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Due to considerable stored energy in surfaces of nano-scales in comparison with the stored 

energy in their bulk, considering the surface energy is necessary for the analysis of various be-

haviors of nano-scales for more precise design and manufacturing. In this article, the longitudi-

nal dynamic behavior of nanobars in the presence of the surface energy parameters is studied. 

To this end, the longitudinal dynamic behavior of nanobars is modeled based on the simple 

theory. To consider the effects of the surface energy parameters, the surface elasticity theory is 

used. In addition, the nonlocal elasticity theory is implemented to capture the size effect. Then, 

the governing equation of motion and corresponding boundary conditions are derived from 

Hamilton’s principle. The governing equation becomes the inhomogeneous cause of consider-

ing the surface energy parameters while in none of the previous researches like the investiga-

tion of transverse vibration of nanobeams and torsional vibration of nanobars, the surface en-

ergy parameters would not cause inhomogeneity of the governing equation. Due to inhomoge-

neity of the governing equation, the homogeneous case is firstly solved, and frequencies and 

mode shapes of nanobar are obtained for fixed-fixed and fixed-free boundary conditions. Then, 

using the modal analysis method and Duhamel’s integral, the inhomogeneous governing equa-

tion of motion is solved, and the overall dynamic response of nanobar is reported.  
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1. Introduction 

Science and technology have been continuousely 
in progress, and human is looking for improvement 
in every field. Hence, in recent years, the researchers 
have been very interested to work on nanoscale ma-
terials and structures due to their unique mechanical, 
electrical, and physical properties. One of the prob-
lems facing nanoscale researchers is the difference in 
nanoscale properties and behaviors compared to 
similar systems in macro dimensions. The reason for 
this difference is due to the fact that various behav-
iors of nanoscales are size-dependent. To model the 
dependency of nanoscale properties on their dimen-

sions, various theories such as surface elasticity the-
ory, nonlocal elasticity theory, strain gradient theory, 
couple stress theory, and modified couple stress the-
ory have been proposed. In theories of nonlocal elas-
ticity, strain gradient, couple stress, and modified 
couple stress, by defining a parameter, called the 
small scale parameter, effects of dimensions on vari-
ous behaviors of nanoscale structures would be con-
sidered. In the theory of surface elasticity, the energy 
of nanostructure surfaces, in addition to the energy 
generated by its volume would be considered in 
equations of motion and boundary conditions. The 
reason is that the atoms located at nanostructure sur-
faces are exposed to a different environment than 
those in bulk. This difference would result that the 
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equilibrium positions and energies of surface atoms 
differ from the atoms in bulk.  

Using the above theories, the mechanical behav-
iors of various nanoscale structures have been stud-
ied [1-3]. Among these studies, longitudinal vibration 
analysis of nanobars is less paid attention. However, 
there are some researches using the small scale pa-
rameter for longitudinal vibration of nanorods. Ay-
dogdu [4, 5] studied the longitudinal free vibrations 
of nanorods and embedded nanorods in the elastic 
environment utilizing the nonlocal elasticity theory 
and investigated the effect of the nonlocal parameter 
on longitudinal frequencies. The free longitudinal vi-
brational behavior of nanorods with variable cross-
sectional area taking into account the effect of non-
local parameter had also been investigated [6-8]. Hsu 
et al. [9] considered the nonlocal effect on free longi-
tudinal vibration of cracked nanorods. The nonlocal 
elasticity theory was used to analyze the free longitu-
dinal vibrational behavior of two connected nano-
rods. The effect of Van der Waals interactions was 
also considered [10, 11]. In another study, the free 
longitudinal vibration of nanorods was analyzed by 
considering the effect of lateral displacement of na-
norods modeled based on the nonlocal Rayleigh the-
ory and the nonlocal elasticity theory [12]. Free axial 
vibration of thick functionally graded size-dependent 
nanorods was investiagted by Nazemnezhad and Ka-
mali [13]. It is also worth to mention the study ana-
lyzing the free longitudinal vibration of nanorods us-
ing the strain gradient theory [14]. The other related 
works can be found in [15-19].  

Researches done on analysis of the longitudinal or 
axial vibrational behavior of nanorods/nanobars 
show that they have used the nonlocal elasticity the-
ory or strain gradient theory. Therefore, there is a 
question of how the longitudinal dynamic behavior of 
nanorods/nanobars is based on the theory of surface 
elasticity? However, there are some studies that con-
sider various mechanical behaviors of nanostruc-
tures using the surface elasticity theory [20-25]. 

To cover this issue, in the present study, the longi-
tudinal dynamic behavior of nanobars is investigated 
by considering the surface energy components. To this 
end, the longitudinal dynamic behavior of the nanobar 
is modeled based on the surface elasticity and classical 
elasticity theory, and the equation of motion and 
boundary conditions of the nanobar is extracted by us-
ing Hamilton’s principle. In the next step, the equation 
of motion is solved analytically for two boundary con-
ditions; i.e., fixed-fixed and fixed-free. Finally, in the re-
sults section, the influence of geometrical factors such 
as the length and radius of nanobar, along with the ef-
fect of surface energy components on the longitudinal 

dynamic behavior of the nanobar has been investi-
gated. In addition, a comparison is made between the 
effects of the surface energy components on the vari-
ous behaviors of nanostructures; i.e., longitudinal vi-
bration, transverse vibration, and torsional vibration. 

