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Abstract- Ignition is the point at which a 

nuclear fusion of hydrogen isotopes reaction 

becomes self-sustaining. This occurs when the 

energy being given off by the fusion reactions 

heats the fuel mass more rapidly than various 

loss mechanisms cool it. At this point, the 

external energy needed to heat the fuel to 

fusion temperatures is no longer needed. As the 

rate of fusion varies with temperature, the 

point of ignition for any given machine is 

typically expressed as a temperature. On the 

other hand, energy confinement time is 

expressed by an equilibrium state. Analytical 

solutions of Grad-Shafranov equation (GSE) 

can be used for theoretical studies of plasma 

equilibrium, transport and 

Magnetohydrodynamic stability of tokamaks. 

In this paper we have presented two families of 

exact solutions. With applying these solutions 

to IR-T1 tokamak, a small, air core, low beta 

and large aspect ratio tokamak with a circular 

cross section, we calculated poloidal magnetic 

flux. Due to the generality and high accuracy of 

the second exact solution for all of the magnetic 

configurations of interest, the result of this 

solution for IR-T1 tokamak is good (tokamak-

relevant) equilibrium compare to the first exact 

solution for this tokamak. We intend to use 

these analytical solutions as benchmark of 

numerical equilibrium codes. 

Index Terms: The Grad-Shafranov equation, 

Poloidal magnetic flux, IR-T1 tokamak 

I. INTRODUCTION 

     For axially symmetric configurations, where φ 

is the ignorable angle in the cylindrical coordinate 

system (r,φ,z), Maxwell’s equations together with 

the force balance equation reduce, for stationary 

and ideally conducting plasmas, to the scalar 

partial differential equation named the Grad–

Shafranov equation (GSE) [1-10]: 
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� = μ�R

�p�(ψ)+ FF�(ψ)=

μ�Rj�   ,                                                              (1) 

where j�  is the toroidal current density, the stream 

function ψ  is the poloidal magnetic flux per 

radian, F = RB� =
������(�)

��
 where I���  is the 

poloidal current, p�(ψ)=
��

��
 and FF�(ψ)=

�(
�

�
��)
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that p ( ψ ) and F ( ψ ) are in the set of ideal 

Magnetohydrodynamic (MHD) arbitrary functions 

of the ψ  function. Analytical solutions of the GSE 

are very useful for theoretical studies of plasma 

equilibrium, transport, and magnetohydrodynamic 

stability. The literature on exact solutions to the 

Grad–Shafranov equation is extensive. These 

solutions can be used also as a benchmark of 

numerical codes, but existing exact solutions are 

very restricted in a variety of allowed current 

density profiles. The simplest analytical solution 

to the inhomogeneous GSE is the well-known 

Solovev equilibrium [11-20] and corresponds to 

source functions linear in ψ . Equilibria of this 

type have been extensively used for equilibrium, 

transport, and stability studies. For the same 

Solov’ev equilibrium case, by expanding the 

solution of the homogeneous equations in a 

polynomial form in r (of fourth degree) and z (of 

second degree), and assuming an up–down 

symmetry, it is possible to describe the plasma 

shape by four parameters. By using source 

functions quadratic in ψ  for the GSE, a class of 
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exact analytical solutions are found [21-24]. An 

exact solution of the large-aspect-ratio 

approximation with an additional assumption of a 

simple relation between the magnetic flux and the 

current density was constructed. A new family of 

solutions is presented, where the plasma pressure 

is linear in ψ , while the squared poloidal current 

has both, a quadratic and a linear ψ  term. Yet 

interest in new techniques for solving the equation 

remains strong.  The paper is organized as 

follows: In section 1, a family of exact analytical 

solution of the GSE is presented by considering 

that the current density profile has four free 

parameters, the most complicated dependence on 

the flux function ψ  which still maintains the linear 

character of the equation with partial derivatives. 

Also, we present an extended analytic solution to 

the GS equation with Solovev profiles which 

possesses sufficient freedom to describe a variety 

of magnetic configurations. Section 2 is devoted 

to application of these two analytical solutions to 

IR-T1 tokamak, which is a small, air core, low β 

and large aspect ratio tokamak with a circular 

cross section, and comparison of the results. 

