrm{TM}_{n}\) modes on the conducting plates of a parallei-plate waveguide. Do the currents on the two plates flow in the same direction or in opposite directions?
P.10-6 Obtain the expressions for the surface current density for \(T E_{n}\) modes on the conducting plates of a parallel-plate waveguide. Do the currents on the two plates flow in the same direction or in opposite directions?
P.10-7 Sketch the electric and magnetic field lines for (a) the \(T M_{2}\) mode and (b) the \(T E_{2}\) mode in a parallel-plate waveguide.
P.10-8 A waveguide is formed by two parallel copper sheets- \(\sigma_{c}=5.80 \times 10^{7}(\mathrm{~S} / \mathrm{m})\)-separated by a \(5-(\mathrm{cm})\) thick lossy diclectric \(\quad-\epsilon_{r}=2.25, \mu_{r}=1, \sigma=10^{-10}(\mathrm{~S} / \mathrm{m})\). For an operating frequency of \(10\left(\mathrm{GHz}\right.\)), find \(\beta, y_{d}, x_{c}, u_{p}, u_{g}\), and \(\lambda_{g}\) for (a) the TEM mode, (b) the TM \(\mathrm{T}_{1}\) mode. and (c) the \(\mathrm{TM}_{2}\) mode.
P.10-9 Repeat problem P.10-8 for (a) the \(T E_{1}\) mode and (b) the \(T E_{2}\) mode.
P.10-10 For a parallel-plate waveguide,
a) find the frequency (in terms of the cutoff frequency \(f_{c}\)) at which the attenuation constant due to conductor losses for the \(\mathrm{TM}_{n}\) mode is a minimum,
b) obtain the formula for this minimum attenuation constant.
c) calculate this minimum \(x_{c}\) for the \(T M_{1}\) mode if the parailel plates are made of copper and spaced \(5(\mathrm{~cm})\) apart in air.
P.10-11 A parallel-plate waveguide made of two perfectly conducting infinite planes spaced \(3(\mathrm{~cm})\) apart in air operates at a frequency \(10(\mathrm{GHz})\). Find the maximum time-average power that can be propagated per unit width of the guide without a voltage breakdown for
a) the TEM mode.
b) the \(T M_{1}\) mode.
c) He TE, mode.
 cutoff wavelength.
P.10-13 For an \(a \times b\) rectargular waveguide operating at the \(\mathrm{TM}_{11}\) mode.
a) derive the expressicns for the surface current densities on the conducting walls,
b) sketch the surface currents on the walls at \(x=0\) and at \(y=b\).
P.10-14 Calcuiate and list is ascending order the cutoff frequencics (in terms of the cutoff fequency of the dominant mede) of an \(a \times b\) rectangular waveguide for the following modes: \(\mathrm{TE}_{01}, \mathrm{TE}_{10}, \mathrm{TE}_{11}, \mathrm{TE}_{02}, T E_{6}, \mathrm{TM}_{11}, \mathrm{TM}_{12}\), and \(\mathrm{TM}_{22}(a)\) if \(a=2 b\), and \((b)\) if \(a=b\).
P. 16-15 An air-filled \(a \times b(b<a<2 b\)) rectangular watveguide is to be consiructed to operate an \(3\left(\mathrm{GHz}\right.\)) in the dominame node. We desire the operating frequency to be at least \(20^{\circ} \%\) higher than the cutoif frequency of the dominam mode and also at least \(20 \%\) below the cutoff frequency of the next higher-order mod:.
a) Give a typical desig: for the cimensions \(a\) and \(b\).
b) Calculate for your design \(\beta, u_{p}, i_{2 j}\), and the wave impedance at the operating frequency.
P.10-16 Calculate and comrare the values of \(\beta, u_{p}, u_{g}, i_{g}\), and \(Z_{\mathrm{TE}, 1,}\) for a \(2.5(\mathrm{~cm}) \times 1.5(\mathrm{~cm})\) rectangular waveguide operatirg at \(7.5(\mathrm{GHz})\)
a) if the waveguide is hollow,
b) if the waveguide is thlled with a diclectric medium characterized by \(\epsilon_{r}=2, \mu_{r}=1\) and \(\sigma=0\).
P.10-17 An air-filled rectangular waveguide made oi copper and having transverse dimensions \(a=7.20(\mathrm{~cm})\) and \(b=3.40(\mathrm{~cm})\) operates at a frequency \(3(\mathrm{GHz})\) in the dominant mode. Find (a) \(f_{c}\), (b) \(\lambda_{g}\), (c) \(\alpha_{c}\), and (d) the distance over which the field intensities of the propagating wave will be attenuated by \(50 \%\).
P.10-18 An average power of \(1(\mathrm{~kW})\) at \(10(\mathrm{G}: \mathrm{Hz})\) is to be delivered to an antenna at the \(T E_{10}\) mode by an air-filled rectangular copper waveguide \(1(\mathrm{~m})\) long and having sides \(a=2.25(\mathrm{~cm})\) and \(b=1.00(\mathrm{~cm})\). Find

