$$
\begin{aligned}
& \text { فصل دوم: } \\
& \text { تنش و كرنش ناشى از } \\
& \text { نيروى محورى } \\
& \text { Chapter 2: } \\
& \text { Stress and } \\
& \text { strain-Axial } \\
& \text { loading }
\end{aligned}
$$

2.1) An introduction to stress and strain

2.1A) Normal strain under axial loading
(2.1A
2.1B) stress-strain diagram
2.1C) True stress and true strain
2.1D) Hooke's law: Modulus of elasticity
2. IE) Elastic versus plastic behavior ot a material
2.1F) Repeated loadings and fatigue
五 (2.1D

2.2) statically indeterminate problems
2.3) Problems involving temperature changes

2.4) Poisson's ratio

ज
2.5) Multiaxial loading: Generalized Hookers law (2.5
2.6) Dilatation and bulk modulus
2.7) Shearing strain
 between E, V, and G (2.8 2.9
2.9) stress -strain relation ships for fiber-reinforced composite materials (2.10 2.10) stress and strain distribution under axial lading: saint-venantes principle

+ Introduction
 ا ان-

 $\dot{-i}$

入
的

2.1) An introduction to stress and strain
(2.1

 الא

 (3 (3)
品何

二，تَ

！

$$
\begin{equation*}
\frac{\delta}{L}=\frac{2 \delta}{2 L} \tag{I}
\end{equation*}
$$

$$
\begin{equation*}
\sigma=\frac{P}{A}=\frac{2 P}{2 A} \tag{II}
\end{equation*}
$$

رانط，（I）（strain） －

 －

，$\frac{P}{A}$ ci－s，
家

得
 －

$$
\begin{equation*}
\varepsilon=\lim _{\Delta x \rightarrow .} \frac{\Delta \delta}{\Delta x}=\frac{d \delta}{d x} \tag{III}
\end{equation*}
$$

(2.18

2．1B）stress－strain diagram
（Tensile test） 0 的

 ＝
 ه） Pusi ارحוֹٍ（ر）
的 L L L
（ －ر

(a) Low-carbon steel

(b) Aluminum alloy

 را را品虽 .

(2)
() ه

T
.

人 الز说 －（lla jec）（necking） E ＂品标
（6）
我 $+45^{\circ}$ ， （ ， （118 k $^{k^{\prime}-1}$ ）

（2）（2）

（4）ر（4）

ט，和

$$
:-\sqrt{i} \operatorname{in}_{c}+
$$

标 ）
（ ）

 ك ك －Eloñ்レン

$$
e^{\prime} 0^{2} \sum^{2}\left(0^{\rho} \cos _{1}^{\prime} A\right)=100 \times \frac{A_{B}-A_{B}}{A_{0}}
$$

，

（Compression test）， $10=\sim+B$

位
位
寝 （怡／（

， ر

2．1c）True stress and true strain

和 （رلح
 ．$\sigma_{t}=P / A$

；化

تَ
（
ك

$$
\begin{equation*}
\underset{\substack{\frac{L}{0} \\ \text {, }}}{\substack{\text { oj }}} \varepsilon_{t}=\int_{L_{0}}^{L} \frac{d L}{L}=\ln \left(\frac{L}{L_{0}}\right) \tag{I}
\end{equation*}
$$

2．1D）Hooke＂s law：Modulus of elasticity

危

 ，
 canisotropic屋

$$
\begin{align*}
& \text {, } \\
& \text { 位 } \\
& \text { " } \\
& \zeta=E \varepsilon \tag{II}\\
& : 21=1
\end{align*}
$$

2.1E) Elastic versus plastic behavior 0,1 辰 of a material

-) !

2.1F) Repeated loadings and fatigue
(2.1F

 (0,1
 =

 شكل (FY)

2．1G）Deformations of members under \quad（r，\％，l－ axial laading
.
-

（少

شكل（YF）

$$
\left\{\begin{array}{ll}
Z=\frac{P}{A} & \text { II } \tag{III}\\
Z F \varepsilon & \text { III }
\end{array} \Rightarrow \frac{P}{A}=E \varepsilon \Rightarrow \varepsilon=\frac{P}{E A}\right.
$$

$$
\left\{\begin{array}{l}
\varepsilon=\frac{\delta}{L} \text { IV } \tag{I}\\
\varepsilon=\frac{P}{E A} \text { III }
\end{array} \Rightarrow \frac{\delta}{L}=\frac{P}{E A} \Rightarrow \delta_{c / B}=\frac{P L}{E A}\right.
$$

 1111111 －

位
 ァ
＂ָَ

شكل（YA）

$$
\begin{aligned}
& \Rightarrow \delta_{F / A}=\delta_{F / E}+\delta_{E / D}+\delta_{D / C}+\delta_{C / B}+\delta_{B / A}=\sum_{i=1}^{N} \frac{P_{i} L_{i}}{\epsilon_{i} A_{i}} \\
& E=E(x): \quad P=P(x) ? \quad A=A(x) \\
& \delta=\int_{0}^{L} \frac{P(x)}{E(x) A(x)} d x \\
& \text { - ais } A, E \cdot P(1, y ;)= \\
& \text { ~! }
\end{aligned}
$$

شكل (FP)

Concept Application 2.1

(a)

Fig. 2.19 (a) Axially-loaded rod. (b) Rod divided into three sections. (c) Three sectioned free-body diagrams with internal resultant forces P_{1}, P_{2}, and P_{3}.

