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Couples in Three Dimensions

The concept of the couple was introduced in Art. 2/5 and is easily
extended to three dimensions. Figure 2/25 shows two equal and opposite
forces F and —F acting on a body. The vector r runs from any point B
on the line of action of —F to any point A on the line of action of F.
Points A and B are located by position vectors r, and rz from any point
O. The combined moment of the two forces about O is

M=r,XxF+rzx (-F)=(,—rz xXF

However, ry — rz = r, so that all reference to the moment center O dis-
appears, and the moment of the couple becomes

M=rxF (2/19)

Thus, the moment of a couple is the same about all points. The magni-
tude of M is M = Fd, where d is the perpendicular distance between the
lines of action of the two forces, as described in Art. 2/5.

The moment of a couple is a free vector, whereas the moment of a
force about a point (which is also the moment about a defined axis
through the point) is a sliding vector whose direction is along the axis
through the point. As in the case of two dimensions, a couple tends to
produce a pure rotation of the body about an axis normal to the plane of
the forces which constitute the couple.
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Resultants R=F,+F, +Fy+ -~ = IF

(2/20)

The couple vectors are shown through point O, but because they are
free vectors, they may be represented in any parallel positions. The
magnitudes of the resultants and their components are
R, =%F, R, = 2K R,=ZXF,
R'= J(EF )2 + CF Y+ (CF )

(2/21)
M =ZrxF), M =2 xE), M,=%2rxF),
M= ME I OB
M
o,

(a) (b) ()
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SAMPLE PROBLEM

Determine the resultant of the force and couple system which acts on the
rectangular solid.

Solution. We choose point O as a convenient reference point for the initial
step of reducing the given forces to a force—couple system. The resultant force is

R =XF = (80 — 80)i + (100 — 100)j + (50 — 50)k = 0 1b
The sum of the moments about O is

M, = [50(16) — 700]i + [80(12) — 960]j + [100(10) — 1000]k lb-in.
= 100i lb-1in.

Hence, the resultant consists of a couple, which of course may be applied at any n.

point on the body or the body extended.
~000 Ib-in.

|
|
80 I :
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EqQuilibbrium

Infroduction

Statics deals primarily with the description of the force conditions
necessary and sufficient to maintain the equilibrium of engineering
structures. This chapter on equilibrium, therefore, constitutes the
most important part of statics, and the procedures developed here form
the basis for solving problems in both statics and dynamics. We will
make continual use of the concepts developed in Chapter 2 involving
forces, moments, couples, and resultants as we apply the principles of
equilibrium.

When a body is in equilibrium, the resultant of all forces acting on
it is zero. Thus, the resultant force R and the resultant couple M are
both zero, and we have the equilibrium equations

R=2F=0 M=ZM=0 (3/1)
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System Isolation and the Free-Body Diagram
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MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS

MODELING THE ACTION OF FORCES IN TWO-DIMENSIONAL ANALYSIS (cont.)

Type of Contact and Force Origin

Action on Body to Be Isolated

Type of Contact and Force Origin

Action on Body to Be Isolated

1. Flexible cable, belt,
chain, or rope [

Weight of cable g
negligible
Weight of cable 0 _/_,_

not negligible

Force exerted by

a flexible cable is
always a tension away
from the body in the
direction of the cable.

2. Smooth surfaces

Contact force is
compressive and is
normal to the surface.

6. Pin connection

Pin free to turn A freely hinged pin
connection is capable

6 of supporting a force
2 in any direction in the
& plane normal to the

pin axis. We may
either show two

Pin not free to turn components R, and
R, or a magnitude R
and direction 8. A pin
not free to turn also
supports a couple M.

3. Rough surfaces

Rough surfaces are
capable of supporting
a tangential compo-
nent F (frictional
force) as well as a
normal component

N of the resultant
contact force R.

7. Built-in or fixed support

A
or

A

“—Weld

A built-in or fixed
support is capable of
supporting an axial
force F, a transverse
force V (shear force),
and a couple M
(bending moment) to
prevent rotation.

4. Roller support

! o ; 16\\; (o

Roller, rocker, or ball
N support transmits a
compressive force
normal to the
supporting surface.