2. Problem Formulation 

To extract the governing equation of motion for 
the free longitudinal vibrational motion of nanobars 
taking into account the surface energy effect, a nano-
bar with length L  0 x L  and radius R is consid-
ered in the x-y-z coordinates system (Fig. 1). 

The next step for problem formulation is selecting 
an appropriate theory for modeling the longitudinal 
vibrational behavior of nanobars. To this end, it is as-
sumed that 1) the cross-section of the nanobar origi-
nally plane remain plane during deformation, and 2) 
the displacement components in the nanobar (except 
for the component parallel to the nanobar longitudi-
nal axis) are negligible. These assumptions introduce 
the Simple theory of rods. The displacement field of 
any point of the nanobar based on the Simple theory 
of rods could be expressed as [26, 27]: 

{
𝑢(𝑥. y. z. 𝑡) = 𝑢0(𝑥. 𝑡);              

𝑣(𝑥. y. z. 𝑡) = 𝑤(𝑥. y. z. 𝑡) = 0
 

(1) 

in which u, v and w are displacement components of 
nanobar along the x, y and z directions, respectively, 
and t is the time. Based on the components of the dis-
placement field, the strains in the cross-section of 
nanobar are given by: 

휀𝑥𝑥 =
𝜕𝑢0
𝜕𝑥

;  휀𝑥𝑦 = 휀𝑥𝑧 = 휀𝑦𝑧 = 휀𝑦𝑦 = 휀𝑧𝑧 = 0 (2) 

The stresses of the nanobar are also given by: 

{
𝜎𝑥𝑥 = 𝐸

𝜕𝑢0
𝜕𝑥

;                                      

𝜎𝑥𝑦 = 𝜎𝑥𝑧 = 𝜎𝑦𝑧 = 𝜎𝑦𝑦 = 𝜎𝑧𝑧 = 0
 

(3) 

 

 
Fig. 1. Schematic of a nanobar with its surface. 
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Eqs. (2) and (3) are the strain and stress compo-
nents of the nanobar volume, respectively. Since 
Hamilton’s principle requires the strains and 
stresses of both the surface and volume of nanobar, 
the components of surface strain and surface stress 
are obtained. 

The surface elasticity theory is implemented to 
calculate the stress components at the nanobar sur-
face. In the surface elasticity theory of Gurtin and 
Murdak [28], the surface stresses are expressed as:  

𝜏𝛼𝛽 = 𝜏0 𝛿𝛼𝛽 + 2(𝜇0 − 𝜏0 )휀𝛼𝛽
+ (𝜆0 + 𝜏0 )𝑢𝛾𝛾𝛿𝛼𝛽
+ 𝜏0 𝑢𝛼𝛽;       (𝛼. 𝛽 = 𝑥. 𝑦) 

(4) 

𝜏𝛼𝑧 = 𝜏0
𝜕𝑢0
𝜕𝛼

;       (𝛼 = 𝑥. 𝑦) (5) 

where λ0 and μ0 are the surface Lamé constants, δαβ is 
the Kronecker delta, and τ0 is the surface residual 
stress. 

Before using Eqs. (4) and (5), it is worth to note 
that Wang and Feng [29] have considered free trans-
verse vibration of microbeams incorporating the sur-
face energy effects. They have modeled the residual 
surface stress as an external work acting on the mi-
crobeam. Therefore, the one has done in Ref. [29] was 
selected for considering the effect of the residual sur-
face stress. This yields: 

𝑊 = ∫ (𝜏0𝑢0(𝑥. 𝑡))𝑑𝑥
𝐿

0

 (6) 

Substituting displacement components (Eq. (1)) 
into Eqs. (4) and (5) results in the surface stresses as: 

{
 
 

 
 𝜏𝑥𝑥 = (2𝜇0 + 𝜆0)

𝜕𝑢0
𝜕𝑥
         

𝜏𝑦𝑦 = (𝜆0)
𝜕𝑢0
𝜕𝑥
                     

𝜏𝑥𝑦 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 𝜏𝑧𝑧 = 0

 (7) 

Now, it is possible to form the potential energy of 
the nanobar as: 

𝑈 = ∫(𝜎𝑥𝑥휀𝑥𝑥)𝑑𝑉 + ∫𝜏𝑥𝑥휀𝑥𝑥𝑑𝐴 (8) 

The next parameter in Hamilton’s principle is the 
kinetic energy of the nanobar. This parameter is 
given by: 

𝑇 =
1

2
∫𝜌(

𝜕𝑢0(𝑥. 𝑡)

𝜕𝑡
)

2

𝑑𝑉

+
1

2
∫𝜌0 (

𝜕𝑢0(𝑥. 𝑡)

𝜕𝑡
)

2

𝑑𝐴 

(9) 

where 𝜌 (𝑘𝑔 𝑚3⁄ ) and 𝜌0 (𝑘𝑔 𝑚2⁄ ) are the density of 
the volume and surface of nanobar, respectively, V 
and A indicate the volume and surface of the nanobar 

and  dA = 2 πRdx. Now that the necessary compo-
nents of Hamilton’s principle (Eq. (10)) are obtained, 
the governing equation of motion and corresponding 
boundary conditions could be derived by putting Eqs. 
(6), (8) and (9) into Eq. (10), and performing the in-
tegral by parts. This would result in: 

𝛿∫ (𝑈 − 𝑇 −𝑊)𝑑𝑡
𝑡2

𝑡1

= 0 (10) 