Determine the deformation of the steel rod shown in Fig. 2.19a under the given loads ($E=29 \times 10^{6} \mathrm{psi}$).

The rod is divided into three component parts in Fig. 2.19b, so

$$
\begin{array}{ll}
L_{1}=L_{2}=12 \mathrm{in} . & L_{3}=16 \mathrm{in} . \\
A_{1}=A_{2}=0.9 \mathrm{in}^{2} & A_{3}=0.3 \mathrm{in}^{2}
\end{array}
$$

To find the internal forces P_{1}, P_{2}, and P_{3}, pass sections through each of the component parts, drawing each time the free-body diagram of the portion of rod located to the right of the section (Fig. 2.19c). Each of the free bodies is in equilibrium; thus

$$
\begin{aligned}
& P_{1}=60 \mathrm{kips}=60 \times 10^{3} \mathrm{lb} \\
& P_{2}=-15 \mathrm{kjps}=-15 \times 10^{3} \mathrm{lb} \\
& P_{3}=30 \mathrm{kips}=30 \times 10^{3} \mathrm{lb}
\end{aligned}
$$

Using Eq. (2.10)

$$
\begin{aligned}
\delta & =\sum_{i} \frac{P_{i} L_{i}}{A_{i} E_{i}}=\frac{1}{E}\left(\frac{P_{1} L_{1}}{A_{1}}+\frac{P_{2} L_{2}}{A_{2}}+\frac{P_{3} L_{3}}{A_{3}}\right) \\
& =\frac{1}{29 \times 10^{6}}\left[\frac{\left(60 \times 10^{3}\right)(12)}{0.9}\right. \\
& \left.+\frac{\left(-15 \times 10^{3}\right)(12)}{0.9}+\frac{\left(30 \times 10^{3}\right)(16)}{0.3}\right] \\
\delta & =\frac{2.20 \times 10^{6}}{29 \times 10^{6}}=75.9 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Fig. 1 Free-body diagram of rigid bar $B D E$.

Sample Problem 2.1

The rigid bar $B D E$ is supported by two links $A B$ and $C D$. Link $A B$ is made of aluminum ($E=70 \mathrm{GPa}$) and has a cross-sectional area of $500 \mathrm{~mm}^{2}$. Link $C D$ is made of steel $(E=200 \mathrm{GPa})$ and has a crosssectional area of $600 \mathrm{~mm}^{2}$. For the $30-\mathrm{kN}$ force shown, determine the deflection (a) of $B,(b)$ of D, and (c) of E.

STRATEGY: Consider the free body of the rigid bar to determine the internal force of each link. Knowing these forces and the properties of the links, their deformations can be evaluated. You can then use simple geometry to determine the deflection of E .

MODELING: Draw the free body diagrams of the rigid bar (Fig. 1) and the two links (Fig. 2 and 3)

ANALYSIS:

Free Body: Bar BDE (Fig. 1)

$$
\begin{array}{ll}
+\left\lceil\sum M_{B}=0:\right. & -(30 \mathrm{kN})(0.6 \mathrm{~m})+F_{C D}(0.2 \mathrm{~m})=0 \\
+\left\lceil\Sigma M_{D}=0:\right. & F_{C D}=+90 \mathrm{kN} \quad F_{C D}=90 \mathrm{kN} \text { tension } \\
& -(30 \mathrm{kN})(0.4 \mathrm{~m})-F_{A B}(0.2 \mathrm{~m})=0 \\
& F_{A B}=-60 \mathrm{kN} \quad F_{A B}=60 \mathrm{kN} \text { compression }
\end{array}
$$

a. Deflection of \mathbf{B}. Since the internal force in link $A B$ is compressive (Fig. 2), $P=-60 \mathrm{kN}$ and

$$
\delta_{B}=\frac{P L}{A E}=\frac{\left(-60 \times 10^{3} \mathrm{~N}\right)(0.3 \mathrm{~m})}{\left(500 \times 10^{-6} \mathrm{~m}^{2}\right)\left(70 \times 10^{9} \mathrm{~Pa}\right)}=-514 \times 10^{-6} \mathrm{~m}
$$

The negative sign indicates a contraction of member $A B$. Thus, the deflection of end B is upward:

$$
\delta_{B}=\mathbf{0 . 5 1 4} \mathrm{mm} \uparrow
$$

Fig. 2 Free-body diagram of two-force member $A B$.

Fig. 3 Free-body diagram of two-force member $C D$.

www.konkur.in

Fig. 4 Deflections at B and D of rigid bar are used to find δ_{E}.
b. Deflection of D. Since in rod $C D$ (Fig. 3), $P=90 \mathrm{kN}$, write

$$
\begin{aligned}
\delta_{D} & =\frac{P L}{A E}=\frac{\left(90 \times 10^{3} \mathrm{~N}\right)(0.4 \mathrm{~m})}{\left(600 \times 10^{-6} \mathrm{~m}^{2}\right)\left(200 \times 10^{9} \mathrm{~Pa}\right)} \\
& =300 \times 10^{-6} \mathrm{~m} \quad \delta_{D}=\mathbf{0 . 3 0 0 ~ m m} \downarrow
\end{aligned}
$$

c. Deflection of E. Referring to Fig. 4, we denote by B^{\prime} and D^{\prime} the displaced positions of points B and D. Since the bar $B D E$ is rigid, points B^{\prime}, D^{\prime}, and E^{\prime} lie in a straight line. Therefore,

$$
\begin{aligned}
& \frac{B B^{\prime}}{D D^{\prime}}=\frac{B H}{H D} \frac{0.514 \mathrm{~mm}}{0.300 \mathrm{~mm}}=\frac{(200 \mathrm{~mm})-x}{x} \quad x=73.7 \mathrm{~mm} \\
& \frac{E E^{\prime}}{D D^{\prime}}=\frac{H E}{H D} \frac{\delta_{E}}{0.300 \mathrm{~mm}}=\frac{(400 \mathrm{~mm})+(73.7 \mathrm{~mm})}{73.7 \mathrm{~mm}} \\
& \delta_{E}=1.928 \mathrm{~mm} \downarrow
\end{aligned}
$$