P
/E
i
S
\Tl
v

8. Gravitational attraction

A
M I
F i
14
The resultant of
gravitational
attraction on all
G elements of a body of
mass m is the weight
W = mg and acts
toward the center of
the earth through the
center mass G.

W:mg

5. Freely sliding guide

= D)

Collar or slider free to

move along smooth
guides; can support
force normal to guide
only.

9. Spring action
Linear Nonlinear
Neutral F F

posmon I Hardemng

.\,\\,\\L..). | ﬁﬁenmg
—X ——x

Spring force is tensile
if spring is stretched
and compressive if
compressed. For a
linearly elastic spring
the stiffness % is the
force required to
deform the spring a
unit distance.

e
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Equilibrium Conditions

In Art. 3/1 we defined equilibrium as the condition in which the re-
sultant of all forces and moments acting on a body is zero. Stated in an-
other way, a body is in equilibrium if all forces and moments applied to
it are in balance. These requirements are contained in the vector equa-
tions of equilibrium, Eqs. 3/1, which in two dimensions may be written
in scalar form as

XF. =0 F, =0 My=0 (3/2)
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CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS

Force System

Free-Body Diagram

Independent Equations

1. Collinear

F, _-%

2F.=0
2. Concurrent TF,.=0
at a point
LF,=0
3. Parallel LF.=0 XM,=0
4. General 2F.=0 XM.=0
LF,=0

T ghs D abvwid v
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Constraints and Statical Determinacy

A

l

(a) Complete fixity
Adequate constraints

l

(b) Incomplete fixity
Partial constraints

O

u

(c) Incomplete fixity
Partial constraints

/4

A

< 2%

(d) Excessive fixity
Redundant constraint

1
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SAMPLE PROBLEM

Determine the magnitudes of the forces C and T, which, along with the
other three forces shown, act on the bridge-truss joint.

Solution. The given sketch constitutes the free-body diagram of the isolated
@ section of the joint in question and shows the five forces which are in equilibrium.

Solution 1 (scalar algebra). For the x-y axes as shown we have

[XF, = 0] 8+ T cos40° + Csin20° - 16 =0

0.766T + 0.342C = 8 (@)
[ZF, = 0] Tsin40° — Ccos20° -3 =0

0.643T7 — 0.940C = 3 (b)

Simultaneous solution of Egs. (a) and (b) produces

T =9.09kN C =3.03kN Ans.

Solution Il (scalar algebra). To avoid a simultaneous solution, we may use axes

@ ' with the first summation in the y’-direction to eliminate reference to 7. Thus,

[ZFy' = 0] —C cos 20° — 3 cos 40° — 8 sin 40° + 16 sin 40° = 0

C = 3.03 kN Ans.

[XF, = 0] T + 8 cos 40° — 16 cos 40° — 3 sin 40° — 3.03 sin 20° = 0

T = 9.09 kN Ans.

T ghs D abvwid v
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Solution Il (vector algebra). With unit vectors i and j in the x- and y-direc-
tions, the zero summation of forces for equilibrium yields the vector equation

[ZF = 0] 8i + (T cos 40°)i + (T sin 40°)j — 3j + (C sin 20°)i
—(Ccos20%j —16i=0

Equating the coefficients of the i- and j-terms to zero gives

8+ Tcos40°+ Csin20°— 16 =0
T'sin40° — 3 — C cos 20°=0

which are the same, of course, as Egs. (a) and (b), which we solved above.

T ghs D abvwid v

Solution IV (geometfric). The polygon representing the zero vector sum of
the five forces is shown. Equations (a) and (b) are seen immediately to give the
projections of the vectors onto the x- and y-directions. Similarly, projections onto
the x'- and y'-directions give the alternative equations in Solution II.

A graphical solution is easily obtained. The known vectors are laid off head-
to-tail to some convenient scale, and the directions of T and C are then drawn to \
close the polygon. The resulting intersection at point P completes the solution, P~
thus enabling us to measure the magnitudes of T and C directly from the draw-
ing to whatever degree of accuracy we incorporate in the construction.