Comments and discussions are contained in 

section 3. 

 

II. TWO FAMILIES OF ANALYTICAL 

SOLUTIONS 

     It seems that a general property of the analytic 

solutions is that they contain only a very few 

terms, thereby making them attractive from a 

theoretical analysis point of view. In this section 

we present two families of analytical solutions of 

the GSE. 

A. First exact solution 

     A family of exact analytical solution of the 

GSE is presented by considering that the current 

density profile has four free parameters, the most 

complicated dependence on the flux function Ψ  

(= 2πψ) which still maintains the linear character 

of the equation with partial derivatives. 

Considering the pressure and the poloidal current 

profiles dependencies on Ψ  of the form [10]: 

  p(Ψ )= a�Ψ � + b�Ψ                                           (2) 

  F�(Ψ )= α�Ψ � + β�Ψ + F�
�                               (3) 

The GSE and the plasma current density looks 

like:  
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j� (r,z)=
�

����
[�ar+
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�Ψ + br+

�

�
]  ,            (5) 

where a = 8π�μ�a� , b = 4π�μ�b� , α = μ�
�α�   and  

β =
��
�

�
β� are the four free parameters allowing to 

independently specify the plasma current I�� , the 

poloidal beta β��� , the internal inductance l� and 

the safety factor at the magnetic axis q�� or at the 

plasma boundary q� . With converting the original 

inhomogeneous partial differential equation (PDE) 

into two problems, a homogeneous PDE and an 

inhomogeneous ordinary differential equation, we 

have the general solution as:  

Ψ = Ψ� + Ψ���  ,                                           (6) 

where Ψ� = R(r)Z(z)  represents the general 

homogeneous solution, while Ψ��� is any 

particular inhomogeneous solution. Depending on 

the sign of the a parameter, two possible families 

of analytical solutions have been deduced. After 

some computations that presented in Ref. [10] and 

by using the notation ω = kz (k is an arbitrary 

constant) for both cases, a > 0  and a < 0  

respectively, the general solution can be put in the 

following compact form: 
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Ψ (r,z)= [C�F�(η,r)+ C�F�(η,r)][C� cosω + C� sinω]+ Ψ���(r)  ,                                                       (7) 

where for a < 0:  

F�(η,r)= √ ar�e�√���
�/� ×  1F1(1 + η;2;√ ar�) 

F�(η,r)=

√ ar�e�√���
�/� �

�

√����
+ ηlog(√ ar��× 1F1�1 + η;2;√ ar��

�

√����
× 1F1�η;1;√ ar��+

∑
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And for > 0 :   

F�(η,r)= F� �η,
√�

�
r��    ,    F�(η,r)= G� �η,

√�
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�    
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                                                                                                                                                                        (9)  

where η ≡
����

�√��
  (η ≠ 0,1) , 1F1�1 +

η;2;√ ar�) and 2F1�2 + n,1;n + 1 + a�;
�

�
� are 

two types of hypergeometric functions and (η)� 
designates the Pochhammer symbol as: (η)� =
1 , (η)� = η(η + 1)… (η + k 1)  ,   k = 1,2,… .  

. Also we have a�= 1
�

�√��
  and F� �η,

√�

�
r�� 

and G� �η,
√�

�
r��  are Coulomb wave functions 

with L = 0 .  In configurations with up/down 
symmetry, only terms in cosine retain. Then we 
can write Eq. (7) as follows: 

Ψ (r,z)=
[D�F�(η,r)cosω + D�F�(η,r)cosω ]+ Ψ���(r) ,  

                                                                         (10) 

where D� = C�C�  and D� = C�C� . For a current 
point on the plasma boundary (r� ,z�) we can 
write: 

Ψ (r� ,z�)=
∑ [D��F�(η�,r�)cosω ��+ D��F�(η�,r�)cosω ��]� +
Ψ���(r�) .                                                         (11) 

Knowing the values of the a , b , α  and β 

parameters, the constants D��  and D��  can be 

determined if both the value of the flux function ψ  

on the plasma boundary and the plasma contour 

are given. The parameters a , b , α  and β  are 

determined by using integral relations concerning 

the following global plasma parameters: the 

plasma current I�� , the poloidal beta β��� , the 

internal inductance l� and the safety factor at the 

magnetic axis q�� or at the plasma boundary q� . 