REFLECT and THINK: Comparing the relative magnitude and direction of the resulting deflections, you can see that the answers obtained are consistent with the loading and the deflection diagram of Fig. 4.

Sample Problem 2.2

The rigid castings A and B are connected by two $\frac{3}{4}$-in.-diameter steel bolts $C D$ and $G H$ and are in contact with the ends of a 1.5 -in.-diameter aluminum rod $E F$. Each bolt is single-threaded with a pitch of 0.1 in ., and after being snugly fitted, the nuts at D and H are both tightened one-quarter of a turn. Knowing that E is $29 \times 10^{6} \mathrm{psi}$ for steel and $10.6 \times 10^{6} \mathrm{psi}$ for aluminum, determine the normal stress in the rod.

STRATEGY: The tightening of the nuts causes a displacement of the ends of the bolts relative to the rigid casting that is equal to the difference in displacements between the bolts and the rod. This will give a relation between the internal forces of the bolts and the rod that, when combined with a free body analysis of the rigid casting, will enable you to solve for these forces and determine the corresponding normal stress in the rod.

MODELING: Draw the free body diagrams of the bolts and rod (Fig. 1) and the rigid casting (Fig. 2).

ANALYSIS:

Deformations.
Bolts CD and GH. Tightening the nuts causes tension in the bolts (Fig. 1). Because of symmetry, both are subjected to the same
internal force P_{b} and undergo the same deformation δ_{b}. Therefore,

$$
\begin{equation*}
\delta_{b}=+\frac{P_{b} L_{b}}{A_{b} E_{b}}=+\frac{P_{b}(18 \mathrm{in} .)}{\frac{1}{4} \pi(0.75 \mathrm{in} .)^{2}\left(29 \times 10^{6} \mathrm{psi}\right)}=+1.405 \times 10^{-6} P_{b} \tag{1}
\end{equation*}
$$

Rod EF. The rod is in compression (Fig. 1), where the magnitude of the force is P_{r} and the deformation δ_{r} :

$$
\begin{equation*}
\delta_{r}=-\frac{P_{r} L_{r}}{A_{r} E_{r}}=-\frac{P_{r}(12 \mathrm{in} .)}{\frac{1}{4} \pi(1.5 \mathrm{in} .)^{2}\left(10.6 \times 10^{6} \mathrm{psi}\right)}=-0.6406 \times 10^{-6} P_{r} \tag{2}
\end{equation*}
$$

Displacement of D Relative to B. Tightening the nuts one-quarter of a turn causes ends D and H of the bolts to undergo a displacement of $\frac{1}{4}(0.1 \mathrm{in}$.) relative to casting B. Considering end D,

$$
\begin{equation*}
\delta_{D / B}=\frac{1}{4}(0.1 \mathrm{in} .)=0.025 \mathrm{in} . \tag{3}
\end{equation*}
$$

But $\delta_{D} /_{B}=\delta_{D}-\delta_{B}$, where δ_{D} and δ_{B} represent the displacements of D and B. If casting A is held in a fixed position while the nuts at D and H are being tightened, these displacements are equal to the deformations of the bolts and of the rod, respectively. Therefore,

$$
\begin{equation*}
\delta_{D / B}=\delta_{b}-\delta_{r} \tag{4}
\end{equation*}
$$

Substituting from Eqs. (1), (2), and (3) into Eq. (4),

$$
\begin{equation*}
0.025 \text { in. }=1.405 \times 10^{-6} P_{b}+0.6406 \times 10^{-6} P_{r} \tag{5}
\end{equation*}
$$

Free Body: Casting B (Fig. 2)

$$
\begin{equation*}
\xrightarrow{+} \Sigma F=0: \quad P_{r}-2 P_{b}=0 \quad P_{r}=2 P_{b} \tag{6}
\end{equation*}
$$

Forces in Bolts and Rod Substituting for P_{r} from Eq. (6) into Eq. (5), we have

$$
\begin{aligned}
0.025 \mathrm{in} . & =1.405 \times 10^{-6} P_{b}+0.6406 \times 10^{-6}\left(2 P_{b}\right) \\
P_{b} & =9.307 \times 10^{3} \mathrm{lb}=9.307 \mathrm{kips} \\
P_{r} & =2 P_{b}=2(9.307 \mathrm{kips})=18.61 \mathrm{kips}
\end{aligned}
$$

Stress in Rod

$$
\sigma_{r}=\frac{P_{r}}{A_{r}}=\frac{18.61 \mathrm{kips}}{\frac{1}{4} \pi(1.5 \mathrm{in} .)^{2}} \quad \sigma_{r}=\mathbf{1 0 . 5 3} \mathbf{~ k s i}
$$

REFLECT and THINK: This is an example of a statically indeterminate problem, where the determination of the member forces could not be found by equilibrium alone. By considering the relative displacement characteristics of the members, you can obtain additional equations necessary to solve such problems. Situations like this will be examined in more detail in the following section.
2.2) statically indeterminate problems
(2.2
 $\sqrt{\text { E- }} \boldsymbol{\sim}$
 ارا (.)