c) the maximum value of the surface current density on the conducting walls,
d) the total amount of a verage power dissipated in the waveguide.
P.10-19 Find the maximum amount of \(10-(\mathrm{GHz})\) average powe: that can be transmitted through an air-filled rectangular waveguide- \(a=2.25(\mathrm{~cm}), b=1.00(\mathrm{~cm})\)-at the \(T E_{10}\) mode without a breakdown.
P.10-20 Determine the value of \(\left(f / f_{c}\right)\) at which the attenuation constant due to conductor losses in an \(a \times b\) rectangular waveguide for the \(\mathrm{TE}_{10}\) mode is a minimum.
P.10-21 Find the formula for the attenuation constant due to conductor losses in an \(a \times b\) rectangular waveguide for the \(\mathrm{TM}_{11}\) mode.
P.10-22 Show that electromagnetic waves propagate along a dielectric waveguide with a velocity between that of plane-wave propagation in the dielectric medium and that in the medium outside.
P.10-23 Find the solutions of Eq. (10-132) for \(k_{y}\) by plotting \(\alpha d\) versus \(k_{y} d\) for \(d=1\) (cm) and \(\epsilon_{r}=3.25\) if (a) \(f=200(\mathrm{MHz})\) and (b) \(f=500(\mathrm{MHz})\). Determine \(\beta\) and \(\alpha\) for the lowest-order \(\therefore \quad\) odd TM modes at the two frequencies.
P.10-24 Repeat problem P.10-23 using Eq. (10-135) for the lowest-order even TM modes.
P.10-25 For an infinite dielectric-siab waveguide of thickness \(d\) situated in air, obtain the instantaneous expressions of all the nonzero field components for even TM modes in the slab, as well as in the upper and lower free-space regions.
P.10-26 When the slab thickness of a dielectric-slab waveguide is very small in terms of the operating wavelength, the field intensities decay very slowly away from the stab surface, and the propagation constant is nearly equal to that of the surrounding medium.
a) Show that if \(k_{y} d \ll 1\), the following relations hold approximately for the dominant \(T E\) mode:
\[
\begin{aligned}
& \beta \cong k_{u_{1}} \\
& \alpha \cong \frac{\mu_{10} d}{2 \mu_{d}}\left(k_{d}^{2}-k_{0_{1}}^{2}\right),
\end{aligned}
\]
where \(k_{d}=\omega \sqrt{\mu_{d} \epsilon_{d}}\) and \(k_{0}=\omega \sqrt{\mu_{n} \epsilon_{0}}\).
b) For a slab of thickness \(5(\mathrm{~mm})\) and dielectric constant 3 . estimate the distance from the slab surface at which the field incensities have decayed to \(36.8 \%\) of their values at the surface for an operating frequency of \(300(\mathrm{MHz})\).
P.10-27 For an infinite dielectric-slab waveguide of thickness \(d\) situated in free space, obtain the instantaneous expressions of all the nonzero field components for even TE modes in the slab. as well as in the upper and lower free-space regions. Derive Eq. (10-145).
P.10-28 A waveguide consists of an inlinite dicicetric stab \(\left(\epsilon_{d}, \mu_{d}\right)\) of thickness \(d\) that is stiting on a perfect conductor.
a) What are the propagating modes and what are their cutoff frequencies?
b) Obtain the phasor expressions for the surface current and surface charge densities on the conducting base for the propagating modes.
P.10-29 Given an air-filled lossless rectangular cavity resonator with dimensions \(8(\mathrm{~cm}) \times\) \(6(\mathrm{~cm}) \times 5(\mathrm{~cm})\). find the first twelve lowest-order modes and their resonant frequencies.
P.10-30 An air-filled rectangular cavity with brass walls- \(\epsilon_{0}, \mu_{0}, \sigma=1.57 \times 10^{\top}(\mathrm{S} / \mathrm{m})\)-has the following dimensions: \(a=4(\mathrm{~cm}), b=3(\mathrm{~cm})\), and \(d=5(\mathrm{~cm})\).
a) Determine the dominant mode and its resonant frequency for this cavity.
b) Find the \(Q\) and the time-average stored electric and magnetic energies at the resonant frequency, assuming \(H_{0}\) to be \(0.1(\mathrm{~A} / \mathrm{m})\).