16 kN

13
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SECTION B EQUILIBRIUM IN THREE DIMENSIONS

Equilibrium Conditions

We now extend our principles and methods developed for two-
dimensional equilibrium to the case of three-dimensional equilibrium.
In Art. 3/1 the general conditions for the equilibrium of a body were
stated in Eqgs. 3/1, which require that the resultant force and resultant
couple on a body in equilibrium be zero. These two vector equations of
equilibrium and their scalar components may be written as

(3F, =0
SF=0 or <2Fy=0
(ZF, =0
. (3/3)
M, =0
SM=0 or <2My=0
(ZM, =0

T ghs D abvwid v
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MODELING THE ACTION OF FORCES IN THREE-DIMENSIONAL ANALYSIS

Type of Contact and Force Origin

Action on Body to Be Isolated

T ghs D abvwid v

1. Member in contact with smooth
surface, or ball-supported member
z z

Force must be normal to the
surface and directed toward
the member.

- - > ~ - - > ~
x Ty ox” Ty
2. Member in contact z
with rough
surface

e

The possibility exists for a
force F tangent to the surface
(friction force) to act on the
member, as well as a normal
force N.

3. Roller or wheel support 2
with lateral |
constraint

A lateral force P exerted by the
guide on the wheel can exist, in
addition to the normal force N.

4. Ball-and-socket joint
F4

A ball-and-socket joint free to
pivot about the center of the
ball can support a force R with
all three components.

5. Fixed connection (embedded or welded)

In addition to three components
of force, a fixed connection
can support a couple M
R represented by its three
Y components.

6. Thrust-bearing support
F4
~ |
T

Thrust bearing is capable of
supporting axial force R, as
well as radial forces R, and R..
Couples M, and M, must, in
some cases, be assumed zero
in order to provide statical
ey determinacy.

19
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CATEGORIES OF EQUILIBRIUM IN THREE DIMENSIONS

Force System

Free-Body Diagram

Independent Equations

T ghs D abvwid v

1. Concurrent

y
at a point Fy /F2 |
7 N IF, =0
S it
/\{\ k\\ ZFy-:O
ol z
F5/ \F3 SF. =0
F4
2. ancun:ent F, |y
with a line / | x
Fy //_/k/ SF, =0 M, =0
\ — "‘\ 2 SF, =0 =M, =0
> -1 F,
A | 2F, =0
*Fs \ F,
3. Parallel / Fy jl’
/F2| x SF, =0 SM, =0
/ F k\ ZM2=0
F5 / ’ e
F4/
4. General . \ F, / My
1 I
,&» L//x 3F, =0 IM, =0
S, | =0 =0
F—'>' IF, =0 M, =0
4

16
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Constraints and Statical Determinacy

(a) Complete fixity
Adequate constraints

(¢) Incomplete fixity
Partial constraints

(b) Incomplete fixity
Partial constraints

(d) Excessive fixity
Redundant constraints

]
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SAMPLE PROBLEM Raaghan v

The uniform 7-m steel shaft has a mass of 200 kg and is supported by a ball-
and-socket joint at A in the horizontal floor. The ball end B rests against the
smooth vertical walls as shown. Compute the forces exerted by the walls and the
floor on the ends of the shaft.

Solution. The free-body diagram of the shaft is first drawn where the contact
forces acting on the shaft at B are shown normal to the wall surfaces. In addition
to the weight W = mg = 200(9.81) = 1962 N, the force exerted by the floor on B
the ball joint at A is represented by its x-, y-, and z-components. These compo-
nents are shown in their correct physical sense, as should be evident from the re-
quirement that A be held in place. The vertical position of B is found from
22 + 62 + h? h = 3 m. Right-handed coordinate axes are assigned as shown.

Vector solution. We will use A as a moment center to eliminate reference to
the forces at A. The position vectors needed to compute the moments about A are /&\ A S
6 m

ryo= —1li—3j+15km and rap = —2i — 6j + 3km

7Tm

where the mass center G is located halfway between A and B.
The vector moment equation gives

[EMA=0] rABX(BI+By)+rAGXW=0
(—2i — 6§ + 3k) X (B,i + B,j) + (—i — 3j + 1.5k) x (~1962k) = 0
i j k i j Kk
-2 -6 3(+|—-1 -3 15 (=0
B, B, 0| | 0 0 -1962

(—3B, + 5890)i + (3B, — 1962)j + (~2B, + 6B,k = 0

Equating the coefficients of i, j, and k to zero and solving give

(2] B, =654 N and B, = 1962 N Ans.
The forces at A are easily determined by
[ZF = 0] (654 — A i + (1962 — A)j + (—1962 + Ak =0
and A =654N A, = 1962 N A, =1962 N

Finally, A= JAZ+AZ+A?