(a)

(b)

(c)
(d)

Fig. 2.21 (a) Concentric rod and tube, loaded by force P. (b) Free-body diagram of rod. (c) Free-body diagram of tube. (d) Free-body diagram of end plate.

Concept Application 2.2

A rod of length L, cross-sectional area A_{1}, and modulus of elasticity E_{1}, has been placed inside a tube of the same length L, but of crosssectional area A_{2} and modulus of elasticity E_{2} (Fig. 2.21a). What is the deformation of the rod and tube when a force \mathbf{P} is exerted on a rigid end plate as shown?

The axial forces in the rod and in the tube are P_{1} and P_{2}, respectively. Draw free-body diagrams of all three elements (Fig. 2.21b, c, d). Only Fig. $2.21 d$ yields any significant information, as:

$$
\begin{equation*}
P_{1}+P_{2}=P \tag{1}
\end{equation*}
$$

Clearly, one equation is not sufficient to determine the two unknown internal forces P_{1} and P_{2}. The problem is statically indeterminate.

However, the geometry of the problem shows that the deformations δ_{1} and δ_{2} of the rod and tube must be equal. Recalling Eq. (2.9), write

$$
\begin{equation*}
\delta_{1}=\frac{P_{1} L}{A_{1} E_{1}} \quad \delta_{2}=\frac{P_{2} L}{A_{2} E_{2}} \tag{2}
\end{equation*}
$$

Equating the deformations δ_{1} and δ_{2},

$$
\begin{equation*}
\frac{P_{1}}{A_{1} E_{1}}=\frac{P_{2}}{A_{2} E_{2}} \tag{3}
\end{equation*}
$$

Equations (1) and (3) can be solved simultaneously for P_{1} and P_{2} :

$$
P_{1}=\frac{A_{1} E_{1} P}{A_{1} E_{1}+A_{2} E_{2}} \quad P_{2}=\frac{A_{2} E_{2} P}{A_{1} E_{1}+A_{2} E_{2}}
$$

Either of Eqs. (2) can be used to determine the common deformation of the rod and tube.

Fig. 2.22 (a) Restrained bar with axial load. (b) Free-body diagram of bar. (c) Free-body diagrams of sections above and below point C used to determine internal forces P_{1} and P_{2}.

Concept Application 2.3

A bar $A B$ of length L and uniform cross section is attached to rigid supports at A and B before being loaded. What are the stresses in portions $A C$ and $B C$ due to the application of a load P at point C (Fig. 2.22a)?

Drawing the free-body diagram of the bar (Fig. 2.22b), the equilibrium equation is

$$
\begin{equation*}
R_{A}+R_{B}=P \tag{1}
\end{equation*}
$$

Since this equation is not sufficient to determine the two unknown reactions R_{A} and R_{B}, the problem is statically indeterminate.

However, the reactions can be determined if observed from the geometry that the total elongation δ of the bar must be zero. The elongations of the portions $A C$ and $B C$ are respectively δ_{1} and δ_{2}, so

$$
\delta=\delta_{1}+\delta_{2}=0
$$

Using Eq. (2.9), δ_{1} and δ_{2} can be expressed in terms of the corresponding internal forces P_{1} and P_{2},

$$
\begin{equation*}
\delta=\frac{P_{1} L_{1}}{A E}+\frac{P_{2} L_{2}}{A E}=0 \tag{2}
\end{equation*}
$$

Note from the free-body diagrams shown in parts b and c of Fig. 2.22c that $P_{1}=R_{A}$ and $P_{2}=-R_{B}$. Carrying these values into Equation (2),

$$
\begin{equation*}
R_{A} L_{1}-R_{B} L_{2}=0 \tag{3}
\end{equation*}
$$

Equations (1) and (3) can be solved simultaneously for R_{A} and R_{B}, as $R_{A}=P L_{2} / L$ and $R_{B}=P L_{1} / L$. The desired stresses σ_{1} in $A C$ and σ_{2} in $B C$ are obtained by dividing $P_{1}=R_{A}$ and $P_{2}=-R_{B}$ by the crosssectional area of the bar:

$$
\sigma_{1}=\frac{P L_{2}}{A L} \quad \sigma_{2}=-\frac{P L_{1}}{A L}
$$

(d)

Fig. 2.23 (a) Restrained axially-loaded bar. (b) Reactions will be found by releasing constraint at point B and adding compressive force at point B to enforce zero deformation at point B. (c) Free-body diagram of released structure. (d) Free-body diagram of added reaction force at point B to enforce zero deformation at point B.

Concept Application 2.4

Determine the reactions at A and B for the steel bar and loading shown in Fig. 2.23a, assuming a close fit at both supports before the loads are applied.

We consider the reaction at B as redundant and release the bar from that support. The reaction \mathbf{R}_{B} is considered to be an unknown load and is determined from the condition that the deformation δ of the bar equals zero.

The solution is carried out by considering the deformation δ_{L} caused by the given loads and the deformation δ_{R} due to the redundant reaction \mathbf{R}_{B} (Fig. 2.23b).