𝜕𝑁𝑥𝑥
𝜕𝑥

− (𝜌𝐴)𝑒𝑞
𝜕2𝑢0
𝜕𝑡2

= −𝜏0 (11) 

(𝑁𝑥𝑥𝛿𝑢0) |
𝑙
0
= 0 (12) 

where  

𝑁𝑥𝑥 = ∫ 𝜎𝑥𝑥𝑑𝐴+ ∫ 𝜏𝑥𝑥𝑑𝑆 
(13) 

{
(𝜌𝐴)𝑒𝑞 = 𝜌𝐴+ 𝜌0𝑆

𝐴 = 𝜋𝑅2                    
𝑆 = 2𝜋𝑅                   

;  
(14) 

Eqs. (11) and (12) are the local governing equa-
tion of motion and corresponding boundary condi-
tion for a nanobar in the free axial vibration. To ob-
tain their nonlocal form, the nonlocal elasticity the-
ory should be used [30]. Based on the theory: 

(1 − 𝜇∇2)𝑁𝑥𝑥
𝑛𝑙 = 𝑁𝑥𝑥

= ∫ 𝜎𝑥𝑥𝑑𝐴 +∫ 𝜏𝑥𝑥𝑑𝑆

= (𝐸𝐴 + 𝐸0𝑆)
𝜕𝑢0
𝜕𝑥

= (𝐸𝐴)𝑒𝑞
𝜕𝑢0
𝜕𝑥

 

(15) 

((1 − 𝜇∇2)𝑁𝑥𝑥
𝑛𝑙𝛿𝑢0) |

𝑙
0
= 0

⇒  ((𝐸𝐴)𝑒𝑞
𝜕𝑢0
𝜕𝑥

𝛿𝑢0) |
𝑙
0

= 0 ⇒   (
𝜕𝑢0
𝜕𝑥

𝛿𝑢0) |
𝑙
0
= 0 

(16) 

where 𝜇 is the nonlocal parameter, ∇2= 𝜕2 𝜕𝑥2⁄  is 
the one-dimensional Laplacian operator, and super-
script  nl denotes the nonlocal.  

Multiplying both sides of Eq. (11) by (1 − 𝜇∇2) and 
substituting Eq. (15) into Eq. (11) would result in the 
nonlocal equation of motion in terms of deflection as 
follows: 

𝑐2
𝜕2𝑢0
𝜕𝑥2

+ 𝜇
𝜕4𝑢0
𝜕𝑥2𝜕𝑡2

−
𝜕2𝑢0
𝜕𝑡2

= −
𝜏0

(𝜌𝐴)𝑒𝑞
 (17) 

where 𝑐2 = (𝐸𝐴)𝑒𝑞 (𝜌𝐴)𝑒𝑞⁄ . 
According to Eq. (16), the following boundary 

conditions could be considered: 
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 Fixed-Fixed        
𝑢0(0. 𝑡) = 𝑢0(𝐿. 𝑡) = 0 

(18) 

  Fixed-Free             𝑢0(0. 𝑡) =
𝜕𝑢0(𝐿. 𝑡)

𝜕𝑥
= 0 (19) 

2.1. Solution Procedure 

Since the nonlocal governing equation of motion 
(Eq. (17)) is an inhomogeneous equation, firstly its 
general solution requires the solution of its homoge-
neous part. To this end, Eq. (17) is written as: 

𝑐2
𝜕2𝑢0
𝜕𝑥2

+ 𝜇
𝜕4𝑢0
𝜕𝑥2𝜕𝑡2

−
𝜕2𝑢0
𝜕𝑡2

= 0 (20) 

Eq. (20) indicates the free longitudinal vibrational 
behavior of nanobars incorporating the surface en-
ergy effects. To solve Eq. (20), a harmonic displace-
ment for the nanobar is assumed as: 

𝑢0(𝑥. 𝑡) = 𝑈(𝑥)𝑒
𝑖𝜔𝑡 (21) 

in which ω is the natural longitudinal frequency. Sub-
stituting Eq. (21) into Eqs. (18)-(20) results in the fol-
lowing equations:  

𝑐2
𝑑2𝑈(𝑥)

𝑑𝑥2
− 𝜇𝜔2

𝑑2𝑈(𝑥)

𝑑𝑥2
+𝜔2𝑈(𝑥)

= 0 

(22) 

 Fixed-Fixed         𝑈(0) = 𝑈(𝐿) = 0 (23) 

 Fixed-Free                𝑈(0) =
𝑑𝑈(𝐿)

𝑑𝑥
= 0 (24) 

The general solution of the second-order differen-
tial equation (Eq. (22)) is given by: 

𝑈(𝑥) = 𝐴1 cos(𝜆𝑥) + 𝐴2 sin(𝜆𝑥) (25) 

where 𝜆 = √𝜔2 (𝑐2 − 𝜇𝜔2)⁄ . 
To obtain the mode shapes and natural frequen-

cies associated with each boundary condition type, 
Eqs. (23) and (24) should be applied to Eq. (25). This 
gives: 

 Mode Shapes: 

 Fixed-
Fixed         𝑈𝑖(𝑥) = 𝐴𝑖 sin(

𝑖𝜋

𝐿
𝑥) (26) 

 Fixed-
Free              𝑈𝑖(𝑥) = 𝐴𝑖 sin(

(2𝑖 − 1)𝜋

2𝐿
𝑥) (27) 

 Natural Frequencies: 

 Fixed-Fixed        𝜔𝑖 =

𝑖𝜋𝑐

𝐿

√1+ 𝜇 (
𝑖𝜋

𝐿
)
2

 (28) 

  Fixed-Free                   𝜔𝑖 =

(2𝑖−1)𝜋𝑐

2𝐿

√1+ 𝜇 (
(2𝑖−1)𝜋

2𝐿
)
2

 (29) 

Note that 1,2,3,...i  .  

