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Abstract: All plasma processes including linear and early nonlinear stages of MHD instabilities, transport and 

plasma flows, waves, micro-instabilities and turbulence, represent different kinds of deviations from MHD 

equilibrium and thus require accurate calculations of equilibrium configurations. The simplest useful mathematical 

model to describe equilibrium in fusion plasmas is achieved by combining magneto hydrodynamic (MHD) 

equations with Maxwell's equations. The final result is the Grad-Shafranov (GS) equation. Analytical solutions to 

the GS equation are an aid to theoretical investigations into plasma equilibrium, stability and transport in 

axisymmetric plasmas. In this paper we represent special analytical solution for GS equation and also simulation of 

equilibrium by TEQ code for ITER. Comparing between these two methods shows that simulation by TEQ has 

better results specifically for clearness of the x-point.  
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Introduction 

     Plasma equilibria lay at the fundamental level of magnetic confinement studies. All plasma processes including 

linear and early nonlinear stages of MHD instabilities, transport and plasma flows, waves, micro-instabilities and 

turbulence, represent different kinds of deviations from MHD equilibrium and thus require accurate calculations of 

equilibrium configurations [1]. Codes for numerical solution of many problems of tokamak physics (following 

particle orbits, investigating MHD and low frequency instabilities, simulating wave propagation for heating and 

current drive and so on) require the knowledge of the equilibrium plasma configuration in a continuously 

differentiable form. In the case of axisymmetry, the equations which define the MHD equilibrium, 

𝛁 × 𝐁 =
4𝜋

𝑐
𝐉        , 𝛁. 𝐁 = 0        , 

1

𝑐
𝐉 × 𝐁 = 𝛁𝑝 

Are conveniently summarized by a single partial differential equation for the poloidal magnetic flux as a function of 

position in the poloidal plane, known as the Grad-Shafranov (GS) equation [2,3]. The GS quation for axisymmetric 

stationary ideal magneto hydrodynamics (MHD) flows has been considered very intensively within the last decades. 

Although analytical solutions of this equation are known [4-7], they are restricted to rather special pressure and 

current profiles. Exact solutions to the GSE are an aid to theoretical investigations into plasma equilibrium, stability 

and transport in axisymmetric plasmas. The GS equation is, in general, a nonlinear partial differential equation 

(PDE) and its solution rely on numerical methods. However for some choices of the arbitrary functions, the equation 

becomes linear and separable and the boundary value problem can be solved by superposition of independent 

solutions. Because of the nonlinearity of the GS equation, all numerical methods for equilibrium calculations are 

iterative by nature. Practically all existing codes use a simple iteration method for solving the nonlinear GS 

equation. Although this approach is sufficient in most of the situations, there is still a demand for fast methods 

which can be used for extensive calculations of magnetic configurations in transport codes for plasma stability 

studies, equilibrium reconstructions from experimental measurements and for simulations of equilibrium control in 

real machines. 

     In this paper, in section 1 we represent special analytical solution for GS equation and then we apply the results 

to ITER. In section 2 we introduce equilibrium code, TEQ, and based on this code we calculate equilibrium 

configuration for ITER. Following this section, a brief comparison between these two approaches is presented. In 

section 3 we briefly discuss about results.  

 

Special Analytical Solution for GS equation and application to ITER 

     The magnetic field is related to the poloidal flux Ψ by: 

                                                                     𝐵𝜑 =
𝐹(Ψ)

 𝑅
   ,   𝐁𝑝 =

𝛁Ψ×𝐞𝜑

 𝑅
                                                                      (1) 

where 𝐵𝜑 and 𝐁𝑝 are toroidal and poloidal magnetic fields. We choose the free functions 𝑝(Ψ) and 𝐹(Ψ) to be 

quadratic in Ψ [8]: 

                                                                     𝑝 = 𝑝𝑎𝑥𝑖𝑠(
Ψ2

Ψ𝑎𝑥𝑖𝑠
2 )    ,   𝐹2 = 𝑅0

2𝐵0
2[1 + 𝑏𝑎𝑥𝑖𝑠 (

Ψ2

Ψ𝑎𝑥𝑖𝑠
2 )]                              (2) 