The deformation δ_{L} is obtained from Eq. (2.10) after the bar has been divided into four portions, as shown in Fig. 2.23c. Follow the same procedure as in Concept Application 2.1:

$$
\begin{gathered}
P_{1}=0 \quad P_{2}=P_{3}=600 \times 10^{3} \mathrm{~N} \quad P_{4}=900 \times 10^{3} \mathrm{~N} \\
A_{1}=A_{2}=400 \times 10^{-6} \mathrm{~m}^{2} \quad A_{3}=A_{4}=250 \times 10^{-6} \mathrm{~m}^{2} \\
L_{1}=L_{2}=L_{3}=L_{4}=0.150 \mathrm{~m}
\end{gathered}
$$

Substituting these values into Eq. (2.10),

$$
\begin{align*}
\delta_{L}=\sum_{i=1}^{4} \frac{P_{i} L_{i}}{A_{i} E}= & \left(0+\frac{600 \times 10^{3} \mathrm{~N}}{400 \times 10^{-6} \mathrm{~m}^{2}}\right. \\
+ & \left.\frac{600 \times 10^{3} \mathrm{~N}}{250 \times 10^{-6} \mathrm{~m}^{2}}+\frac{900 \times 10^{3} \mathrm{~N}}{250 \times 10^{-6} \mathrm{~m}^{2}}\right) \frac{0.150 \mathrm{~m}}{E} \\
& \delta_{L}=\frac{1.125 \times 10^{9}}{E} \tag{1}
\end{align*}
$$

Considering now the deformation δ_{R} due to the redundant reaction R_{B}, the bar is divided into two portions, as shown in Fig. 2.23d

$$
\begin{gathered}
P_{1}=P_{2}=-R_{B} \\
A_{1}=400 \times 10^{-6} \mathrm{~m}^{2} \quad A_{2}=250 \times 10^{-6} \mathrm{~m}^{2} \\
L_{1}=L_{2}=0.300 \mathrm{~m}
\end{gathered}
$$

Substituting these values into Eq. (2.10),

$$
\begin{equation*}
\delta_{R}=\frac{P_{1} L_{1}}{A_{1} E}+\frac{P_{2} L_{2}}{A_{2} E}=-\frac{\left(1.95 \times 10^{3}\right) R_{B}}{E} \tag{2}
\end{equation*}
$$

Express the total deformation δ of the bar as zero:

$$
\begin{equation*}
\delta=\delta_{L}+\delta_{R}=0 \tag{3}
\end{equation*}
$$

and, substituting for δ_{L} and δ_{R} from Eqs. (1) and (2) into Eqs. (3),

$$
\delta=\frac{1.125 \times 10^{9}}{E}-\frac{\left(1.95 \times 10^{3}\right) R_{B}}{E}=0
$$

www.konkur.in

(e)

Fig. 2.23 (cont.) (e) Complete free-body diagram of ACB.

Solving for R_{B},

$$
R_{B}=577 \times 10^{3} \mathrm{~N}=577 \mathrm{kN}
$$

The reaction R_{A} at the upper support is obtained from the freebody diagram of the bar (Fig. 2.23e),

$$
\begin{aligned}
+\uparrow \Sigma F_{y} & =0: \quad R_{A}-300 \mathrm{kN}-600 \mathrm{kN}+R_{B}=0 \\
R_{A} & =900 \mathrm{kN}-R_{B}=900 \mathrm{kN}-577 \mathrm{kN}=323 \mathrm{kN}
\end{aligned}
$$

Once the reactions have been determined, the stresses and strains in the bar can easily be obtained. Note that, while the total deformation of the bar is zero, each of its component parts does deform under the given loading and restraining conditions.

Fig. 2.24 Multi-section bar of Concept Application 2.4 with initial $4.5-\mathrm{mm}$ gap at point B. Loading brings bar into contact with constraint.

Concept Application 2.5

Determine the reactions at A and B for the steel bar and loading of Concept Application 2.4, assuming now that a $4.5-\mathrm{mm}$ clearance exists between the bar and the ground before the loads are applied (Fig. 2.24). Assume $E=200$ GPa.

Considering the reaction at B to be redundant, compute the deformations δ_{L} and δ_{R} caused by the given loads and the redundant reaction \mathbf{R}_{B}. However, in this case, the total deformation is $\delta=4.5 \mathrm{~mm}$. Therefore,

$$
\begin{equation*}
\delta=\delta_{L}+\delta_{R}=4.5 \times 10^{-3} \mathrm{~m} \tag{1}
\end{equation*}
$$

Substituting for δ_{L} and δ_{R} into (Eq. 1), and recalling that $E=200 \mathrm{GPa}$ $=200 \times 10^{9} \mathrm{~Pa}$,

$$
\delta=\frac{1.125 \times 10^{9}}{200 \times 10^{9}}-\frac{\left(1.95 \times 10^{3}\right) R_{B}}{200 \times 10^{9}}=4.5 \times 10^{-3} \mathrm{~m}
$$

Solving for R_{B},

$$
R_{B}=115.4 \times 10^{3} \mathrm{~N}=115.4 \mathrm{kN}
$$

The reaction at A is obtained from the free-body diagram of the bar (Fig. 2.23e):

$$
\begin{aligned}
+\uparrow \Sigma F_{y} & =0: \quad R_{A}-300 \mathrm{kN}-600 \mathrm{kN}+R_{B}=0 \\
R_{A} & =900 \mathrm{kN}-R_{B}=900 \mathrm{kN}-115.4 \mathrm{kN}=785 \mathrm{kN}
\end{aligned}
$$