Fig. 10-16 A ring-shaped resonator with a narrow center part (Problem P.10-34).
P.10-34 In some microwave applications ring-shaped cavity resonators with a very narrow center part are used. A cross section of such a resonator is shown in Fig. 10-16, in which \(d\) is very small compared with the resonant waveiength. Assuming that this resonator can be represented approximately by a parallel combination of the capacitance of the narrow center part and the inductance of the rest of the structure, find
a) the approximat: resonant frequency.
b) the approximati: resonant wavelength.

\section*{11 Antennas and Radiating Systems}

\section*{11-1 INTRODUCTION}

In Chapter 8 we studied the propagation characteristics of plane electromagnetic waves in source-free nedia without considering how the waves were gencrated. Of course, the waves must originate from sources, which in electromagnetic terms are time-varying charges and currents. In order to radiate electromagnetic energy efficiently in prescribed directions, the charges and currents must be distributed in specific ways. Antennas are structures designed for radiating electromagnetic energy effectively in a prescribed manner. Without an efficient antenna, electromagnetic energy would be localized, and wireless transmission of information over long distances would be impossible.

An antenna may be a single straight wire or a conducting loop excited by a voltage source, an aperture at the end of a waveguide, or a complex array of these properly arranged radiating elements. Reflectors and lenses may be used to accentuate certain radiation characteristics. Among radiation characteristics of importance are field pattern, directivity, impedance, and bandwidth. These parameters will be examined when particular antenna types are studied in this chapter.

To study electromagnetic radiation we must call upon our knowledge of Maxwell's equations and relate electric and magnetic fields to time-varying charge and current distributions. A primary difficulty of this task is that the charge and current distributions on antenna structures resulting from given excitations are generally unknown and very difficult to determine. In fact, the geometrically simple case of a straight conducting wire (linear antenna) excited by a voltage source in the middle \({ }^{+}\) has been a subject of extensive reacardifor many years, and the exact charge and current distributions on a wire of a linite radius are extremely complicated even when the wire is assumed to be perfectly conducting. Fortunately, the radiation lield of such an antenna is relatively insensitive to slight deviations in the current distribution, and a physically plausible approximate current on the wire yields useful results for nearly all practical purposes. We will examine the radiation properties of linear antennas with assumed currents.

\footnotetext{
- This arrangement is called a dipele amenna.
}```

[^0]: ${ }^{\dagger}$ The product of the wavelength and the frequency of an AC source is the velocity of wave propagation.

[^1]: ${ }^{\dagger}$ In 1962 Murray Gell-Mann hypothesized quarks as the basic building blocks of matter. Quarks were predicted to carry a fraction of the charge, e, of an electron; but, to date, their existence has not been verified experimentally.

 * The system of units will be discussed in Section 1-3.

[^2]: : Quarks were

[^3]: ${ }^{+}$This system of units is said to be rationalized because the factor 4π does not appear in the Maxwell's equations (the fundamental postulates of electromagnetism). This factor, however, will appear in many derived relations. In the unrationalized MKSA system, μ_{0} would be $10^{-7}(\mathrm{H} / \mathrm{m})$, and the factor 4π would appear in the Maxwell's equations.

[^4]: ${ }^{+}$In some books the unlt vector in the direction of \mathbf{A} is variouidy denoted by \hat{A}, u_{A}, or i_{A}.

[^5]: ${ }^{\dagger}$ The back-cab rule can be verified in a straightforward manner by expanding the vectors in the Cartesian coordinate system (Problem P.2-8). Only those interested in a general proof need to study this example.

[^6]: "The term "Cartesian coordinates" is preferred because the term "rectangular coordinates" is customarily associated with two-dimensional geometry.

[^7]: ${ }^{\text {' In }}$ a more formal treatment, changes ΔV and Δf would be used, and the ratio $\Delta V / \Delta \rho$ would become the derivative $d V / d \ell$ as ΔC approaches zoro. We avoid this formality in fąor of simplicity.

[^8]: ${ }^{\dagger}$ It is also known as Gauss's theorem.

[^9]: ${ }^{7}$ In books published in Europe the curl of \mathbf{A} is often called the rotation of \mathbf{A} and written as rot \mathbf{A}.

[^10]: ${ }^{4}$ See. for instance. G. Ariken. Mathematical Methods for Physicists, Atademic Press (1966), Section 1.15.