Here Ψaxis , 𝑝𝑎𝑥𝑖𝑠 and 𝑏𝑎𝑥𝑖𝑠 are constants related to the values of Ψ, 𝑝 and 𝐹 on axis and 𝑅0 and 𝐵0 are the major 

radius and vacuum toroidal field at the geometric center of the plasma. With these choices and by separation of 

variables and also for an up/down symmetric configuration (like ITER), finally we have: 

                       𝜓 = ∑ 𝑋𝑚(𝜌)𝑌𝑚(𝑦)𝑚  ;     𝑌𝑚(𝑦) = cos(𝑘𝑚𝑦)  ,   𝑋𝑚(𝜌) = 𝐼𝑚[𝑎𝑚𝑊𝜆𝑚,𝜇(𝜌) + 𝑏𝑚𝑀𝜆𝑚,𝜇(𝜌)]         (3) 



Where 𝑘𝑚 is the mth separation constant, which can be real or imaginary and we should determine it,  𝜆𝑚 = −𝑖
𝛾−𝑘𝑚

2

4𝜖√𝛼
    

, Ψ = Ψ𝑎𝑥𝑖𝑠𝜓, 𝑅2 = 𝑅0
2𝑥, 𝑧 = 𝑎𝑦, 𝜖 =

𝑎

𝑅0
, γ = (

𝑎𝑅0𝐵0

Ψ𝑎𝑥𝑖𝑠
)2𝑏𝑎𝑥𝑖𝑠 , α = (

𝑎𝑅0𝐵0

Ψ𝑎𝑥𝑖𝑠
)2𝛽𝑎𝑥𝑖𝑠 , 𝛽𝑎𝑥𝑖𝑠 =

2𝜇0𝑝𝑎𝑥𝑖𝑠

𝐵0
2  , 𝑥 =

−𝑖𝜖𝜌

√𝛼
 and the 

solutions of 𝑋𝑚(𝜌) are Whittaker functions [9]. The 𝑎𝑚 and 𝑏𝑚 are unknown expansion coefficients that must be 

determined. Both 𝜌 and 𝜆𝑚 are purely imaginary quantities while 𝑋𝑚 must be purely real, then we only keep 

imaginary parts of Whittaker functions. For our model the Whittaker parameter is  𝜇 =
1

2
 . With maintaining three 

terms in the summation of 𝜓, we have: 

                                                     𝜓(𝜌, 𝑦) = ∑ [3
𝑚=1 𝐼𝑚[𝑎𝑚𝑊𝜆𝑚,𝜇(𝜌) + 𝑏𝑚𝑀𝜆𝑚,𝜇(𝜌)]] 𝑐𝑜𝑠(𝑘𝑚𝑦)                            (4)          

There are six unknown expansion coefficients (i.e. the 𝑎𝑚,𝑏𝑚) and three unknown separation constants (i.e. the 𝑘𝑚) 

that must be determined. These coefficients are determined with specific conditions. These conditions are: 

Ψ(𝑅0 + 𝑎, 0) = 0 , Ψ(𝑅0 − 𝑎, 0) = 0 , Ψ(𝑅0 − 𝛿𝑎, 𝜅𝑎) = 0 , Ψ𝑅(𝑅0 − 𝛿𝑎, 𝜅𝑎) = 0 , Ψ(𝑅axis, 0) = 𝜓axis       

, Ψ𝑅(𝑅axis, 0) = 0 ,  
1

𝑅𝑐
≡ −

(1−𝛿̂)2

𝜅2𝑎
                                                                                                                                (5)                                  

where 𝛿 = sin−1 𝛿, 𝛿 is triangularity, a is minor radius and 𝜅 is elongation. Also 𝑅𝑐 is curvature radius for inboard 

midplane. Based on empirical experience, we define separation constants as: 

                                                                          𝑘1 = 0  ,  𝑘2 = 𝑖𝑘̂2  𝑘3 =
𝜋

𝜅
𝑘̂3                                                           (6) 

with 𝑘̂2 , 𝑘̂3 real and of order unity. We will assume that appropriate values for 𝑘̂2 , 𝑘̂3 are given once the plasma 

geometry has been chosen [8]. 

