فصل اول:

مقلدمه -مفهوم

$$
\begin{gathered}
\text { تُّشش } \\
\text { Chapter 1: } \\
\text { Introduction- } \\
\text { Concept of Stress }
\end{gathered}
$$

Contents
Review of the methods of statics
 stresses in the members of a structure
 stress on an oblique plane under Axial landing
stress under general loading conditions: Components of stress
 Design consideration

+ Introduction

كَأرد二
ィ！
．）

1．1）Revieal of the methods of statics

（（d）反َ（
（2）（3
2，）S
（ 1 （c）（c）N

$$
\begin{array}{ll}
+\sum M_{c}=0 \Rightarrow 0.6 \times A_{x}-0.8 \times 30=0 & \Rightarrow A_{x}=40 \mathrm{kN} \\
+\sum F_{x}=0 \Rightarrow A_{x}+C_{x}=0 & \Rightarrow C_{x}=-A_{x}=-40 \mathrm{kN} \\
& \Rightarrow A_{y}+C_{y}-30=0
\end{array}
$$

!ا .
!
(2
!

$$
\begin{align*}
+\sum M_{B}=0 & \Rightarrow-0.8 \times A_{y}=0 \\
& \Rightarrow A_{y}=0 \text { IV }
\end{align*}
$$

,

$$
\Rightarrow C_{y}=30 \mathrm{kN} \text { IV }
$$

إ0

$$
\left\{\begin{array}{l}
C_{x}=-A_{x}=-40 \mathrm{kN} \\
C_{y}=30 \mathrm{kN} \\
\theta=\operatorname{tg}^{-1}\left(\frac{c_{y}}{c_{x}}\right)=\operatorname{tg}^{-1}\left(\frac{30}{40}\right) ?
\end{array}\right.
$$

$$
\alpha=\operatorname{tg}^{-1}\left(\frac{\overline{A C}}{\overline{A B}}\right)=\operatorname{tg}^{-1}\left(\frac{600}{800}\right)=\operatorname{tg}^{-1}\left(\frac{3}{4}\right)
$$

-范

!

$$
\begin{aligned}
& \frac{F_{A B}}{4}=\frac{F_{B C}}{5}=\frac{30}{3} \\
& \Rightarrow\left\{\begin{array}{l}
F_{A B}=40 \mathrm{kN} \\
F_{B C}=50 \mathrm{kN}
\end{array}\right.
\end{aligned}
$$

(a)
(b)

$$
\begin{aligned}
& \left\{\begin{array}{l}
A_{x}=40 k N \xrightarrow{+} \\
A_{y}=0
\end{array}\right.
\end{aligned}
$$

 \Rightarrow ($C D, B D$) N 30KN U U .)

$$
\begin{aligned}
& \text { い垵 (1 } \\
& \text { 为 (2 }
\end{aligned}
$$

．
Axial stress cigcir（1．2A
実

$$
\begin{equation*}
\operatorname{wis}_{\text {sigma }} Z=\frac{P}{A} \quad\left(N / m^{2}\right) \tag{I}
\end{equation*}
$$

，راها ！
洮

和
.
-品
(II)

$$
: 9
$$

$$
\begin{equation*}
-3=\lim \frac{\Delta F}{\Delta A} \tag{II}
\end{equation*}
$$

(a)

(b)

(a)
(b)
(c)
(d)

 !

(a)

(b)

$$
\begin{aligned}
& \left\{\begin{array}{l}
1 \mathrm{KPa}=10^{3} \mathrm{~Pa}=10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{MPa}=10^{6} \mathrm{~Pa}_{a}=10^{6} \mathrm{~N} / \mathrm{m}^{2} \\
1 \mathrm{GPa}=10^{9} \mathrm{~Pa}=10^{9} \mathrm{~N} / \mathrm{m}^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { ij, } P \rightarrow\left\{\begin{array}{l}
\text { pounds (1b) } \\
\text { kilopounds (kip) }
\end{array} \Rightarrow-\sigma=\frac{P}{A}\left(\frac{\text { pounds }}{i n^{2}}=p s i\right)\right. \text { or } \\
& \text { 定 } A \rightarrow \mathrm{in}^{2} \\
& \left(\frac{\text { kilopaunds }}{i n^{2}}=\text { kpsi }\right)
\end{aligned}
$$