2．3）Problems involving temperature changes（2．3

（a）
شكل（YA）

（b）
（）（رنغ（）
\therefore 二源
 －（rayj）
$\left.j^{\prime \prime}=\dot{\sim}\right)^{\prime} \dot{\sim}$

Uिひb

$$
\text { 1) } \operatorname{mon}(\dot{v}) \text { (v) }
$$

(1) زоb

$$
\varepsilon_{T}=\frac{\delta_{T}}{L}=0 \text {) }
$$

（b）
ز إرو ولی

شكل（Y）
（9）！！
 ）

$$
\begin{align*}
& \delta_{T}=\alpha L(\Delta T) \tag{I}
\end{align*}
$$

$$
\begin{align*}
& \varepsilon_{T}=\frac{\delta_{T}}{L}=\alpha \cdot(\Delta T) \tag{II}\\
& \text { (a) }
\end{align*}
$$

$$
\begin{aligned}
& \text { له }
\end{aligned}
$$

Pu, 音
=

积

$$
\begin{aligned}
\delta_{k_{k}}= & \delta_{T}+\delta_{p}=\frac{P L}{E A}+\alpha L(\Delta T)=0 \\
& \Rightarrow\left\{\begin{array}{l}
P=-E A \alpha(\Delta T) \\
\zeta=P / A=-E \alpha(\Delta T)
\end{array}\right.
\end{aligned}
$$

(d)

Fig. 2.28 (a) Restrained bar. (b) Bar at $+75^{\circ} \mathrm{F}$ temperature. (c) Bar at lower temperature. (d) Force R_{B} needed to enforce zero deformation at point B.

Concept Application 2.6

Determine the values of the stress in portions $A C$ and $C B$ of the steel bar shown (Fig. 2.28a) when the temperature of the bar is $-50^{\circ} \mathrm{F}$, knowing that a close fit exists at both of the rigid supports when the temperature is $+75^{\circ} \mathrm{F}$. Use the values $E=29 \times 10^{6} \mathrm{psi}$ and $\alpha=6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}$ for steel.

Determine the reactions at the supports. Since the problem is statically indeterminate, detach the bar from its support at B and let it undergo the temperature change

$$
\Delta T=\left(-50^{\circ} \mathrm{F}\right)-\left(75^{\circ} \mathrm{F}\right)=-125^{\circ} \mathrm{F}
$$

The corresponding deformation (Fig. 2.28c) is

$$
\begin{aligned}
\delta_{T} & =\alpha(\Delta T) L=\left(6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)\left(-125^{\circ} \mathrm{F}\right)(24 \mathrm{in} .) \\
& =-19.50 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Applying the unknown force \mathbf{R}_{B} at end B (Fig. 2.28d), use Eq. (2.10) to express the corresponding deformation δ_{R}. Substituting

$$
\begin{gathered}
L_{1}=L_{2}=12 \mathrm{in} . \\
A_{1}=0.6 \mathrm{in}^{2} \quad A_{2}=1.2 \mathrm{in}^{2} \\
P_{1}=P_{2}=R_{B} \quad E=29 \times 10^{6} \mathrm{psi}
\end{gathered}
$$

into Eq. (2.10), write

$$
\begin{aligned}
\delta_{R} & =\frac{P_{1} L_{1}}{A_{1} E}+\frac{P_{2} L_{2}}{A_{2} E} \\
& =\frac{R_{B}}{29 \times 10^{6} \mathrm{psi}}\left(\frac{12 \mathrm{in} .}{0.6 \mathrm{in}^{2}}+\frac{12 \mathrm{in} .}{1.2 \mathrm{in}^{2}}\right) \\
& =\left(1.0345 \times 10^{-6} \mathrm{in} . / \mathrm{lb}\right) R_{B}
\end{aligned}
$$

Expressing that the total deformation of the bar must be zero as a result of the imposed constraints, write

$$
\begin{aligned}
\delta & =\delta_{T}+\delta_{R}=0 \\
& =-19.50 \times 10^{-3} \mathrm{in} .+\left(1.0345 \times 10^{-6} \mathrm{in} . / \mathrm{lb}\right) R_{B}=0
\end{aligned}
$$

from which

$$
R_{B}=18.85 \times 10^{3} \mathrm{lb}=18.85 \mathrm{kips}
$$

The reaction at A is equal and opposite.
Noting that the forces in the two portions of the bar are $P_{1}=P_{2}$ $=18.85$ kips, obtain the following values of the stress in portions $A C$ and $C B$ of the bar:

$$
\begin{aligned}
& \sigma_{1}=\frac{P_{1}}{A_{1}}=\frac{18.85 \mathrm{kips}}{0.6 \mathrm{in}^{2}}=+31.42 \mathrm{ksi} \\
& \sigma_{2}=\frac{P_{2}}{A_{2}}=\frac{18.85 \mathrm{kips}}{1.2 \mathrm{in}^{2}}=+15.71 \mathrm{ksi}
\end{aligned}
$$