[^11]: ${ }^{\dagger}$ The exponent on the distance in Coulomb's law has been verified by an indirect experiment to be 2 to within one part in 10^{15}. See E. R. Williams, J. E. Faller, and H. AlHall, Phys. Rev. Letters, vol. 26, 1971, p. 721.)

[^12]: ${ }^{+}$The permittivity of free space $\epsilon_{0} \cong \frac{1}{36 \pi} \times 10^{-9}(\mathrm{~F} / \mathrm{m})$. See Eq. (1-11).

[^13]: 'We note here that V on the left side of Eq. (3-76) represents the electric potential at a field point, and V^{\prime} on the right side is the volume of the polarized dielectric.

[^14]: ${ }^{+}$Capacitors, whatever their actual shape, are conventionally represented in circuits by pairs of parallel bars.

[^15]: ${ }^{\dagger}$ For point charges $V \propto 1 / R$ and $D \propto 1 / R^{2}$; for dipoles $V \propto 1 / R^{2}$ and $D \propto 1 / R^{3}$.

[^16]: ${ }^{+}$The other solution, $d=\frac{1}{2}\left(D-\sqrt{D^{2}-4 a^{2}}\right)$, is discarded because both D and d are usually much larger than a.

[^17]: ${ }^{4}$ The exponential forms of $X(x)$ are related to the trigonometric and hyperbolic forms listed in the third column by the following formulas:

 $$
 \begin{aligned}
 & e^{ \pm k x}=\cos k x \pm j \sin k x, \quad \cos k x=\frac{1}{2}\left(e^{j k x}+e^{-j k x}\right), \quad \sin k x=\frac{1}{2 j}\left(e^{j k x}-e^{-j k x}\right) ; \\
 & e^{ \pm k x}=\cosh k x \pm \sinh k x, \quad \cosh k x=\frac{1}{2}\left(e^{k x}+e^{-k x}\right), \quad \sinh k x=\frac{1}{2}\left(e^{k x}-e^{-k k}\right) .
 \end{aligned}
 $$

[^18]: ${ }^{+}$Since Laplace's equation is a linear partial differential equation, the superposition of solutions is also a solution.

[^19]: ${ }^{\dagger}$ The term $A_{0} \phi$ should be retained if there is circumferential variation, such as in problems involving a wedge.

[^20]: ${ }^{\dagger}$ Actually Legendre polynomials are Legendre functions of the first kind. There is another set of solutions to Legendre's equation, called Legendre functions of the second kind; but they have singularities at $\theta=0$ and π and must, therefore, be excluded if the polar axis is a region of interest.

[^21]: ${ }^{*}$ For this problem it is convenient to assume $V=0$ in the equatorial plane ($\theta=\pi / 2$), which leads to $V(b, 0)=0$, since the surface of the conducting sphere is equipotential.. (See Problem P.4-21 for $V(b, \theta)=V_{0}$.)

[^22]: ${ }^{\dagger}$ In a time-varying situation, there is another type of current caused by bound charges. The time-rate of change of electric displacement leads to a displacement current. This will be discussed in Chapter 7.

[^23]: ${ }^{\dagger}$ We will discuss the significance of V_{12} and E more in detail in Section 5-3.

[^24]: ${ }^{\dagger}$ Also called electromotance.

[^25]: ' We assume the battery to have a regligible internal resistance; otherwise its effect must be included in Eq. (5-26). An ideal voltage source is one whose terminal voltage is equal to its cmf and is independent of the current llowing through it. This implies that an ideal voltage source has a zero internal resistance.

[^26]: ${ }^{\text {T }}$ This includes the currents of current generators at the junction, if any. An ideal current generator is one whose current is independent of its terminal voltage. This implies that an ideal current source has an infinite internal resistance.

[^27]: ${ }^{\dagger}$ See, for instance, E. Weber, Electromagnetic Fields, Vol. I: Mapping of Fields, pp. 187-193, John Wiley and Sons, 1950.

[^28]: ${ }^{1}$ One weber per square meter or one tesla equals 10^{4} gauss in CGS units. The earth magnetic field is about $\frac{1}{2}$ gauss or $0.5 \times 10^{-4} \mathrm{~T}$. (A weber is the same as a volt-second.)