By using Eq. (2) and (5) and from the definition 

relations, one obtains [10]:  

a∬ Ψ (r,z)rdrdz+ α∬ Ψ (r,z)
�

�
drdz+ b∬ rdrdz+ β∬

�

�
drdz= 2πμ�I��                           

�

�
∬ Ψ �(r,z)rdrdz+ b∬ Ψ (r,z)rdrdz=

∬ �����

(∮��)�
2π�μ�

�I��
� β� ,                                                     

a∬ Ψ �(r,z)rdrdz+ α∬ Ψ �(r,z)
�

�
drdz+ b∬ Ψ (r,z)rdrdz+ β∬ Ψ (r,z)

�

�
drdz=

∬ �����

(∮��)�
4π�μ�

�I��
� l� , 

aR��
� Ψ�� + αΨ�� + bR��

� + β = 2�αΨ��
� + 2βΨ�� + (F�μ�)

�/R��/q��   .                                                (12)  
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All the double integrals in the above written 

relations have to be performed over the total 

cross-section area of the plasma. By using these 

four relations we can determine the four 

parameters a , b , α  and β . Together with the 

determined constants, D��  and D��  , our analysis 

is complete and now we can compute the function 

Ψ (r,z).  

B. Second exact solution 

     The GSE, Eq. (1) for Ψ (r,z), can be put in a 

non-dimensional form through the normalization 

R = R�x, z= R�y and Ψ = Ψ�ψ  , where R� is the 

major radius of the plasma and Ψ� is an arbitrary 

constant. Then Eq. (1) becomes: 

x
�

��
�
�

�

��

��
�+

���

���
= μ�

��
�

� �
� x

� ��

��

��
�

� �
� F

��

��
  . (13) 

The well-known choices for p and F 
corresponding to the Solov’ev profiles are given 
by: 

μ�
��
�

� �
�

��

��
= C  ,           

��
�

� �
� F

��

��
= A ,           (14) 

where A  and C  are constants. Since Ψ�  is an 

arbitrary constant, one can, without loss in 

generality, choose it such that A + C = 1 . (The 

special case A + C = 0 cannot occur for physical 

equilibria since it corresponds to a situation 

beyond the equilibrium limit where the separatrix 

moves onto the inner plasma surface). This is 

formally equivalent to the rescaling Ψ�
�  → (A +

C)Ψ�
� . Under these conditions, the GS equation 

with Solov’ev profiles can be written in the 

following dimensionless form:  

x
�

��
�
�

�

��

��
�+

���

���
= (1 A)x� + A  .              (15) 

The choice of A  defines the β regime of interest 

for the configuration under consideration. The 

solution to Eq. (15) is of the form ψ(x,y)=

ψ�(x,y)+ ψ� (x,y), where ψ� is the particular 

solution and ψ�  is the homogeneous solution. The 

particular solution can be written as: 

ψ�(x,y)=
��

�
+ A(

�

�
x� lnx

��

�
) .                  (16) 

The homogeneous solution satisfies: 

x
�

��
�
�

�

���

��
�+

����

���
= 0   .                               (17) 

A general arbitrary degree polynomial solution to 

this equation for plasmas with up-down symmetry 

has been derived in Ref. [4]. We retain only a 

finite number of terms in the possible infinite sum 

of polynomials. We truncate the series such that 

the highest degree polynomials appearing are R� 

and z�  [11]. The full solution for up-down 

symmetric ψ  including the most general 

polynomial solution for ψ�  satisfying Eq. (17) 

and consistent with our truncation criterion is 

given by: 

ψ(x,y)=
x�

8
+ A �

1

2
x� lnx

x�

8
� + c�ψ� + c�ψ � + c�ψ� + c�ψ � + c�ψ� + c�ψ � + c�ψ� 

ψ� = 1        ,       ψ� = x�      ,      ψ� = y� x� lnx     ,        ψ� = x� 4x�y�  ,   ψ� = 2y� 9x�y� +

3x� lnx 12x�y� lnx         ,ψ� = x� 12x�y� + 8x�y� ,ψ� = 8y� 140x�y� + 75x�y� 15x� lnx+

180x�y� lnx 120x�y� lnx ,                                                                                                                     (18) 

Equation (18) is the desired exact solution to the 

GS equation that describes all the configurations 

of interest that possess up-down symmetry [11]. 