= /(654)% + (1962)? + (1962)% = 2850 N Ans.
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Scalar solution. Evaluating the scalar moment equations about axes through
A parallel, respectively, to the x- and y-axes, gives

[EM, = 0] 1962(3) - 3B, =0 B, =1962N
(=M, = 0] ~1962(1) + 3B, =0 B, =654N

The force equations give, simply,

[XF, = 0] ~A +654=0 A =654N
[SF, = 0] ~A,+1962=0 A, =1962N
[XF, = 0] A, —1962=0 A =1962N

T ghs D abvwid v
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Pratt Howe

Baltimore

Commonly Used Bridge Trusses

Fink Pratt

Howe Warren

Several examples of commonly used trusses
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Simple Trusses

The basic element of a plane truss is the triangle. Three bars joined
by pins at their ends, Fig. 4/3a, constitute a rigid frame. The term rigid
is used to mean noncollapsible and also to mean that deformation of the
members due to induced internal strains is negligible. On the other
hand, four or more bars pin-jointed to form a polygon of as many sides
constitute a nonrigid frame. We can make the nonrigid frame in Fig.
4/3b rigid, or stable, by adding a diagonal bar joining A and D or B and C
and thereby forming two triangles. We can extend the structure by
adding additional units of two end-connected bars, such as DE and CE
or AF and DF, Fig. 4/3c, which are pinned to two fixed joints. In this
way the entire structure will remain rigid.

(a)

A

()

Tension Compression

Two-Force Members

(c)

C

C

v [y o
// // g

22
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Structures
) AF 2 EF EF
Method of Joints
BF
AF AF
AB R,
/F BF
AB Joint F'
4 CE=0
Ry
Joint A BC CD
Joint C'
ABF BC |5 L
BE
BE BE DE
(a) DE
{ BC
—_—— L BE EF
BF Joint K
6 DE
AB CcD
CD
\ DE\_ |E2
L Ry : |
Joint B Joint D
F E
(b)
y
|
I
A p L———x
B‘L C
R, L R,

23
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SAMPLE PROBLEM Resgue b

Compute the force in each member of the loaded cantilever truss by the

method of joints.

Solution. If it were not desired to calculate the external reactions at D and E,
the analysis for a cantilever truss could begin with the joint at the loaded end.
However, this truss will be analyzed completely, so the first step will be to com-
pute the external forces at D and E from the free-body diagram of the truss as a
whole. The equations of equilibrium give

30 kKN 20 kKN
[XM} = 0] 5T — 20(5) — 30(10) =0 T = 80 kN T
[XF, = 0] 80 cos 30° —E, =0 E. =693 kN 5m 7~ 30°
6 o
[ZF, = 0] 80sin 30° + E, — 20 — 30 =0 E,=10kN y
' 5
| m
Next we draw free-body diagrams showing the forces acting on each of the L =
connecting pins. The correctness of the assigned directions of the forces is veri- E,

fied when each joint is considered in sequence. There should be no question 5m Z.m .
about the correct direction of the forces on joint A. Equilibrium requires T
30 kN

[XF, = 0] 0.866AB — 30 = 0 AB=346KkNT Ans.
[XF, = 0] AC - 0.5(34.6) =0 AC=1732kNC Ans.

@ where T stands for tension and C stands for compression.

Joint B must be analyzed next, since there are more than two unknown
forces on joint C. The force BC must provide an upward component, in which 60° BD
case BD must balance the force to the left. Again the forces are obtained from ~€—AC——Xx AB = .

34.6 kKN 60° -
[ZF, = 0] 0.866BC — 0.866(34.6) =0  BC =346 kN C Ans. % ;BC

30 kN

AB

e e R

[XF, = 0] BD — 2(0.5)(34.6) = 0 BD =346kNT Ans.
Joint A Joint B
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Joint C' now contains only two unknowns, and these are found in the same
way as before:

[XF, = 0] 0.866CD — 0.866(34.6) — 20 = 0

CD=577TkNT Ans.
[XF, = 0] CE — 17.32 — 0.5(34.6) — 0.5(57.7) = 0

CE =635kNC Ans.