Concept Application 1.1

Considering the structure of Fig. 1.1 on page 5, assume that $\operatorname{rod} B C$ is made of a steel with a maximum allowable stress $\sigma_{\text {all }}=165 \mathrm{MPa}$. Can $\operatorname{rod} B C$ safely support the load to which it will be subjected? The magnitude of the force $F_{B C}$ in the rod was 50 kN . Recalling that the diameter of the rod is 20 mm , use Eq. (1.5) to determine the stress created in the rod by the given loading.

$$
\begin{aligned}
& P=F_{B C}=+50 \mathrm{kN}=+50 \times 10^{3} \mathrm{~N} \\
& A=\pi r^{2}=\pi\left(\frac{20 \mathrm{~mm}}{2}\right)^{2}=\pi\left(10 \times 10^{-3} \mathrm{~m}\right)^{2}=314 \times 10^{-6} \mathrm{~m}^{2} \\
& \sigma=\frac{P}{A}=\frac{+50 \times 10^{3} \mathrm{~N}}{314 \times 10^{-6} \mathrm{~m}^{2}}=+159 \times 10^{6} \mathrm{~Pa}=+159 \mathrm{MPa}
\end{aligned}
$$

Since σ is smaller than $\sigma_{\text {all }}$ of the allowable stress in the steel used, rod $B C$ can safely support the load.

$$
\begin{aligned}
& \text { 尘, 宁畆 }
\end{aligned}
$$

Concept Application 1.2

As an example of design, let us return to the structure of Fig. 1.1 on page 5 and assume that aluminum with an allowable stress $\sigma_{\text {all }}=$ 100 MPa is to be used. Since the force in $\operatorname{rod} B C$ is still $P=F_{B C}=50 \mathrm{kN}$ under the given loading, from Eq. (1.5), we have
$\sigma_{\text {all }}=\frac{P}{A} \quad A=\frac{P}{\sigma_{\text {all }}}=\frac{50 \times 10^{3} \mathrm{~N}}{100 \times 10^{6} \mathrm{~Pa}}=500 \times 10^{-6} \mathrm{~m}^{2}$
and since $A=\pi r^{2}$,
$r=\sqrt{\frac{A}{\pi}}=\sqrt{\frac{500 \times 10^{-6} \mathrm{~m}^{2}}{\pi}}=12.62 \times 10^{-3} \mathrm{~m}=12.62 \mathrm{~mm}$
$d=2 r=25.2 \mathrm{~mm}$
Therefore, an aluminum rod 26 mm or more in diameter will be adequate.

Shearing stress（1．2B

（a）

二小rur．

(年)
（tau）
ω_{0}
1，

$$
\begin{aligned}
& \mathrm{F}^{\prime}
\end{aligned}
$$

> (a)
> (b)

$$
\begin{aligned}
& \text {, P P }
\end{aligned}
$$

:
$\tau_{\text {ave }}=\frac{P}{A}=\frac{F}{A}$

一1,

$$
\begin{align*}
& \left\{\begin{array}{l}
P=F / 2 \\
\tau_{\text {ave }}=\frac{P}{A}=\frac{F / 2}{A}=\frac{F}{2 A}
\end{array}\right.
\end{align*}
$$

Bearing stress in connections

 $\operatorname{civ}^{\prime \prime} \sigma_{b}$, P
 : (,)

www.konkur.in

Concept Application 1.3

Returning to the structure of Fig. 1.1, we will determine the normal stresses, shearing stresses and bearing stresses. As shown in Fig. 1.22, the $20-\mathrm{mm}$-diameter rod $B C$ has flat ends of $20 \times 40-\mathrm{mm}$ rectangular cross section, while boom $A B$ has a $30 \times 50-\mathrm{mm}$ rectangular cross section and is fitted with a clevis at end B. Both members are connected at B by a pin from which the $30-\mathrm{kN}$ load is suspended by means of a U-shaped bracket. Boom $A B$ is supported at A by a pin fitted into a double bracket, while rod $B C$ is connected at C to a single bracket. All pins are 25 mm in diameter.

Fig. 1.22 Components of boom used to support 30 kN load.
Normal Stress in Boom AB and Rod BC. As found in Sec. 1.1A, the force in rod $B C$ is $F_{B C}=50 \mathrm{kN}$ (tension) and the area of its circular cross section is $A=314 \times 10^{-6} \mathrm{~m}^{2}$. The corresponding average normal stress is $\sigma_{B C}=+159 \mathrm{MPa}$. However, the flat parts of the rod are also under tension and at the narrowest section. Where the hole is located, we have

$$
A=(20 \mathrm{~mm})(40 \mathrm{~mm}-25 \mathrm{~mm})=300 \times 10^{-6} \mathrm{~m}^{2}
$$

$$
A B, B C=
$$

jo

烈

1 步 $\quad \sigma=\frac{F_{A B}}{A} V$
2 远 $\quad \delta=\frac{F_{A B}}{A-\pi r^{2}} X$
.