After determining the nanobar mode shapes and 
natural frequencies, it is possible to solve the inho-
mogeneous part of the governing equation of motion 
(Eq. (11)). For this purpose, the modal analysis 
method, as well as the orthogonality relation for 
mode shapes, are used. The general response of 
nanobar during longitudinal vibrations could be con-
sidered as: 

𝑢0(𝑥. 𝑡) =∑𝑈𝑖(𝑥)𝜂𝑖(𝑡)

∞

𝑖=1

 (30) 

where 𝑈𝑖(𝑥) is the nanobar mode shape, and 𝜂𝑖(𝑡) is 
the generalized coordinate. Substituting Eq. (30) into 
Eq. (17), multiplying the obtained equation by 𝑈𝑗(𝑥), 

and integrating over the length of the nanobar would 
yield: 

∑[𝑐2𝜂𝑖(𝑡)∫
𝑑2𝑈𝑖(𝑥)

𝑑𝑥2
𝑈𝑗(𝑥)𝑑𝑥

𝐿

0

∞

𝑖=1

+ �̈�𝑖(𝑡)𝜇∫
𝑑2𝑈𝑖(𝑥)

𝑑𝑥2
𝑈𝑗(𝑥)𝑑𝑥

𝐿

0

− �̈�𝑖(𝑡)∫ 𝑈𝑖(𝑥)𝑈𝑗(𝑥)𝑑𝑥
𝐿

0

]

= −
𝜏0

(𝜌𝐴)𝑒𝑞
∫ 𝑈𝑗(𝑥)𝑑𝑥
𝐿

0

 

(31) 

Eq. (31) could be simplified using the orthogonal-
ity relation for the mode shapes. The orthogonality 
relations (which are valid not only among the mode 
shapes but also among the derivatives of the mode 
shapes) are given by [26]: 

∫ 𝑈𝑖(𝑥)𝑈𝑗(𝑥)𝑑𝑥
𝐿

0

= {
0  𝑓𝑜𝑟  𝑖 ≠ 𝑗
1  𝑓𝑜𝑟  𝑖 = 𝑗

 (32) 

∫
𝑑𝑈𝑖(𝑥)

𝑑𝑥

𝑑𝑈𝑗(𝑥)

𝑑𝑥
𝑑𝑥

𝐿

0

= {

0                   𝑓𝑜𝑟  𝑖 ≠ 𝑗

−(
𝜔𝑖
𝑐
)

2

  𝑓𝑜𝑟  𝑖 = 𝑗
 (33) 

∫
𝑑2𝑈𝑖(𝑥)

𝑑𝑥2
𝑈𝑗(𝑥)𝑑𝑥

𝐿

0

= {

0                   𝑓𝑜𝑟  𝑖 ≠ 𝑗

−(
𝜔𝑖
𝑐
)

2

  𝑓𝑜𝑟  𝑖 = 𝑗
 (34) 

For i=j, the substitution of Eqs. (32) and (34) into 
Eq. (31) results in: 
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�̈�𝑖(𝑡) + 𝐵1
2𝜂𝑖(𝑡) = 𝐵2 ∫ 𝑈𝑖(𝑥)𝑑𝑥

𝐿

0

 (35) 

where: 

𝐵1 =
𝑐𝜔𝑖

√𝑐2 + 𝜇𝜔𝑖
2

 

(36) 

𝐵2 =
𝑐2𝜏0

(𝜌𝐴)𝑒𝑞(𝑐
2 + 𝜇𝜔𝑖

2)
 

Eq. (35) is a second-order ordinary differential 
equation with respect to time. The solution of Eq. 
(35) using Duhamel’s integral [31] is given by: 

𝜂𝑖(𝑡) =
1

𝐵1
∫ 𝑈𝑖(𝑥) [∫ 𝐵2 𝑠𝑖𝑛(𝐵1(𝑡 − 𝜏))𝑑𝜏

𝑡

0

]𝑑𝑥
𝐿

0

 (37) 

By obtaining a relation for generalized coordi-
nates (Eq. (37)), the general response of nanobar, re-
gardless of the initial conditions, is given by (substi-
tute Eq. (37) into Eq. (30)): 

𝑢0(𝑥. 𝑡) =∑
𝑈𝑖(𝑥)

𝐵1
∫ 𝑈𝑖(𝑥)
𝐿

0

∞

𝑖=1

× 

                 [∫ 𝐵2 sin(𝐵1(𝑡 − 𝜏))𝑑𝜏 
𝑡

0

] 𝑑𝑥 
(38) 

It is necessary to point out that in the use of Eq. 
(38), the coefficients of the mode shapes (see Eqs. 
(26)-(27)) must be obtained from the orthogonality 
conditions (Eqs. (32)-(34)). This yields: 

 Fixed-
Fixed       𝑈𝑖(𝑥) = √

2

𝐿
sin (

𝑖𝜋

𝐿
𝑥) (39) 

 Fixed-
Free 𝑈𝑖(𝑥) = √

2

𝐿
sin (

(2𝑖 − 1)𝜋

2𝐿
𝑥) (40) 

Now, by substituting Eqs. (28), (29), (39) and 
(40) into Eq. (38), the general dynamic response of 
the nanobar for fixed-fixed and fixed-free boundary 
conditions is given by Eqs. (41) and (42), respec-
tively. 