Finally, from joint E there results

[XF, = 0] 0.866DE = 10 DE =11.55kN C Ans.

and the equation ZF, = 0 checks.
Note that the weights of the truss members have been neglected in compari-
son with the external loads.

Helpful Hint

@ It should be stressed that the ten-
sion/compression designation refers
to the member, not the joint. Note
that we draw the force arrow on the
same side of the joint as the member
which exerts the force. In this way
tension (arrow away from the joint)
is distinguished from compression
(arrow toward the joint).

BC =
34.6 kN

cD DE
60°N / 60° 60°N  69.3 kN
AC="| ~ CE
17.32 kN 63.5 kN

20 kN 10 kN

Joint C Joint E

T ghs D abvwid v
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SAMPLE PROBLEM Rsagm b

Calculate the forces induced in members KL, CL, and CB by the 20-ton load

on the cantilever truss.

Solution. Although the vertical components of the reactions at A and M are
statically indeterminate with the two fixed supports, all members other than AM

are statically determinate. We may pass a section directly through members KL, 20 tons
CL, and CB and analyze the portion of the truss to the left of this section as a
@ statically determinate rigid body. 0
KL _»L
y 7
The free-body diagram of the portion of the truss to the left of the section is | -7 /CL
shown. A moment sum about L quickly verifies the assignment of CB as com- | -7 B/
pression, and a moment sum about C quickly discloses that KL is in tension. The G | -~ 1// \ - —x
direction of CL is not quite so obvious until we observe that KL and CB intersect P C CB
at a point P to the right of G. A moment sum about P eliminates reference to KL l
and CB and shows that CL must be compressive to balance the moment of the

20-ton force about P. With these considerations in mind the solution becomes 20 tons
straightforward, as we now see how to solve for each of the three unknowns in-
dependently of the other two.

Summing moments about L requires finding the moment arm BL = 16 +
© (26 - 16)/2 = 21 ft. Thus,
[ZM; = 0] 20(5)(12) — CB(21) =0 CB = 57.1tons C Ans.
Next we take moments about C, which requires a calculation of cos 6. From the
given dimensions we see # = tan~ 1(5/12) so that cos # = 12/13. Therefore,
[EM. = 0] 20(4)(12) — %KL(IG) =0 KL = 65tons T Ans.

Finally, we may find CL by a moment sum about P, whose distance from C
is given by PC/16 = 24/(26 — 16) or PC = 38.4 ft. We also need f3, which is given
by B = tan"'(CB/BL) = tan (12/21) = 29.7° and cos 8 = 0.868. We now have

(3] [ZM, = 0] 20(48 — 38.4) — CL(0.868)(38.4) = 0
CL = 5.76 tons C Ans.
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Space Trusses

D

(a) (b)

Method of Joints for Space Trusses
The method of joints developed in Art. 4/3 for plane trusses may be
extended directly to space trusses by satisfying the complete vector

equation
2F =0

Method of Sections for Space Trusses

The method of sections developed in the previous article may also
be applied to space trusses. The two vector equations

SF=0 and M =0

T ghs D abvwid v
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SAMPLE PROBLEM

The space truss consists of the rigid tetrahedron ABCD anchored by a ball-
and-socket connection at A and prevented from any rotation about the x-, y-, or
z-axes by the respective links 1, 2, and 3. The load L is applied to joint E, which
is rigidly fixed to the tetrahedron by the three additional links. Solve for the
forces in the members at joint E and indicate the procedure for the determina-
tion of the forces in the remaining members of the truss.

Solution. We note first that the truss is supported with six properly placed
constraints, which are the three at A and the links 1, 2, and 3. Also, withm =9
members and j = 5 joints, the condition m + 6 = 3; for a sufficiency of members
to provide a noncollapsible structure is satisfied.
The external reactions at A, B, and D can be calculated easily as a first step,
although their values will be determined from the solution of all forces on each
@ of the joints in succession.
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We start with a joint on which at least one known force and not more than
three unknown forces act, which in this case is joint E. The free-body diagram of
joint E is shown with all force vectors arbitrarily assumed in their positive ten-
sion directions (away from the joint). The vector expressions for the three un-
known forces are