It cannot emphasized too strongly that, while the total deformation of the bar must be zero, the deformations of the portions $A C$ and $C B$ are not zero. A solution of the problem based on the assumption that these deformations are zero would therefore be wrong. Neither can the values of the strain in $A C$ or $C B$ be assumed equal to zero. To amplify this point, determine the strain $\epsilon_{A C}$ in portion $A C$ of the bar. The strain $\epsilon_{A C}$ can be divided into two component parts; one is the thermal strain ϵ_{T} produced in the unrestrained bar by the temperature change ΔT (Fig. 2.28c). From Eq. (2.14),

$$
\begin{aligned}
\epsilon_{T} & =\alpha \Delta T=\left(6.5 \times 10^{-6} /{ }^{\circ} \mathrm{F}\right)\left(-125^{\circ} \mathrm{F}\right) \\
& =-812.5 \times 10^{-6} \mathrm{in} . / \mathrm{in} .
\end{aligned}
$$

The other component of $\epsilon_{A C}$ is associated with the stress σ_{1} due to the force \mathbf{R}_{B} applied to the bar (Fig. 2.28d). From Hooke's law, express this component of the strain as

$$
\frac{\sigma_{1}}{E}=\frac{+31.42 \times 10^{3} \mathrm{psi}}{29 \times 10^{6} \mathrm{psi}}=+1083.4 \times 10^{-6} \mathrm{in} . / \mathrm{in} .
$$

Add the two components of the strain in $A C$ to obtain

$$
\begin{aligned}
\epsilon_{A C} & =\epsilon_{T}+\frac{\sigma_{1}}{E}=-812.5 \times 10^{-6}+1083.4 \times 10^{-6} \\
& =+271 \times 10^{-6} \mathrm{in} . / \mathrm{in} .
\end{aligned}
$$

A similar computation yields the strain in portion $C B$ of the bar:

$$
\begin{aligned}
\epsilon_{C B} & =\epsilon_{T}+\frac{\sigma_{2}}{E}=-812.5 \times 10^{-6}+541.7 \times 10^{-6} \\
& =-271 \times 10^{-6} \mathrm{in} . / \mathrm{in} .
\end{aligned}
$$

The deformations $\delta_{A C}$ and $\delta_{C B}$ of the two portions of the bar are

$$
\begin{aligned}
\delta_{A C} & =\epsilon_{A C}(A C)=\left(+271 \times 10^{-6}\right)(12 \mathrm{in} .) \\
& =+3.25 \times 10^{-3} \mathrm{in} . \\
\delta_{C B} & =\epsilon_{C B}(C B)=\left(-271 \times 10^{-6}\right)(12 \mathrm{in} .) \\
& =-3.25 \times 10^{-3} \mathrm{in} .
\end{aligned}
$$

Thus, while the sum $\delta=\delta_{A C}+\delta_{C B}$ of the two deformations is zero, neither of the deformations is zero.

Fig. 1 Free-body diagram of rigid bar $A B C D$.

Fig. 2 Linearly proportional displacements along rigid bar $A B C D$.

Fig. 3 Forces and deformations in $C E$ and $D F$.

Sample Problem 2.3

The $\frac{1}{2}$-in.-diameter rod $C E$ and the $\frac{3}{4}$-in.-diameter rod $D F$ are attached to the rigid bar $A B C D$ as shown. Knowing that the rods are made of aluminum and using $E=10.6 \times 10^{6} \mathrm{psi}$, determine (a) the force in each rod caused by the loading shown and (b) the corresponding deflection of point A.

STRATEGY: To solve this statically indeterminate problem, you must supplement static equilibrium with a relative deflection analysis of the two rods.

MODELING: Draw the free body diagram of the bar (Fig. 1)

ANALYSIS:

Statics. Considering the free body of bar $A B C D$ in Fig. 1, note that the reaction at B and the forces exerted by the rods are indeterminate. However, using statics,

$$
+\left\lceil\Sigma M_{B}=0: \quad(10 \mathrm{kips})(18 \mathrm{in} .)-F_{C E}(12 \mathrm{in} .)-F_{D F}(20 \mathrm{in} .)=0\right.
$$

$$
\begin{equation*}
12 F_{C E}+20 F_{D F}=180 \tag{1}
\end{equation*}
$$

Geometry. After application of the 10-kip load, the position of the bar is $A^{\prime} B C^{\prime} D^{\prime}$ (Fig. 2). From the similar triangles $B A A^{\prime}, B C C^{\prime}$, and $B D D^{\prime}$,

$$
\begin{array}{ll}
\frac{\delta_{C}}{12 \mathrm{in} .}=\frac{\delta_{D}}{20 \mathrm{in} .} & \delta_{C}=0.6 \delta_{D} \\
\frac{\delta_{A}}{18 \mathrm{in.}}=\frac{\delta_{D}}{20 \mathrm{in.}} & \delta_{A}=0.9 \delta_{D} \tag{3}
\end{array}
$$

Deformations. Using Eq. (2.9), and the data shown in Fig. 3, write

$$
\delta_{C}=\frac{F_{C E} L_{C E}}{A_{C E} E} \quad \delta_{D}=\frac{F_{D F} L_{D F}}{A_{D F} E}
$$

Substituting for δ_{C} and δ_{D} into Eq. (2), write

$$
\delta_{C}=0.6 \delta_{D} \quad \frac{F_{C E} L_{C E}}{A_{C E} E}=0.6 \frac{F_{D F} L_{D F}}{A_{D F} E}
$$

$$
F_{C E}=0.6 \frac{L_{D F}}{L_{C E}} \frac{A_{C E}}{A_{D F}} F_{D F}=0.6\left(\frac{30 \mathrm{in} .}{24 \mathrm{in.}}\right)\left[\frac{\frac{1}{4} \pi\left(\frac{1}{2} \mathrm{in} .\right)^{2}}{\frac{1}{4} \pi\left(\frac{3}{4} \mathrm{in} .\right)^{2}}\right] F_{D F} \quad F_{C E}=0.333 F_{D F}
$$