𝑢0(𝑥. 𝑡) = ∑ {
4𝜏0(𝐿

2+ 𝜇(𝑖𝜋)2)

(𝐸𝐴)𝑒𝑞(𝑖𝜋)3
sin (

𝑖𝜋

𝐿
𝑥)

∞

𝑖=1.3.…

× (1 − cos(𝐵1𝑡))} 

(41) 

𝑢0(𝑥. 𝑡)

=∑
4𝜏0 (4𝐿

2+ 𝜇((2𝑖 − 1)𝜋)
2
)

(𝐸𝐴)𝑒𝑞((2𝑖 − 1)𝜋)
3 sin(

(2𝑖 − 1)𝜋

2𝐿
𝑥)

∞

𝑖=1

× (1 − cos(
(2𝑖 − 1)𝜋𝑐

2𝐿
𝑡)) 

(42) 

 

3. Results and Discussion 

To verify the accuracy and exactitude of de-
rived equations and solving method, the results of 
the present study are compared with those re-
ported in the literature. Since no research has ever 
been found to examine the effects of the surface en-
ergy on the longitudinal vibration of nanorods, the 
present results are compared with those of Refs. 
[26] and [8]. In Ref. [26], local axial vibration, and 
in Ref. [8], nonlocal axial vibration of nanobars are 
studied. The modeling of nanobars is done based 
on the simple theory of rods. The comparison is 
listed in Tables 1 and 2. The results reported in Ta-
bles 1 and 2 show that the results of the present 
study are consistent with the other ones, which in-
dicates the accuracy of the derived equations and 
the solving method. 

Firstly, Eq. (38) is defined to present new re-
sults and investigate the effects of the surface en-
ergy parameters and the nonlocal parameter on 
the longitudinal dynamic behavior of nanobars. 

FR=   
Frequency with surface energy and non-

local effects 
(38) 

Frequency without surface energy and 
nonlocal effects 

Then, two categories of results are reported. 
The results of the first category are concluded from 
the mathematical relations of natural frequencies 
(Eqs. (28)-(29)), mode shapes (Eqs. (26)-(27)), 
and dynamic responses (Eqs. (41)-(42)), and the 
results of the second category are numerical re-
sults that will be presented as tables and figures. 

The results concluded from the mathematical 
relations of natural frequencies, mode shapes, and 
dynamic responses could be summarized as: 
• Eq. (17) shows that considering the surface en-

ergy effects causes the inhomogeneity of the 
nanobar longitudinal governing equation of mo-
tion while this is not the case in researches like 
the investigation of the transverse vibration of 
nanobeams [32-35] and the investigation of the 
torsional vibration of nanorods [36, 37] incor-
porating the surface energy effects. 

• Eqs. (26) and (27) show that the surface energy 
components do not have any effect on the longi-
tudinal mode shapes of the nanobar. A literature 
survey shows that the same result has been re-
ported for the effect of the surface energy com-
ponents on torsional mode shapes of nanorods 
[37], but a different result has been observed for 
the effect of the surface energy components on 
the transverse vibration of nanobeams [38]. In 
free transverse vibration of nanobeams, from 
the three types of boundary condition, fixed-
fixed, fixed-free and hinged-hinged, the surface 
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energy components affect only the mode shapes 
of the nanobeams with fixed-free boundary con-
dition.  

• Eqs. (28) and (29) show that the surface energy 
and the nonlocal would affect the natural longi-
tudinal frequencies of nanobars with both fixed-
fixed and fixed-free boundary conditions. 

• According to the definition of the parameter c 
(see Eq. (17)) and Eqs. (28)-(29), it could be 
concluded that only the surface Lamé constants 
and the surface density would affect the longitu-
dinal frequencies of nanobars. The surface 
stress does not affect the natural longitudinal 
frequencies. However, it has been reported in 
references that all surface energy components 
affect the natural torsional frequencies of nano-
rods [37] and the natural transverse frequencies 
of nanobeams [34]. 

• Eqs. (36) and (37) show that all surface energy 
components and the nonlocal parameter would af-
fect the longitudinal dynamic response of the 
nanobar. 
In the second category of results, the numerical 

results are presented as tables and figures. These re-
sults include variations of the natural longitudinal 
frequencies and frequency ratios versus the fre-
quency number; variations of the natural longitudi-
nal frequencies and frequency ratios versus the 
length of nanobar; and variations of the natural lon-
gitudinal frequencies and frequency ratios versus the 
radius of nanobar. 

The numerical results are for nanobar with radius 
R, length L, and made of aluminum and silicon with 
the mechanical properties given in Table 3. The me-
chanical properties of aluminum are in [111]  crystal-
line direction and silicon in [100] crystalline direc-
tion [34]. 