The primary inputs for the solution procedure are the inverse aspect ratio 𝜖, the elongation 𝜅, the triangularity 𝛿, and 

the parameters 𝛼 and 𝛾. The secondary input parameters are the major radius 𝑅0, the vacuum toroidal field 𝐵0 and 

the toroidal current 𝐼. For ITER, these input data are given in Table1 [8]. The final form of the solution for 𝜓 is 

given by: 

𝜓(ρ, 𝑦) = (𝑎1𝑊
𝜆1,

1
2

(𝜌) + 𝑏1𝑀
𝜆1,

1
2

(𝜌)) + (𝑎2𝑊
𝜆2,

1
2

(𝜌) + 𝑏2𝑀
𝜆2,

1
2

(𝜌)) 𝑐𝑜𝑠(𝑘2𝑦) + 

                                            (𝑎3𝑊
𝜆3,

1

2

(𝜌) + 𝑏3𝑀
𝜆3,

1

2

(𝜌) ) 𝑐𝑜𝑠(𝑘3𝑦)                                                                            (7)                                                                                                                                                          

The parameters for calculation of equilibrium for ITER are: = −0.5 , 𝑘2 = 0.90𝑖 , 𝑘3 = 1.82 and 𝛼 = 4.48 [8]. The 

resulting flux surfaces for ITER are illustrated in Fig. 1.  

 

Table 1:  Characteristic data for ITER [8].  

Parameters          Value Parameters                 Value  

𝝐, inverse aspect ratio          0.32  𝑅0, Major radius (m)                  6.2 

𝜿, elongation          1.8 𝑎, Minor radius (m)                  2 

𝜹, triangularity          0.45 𝐵0, toroidal field (T)                  5.3 

𝒒𝒂𝒙𝒊𝒔, Safety factor on 

axis 

            1  𝐼, toroidal current (MA) 10.1 

 

                                                                        



 

 

 

 

Fig. 1 Flux surfaces for ITER (due to up-down symmetry, only half of the 

plasma is shown).  

 

 

 

 

 

Also we calculate toroidal current density (𝐽𝜑) and pressure (normalized pressure) profiles versus the major radius 

along the midplane (𝑧 = 0) for ITER in Fig. 2. The vanishing of ∇𝑝 and  𝐽𝜑 at the edge, combined with the linear 

dependence on Ψ , produces peaked pressure and current profiles. Although some unknown parameters in this 

method are tuned with experiment but all profiles are quite realistic. 

 

Fig. 2 Toroidal current density (in  𝑘𝐴/𝑚2 ), left,  and normalized pressure, right, profiles versus the major radius along the midplane (𝑧 = 0) for 

ITER. 

 

Simulation of equilibrium configuration for ITER by TEQ code 

     In this section we introduce TEQ code for simulation of equilibrium configuration. One of the methods which 

have been proposed to solve GS equation, is Green's function method as an analytical solution to GS equation. For 

this, we have: 

                                                                           ∆∗𝜓 = −𝜇0𝑟𝐽𝑡                                                                                   (8) 

In which 𝜓 = 𝑟𝐴𝜑 is the magnetic poloidal flux, and 𝐴𝜑 is the toroidal component of the magnetic vector potential. 

Also, 𝐽𝑡  is the toroidal current density and ∆∗ is the elliptic Grad-Shafranov operator which is defined as:  



                                                                          ∆∗= 𝑅
𝜕

𝜕𝑅
(

1

𝑅

𝜕

𝜕𝑅
) +

𝜕2

𝜕𝑍2                                                                        (9) 

In equation 8, we disregard the inherent dependence of 𝐽𝑡 on the poloidal flux 𝜓, making the GS equation a linear 

differential equation. From a system engineering point of view, GS equation represents a Linear Time Invariant 

(LTI) system whose impulse response is given by its associated Green's function. Here in order to find flux function, 

we seek solutions of the form: 

                                                                         𝜓(𝑟, 𝑧) = ∫ ∫ 𝐺(𝐫, 𝐫′)𝐽𝑡(𝐫′)𝑑𝑟′𝑑𝑧′+∞

0

+∞

−∞
                                         (10) 