Force in Each Rod. Substituting for $F_{C E}$ into Eq. (1) and recalling that all forces have been expressed in kips,

$$
\begin{array}{cl}
12\left(0.333 F_{D F}\right)+20 F_{D F}=180 & F_{D F}=7.50 \mathrm{kips} \\
F_{C E}=0.333 F_{D F}=0.333(7.50 \mathrm{kips}) & F_{C E}=2.50 \mathrm{kips}
\end{array}
$$

Deflections. The deflection of point D is

$$
\delta_{D}=\frac{F_{D F} L_{D F}}{A_{D F} E}=\frac{\left(7.50 \times 10^{3} \mathrm{lb}\right)(30 \mathrm{in} .)}{\frac{1}{4} \pi\left(\frac{3}{4} \mathrm{in} .\right)^{2}\left(10.6 \times 10^{6} \mathrm{psi}\right)} \quad \delta_{D}=48.0 \times 10^{-3} \mathrm{in} .
$$

Using Eq. (3),

$$
\delta_{A}=0.9 \delta_{D}=0.9\left(48.0 \times 10^{-3} \mathrm{in} .\right) \quad \delta_{A}=43.2 \times 10^{-3} \mathrm{in} .
$$

REFLECT and THINK: You should note that as the rigid bar rotates about B, the deflections at C and D are proportional to their distance from the pivot point B, but the forces exerted by the rods at these points are not. Being statically indeterminate, these forces depend upon the deflection attributes of the rods as well as the equilibrium of the rigid bar.

Sample Problem 2.4

The rigid bar $C D E$ is attached to a pin support at E and rests on the $30-\mathrm{mm}$-diameter brass cylinder $B D$. A 22 -mm-diameter steel rod $A C$ passes through a hole in the bar and is secured by a nut that is snugly fitted when the temperature of the entire assembly is $20^{\circ} \mathrm{C}$. The temperature of the brass cylinder is then raised to $50^{\circ} \mathrm{C}$, while the steel rod remains at $20^{\circ} \mathrm{C}$. Assuming that no stresses were present before the temperature change, determine the stress in the cylinder.

$$
\begin{array}{cc}
\text { Rod } A C \text { : Steel } & \text { Cylinder } B D: ~ B r a s s \\
E=200 \mathrm{GPa} & E=105 \mathrm{GPa} \\
\alpha=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C} & \alpha=20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}
\end{array}
$$

Fig. 1 Free-body diagram of bolt, cylinder and bar.

Deflection δ_{T}. Because of a temperature rise of $50^{\circ}-20^{\circ}=30^{\circ} \mathrm{C}$, the length of the brass cylinder increases by δ_{T}. (Fig. $2 a$).

$$
\delta_{T}=L(\Delta T) \alpha=(0.3 \mathrm{~m})\left(30^{\circ} \mathrm{C}\right)\left(20.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}\right)=188.1 \times 10^{-6} \mathrm{~m} \downarrow
$$

Deflection δ_{1}. From Fig. 2b, note that $\delta_{D}=0.4 \delta_{C}$ and $\delta_{1}=\delta_{D}+\delta_{B} / D$.

$$
\begin{gathered}
\delta_{C}=\frac{R_{A} L}{A E}=\frac{R_{A}(0.9 \mathrm{~m})}{\frac{1}{4} \pi(0.022 \mathrm{~m})^{2}(200 \mathrm{GPa})}=11.84 \times 10^{-9} R_{A} \uparrow \\
\delta_{D}=0.40 \delta_{C}=0.4\left(11.84 \times 10^{-9} R_{A}\right)=4.74 \times 10^{-9} R_{A} \uparrow \\
\delta_{B / D}=\frac{R_{B} L}{A E}=\frac{R_{B}(0.3 \mathrm{~m})}{\frac{1}{4} \pi(0.03 \mathrm{~m})^{2}(105 \mathrm{GPa})}=4.04 \times 10^{-9} R_{B} \uparrow
\end{gathered}
$$

Recall from Eq. (1) that $R_{A}=0.4 R_{B}$, so

$$
\begin{aligned}
\delta_{1} & =\delta_{D}+\delta_{B / D}=\left[4.74\left(0.4 R_{B}\right)+4.04 R_{B}\right] 10^{-9}=5.94 \times 10^{-9} R_{B} \uparrow \\
\text { But } \delta_{T} & =\delta_{1}: \quad 188.1 \times 10^{-6} \mathrm{~m}=5.94 \times 10^{-9} R_{B} \quad R_{B}=31.7 \mathrm{kN}
\end{aligned}
$$

Stress in Cylinder: $\quad \sigma_{B}=\frac{R_{B}}{A}=\frac{31.7 \mathrm{kN}}{\frac{1}{4} \pi(0.03 \mathrm{~m})^{2}} \quad \sigma_{B}=44.8 \mathrm{MPa}$

REFLECT and THINK: This example illustrates the large stresses that can develop in statically indeterminate systems due to even modest temperature changes. Note that if this assembly was statically determinate (i.e., the steel rod was removed), no stress at all would develop in the cylinder due to the temperature change.

Fig. 2 Superposition of thermal and restraint force deformations (a) Support at B removed. (b) Reaction at B applied. (c) Final position.