 
Table 1. Comparison of natural frequencies of nanobar for various values of its length (E=70 GPa, ρ=2700 kg/m3) 

Frequency (THz) 
Mode number L (nm) Fixed-Free Fixed-Fixed 

Ref. [26] Ref. [8] Present work Ref. [26] Ref. [8] Present work 
0.80 0.80 0.80 1.60 1.60 1.60 1 10 
2.40 2.40 2.40 3.20 3.20 3.20 2  
4.00 4.00 4.00 4.80 4.80 4.80 3  
5.60 5.60 5.60 6.40 6.40 6.40 4  
7.20 7.20 7.20 8.00 8.00 8.00 5  
0.40 0.40 0.40 0.80 0.80 0.80 1 20 
1.20 1.20 1.20 1.60 1.60 1.60 2  
2.00 2.00 2.00 2.40 2.40 2.40 3  
2.80 2.80 2.80 3.20 3.20 3.20 4  
3.60 3.60 3.60 4.00 4.00 4.00 5  
0.27 0.27 0.27 0.53 0.53 0.53 1 30 
0.80 0.80 0.80 1.07 1.07 1.07 2  
1.33 1.33 1.33 1.60 1.60 1.60 3  
1.87 1.87 1.87 2.13 2.13 2.13 4  
2.40 2.40 2.40 2.67 2.67 2.67 5  

 
Table 2. Comparison of natural frequencies of nanobar for various values of the nonlocal parameter (E=70 GPa, ρ=2700 kg/m3) 

𝝁 

(𝐧𝐦𝟐) 
Mode number 

Frequency (THz) 

Fixed-Fixed Fixed-Free 

Present work Ref. [8] Present work Ref. [8] 
0.0025 1 1.58 1.58 0.8 0.8 

 2 3.05 3.05 2.34 2.34 
 3 4.34 4.34 3.72 3.72 
 4 5.42 5.42 4.91 4.91 
 5 6.29 6.29 5.88 5.88 

0.0100 1 1.53 1.53 0.79 0.79 
 2 2.71 2.71 2.17 2.17 
 3 3.49 3.49 3.15 3.15 
 4 3.98 3.98 3.77 3.77 
 5 4.3 4.3 4.16 4.16 
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Table 3. Mechanical properties of aluminum and silicon nano-

bars. 

Mechanical properties 
alumi-

num 
silicon 

Volume Elasticity Modulus 
(GPa) 

70 210 

Surface Lamé constants 
(2𝜇0+ 𝜆0) (N/m) 

5.1882 -10.6543 

Volume Density (kg/m3) 2700 2370 
Surface Density (kg/m2) 5.46×10-7 3.17×10-7 
Surface Stress (N/m) 0.9108 0.6048 

In Table 4, values of the first four classic frequen-
cies and frequency ratios of nanobar made of alumi-
num and silicon are listed for fixed-fixed and camped-
free boundary conditions. Table 4 shows that 1) since 
the frequency ratios represent values less than one for 
both silicon and aluminium nanobars with fixed-fixed 
and fixed-free boundary conditions, it can be con-
cluded that the surface energy and the nonlocal pa-
rameter have a decreasing effect on the natural longi-
tudinal frequencies of the nanobar; 2) The classical 
frequencies of the nanobar and the nonlocal parame-
ter effect depend on the frequency number and the 
type of boundary condition, but the effect of the sur-
face energy components on the natural longitudinal 
frequencies of the nanobar is independent of the 
boundary condition type. In other words, the surface 
energy reduces all the nanobar classical frequencies 
with the same ratio for all boundary condition types; 
3) the frequency ratios of aluminum and silicon nano-
bars are different when the surface energy effect is 
considered, but this is not the case for the frequency 
ratios when the nonlocal parameter effect is consid-
ered. This indicates that the effect of surface energy 
components on the natural longitudinal frequencies 
depends on the values of the mechanical properties of 
the nanobar while it is the other way round for the de-
pendency of the nonlocal parameter effect on the val-
ues of the mechanical properties of the nanobar. 

To consider the effects of another factor on natural 
longitudinal frequencies of nanobars, in Table 5, the 
fundamental frequencies and frequency ratios are 
listed for various values of the nanobar length. What 
Table 5 shows are exactly the results previously ob-
served in Table 4. In summary, it can be stated that the 
effect of the surface energy components on the natural 
frequencies for various values of the nanobar length is 
independent of the boundary condition type while the 
nonlocal parameter effect depends on not only the 
nanobar length but also on the boundary condition 
type. The surface energy and the nonlocal parameter 
reduce the classical frequencies of the nanobar by the 
same ratio and different ratio, respectively. The other 

point of Table 5 is that the nonlocal parameter effect is 
independent of the nanobar material, while this is not 
the case for the surface energy effect. It is worth noting 
that the longitudinal frequencies of the nanobar are 
dependent on its length, and the larger the length of 
the nanobar, the lower the frequency. This can also be 
concluded from Eqs. (28) and (29) previously pre-
sented for natural frequencies of nanobar. This is be-
cause the parameter of the nanobar length is the de-
nominator in the mentioned relations. 