Frp
5

FEB

Fpp = N

Equilibrium of joint E requires

Fre _

(-i—j), Fge= 5

3i - 4k), FED = (_3j - 4k)

[EF=0] L+FEB+FEC+FED=O or

F F F
fLiJriZB(*i*j) +EE(8i 4k + 2 (-3 - 4k) = 0

7

Rearranging terms gives

F 3F F 3F 4F 4F
(_L_ﬁ_ EC)i+( EB ED).+(_ EC _ ED)k_O

2 5 2 5

Equating the coefficients of the i-, j-, and k-unit vectors to zero gives the three
equations

5 5

Fep  3Fpc _ _,  Fep  3Fpp _

V2 5 2 5

Solving the equations gives us

0 FEC+FED:O

Fyp=-LIJ2  Fyo=-5LI6  Fygp=5L/6 Ans.

Thus, we conclude that Fpp and Fy are compressive forces and Fpp is tension.

T ghs D abvwid v

@ Suggestion: Draw a free-body dia-
gram of the truss as a whole and ver-
ify that the external forces acting on
the truss are A, = Li, A, = Lj, A, =
(4L/3)k, B, = 0, D, = —Lj, D, =
—(4L/3)k.

@ With this assumption, a negative
numerical value for a force indicates

compression.
z
I L
Bl
= - E
Fgp
F
E(/j/ / FED
4m 7 4m
7y
Ty
K|
/.
Y
-~ /
A~ ,
/
311? / 3%
\\-x
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Simple
Continuous

End-supported cantilever

t {

O

Cantilever

L\ O
Combination Fixed
Statically determinate beams Statically indeterminate beams
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Beams—External Effects
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Beams

For a more general load distribution, Fig. 5/21, we must start with a
differential increment of force dR = w dx. The total load R is then the
sum of the differential forces, or

R=fwdx

As before, the resultant R is located at the centroid of the area under
consideration. The x-coordinate of this centroid is found by the principle
of moments Rx = [ xw dx, or

wa dx

R

x =

For the distribution of Fig. 5/21, the vertical coordinate of the centroid
need not be found.

dR = wdx

il

T ghs D abvwid v




Beams

SAMPLE PROBLEM 5/11

Determine the equivalent concentrated load(s) and external reactions for
the simply supported beam which is subjected to the distributed load shown.

Solufion. The area associated with the load distribution is divided into the
rectangular and triangular areas shown. The concentrated-load values are deter-
mined by computing the areas, and these loads are located at the centroids of the
respective areas.

Once the concentrated loads are determined, they are placed on the free-
body diagram of the beam along with the external reactions at A and B. Using
principles of equilibrium, we have

[EM, = 0] 1200(5) + 480(8) — Rp(10) =0

Rp =9841b Ans.
[EMp = 0] R4(10) — 1200(5) — 480(2) = 0

R, =69 1b Ans.

T ghs D abvwid v

- 4’ 6’
280 Ib/ft
o TR
— —
Helpful Hint

@ Note that it is usually unnecessary
to reduce a given distributed load to
a single concentrated load.

%(160) (6)=4801h

’ 1 —_
Y —8;,/*/ 160 Ib/ft
l 120 Ib/ft

120 Ib/ft
A Y B
(120) (10) = 1200 Ib

12001b  4801b

oy

A | B

Ry TRB

34
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SAMPLE PROBLEM 5/12

Determine the reaction at the support A of the loaded cantilever beam.

Solution. The constants in the load distribution are found to be wy = 1000

© N/mand % = 2 N/m*. The load R is then

8
= 10050 N
0

8 , L
R=fwdx=f (1000 + 22%) dx = | 1000x + %
0 2

@ The x-coordinate of the centroid of the area is found by

fxwdx

8
_ _ 1 .
5= R 10 050 fo x(1000 + 2x%) dx

__ 1
10 050

8
(50027 + 22%)| = 449 m

From the free-body diagram of the beam, we have

[EM, = 0] M, — (10 050)(4.49) = 0
M, = 45100 N-m

[F, = 0] A, =10050 N

Note that A, = 0 by inspection.

Ans.

Ans.
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wix) w = wg + kx®
11000 N/m 2024
7/ N/m
[ B ¥
—! 8 m
A
Helpful Hints

@ Use caution with the units of the
constants w, and k.