1 动 $\sigma=\frac{F_{B C}}{A} V$
$2=\quad B=\frac{F_{B C}}{A-\pi r^{2}} \sqrt{2}$

$A B \xrightarrow{N}-$

$$
\begin{aligned}
& \text { C- }
\end{aligned}
$$

www.konkur.in

Fig. 1.23 Diagrams of the single shear pin at C.

Fig. 1.24 Free-body diagrams of the double shear pin at A.

The corresponding average value of the stress is

$$
\left(\sigma_{B C}\right)_{\text {end }}=\frac{P}{A}=\frac{50 \times 10^{3} \mathrm{~N}}{300 \times 10^{-6} \mathrm{~m}^{2}}=167.0 \mathrm{MPa}
$$

Note that this is an average value. Close to the hole the stress will actually reach a much larger value, as you will see in Sec. 2.11. Under an increasing load, the rod will fail near one of the holes rather than in its cylindrical portion; its design could be improved by increasing the width or the thickness of the flat ends of the rod.

Recall from Sec. 1.1A that the force in boom $A B$ is $F_{A B}=40 \mathrm{kN}$ (compression). Since the area of the boom's rectangular cross section is $A=30 \mathrm{~mm} \times 50 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m}^{2}$, the average value of the normal stress in the main part of the rod between pins A and B is

$$
\sigma_{A B}=-\frac{40 \times 10^{3} \mathrm{~N}}{1.5 \times 10^{-3} \mathrm{~m}^{2}}=-26.7 \times 10^{6} \mathrm{~Pa}=-26.7 \mathrm{MPa}
$$

Note that the sections of minimum area at A and B are not under stress, since the boom is in compression, and therefore pushes on the pins (instead of pulling on the pins as rod $B C$ does).
Shearing Stress in Various Connections. To determine the shearing stress in a connection such as a bolt, pin, or rivet, you first show the forces exerted by the various members it connects. In the case of pin C (Fig. 1.23a), draw Fig. $1.23 b$ to show the $50-\mathrm{kN}$ force exerted by member $B C$ on the pin, and the equal and opposite force exerted by the bracket. Drawing the diagram of the portion of the pin located below the plane $D D^{\prime}$ where shearing stresses occur (Fig. 1.23c), notice that the shear in that plane is $P=50 \mathrm{kN}$. Since the crosssectional area of the pin is

$$
A=\pi r^{2}=\pi\left(\frac{25 \mathrm{~mm}}{2}\right)^{2}=\pi\left(12.5 \times 10^{-3} \mathrm{~m}\right)^{2}=491 \times 10^{-6} \mathrm{~m}^{2}
$$

the average value of the shearing stress in the pin at C is

$$
\tau_{\mathrm{ave}}=\frac{P}{A}=\frac{50 \times 10^{3} \mathrm{~N}}{491 \times 10^{-6} \mathrm{~m}^{2}}=102.0 \mathrm{MPa}
$$

Note that pin A (Fig. 1.24) is in double shear. Drawing the freebody diagrams of the pin and the portion of pin located between the planes $D D^{\prime}$ and $E E^{\prime}$ where shearing stresses occur, we see that $P=20 \mathrm{kN}$ and

$$
\tau_{\mathrm{ave}}=\frac{P}{A}=\frac{20 \mathrm{kN}}{491 \times 10^{-6} \mathrm{~m}^{2}}=40.7 \mathrm{MPa}
$$

Pin B (Fig. 1.25a) can be divided into five portions that are acted upon by forces exerted by the boom, rod, and bracket. Portions $D E$ (Fig. 1.25b) and $D G$ (Fig. 1.25c) show that the shear in section E is $P_{E}=15 \mathrm{kN}$ and the shear in section G is $P_{G}=25 \mathrm{kN}$. Since the loading
(continued)

www.konkur.in

(a)

(b)

(c)

Fig. 1.25 Free-body diagrams for various sections at pin B.
of the pin is symmetric, the maximum value of the shear in pin B is $P_{G}=25 \mathrm{kN}$, and the largest the shearing stresses occur in sections G and H, where

$$
\tau_{\mathrm{ave}}=\frac{P_{G}}{A}=\frac{25 \mathrm{kN}}{491 \times 10^{-6} \mathrm{~m}^{2}}=50.9 \mathrm{MPa}
$$