The unknown constants c� are determined from as 

yet unspecified boundary constraints on ψ . For 

this purpose, consider first the case where the 

plasma surface is smooth. A good choice for these 

properties is to match the function and its first and 

second derivatives at three test points: the inner 

equatorial point, the outer equatorial point, and the 

high point (see Fig. 1 for the geometry). While 

this might appear to require nine free constants 

(i.e., three conditions at each of the three points), 

two are redundant because of the up-down 

symmetry. Although it is intuitively clear how to 
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specify the function and its first derivative at each 

test point, the choice for the second derivative is 

less obvious. To specify the second derivatives we 

make use of a well-known analytic model for a 

smooth, elongated ''D'' shaped cross section, 

which accurately describes all the configurations 

of interest. The boundary of this cross section is 

given by the parametric equations: 

x = 1 + εcos(τ+ αsinτ)   ,    y = εκsinτ ,  (19) 

where τ  is a parameter covering the range 

0 ≤ τ≤ 2π . Also, ε=
�

��
 is the inverse aspect 

ratio, κ  is the elongation, and sinα = δ  is the 

triangularity. Using these parametric equations it 

is straightforward to evaluate the desired second 

derivatives at each of the three test points.  

 

Fig.1, Definition of the geometric parameters 

The seven geometric constraints are given below 

assuming that the free additive constant associated 

with the flux function is chosen so that ψ = 0 on 

the plasma surface (Then ψ < 0  in the plasma). 

Therefore we have:  

ψ(1 + ε,0)= 0      Outer equatorial point,            ψ(1 ε,0)= 0      inner equatorial point, 

ψ(1 δε,κε)= 0     High point,            ψ�(1 δε,κε)= 0     high point maximum,  

ψ��(1 + ε,0)= N�ψ �(1 + ε,0)     Outer equatorial point curvature, 

ψ��(1 ε,0)= N�ψ�(1 ε,0)     Inner equatorial point curvature, 

ψ��(1 δε,κε)= N�ψ �(1 δε,κε) High point curvature                                                                     (20) 

The coefficients N� are easily found from the 

model surface specified by Eq. (19) and can be 

written as: 

N� = [
���

���
]��� =

(���)�

���
 ;    N� = [

���

���
]��� =

(���)�

���
 ;    N� = [

���

���
]���

�
=

�

����� �
 ;              (21) 

For a given value of A, the conditions given by 

Eq. (20) reduce to a set of seven linear 

inhomogeneous algebraic equations for the 

unknown c� . This is a trivial numerical problem. 

In final step and for determination of A, we can 

use the poloidal beta definition relation (based on 

our approach here) [11]: 

β�(ε,κ,δ,A)=

2(1 A)
��
�

�
[∫ψ xdxdy]{∫

����

�
[A +

(1 A)x�]}��,                                                 (22) 

where C�  is the normalized poloidal 

circumference of the plasma surface and V is the 

normalized plasma volume, as given by: 

C� =
�

��
∮ dl� = 2∫ [1 + (

��

��
)�]

�

�
���

���
dx  , V =

�

����
� ∫d� = ∫xdxdy  ,                                     (23) 

with determination of A  and then the unknown 

constants c�  , our analysis in now complete and 

we can apply it to the magnetic configurations of 

interest.   
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III. APPLICATION TO IR-T1 TOKAMAK 

     For Applying of these two analytical solutions 

to IR-T1 tokamak, the primary inputs are the 

inverse aspect ratio ε , the elongation κ , the 

triangularity δ, the poloidal beta β�  , the plasma 

current I�� , the internal inductance l�  and the 

safety factor at the magnetic axis q��  or at the 

plasma boundary q� . For IR-T1 tokamak, these 

input data are depicted in Table 1 [9]. 