In Table 6, the other geometric factor of the nano-
bar, radius, is considered. To this end, the fundamental 
frequencies and frequency ratios of nanobar made of 
aluminum and silicon and for the fixed-fixed and fixed-
free boundary conditions are given for various values 
of the nanobar radius. Table 6 reports different results 
than those reported in Tables 4 and 5. The results pre-
sented in Table 6 are: 1) for various values of the nano-
bar radius, the surface energy reduces the natural fre-
quencies of nanobar by the same ratio for both bound-
ary condition types, and its effect depends on the 
nanobar material while this is the opposite if the non-
local parameter effect; 2) although the values of the 
classical frequencies are independent of the nanobar 
radius, the frequencies incorporating the surface en-
ergy effect depends on the value of the nanobar radius. 
The larger the nanobar radius, the lower the surface 
energy effect on the longitudinal frequencies. This de-
crease in the surface energy effect is due to the fact 
that by increasing the radius, the energy stored at the 
surface increases by a lower rate in comparison with 
the energy stored in the volume. 

In the following, the point was examined that be-
tween two parameters (surface Lamé constants and 
surface density) affecting the natural longitudinal 
frequencies of the nanobar how the influence of each 
parameter is. For this purpose, in Fig. 2, variations of 
the fundamental frequency ratio versus the nanobar 
radius are plotted for various cases. The first result 
concluded from Fig. 2 is that the effects of the surface 
energy parameters on the longitudinal frequencies 
are not the same. Even the type of effect (increasing 
or decreasing) of the surface energy parameters is 
not the same. For silicon nanobars, both surface 
Lamé constants and surface density have a decreas-
ing effect, and when their effects are simultaneously 
considered, they have a higher reducing effect than 
the one considered separately. Another interesting 
point is that however, the surface density has a much 
smaller value than the surface Lamé constants (refer 
to Table 3), but its decreasing effect is more. Never-
theless, for aluminum nanobars, the surface Lamé 
constants have an increasing effect, and the surface 
density has a decreasing effect. 
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Table 4. The first four classic frequencies and frequency ratios of aluminum and silicon nanobars with fixed-fixed and fixed-free bound-

ary conditions (L=10 nm). 

Silicon Aluminum 

Frequency number 
𝝁 (𝒏𝒎𝟐) 

FR Classic frequency (THz) FR Classic frequency (THz)  

Fixed-Fixed  
0.8420 2.9572 0.9042 1.5996 1 0.0 
0.8420 5.9145 0.9042 3.1992 2  
0.8420 8.8717 0.9042 4.7989 3  
0.8420 11.8289 0.9042 6.3985 4  
0.9139 2.9572 0.9139 1.5996 1 2.0 (𝜏0 = 𝜆0 =

𝜇0 = 𝜌0 = 0) 
0.7475 5.9145 0.7475 3.1992 2  
0.6001 8.8717 0.6001 4.7989 3  
0.4904 11.8289 0.4904 6.3985 4  
0.7694 2.9572 0.8263 1.5996 1 2.0 
0.6294 5.9145 0.6759 3.1992 2  
0.5053 8.8717 0.5426 4.7989 3  
0.4129 11.8289 0.4434 6.3985 4  

Fixed-Free   

0.8420 1.4786 0.9042 0.7998 1 0.0 
0.8420 4.4359 0.9042 2.3994 2  
0.8420 7.3931 0.9042 3.9991 3  
0.8420 10.3503 0.9042 5.5987 4  
0.9762 1.4786 0.9762 0.7998 1 2.0 (𝜏0 = 𝜆0 =

𝜇0 = 𝜌0 = 0) 
0.8321 4.4359 0.8321 2.3994 2  
0.6691 7.3931 0.6691 3.9991 3  
0.5410 10.3503 0.5409 5.5987 4  
0.8219 1.4786 0.8827 0.7998 1 2.0 
0.7006 4.4359 0.7524 2.3994 2  
0.5634 7.3931 0.6050 3.9991 3  
0.4554 10.3503 0.4891 5.5987 4  

 
Table 5. The fundamental frequency and frequency ratio of aluminum and silicon nanobars with fixed-fixed and fixed-free boundary con-

ditions for various values of nanobar length.  

Silicon Aluminum 
Length 
(nm) 

𝝁 (𝒏𝒎𝟐) FR 
Classic frequency 

(THz) 
FR 

Classic frequency 
(THz) 

Fixed-Fixed 
0.8420 2.9572 0.9042 1.5996 10 0.0 
0.8420 1.9715 0.9042 1.0664 15  
0.8420 1.4786 0.9042 0.7998 20  
0.8420 1.1829 0.9042 0.6398 25  
0.9139 2.9572 0.9139 1.5996 10 2.0 (𝜏0 = 𝜆0 = 𝜇0 = 𝜌0 =

0) 
0.9588 1.9715 0.9588 1.0664 15  
0.9762 1.4786 0.9762 0.7998 20  
0.9846 1.1829 0.9846 0.6398 25  
0.7694 2.9572 0.8263 1.5996 10 2.0 
0.8073 1.9715 0.8670 1.0664 15  
0.8219 1.4786 0.8827 0.7998 20  
0.8290 1.1829 0.8902 0.6398 25  

Fixed-Free   

0.8420 1.4786 0.9042 0.7998 10 0.0 
0.8420 0.9857 0.9042 0.5332 15  
0.8420 0.7393 0.9042 0.3999 20  
0.8420 0.5914 0.9042 0.3199 25  
0.9762 1.4786 0.9762 0.7998 10 2.0 (𝜏0 = 𝜆0 = 𝜇0 = 𝜌0 =

0) 
0.9892 0.9857 0.9892 0.5332 15  
0.9939 0.7393 0.9939 0.3999 20  
0.9961 0.5914 0.9961 0.3199 25  
0.8219 1.4786 0.8827 0.7998 10 2.0 
0.8329 0.9857 0.8944 0.5332 15  
0.8368 0.7393 0.8987 0.3999 20  
0.8387 0.5914 0.9006 0.3199 25  
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Table 6. The fundamental frequency and frequency ratios of aluminum and silicon nanobars with fixed-fixed and fixed-free boundary con-

ditions for various values of the nanobar radius.  