Bearing Stresses. Use Eq. (1.11) to determine the nominal bearing stress at A in member $A B$. From Fig. 1.22, $t=30 \mathrm{~mm}$ and $d=25 \mathrm{~mm}$. Recalling that $P=F_{A B}=40 \mathrm{kN}$, we have

$$
\sigma_{b}=\frac{P}{t d}=\frac{40 \mathrm{kN}}{(30 \mathrm{~mm})(25 \mathrm{~mm})}=53.3 \mathrm{MPa}
$$

To obtain the bearing stress in the bracket at A, use $t=2(25 \mathrm{~mm})=$ 50 mm and $d=25 \mathrm{~mm}$:

$$
\sigma_{b}=\frac{P}{t d}=\frac{40 \mathrm{kN}}{(50 \mathrm{~mm})(25 \mathrm{~mm})}=32.0 \mathrm{MPa}
$$

The bearing stresses at B in member $A B$, at B and C in member $B C$, and in the bracket at C are found in a similar way.

www.konkur.in

Fig. 1 Free-body diagram of hanger.

Fig. 2 Pin A.

Sample Problem 1.1

In the hanger shown, the upper portion of link $A B C$ is $\frac{3}{8}$ in. thick and the lower portions are each $\frac{1}{4}$ in. thick. Epoxy resin is used to bond the upper and lower portions together at B. The pin at A has a $\frac{3}{8}$-in. diameter, while a $\frac{1}{4}$-in.-diameter pin is used at C. Determine (a) the shearing stress in pin $A,(b)$ the shearing stress in pin $C,(c)$ the largest normal stress in link $A B C$, (d) the average shearing stress on the bonded surfaces at B, and (e) the bearing stress in the link at C.
STRATEGY: Consider the free body of the hanger to determine the internal force for member $A B$ and then proceed to determine the shearing and bearing forces applicable to the pins. These forces can then be used to determine the stresses.

MODELING: Draw the free-body diagram of the hanger to determine the support reactions (Fig. 1). Then draw the diagrams of the various components of interest showing the forces needed to determine the desired stresses (Figs. 2-6).

ANALYSIS:

Free Body: Entire Hanger. Since the link $A B C$ is a two-force member (Fig. 1), the reaction at A is vertical; the reaction at D is represented by its components D_{x} and D_{y}. Thus,

$$
\begin{gathered}
+\left\lceil\Sigma M_{D}=0: \quad(500 \mathrm{lb})(15 \mathrm{in} .)-F_{A C}(10 \mathrm{in} .)=0\right. \\
\\
F_{A C}=+750 \mathrm{lb} \quad F_{A C}=750 \mathrm{lb} \quad \text { tension }
\end{gathered}
$$

a. Shearing Stress in Pin A. Since this $\frac{3}{8}$-in.-diameter pin is in single shear (Fig. 2), write

$$
\tau_{A}=\frac{F_{A C}}{A}=\frac{750 \mathrm{lb}}{\frac{1}{4} \pi(0.375 \mathrm{in} .)^{2}} \quad \tau_{A}=6790 \mathrm{psi}
$$

b. Shearing Stress in Pin C. Since this $\frac{1}{4}$-in.-diameter pin is in double shear (Fig. 3), write

$$
\tau_{C}=\frac{\frac{1}{2} F_{A C}}{A}=\frac{375 \mathrm{lb}}{\frac{1}{4} \pi(0.25 \mathrm{in} .)^{2}} \quad \tau_{C}=7640 \mathrm{psi}
$$

Fig. 3 Pin C.
c. Largest Normal Stress in Link ABC. The largest stress is found where the area is smallest; this occurs at the cross section at A (Fig. 4) where the $\frac{3}{8}-\mathrm{in}$. hole is located. We have
$\sigma_{A}=\frac{F_{A C}}{A_{\text {net }}}=\frac{750 \mathrm{lb}}{\left(\frac{3}{8} \mathrm{in} .\right)(1.25 \mathrm{in} .-0.375 \mathrm{in} .)}=\frac{750 \mathrm{lb}}{0.328 \mathrm{in}^{2}} \quad \sigma_{A}=2290 \mathrm{psi}$
d. Average Shearing Stress at B. We note that bonding exists on both sides of the upper portion of the link (Fig. 5) and that the shear force on each side is $F_{1}=(750 \mathrm{lb}) / 2=375 \mathrm{lb}$. The average shearing stress on each surface is

$$
\tau_{B}=\frac{F_{1}}{A}=\frac{375 \mathrm{lb}}{(1.25 \mathrm{in} .)(1.75 \mathrm{in} .)} \quad \tau_{B}=171.4 \mathrm{psi}
$$

e. Bearing Stress in Link at C. For each portion of the link (Fig. 6), $F_{1}=375 \mathrm{lb}$, and the nominal bearing area is (0.25 in .)(0.25 in .) $=0.0625 \mathrm{in}^{2}$.

$$
\sigma_{b}=\frac{F_{1}}{A}=\frac{375 \mathrm{lb}}{0.0625 \mathrm{in}^{2}} \quad \sigma_{b}=6000 \mathrm{psi}
$$

Fig. 5 Element $A B$.