[^29]: ${ }^{\dagger}$ Equation (6-16a) can also be obtained heuristically from the vector triple product formula in Eq. (2-20) by considering the del operator, ∇, a vector:

 $$
 \nabla \times(\nabla \times A)=\nabla(\nabla \cdot A)-(\nabla \cdot \nabla) A=\nabla(\nabla \cdot A)-\nabla^{2} \mathbf{A} .
 $$

 : Equation (6-19) holds for static magnetic felds. Modification is necessary for time-varying electromagnetic fields (see Eq. 7-46).

[^30]: "We are now dealing with direct (non-time-varying)" currents that give rise to steady magnetic fields. Circuits containing time-varying sources may send time-varying currents along an open wire and deposit charges at its ends. Antennas are examples.

[^31]: ${ }^{4}$ Although the magnetic dipole in Example 6-7 was taken to be a circular loop, it can be shown (Problem P.6-13) that the same expressions-Eqs. $(6-45)$ and $(6-48)$-are obtained when the loop has a rectangular shape, with $m=I S$, as given in Eq. (6-46).

[^32]: ${ }^{+}$Also called magnetomotance.

[^33]: ${ }^{+}$In order to obtain a more accurate numerical result, it is customary to consider the effective area of the air gap as slighty larger than the erows-sectiomal area of the lerromagnecie cores. with each of the lineat dimensions of the core cross section increased by the length of the air gap. If we were to make a correction like this in Eq. (6-75), B_{g} would become

 $$
 B_{g}=\frac{a^{2} B_{f}}{\left(a+\zeta_{g}\right)^{2}}<B_{f} .
 $$

[^34]: ${ }^{\dagger}$ This assumes an equal cross-sectional area for the core and the gap. If the core were to be constructed of insulated laminations of ferromagnetic material, the effective area for flux passage in the core would be smaller than the geometrical cross-sectional area, and B_{c} would be larger than B_{g} by a factor. This factor can be determined from the data on the insulated laminations.

[^35]: ${ }^{+}$It is assumed that the current is distributed uniformly in the inner conductor. This assumption does not hold for high-frequency AC currents.

[^36]: ${ }^{\dagger}$ In circuit theory books the symbol M is frequently used to denote mutual inductance.

[^37]: The subject of electromagnetic induction will be discussed in Chapter 7.

[^38]: ${ }^{+}$In the static case, a steady current in a conductor produces a static magnetic field that does not affect the eiectric field. Hence, E and D within a good conductor may be zero, but \mathbf{B} and H may not be zero.

[^39]: ${ }^{1}$ D. K. Cheng, Analysis of Linear Systems; Addison-Wesley Publishing Company, Chapter 5, 1959.

[^40]: ${ }^{\dagger}$ If the time reference is not explicitly specified, it is customarily taken as $\cos \omega t$.

[^41]: ${ }^{\dagger}$ Actually the loss mechanism of a dielectric material is a very complicated process, and the assumption of a constant conductivity is only a rough approximation.

[^42]: ${ }^{\dagger}$ This is a consequence of the ract that $\boldsymbol{\nabla} \cdot{ }^{\circ} \mathrm{E}_{0}=0$, where E_{0} is a constant vector (see problem P.2-18).

[^43]: ${ }^{\dagger}$ Neper is a dimensionless quantity. If $\%=1(\mathrm{~Np} / \mathrm{m})$, then a unit wave amplitude decreases to a magnitude $e^{-1}(=0.368)$ as it travels a distance of $1(\mathrm{~m})$. In terms of field intensities $1(\mathrm{~Np} / \mathrm{m})$ equals $20 \log _{10} e=$ $8.69(\mathrm{~dB} / \mathrm{m})$.

[^44]: * Also referred to as horizontal poiarization or E-polarization.

[^45]: ${ }^{4}$ Also referred to as vertical polarization or \mathbf{H}-polarization.

[^46]: ${ }^{\dagger}$ These are sometimes referred to as Fresnel's equations.

[^47]: 'These are also referred to as Fresnel's equations.

[^48]: ${ }^{\dagger}$ Principles of antennas and radiating systems will be discussed in Chapter 11.

[^49]: ${ }^{+}$This statement will be proved in Section 9-4 (see Eq. 9-87).

[^50]: ${ }^{+}$Sometimes referred to as the telegraphist's equations.

[^51]: ${ }^{\dagger} \cosh ^{-1}(D / 2 a) \cong \ln (D / a)$ if $(D / 2 a)^{2} \gg 1$.

[^52]: ${ }^{+}$Another set of solutions to part (c) is $\ell_{m}^{\prime \prime}=\ell_{m}-\lambda / 4=0.05(\mathrm{~m})$ and $R_{m}^{\prime}=S R_{0}=150(\Omega)$. Do you see why?

