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Concept of Stress

The force per unit area, or intensity of the forces distributed
over a given section, is called the stress on that section and is
denoted by the Greek letter o (sigma). The stress in a member of
cross-sectional area A subjected to an axial load P (Fig. 1.8) is
therefore obtained by dividing the magnitude P of the load by the
area A:

P
g = Z (1.5)

A positive sign will be used to indicate a tensile stress (member in
tension) and a negative sign to indicate a compressive stress (mem-
ber in Compression).

Since SI metric units are used in this discussion, with P ex-
pressed in newtons (N) and A in square meters (m?), the stress o
will be expressed in N/m? This unit is called a pascal (Pa). How-
ever, one finds that the pascal is an exceedingly small quantity and
that, in practice, multiples of this unit must be used, namely, the
kilopascal (kPa), the megapascal (MPa), and the gigapascal (GPa).
We have

1kPa = 10° Pa = 10° N/m?
1 MPa = 10° Pa = 10° N/m”>
1 GPa = 10° Pa = 10° N/m>

When U.S. customary units are used, the force P is usually
expressed in pounds (Ib) or kilopounds (kip), and the cross-sectional
area A in square inches (in%). The stress o will then be expressed in
pounds per square inch (psi) or kilopounds per square inch (ksi).
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(a) (b)
Fig. 1.8 Member with an axial load.
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Concept of Stress

P = Fye = +50kN = +50 X 10° N
20 mm
2

d =20 mm A — 7Tr2 — »n-(

P 450X 10°N 6
o=—= ——— = +159 X 10°Pa = +159 MPa
A 314 X 10 °m?

|
|
|
|
|
|
600 mm !
|
|
|
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800 mm

:3()1\»\'*
Fig. 1.1 Boom used to support a 30-kN load.
P P 50 X 10°N :
oy=— A= = —— =500 % 10" m?
A Oar 100 X 10" Pa

. P
and, since A = 7,

A 500 X 107° m? _3
r = - = - = 1262 X 10 "m = 12.62 mm

d = 2r =252mm

2
> = a(10 X 107° m)® = 314 X 107% m®
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Concept of Stress
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Fig. 1.10 Stress distributions at
different sections along axially loaded

member.
JdF = J o dA
A

But the conditions of equilibrium of each of the portions of rod
shown in Fig. 1.10 require that this magnitude be equal to the mag-
nitude P of the concentrated loads. We have, therefore,

Fig. 1.11

P = J(ZF = Jcr dA (L.7)
A
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Concept of Stress

Fig. 1.13 Eccentric axial loading.
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Fig. 1.14 Member with
fransverse loads.
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Fig. 1.20

Fig. 1.21
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500 1b
750 1b

Fyc=T7501b Fyo=7501b

| A
3F\c=3751h

% -in. diameter

7]

%iu. F,c=T7501b
1.25 m./I\ﬂ 1

>

]
¢ %-in. diameter 7 175 in.

1.25 in.

—_]‘—-in, diameter

Lin. diameter L F,.=3751h

SAMPLE PROBLEM 1.1

In the hanger shown, the upper portion of link ABC is 2 in. thick and the
lower portions are each  in. thick. Epoxy resin is used to bond the upper
and lower portions together at B. The pin at A is of $-in. diameter while a
L-in.-diameter pin is used at C. Determine (@) the shearing stress in pin A,
(b) the shearing stress in pin C, (¢) the largest normal stress in link ABC,
(d) the average shearing stress on the bonded surfaces at B, (¢) the bearing
stress in the link at C.

SOLUTION

Free Body: Entire Hanger. Since the link ABC is a two-force member,
the reaction at A is vertical; the reaction at D is represented by its compo-
nents D, and D,. We write

+Y EMp = 0: (500 Ib)(15 in.) — Fse(10in.) = 0
Fiyc = +7501b Fic = 750 1b tension

a. Shearing Siress in Pin A.  Since this 2-in.-diameter pin is in single
shear, we write

Fic _ 7501

e 7o = 6790 psi <
A 9m(0.3751in.)

Ta =

b. Shearing Stress in Pin C.  Since this i-in.-diameter pin is in double
shear, we write
sFac 375 Ib

Tc = == Tc = 7640 psi
€T7A T Izx(0osm)y © :

c. Largest Normal Stress in Link ABC. The largest stress is found
where the area is smallest; this occurs at the cross section at A where the &-in.
hole is located. We have

_ Fis 750 Ib 750 I

oy = = = = oa = 2290 psi
AT At (Gin)Yl2in —0375in) 0328 * E

d. Average Shearing Stress at B. We note that bonding exists on
both sides of the upper portion of the link and that the shear force on each
side is F; = (750 Ib)/2 = 375 Ib. The average shearing stress on each surface
is thus

375 Ib

b _
™8T A T (125in.)(1.75 in.)

75 = 171.4 psi

e. Bearing Stress in Link at C. For each portion of the link, F; =
375 Ib and the nominal bearing area is (0.25 in.)(0.25 in.) = 0.0625 in’.