Fig. 4 Link $A B C$ section at A.

Fig. 6 Link $A B C$ section at C.
REFLECT and THINK: This sample problem demonstrates the need to draw free-body diagrams of the separate components, carefully considering the behavior in each one. As an example, based on visual inspection of the hanger it is apparent that member $A C$ should be in tension for the given load, and the analysis confirms this. Had a compression result been obtained instead, a thorough reexamination of the analysis would have been required.

Fig. 1 Sectioned bolt.

Fig. 2 Tie bar geometry.

Fig. 3 End section of tie bar.

Fig. 4 Mid-body section of tie bar.

Sample Problem 1.2

The steel tie bar shown is to be designed to carry a tension force of magnitude $P=120 \mathrm{kN}$ when bolted between double brackets at A and B. The bar will be fabricated from $20-\mathrm{mm}$-thick plate stock. For the grade of steel to be used, the maximum allowable stresses are $\sigma=175 \mathrm{MPa}, \tau=100 \mathrm{MPa}$, and $\sigma_{b}=350 \mathrm{MPa}$. Design the tie bar by determining the required values of (a) the diameter d of the bolt, (b) the dimension b at each end of the bar, and (c) the dimension h of the bar.
STRATEGY: Use free-body diagrams to determine the forces needed to obtain the stresses in terms of the design tension force. Setting these stresses equal to the allowable stresses provides for the determination of the required dimensions.

MODELING and ANALYSIS:

a. Diameter of the Bolt. Since the bolt is in double shear (Fig. 1), $F_{1}=\frac{1}{2} P=60 \mathrm{kN}$.

$$
\begin{array}{r}
\tau=\frac{F_{1}}{A}=\frac{60 \mathrm{kN}}{\frac{1}{4} \pi d^{2}} \quad 100 \mathrm{MPa}=\frac{60 \mathrm{kN}}{\frac{1}{4} \pi d^{2}} \quad d=27.6 \mathrm{~mm} \\
\text { Use } \quad d=\mathbf{2 8} \mathrm{mm}
\end{array}
$$

At this point, check the bearing stress between the 20 -mm-thick plate (Fig. 2) and the $28-\mathrm{mm}$-diameter bolt.

$$
\sigma_{b}=\frac{P}{t d}=\frac{120 \mathrm{kN}}{(0.020 \mathrm{~m})(0.028 \mathrm{~m})}=214 \mathrm{MPa}<350 \mathrm{MPa} \quad \mathrm{OK}
$$

b. Dimension b at Each End of the Bar. We consider one of the end portions of the bar in Fig. 3. Recalling that the thickness of the steel plate is $t=20 \mathrm{~mm}$ and that the average tensile stress must not exceed 175 MPa , write

$$
\begin{aligned}
& \sigma=\frac{\frac{1}{2} P}{t a} \quad 175 \mathrm{MPa}=\frac{60 \mathrm{kN}}{(0.02 \mathrm{~m}) a} \quad a=17.14 \mathrm{~mm} \\
& b=d+2 a=28 \mathrm{~mm}+2(17.14 \mathrm{~mm}) \quad b=62.3 \mathrm{~mm}
\end{aligned}
$$

c. Dimension h of the Bar. We consider a section in the central portion of the bar (Fig. 4). Recalling that the thickness of the steel plate is $t=20 \mathrm{~mm}$, we have

$$
\begin{aligned}
\sigma=\frac{P}{t h} \quad 175 \mathrm{MPa}=\frac{120 \mathrm{kN}}{(0.020 \mathrm{~m}) h} & h=34.3 \mathrm{~mm} \\
& \text { Use } \quad h=\mathbf{3 5 ~ m m}
\end{aligned}
$$

REFLECT and THINK: We sized d based on bolt shear, and then checked bearing on the tie bar. Had the maximum allowable bearing stress been exceeded, we would have had to recalculate d based on the bearing criterion.
stress on an oblique plane under axial loading