Where 𝐫 = (𝑟, 𝑧)  is the two-dimensional position vector on the constant poloidal plane and 𝐺(𝐫, 𝐫′) is referred to as 

the Green's function, obtained through the solution of the following equation: 

                                                                         ∆∗𝜓 = 𝜇0𝛿(𝐫 − 𝐫′) = 𝜇0𝛿(𝑟 − 𝑟′)𝛿(𝑧 − 𝑧′)                                   (11) 

Where 𝛿(. ) being the Dirac's delta function. The poloidal flux function 𝜓 can be accurately obtained by through the 

Green's function formalism once the toroidal current density profile is known. As GS equation numerically is a non-

linear partial differential equation (PDE), the use of numerical solution is inevitable for description of axisymmetric 

plasma equilibria. Various numerical methods have been proposed to solve GS equation, which could be found in 

the literature. The Finite Element Method (FEM) is the most popular general purpose technique for computing 

accurate solutions to PDEs, which we hereby exploit to solve GSE. The family of FEMs may be divided into 

Galerkin and variational approaches, in both of which the solution is expanded on a set of eigenfunctions. Equation 

8 may be regarded as an Euler-Ostogradskii equation of the functional: 

                                                                         Π(𝜓) = ∬(
1

2𝑟
|∇𝜓|2 − 𝜇0𝜓𝐽𝑡) 𝑑𝑟𝑑𝑧                                                 (12) 

where the integration is taken over a domain Ω in the two-dimensional (𝑟, 𝑧) plane and ∇=
𝜕

𝜕𝑟
𝑟̂ +

𝜕

𝜕𝑧
𝑧̂  is the two-

dimensional gradient. The basic idea of the FEM is to make a piecewise approximation, that is the solution of a 

problem is achieved by dividing the region of interest into small regions called elements, and approximating the 

solution over each element by simple function with prescribed forms. The functions used to represent the behavior 

of the solution within an element are called interpolation functions; the simplest choice is linear dependence to 

coordinates referring to first-order elements. For example, the simplex element in two dimensions is a triangle with 

three nodes (corners). Nodes are usually shared by more than one element and it is desirable to find the nodal values 

of unknown functions through a set of algebraic operations which simultaneously extermize equation 12. In Fig. 3 

we calculate equilibrium for ITER by TEQ code. TEQ is Livermore's toroidal equilibrium code that was extracted 

from CORSICA code [10] as an NTCC module and can be used both for prescribed boundary and free boundary 

equilibria. Free boundary TEQ equilibrium solver applied to generate new equilibrium solution as plasma profiles 

evolve, including scrape-off region.  It has been extensively used to study the nature of operating scenarios and 

system limitations in ITER and then we use this code for simulation of equilibrium in ITER. It is found that the TEQ 

code produces the smallest residual error. In TEQ code various coils of special tokamak are simulated by finite 

number of filaments carrying currents and poloidal flux function is calculated with considering of different regions 

in the system [11,12]. Comparing to Fig. 1, we can see that simulation by TEQ has better result than the method of 

previous section specifically for the x-point that can be seen clearly in Fig. 3. 

 

 

 



 

 

 

 

 

Fig. 3 ITER equilibrium calculated by TEQ code. 

The dashed line is the separatix and the crosses are 

the O-point and the X-point. 

 

 

 

 

 

Discussion 

     The solutions of Grad-Shafranov (GS) equation analytically can be used for theoretical studies of plasma 

equilibrium, transport and magneto hydrodynamic stability. In this paper, we choose specific choices for free 

functions (𝑝 and 𝐹) to be quadratic in 𝜓 and derive a special analytic solution for GS equation. This solution is 

applied to ITER and poloidal magnetic flux, toroidal current density and pressure profiles are calculated. Although 

some unknown parameters in this method are tuned with experiment but results of this method are quite realistic. 

Also by TEQ code, equilibrium is calculated for ITER. Comparison between these two methods shows better results 

for simulation by TEQ specifically for clearness of the x-point. 
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