@ The student should recognize that
the calculation of R and its location x
is simply an application of centroids
as treated in Art. 5/3.
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Beams

Equilibrium of the element requires that the sum of the vertical
forces be zero. Thus, we have

V-wdri—(V+dV)=0 w=/&)
ernils
or !
oo AV |
dx N\ X

We see from Eq. 5/10 that the slope of the shear diagram must every-
where be equal to the negative of the value of the applied loading. Equa-
tion 5/10 holds on either side of a concentrated load but not at the
concentrated load because of the discontinuity produced by the abrupt
change in shear.

We may now express the shear force V in terms of the loading w by
integrating Eq. 5/10. Thus,

\%4

dV = —j w dx
Vo Xo

or

V =V, + (the negative of the area under
the loading curve from x, to x)

In this expression V) is the shear force at x, and V is the shear force at x.
Summing the area under the loading curve is usually a simple way to
construct the shear-force diagram.

~— dx

él\)mm

V+dV

T ghs D abvwid v
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Beams

Equilibrium of the element in Fig. 5/25 also requires that the mo-
ment sum be zero. Summing moments about the left side of the element
gives

M+wd %+(V+dmdx—(M+dM)=o

The two M’s cancel, and the terms w(dx)%2 and dV dx may be dropped,
since they are differentials of higher order than those which remain.
This leaves

V=—= (5/11)

which expresses the fact that the shear everywhere is equal to the slope
of the moment curve. Equation 5/11 holds on either side of a concen-
trated couple but not at the concentrated couple because of the disconti-
nuity caused by the abrupt change in moment.

We may now express the moment M in terms of the shear V by inte-
grating Eq. 5/11. Thus,

w = f(x)

M x
f dM = J Vdx w
M, Xo

or ‘

M = M, + (area under the shear diagram from x, to x)

|

In this expression M is the bending moment at x, and M is the bend-
ing moment at x. For beams where there is no externally applied mo-

N

= dx
w
l> M +dM
V+dV
38




Beams

We observe from Eqs. 5/10 and 5/11 that the degree of V in x is one
higher than that of w. Also M is of one higher degree in x than is V. Con-
sequently, M is two degrees higher in x than w. Thus for a beam loaded
by w = kx, which is of the first degree in x, the shear V is of the second
degree in x and the bending moment M is of the third degree in x.

Equations 5/10 and 5/11 may be combined to yield

2
‘fix—l‘f _ (5/12)
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SAMPLE PROBLEM 5/13 . —

Determine the shear and moment distributions produced in the simple
beam by the 4-kN concentrated load. 6m 4m

Solufion. From the free-body diagram of the entire beam we find the support
reactions, which are 4 kN

y
R, =16kN  R,=24kN : l

on which we show the shear V and the bending moment M in their positive direc-

A section of the beam of length x is next isolated with its free-body diagram I
tions. Equilibrium gives T T

[ZF, = 0] 16-V=0 V=16kN

[EMp, = 0] M-16x=0 M=16x y ¥

|
! M E»M
@ These values of V and M apply to all sections of the beam to the left of the 4-kN i )
X

load.

A section of the beam to the right of the 4-kN load is next isolated with its
free-body diagram on which V and M are shown in their positive directions. v
Equilibrium requires 1.6 kN 2.4 kN

[XF, = 0] V+24=0 V=-24kN V. kN

l
!

[ZMp, = 0] ~24)10-x)+M=0 M =24(10 - x) 16} ' |

l

These results apply only to sections of the beam to the right of the 4-kN load. 0L 1 — X, M

The values of V and M are plotted as shown. The maximum bending mo- l
ment occurs where the shear changes direction. As we move in the positive
x-direction starting with x = 0, we see that the moment M is merely the
accumulated area under the shear diagram.
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SAMPLE PROBLEM 5/14

The cantilever beam is subjected to the load intensity (force per unit length)
which varies as w = wj sin (mx/l). Determine the shear force V and bending mo-

~—2¢&

T ghs D abvwid v

ment M as functions of the ratio x/.