（a）

（
，
 －宊

革

闻
－

$$
\therefore \because
$$

2 (2

 U行, K

$$
\begin{equation*}
F=P \cdot \cos (\theta) \quad V=P \sin (\theta) \tag{I}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\zeta=\frac{F}{A_{A}} \tag{II}\\
\tau=\frac{V}{A_{A}}
\end{array}\right.
$$

$$
\begin{align*}
, B & =\frac{F}{A_{A}}=\frac{P C_{1}(\theta)}{A_{0} / c_{s}(\theta)} \\
& \Rightarrow B=\frac{P}{A_{0}} C_{n}^{2}(\theta) \tag{IV}
\end{align*}
$$

$$
\text { - } \begin{align*}
\tau & =\frac{v}{A_{\theta}}=\frac{P \sin (\theta)}{A_{0} / c_{1}(\theta)}=\frac{P}{A_{0}} \sigma(\theta) \sin (\theta) \\
& =\frac{P}{A_{0}} \frac{2 G(\theta) \sin (\theta)}{2}=\frac{P}{2 A_{0}} \sin (2 \theta)=\tau \tag{V}
\end{align*}
$$

$$
\dot{C}-1 \leqslant \sin (2 \theta) \leqslant 1 \Rightarrow \operatorname{Max}(\sin (2 \theta))=+1 \Rightarrow 2 \theta_{\max }=\frac{\pi}{2} \Rightarrow \theta_{\min }=\frac{\pi}{4}
$$

$$
\Rightarrow\left\{\begin{array}{l}
\tau_{\max }=\frac{P}{2 A_{0}} \sin \left(2 \times \frac{\pi}{4}\right)=\frac{P}{2 A_{0}} \text { VII } \\
\sigma^{\prime}=\frac{P}{A_{0}} \omega^{2}(45)=\frac{P}{2 A_{0}}
\end{array}\right.
$$

راط
صin راربا با

（a）Axial loading

（b）Stresses for $\theta=0$

（c）Stresses for $\theta=45^{\circ}$

（d）Stresses for $\theta=-45^{\circ}$

$$
\begin{aligned}
& \text { •花 } \\
& \text { 院 } \\
& \Gamma^{1}-1 \leqslant \sigma(\theta) \leqslant+1 \Rightarrow 0 \leqslant c^{2}(\theta) \leqslant+1 \Rightarrow \operatorname{Max}\left(c^{2}(\theta)\right)=1 \Rightarrow A_{\text {max }}^{A_{2}}=0 \\
& \Rightarrow\left\{\begin{array}{l}
Z_{\text {max }}=\frac{P}{A_{0}} \omega^{2}(0)=\frac{P}{A_{0}} \quad(\underline{I I} \\
\tau^{\prime}=\frac{P}{2 A_{0}} \sin \left(2 \alpha_{0}\right)=0
\end{array}\right.
\end{aligned}
$$

(1.4) تَنَ
stress under general loading conditions; components of stress

$$
\begin{aligned}
& \text { U } \\
& \text { : }
\end{aligned}
$$

($\Delta V^{x}, \Delta F^{x}$)
($j^{\hat{\prime}}$)
2 (2
$\left(\Delta v_{y}^{x}, \Delta v_{z}^{x}\right)$ त्रैज

$$
[B]=\left[\begin{array}{lll}
3_{x x} & 3_{x y} & 3_{x z} \\
\sigma_{y x} & 3_{y y} & 3_{y z} \\
3_{z x} & 3_{z y} & 3_{z z}
\end{array}\right]
$$

$$
[0]=\left[\begin{array}{ccc}
3_{x} & \tau_{x y} & \tau_{x z} \\
\tau_{x y} & 3_{y} & \tau_{y z} \\
\tau_{x z} & \tau_{y z} & 3_{z}
\end{array}\right]
$$

(2

ر

!

 (d $d^{(c)}$)
ن.
(
它

1．5）Design considerations

$$
0)=, \quad \text { जि }
$$

1．5 A）Determination of the ultimate strength of a material

 ט，

和曻

$$
\sigma_{v}=\frac{P_{v}}{A}
$$

هدهن，（A）

而
浣 \therefore 伿二的

$$
\tau_{v}=\frac{P_{v}}{A}
$$

 $\because \hat{\mu}$

158）Allowable load and allowable stress：Factor of safety

院
气的

$$
\left\{\begin{array}{l}
F . S_{0}=\frac{0, b!}{j b l} \tag{I}\\
F . S=\frac{0,4 \dot{v}}{j 60}
\end{array}\right.
$$

！
＝

1．5c）Factor of satety selection

ا ان
اَ

，（1）

（2

利流

 ＂بَ
二ј的

$$
\begin{aligned}
& \text { - } \\
& \text { (b) }
\end{aligned}
$$

www.konkur.in

Fig. 1 Free-body diagram of bracket.