 

 

 

 

Table 1:  Characteristic data for IR-T1 

Parameters          Value Parameters                 Value  

�, inverse aspect ratio          0.2777  R�, Major radius (m) 0.45 
�, elongation             1 a, Minor radius (m) 0.125 
�, triangularity             0 β�, toroidal beta 0.01 
�����, safety factor on 
axis 

            1  l�  , internal 
inductance 

0.5 

��, toroidal field (T)            0.8 q  , kink safety factor 2.77 
�� , plasma current 
(kA) 

            30                          β�, poloidal beta 1 

 

About first exact solution, by using Eq. (12) for 

IR-T1 characteristics, we determined the four 

parameters a , b , α  and β . The results are =

7747.6976 , b = 23.6462 , α = 6564.0172 , 

β = 0.0054   and because a < 0  , then we 

choose the related poloidal magnetic flux function 

i.e. equations (8) and (10). For simplicity we 

consider only the terms with k = 1,2 and then by 

using the some points on the plasma boundary and 

also the value of the flux function ψ  on the plasma 

boundary from an estimated equilibrium for IR-T1 

tokamak [12], we determined the constants  

D�� = 236.145  , D�� = 2.23151× 10��  , 

D�� = 434.475 , D�� = 2.7776× 10��  . Now 

we are ready to calculate the function Ψ (r,z) for 

IR-T1 tokamak. The result is depicted in Fig. 2. 

As we can see, the equilibrium is not good (non 

tokamak-relevant equilibrium). Maybe this result 

is related to approximations that we considered in 

our calculation for IR-T1 tokamak, i.e. estimated 

equilibrium for this tokamak, and also maybe due 

to preference of this solution for a D-shaped and a 

toroidally diverted plasma not a circular cross 

section plasma.  

 

Fig. 2, Constant poloidal flux lines for IR-T1tokamak 

 

In the second exact solution, by using Eq. (20) we 

determined the constants c�  for IR-T1 

characteristics as: 

c� = 0.0365258+ (0.0879367) ,  c� =

0.132202+ (0.0462344)A   ,  c� =

0.0744805+ (0.097145)A 

c� = 0.0496243 (0.0332743)A  ,  c� =

0.001356+ (0.026839)A   ,  c� = 0.002334+

(0.025819)A 

c� = 0.000187545+ (0.00429716)A ,        (24) 
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From equations (19), (22) and (23), we obtained 

C� = 1.6956 , V 0.05 and A = 3.9800813 for 

IR-T1 characteristics. After obtaining the 

constants c�  and A , we calculate the function 

ψ(r,z) for IR-T1 tokamak from Eq. (18). The 

result is presented in Fig. 3. We observe that the 

resulted equilibrium is good (tokamak-relevant 

equilibrium). It seems that this is due to the 

generality and high accuracy of this solution for 

all of the magnetic configurations of interest [11]. 

 

 
 

Fig. 3, IR-T1-like equilibrium; Left: positive radial coordinate half and Right: negative radial coordinate half 

 

  

IV. DISCUSSION 

     The simplest useful mathematical model to 

describe equilibrium in fusion plasmas is achieved 

by combining Magnetohydrodynamic (MHD) 

equations with Maxwell's equations. The final 

result is the Grad-Shafranov (GS) equation. Here 

we presented the two families of analytical 

solutions. These solutions are applied to IR-T1 

tokamak and poloidal magnetic flux is calculated. 

Due to the generality and high accuracy of the 

second exact solution for all of the magnetic 

configurations of interest, the result of this 

solution for IR-T1 tokamak is tokamak-relevant 

equilibrium compare to the first exact solution for 

this tokamak. We should notice that first these 

analytical solutions are used as benchmark of 

numerical equilibrium codes, and second provide 

a good model to test for stability without having to 

worry about accuracy and resolution issues arising 

from numerically computed equilibria. 
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