I——

[ |

Solution. The free-body diagram of the entire beam is drawn first so that the

shear force V, and bending moment M, which act at the supported end at x = 0 R

can be computed. By convention V|, and M, are shown in their positive mathe- 5;
matical senses. A summation of vertical forces for equilibrium gives |
M, |
! ! 2w,
[3F, = 0] Vo—fwdx=o V0=fw0sinﬁdx=—°l | -
0 0 l &
A summation of moments about the left end at x = 0 for equilibrium gives I_ % _’{ I‘_ dx

1 !
[ZM = 0] —M(,—fx(wdx)=0 M0=—f wox sin =X dx
0 0 l
—wyl? & wol? M
= 2 I:sin%—%cos?]o=—7 q |

From a free-body diagram of an arbitrary section of length x, integration of

Eq. 5/10 permits us to find the shear force internal to the beam. Thus, Vo \'
v x 0.637
[dV = —w dx] dV=— wosdex
Yo
ol x| 2wl wyl X Y
V—Vo—[TcosT == osT—l wol
o
or in dimensionless form 0 L . L
0 02 al 06 08 1.0
0
Vv _1 ( mv) v
— ==|1+cos™ Ans. M
wel T 0 " wol?
The bending moment is obtained by integration of Eq. 5/11, which gives -0.318
M x wol . .
av-vaa [ au= [ (1 o8 %) & Helpful Hints
M,
& @ In this case of symmetry it is clear
M-M,= ?Ol [x + % sin ﬂ] that the resultant R = V; = 2wl/m of
l o the load distribution acts at midspan,

simply My, = —RI/2 —wol?m. The

w so that the moment requirement is
M=y ol[x+—sm——0]
minus sign tells us that physically

or in dimensionless form the bending moment at x = 0 is oppo-
site to that represented on the free-
body diagram.
%:%(’_‘_14, sm—) Ans.
wol l @ The free-body diagram serves to

remind us that the integration
limits for V as well as for x must be
accounted for. We see that the
expression for V is positive, so that
the shear force is as represented on
the free-body diagram.

The variations of V/w,l and M/wl”> with x/I are shown in the bottom figures.
The negative values of M/wl* indicate that physically the bending moment is in
the direction opposite to that shown.

)|
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SAMPLE PROBLEM 5/15

Draw the shear-force and bending-moment diagrams for the loaded beam
and determine the maximum moment M and its location x from the left end.

Solution. The support reactions are most easily obtained by considering the
resultants of the distributed loads as shown on the free-body diagram of the
beam as a whole. The first interval of the beam is analyzed from the free-body di-
agram of the section for 0 < x < 4 ft. A summation of vertical forces and a mo-
ment summation about the cut section yield

[ZF, = 0] V = 247 — 12.5x2

[EM = 0] M+ (12.5x2)§ - 247x =0 M = 247x — 41723

These values of V and M hold for 0 < x < 4 ft and are plotted for that interval in
the shear and moment diagrams shown.

From the free-body diagram of the section for which 4 < x < 8 ft, equilib-
rium in the vertical direction and a moment sum about the cut section give

[EF, = 0]  V+100(x — 4) +200 — 247 =0 V =447 — 100x

x—4
2

M = —267 + 447x — 50x?

[ZM =0] M + 100(x — 4)

+ 2000x — 2(4)] - 2472 = 0

These values of V and M are plotted on the shear and moment diagrams for the
interval 4 < x < 8 ft.

The analysis of the remainder of the beam is continued from the free-body
diagram of the portion of the beam to the right of a section in the next interval.
It should be noted that V and M are represented in their positive directions. A
vertical-force summation and a moment summation about the section yield

V= -3531h and M = 2930 — 353x

These values of V and M are plotted on the shear and moment diagrams for the
interval 8 < x < 10 ft.

The last interval may be analyzed by inspection. The shear is constant at
+300 Ib, and the moment follows a straight-line relation beginning with zero at
the right end of the beam.

The maximum moment occurs at x = 4.47 ft, where the shear curve crosses
the zero axis, and the magnitude of M is obtained for this value of x by substitu-
tion into the expression for M for the second interval. The maximum moment is

M = 732 1b-ft Ans.

As before, note that the change in moment M up to any section equals the
area under the shear diagram up to that section. For instance, for x < 4 ft,

[AM = f Vdxl M-0= Jﬂ (247 — 12.5x%) dx

and, as above, M =247x — 41723

100 Ib/ft
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