Fig. 2 Free-body diagram of pin at point C.

Sample Problem 1.3

Two loads are applied to the bracket $B C D$ as shown. (a) Knowing that the control rod $A B$ is to be made of a steel having an ultimate normal stress of 600 MPa , determine the diameter of the rod for which the factor of safety with respect to failure will be 3.3. (b) The pin at C is to be made of a steel having an ultimate shearing stress of 350 MPa . Determine the diameter of the pin C for which the factor of safety with respect to shear will also be 3.3. (c) Determine the required thickness of the bracket supports at C, knowing that the allowable bearing stress of the steel used is 300 MPa .

STRATEGY: Consider the free body of the bracket to determine the force \mathbf{P} and the reaction at C. The resulting forces are then used with the allowable stresses, determined from the factor of safety, to obtain the required dimensions.
MODELING: Draw the free-body diagram of the hanger (Fig. 1), and the pin at C (Fig. 2).

ANALYSIS:

Free Body: Entire Bracket. Using Fig. 1, the reaction at C is represented by its components \mathbf{C}_{x} and \mathbf{C}_{y}.
$+\left\lceil\Sigma M_{C}=0: \quad P(0.6 \mathrm{~m})-(50 \mathrm{kN})(0.3 \mathrm{~m})-(15 \mathrm{kN})(0.6 \mathrm{~m})=0 \quad P=40 \mathrm{kN}\right.$
$\Sigma F_{x}=0: \quad C_{x}=40 \mathrm{kN}$
$\Sigma F_{y}=0: \quad C_{y}=65 \mathrm{kN} \quad C=\sqrt{C_{x}^{2}+C_{y}^{2}}=76.3 \mathrm{kN}$
a. Control Rod AB. Since the factor of safety is 3.3, the allowable stress is

$$
\sigma_{\text {all }}=\frac{\sigma_{U}}{F . S .}=\frac{600 \mathrm{MPa}}{3.3}=181.8 \mathrm{MPa}
$$

For $P=40 \mathrm{kN}$, the cross-sectional area required is

$$
\begin{aligned}
& A_{\mathrm{req}}=\frac{P}{\sigma_{\text {all }}}=\frac{40 \mathrm{kN}}{181.8 \mathrm{MPa}}=220 \times 10^{-6} \mathrm{~m}^{2} \\
& A_{\mathrm{req}}=\frac{\pi}{4} d_{A B}^{2}=220 \times 10^{-6} \mathrm{~m}^{2} \quad d_{a b}=\mathbf{1 6 . 7 4 ~ \mathbf { ~ m m }}
\end{aligned}
$$

b. Shear in Pin C. For a factor of safety of 3.3, we have

$$
\tau_{\text {all }}=\frac{\tau_{U}}{F . S .}=\frac{350 \mathrm{MPa}}{3.3}=106.1 \mathrm{MPa}
$$

Fig. 3 Bearing loads at bracket support at point C.

As shown in Fig. 2 the pin is in double shear. We write

$$
\begin{gathered}
A_{\mathrm{req}}=\frac{C / 2}{\tau_{\mathrm{all}}}=\frac{(76.3 \mathrm{kN}) / 2}{106.1 \mathrm{MPa}}=360 \mathrm{~mm}^{2} \\
A_{\mathrm{req}}=\frac{\pi}{4} d_{C}^{2}=360 \mathrm{~mm}^{2} \quad d_{C}=21.4 \mathrm{~mm} \quad \text { Use: } \boldsymbol{d}_{C}=\mathbf{2 2} \mathbf{~ m m}
\end{gathered}
$$

c. Bearing at C. Using $d=22 \mathrm{~mm}$, the nominal bearing area of each bracket is $22 t$. From Fig. 3 the force carried by each bracket is $C / 2$ and the allowable bearing stress is 300 MPa . We write

$$
A_{\mathrm{req}}=\frac{C / 2}{\sigma_{\mathrm{all}}}=\frac{(76.3 \mathrm{kN}) / 2}{300 \mathrm{MPa}}=127.2 \mathrm{~mm}^{2}
$$

Thus, $22 t=127.2 \quad t=5.78 \mathrm{~mm} \quad$ Use: $t=\mathbf{6 m m}$
REFLECT and THINK: It was appropriate to design the pin C first and then its bracket, as the pin design was geometrically dependent upon diameter only, while the bracket design involved both the pin diameter and bracket thickness.