Silicon Aluminum 
Ra-

dius 
(nm) 

𝝁 (𝒏𝒎𝟐) FR Classic frequency 
(THz) 

FR 
Classic frequency 

(THz) 
Fixed-Fixed 

0.8420 0.2957 0.9042 0.1600 1 0.0 
0.9643 0.2957 0.9760 0.1600 5  
0.9819 0.2957 0.9876 0.1600 10  
0.9990 0.2957 0.9990 0.1600 1 2.0 (𝜏0 = 𝜆0 = 𝜇0 = 𝜌0 = 0) 
0.9990 0.2957 0.9990 0.1600 5  
0.9990 0.2957 0.9990 0.1600 10  
0.8411 0.2957 0.9033 0.1600 1 2.0 
0.9634 0.2957 0.9750 0.1600 5  
0.9809 0.2957 0.9866 0.1600 10  

Fixed-Free   

0.8420 0.1479 0.9042 0.0800 1 0.0 
0.9643 0.1479 0.9760 0.0800 5  
0.9819 0.1479 0.9876 0.0800 10  
0.9998 0.1479 0.9998 0.0800 1 2.0 (𝜏0 = 𝜆0 = 𝜇0 = 𝜌0 = 0) 
0.9998 0.1479 0.9998 0.0800 5  
0.9998 0.1479 0.9998 0.0800 10  
0.8418 0.1479 0.9040 0.0800 1 2.0 
0.9641 0.1479 0.9758 0.0800 5  
0.9816 0.1479 0.9874 0.0800 10  

 

 
Fig. 2. Variations of fundamental FR versus the nanobar ra-

dius for various cases of surface energy effect. 

When the effects of two factors are simultane-
ously considered a lower decreasing effect is 
achieved, which is less than the decreasing effect of 
the surface density parameter. This denotes that the 
decreasing effect of the surface density is dominant 
over the increasing effect of the surface Lamé con-
stants. Due to the difference in the sign of the surface 
Lamé constants, it could be concluded that if the sign 
is positive, it has an increasing effect on the natural 
longitudinal frequencies, while it is the other way 
round for the negative sign of the surface Lamé con-
stants. 

In the final section of this study, the steady-state 
response of the middle of the fixed-fixed nanobar 

made of aluminum and silicon is shown in Fig. 3. In 
Fig. 3, the length and radius of the nanobar are con-
sidered to be 10 and 1 nm, respectively, and the fol-
lowing non-dimensional parameters are used: 

𝑈 = 𝑢 ∗ (
(𝐸𝐴)𝑒𝑞
4𝐿2𝜏0

) ;    𝑇 = 𝑡 ∗ (
𝜋𝑐

𝐿
) (38) 

 

Fig. 3 shows that the surface energy changes the 
steady-state response of the nanobar longitudinal 
dynamic behavior, and its effect depends on the ma-
terial of the nanobar, the values of the surface energy 
parameters and their signs. 

4. Conclusion 

In this paper, the dynamic behavior of the nano-
bar is considered analytically by considering the ef-
fects of surface energy components and nonlocal pa-
rameter for fixed-fixed and fixed-free boundary con-
ditions. Due to considering the surface energy effect, 
the nanobar governing equation of motion is ob-
tained inhomogeneous. For this reason, the homoge-
neous response is obtained first, and then the inho-
mogeneous response is calculated. The following re-
sults could be highlighted in the present study: 
 The surface energy has a decreasing effect on the 

natural longitudinal frequencies of the nanobar, 
and its effect is independent of the frequency 
number, the length of the nanobar, and the type of 
boundary condition. However, the nanobar fre-
quencies depend on the frequency number, the 
length of the nanobar, and the type of boundary 
condition. 
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Fig. 3. The steady-state response of the middle of nanobeam with the fixed-fixed boundary condition, a) aluminum, b) silicon.  

 
 The nonlocal parameter has a decreasing effect on 

the natural longitudinal frequencies of the nano-
bars, and its effect depends on the type of bound-
ary condition, frequency number, and the length 
of nanobar. 

 The surface energy and the nonlocal parameter 
do not affect the longitudinal mode shapes of the 
nanobar. 

 Between the surface energy parameters, the sur-
face stress does not affect the natural longitudinal 
frequencies, but it is effective on the overall dy-
namic response of the nanobar. 

 Values of the natural longitudinal frequencies and 
the nonlocal parameter effect are independent of 
the nanobar radius, but the decreasing effect of 
the surface energy depends on the nanobar ra-
dius. 

 When effects of the surface energy parameters 
are separately considered, it is observed that the 
surface density always has a decreasing effect, 
and its influence is greater than the that of the 
surface Lamé constants. In other words, the effect 
of the surface density is dominant over the effect 
of the surface Lamé constants. However, the ef-
fect of the surface Lamé constants depends on 
their sign. The surface Lamé constants with a pos-
itive sign have an increasing effect, but it is the 
other way round for the surface Lamé constants 
with the negative sign. 
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