Fig. 1 Free-body diagram of beam $B C D$.

Sample Problem 1.4

The rigid beam $B C D$ is attached by bolts to a control rod at B, to a hydraulic cylinder at C, and to a fixed support at D. The diameters of the bolts used are: $d_{B}=d_{D}=\frac{3}{8}$ in., $d_{C}=\frac{1}{2}$ in. Each bolt acts in double shear and is made from a steel for which the ultimate shearing stress is $\tau_{U}=40 \mathrm{ksi}$. The control rod $A B$ has a diameter $d_{A}=\frac{7}{16} \mathrm{in}$. and is made of a steel for which the ultimate tensile stress is $\sigma_{U}=60 \mathrm{ksi}$. If the minimum factor of safety is to be 3.0 for the entire unit, determine the largest upward force that may be applied by the hydraulic cylinder at C.

STRATEGY: The factor of safety with respect to failure must be 3.0 or more in each of the three bolts and in the control rod. These four independent criteria need to be considered separately.
MODELING: Draw the free-body diagram of the bar (Fig. 1) and the bolts at B and C (Figs. 2 and 3). Determine the allowable value of the force \mathbf{C} based on the required design criteria for each part.

ANALYSIS:

Free Body: Beam BCD. Using Fig. 1, first determine the force at C in terms of the force at B and in terms of the force at D.

$$
\begin{array}{rlr}
+\left\lceil\Sigma M_{D}=0:\right. & B(14 \mathrm{in} .)-C(8 \mathrm{in} .)=0 & C=1.750 B \\
+\left\lceil\Sigma M_{B}=0:\right. & -D(14 \mathrm{in} .)+C(6 \mathrm{in} .)=0 & C=2.33 D
\end{array}
$$

www.konkur.in

Control Rod. For a factor of safety of 3.0

$$
\sigma_{\text {all }}=\frac{\sigma_{U}}{F . S .}=\frac{60 \mathrm{ksi}}{3.0}=20 \mathrm{ksi}
$$

The allowable force in the control rod is

$$
B=\sigma_{\text {all }}(A)=(20 \mathrm{ksi}) \frac{1}{4} \pi\left(\frac{7}{16} \mathrm{in} .\right)^{2}=3.01 \mathrm{kips}
$$

Using Eq. (1), the largest permitted value of C is

$$
C=1.750 B=1.750(3.01 \mathrm{kips}) \quad C=5.27 \text { kips }
$$

Bolt at B. $\quad \tau_{\text {all }}=\tau_{U} /$ F.S. $=(40 \mathrm{ksi}) / 3=13.33 \mathrm{ksi}$. Since the bolt is in double shear (Fig. 2), the allowable magnitude of the force \mathbf{B} exerted

Fig. 2 Free-body diagram of pin at point B.

on the bolt is

$$
B=2 F_{1}=2\left(\tau_{\text {all }} A\right)=2(13.33 \mathrm{ksi})\left(\frac{1}{4} \pi\right)\left(\frac{3}{8} \mathrm{in} .\right)^{2}=2.94 \mathrm{kips}
$$

From Eq. (1),

$$
C=1.750 B=1.750(2.94 \mathrm{kips}) \quad C=\mathbf{5 . 1 5} \mathbf{k i p s}
$$

Bolt at D. Since this bolt is the same as bolt B, the allowable force is $D=B=2.94$ kips. From Eq. (2)

$$
C=2.33 D=2.33(2.94 \mathrm{kips}) \quad C=\mathbf{6} .85 \mathrm{kips}
$$

Bolt at C. We again have $\tau_{\text {all }}=13.33 \mathrm{ksi}$. Using Fig. 3, we write

$$
C=2 F_{2}=2\left(\tau_{\text {all }} A\right)=2(13.33 \mathrm{ksi})\left(\frac{1}{4} \pi\right)\left(\frac{1}{2} \mathrm{in} .\right)^{2} \quad C=\mathbf{5 . 2 3} \mathbf{k i p s}
$$

Fig. 3 Free-body diagram of pin at point C.

Summary. We have found separately four maximum allowable values of the force C. In order to satisfy all these criteria, choose the smallest value.

REFLECT and THINK: This example illustrates that all parts must satisfy the appropriate design criteria, and as a result, some parts have more capacity than needed.