F, _ 3751b

A = W oOp = 6000 psi
00625 ™

o =

@l
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Concept of Stress

Consider the two-force member of Fig. 1.26, which is subjected
to axial forces P and P’. If we pass a section forming an angle 6 with
a normal plane (Fig. 1.28¢) and draw the free-body diagram ot the
portion of member located to the left of that section (Fig. 1.28D),
we find from the equilibrium conditions of the free body that the
distributed forces acting on the section must be equivalent to the
force P.

Resolving P into components F and V, respectively normal and
tangential to the section (Fig. 1.28¢), we have

F = Pcos@ V =Psin6 (1.12)

The force F represents the resultant of normal forces distributed
over the section, and the force V the resultant of shearing forces
(Fig. 1.28d). The average values of the corresponding normal and
shearing stresses are obtained by dividing, respectively, F and V by
the area Ay of the section:

F Vv
= — T = —
Ag Ay

Substituting for F and V from (1.12) into (1.13), and observing from
Fig. 1.28¢ that Ay = Ay cos 0, or Ay = Ay/cos 6, where A, denotes

ag

(1.13)

10




Concept of Stress

the area of a section perpendicular to the axis of the member, we
obtain

B P cos 0 B P sin 6
7 Ay/cos 0 T Ay/cos 6

or

. P
o=—cos’0 T =—sinbcosb (1.14)
0 0
We note from the first of Eqgs. (1.14) that the normal stress o
is maximum when 6 = 0, i.e., when the plane of the section is per-
pendicular to the axis of the member, and that it approaches zero as
6 approaches 90°. We check that the value of o when 6 = 0 is

£ (1.15)
o, =— .
m AO
as we found earlier in Sec. 1.3. The second of Eqs. (1.14) shows that
the shearing stress 7 is zero for 6 = 0 and 6 = 90°, and that for
0 = 45° it reaches its maximum value

P P
T,, = — sin 45° cos 45° = (1.16)

A 24,
The first of Eqs. (1.14) indicates that, when 6 = 45°, the normal
stress o' is also equal to P/2A,:

r_ P _— 6} s L

o s cos” 45 oA, (1.17)
The results obtained in Eqgs. (1.15), (1.16), and (1.17) are
shown graphically in Fig. 1.29. We note that the same loading may
produce either a normal stress ,, = P/A, and no shearing stress
(Fig. 1.29D), or a normal and a shearing stress of the same magni-
tude o' = 1, = P/2A, (Fig. 1.29 ¢ and d), depending upon the

orientation of the section.

g -

(a) Axial loading

(b) Stresses for 6 = 0

(¢) Stresses for 6 = 45°
7, = PRA,
o'= PI2A,
(d) Stresses for § = —45°
Fig. 1.29

o' = PRA,

1., = PRA,
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Concept of Stress

the ultimate strength in tension of the material, is

_ Py
A

Oy

ultimate load

Factor of safety = F.S. = allowable load

ultimate stress

Factor of satfety = F.S. =
actor o satety allowable stress




dug SAMPLE PROBLEM 1.3

Two forces are applied to the bracket BCD as shown. () Knowing that the
control rod AB is to be made of a steel having an ultimate normal stress of
600 MPa, determine the diameter of the rod for which the factor of safety
with respect to failure will be 3.3. (b) The pin at C is to be made of a steel
having an ultimate shearing stress of 350 MPa. Determine the diameter of
the pin C for which the factor of safety with respect to shear will also be
3.3. (¢) Determine the required thickness of the bracket supports at C
b knowing that the allowable bearing stress of the steel used is 300 MPa.

20 kN 15 kN

P SOLUTION

0 | B
T Free Body: Entire Bracket. The reaction at C is represented by its com-
50 kN 15 kN PO['[EI'ItS CI E.'I'Id Cy,

L +52EM;=0: P06 m) — (30 kN)0.3m) — (ISkN)({06m) =0 P =40kN
EF, =0 C. =40k
i A \ = T Y = ) 7 _
— __) ZFy = 0 C, — 65 kN C=VC;+ Cy=T76.3kN
L a. Conirel Rod AB. Since the factor of safety is to be 3.3, the allow-
' able stress is
| 03m | 03m oy 600 MPa
Tua=Fs " a3
For P = 40 kN the cross-sectional area required is
F 40 kN
Apg=—= o —
[e 181.58 MPa

= 181.8 MPa

=220 x 107%m?®

Ageg = %dﬁx =220 x 10°m?  dy; = 16.74 mm

b. Shear in Pin C. For a factor of safety of 3.3, we have

Since the pin is in double shear, we write
A G2 _ (3N
™ sy 1061MPa

= %dz = 360 mm® de = 21.4 mm Use: de = 22 mm

60 mm®

Arey

The next larger size pin available is of 22-mm diameter and should be used.

"5 |" ic /\ _
c. Bearing at C. Using d = 22 mm, the nominal bearing area of each
bracket is 22¢. Since the force carried by each bracket is C/2 and the allow-
‘ able bearing stress is 300 MPa, we write

d=1322 Cf2 76.3 kN)/2
. Arq _C2_(T3N2 oo
| gl 300 MPa
Thus 22 = 127.2 t = 5.78 mm Use: £ = 6 mm
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Stress and Strain—Axial Loading

P
(a) (b)

Fig. 2.1 Deformation
of axially-loaded rod.
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Stress and Strain—Axial Loading

B-' BH -
c 2L
2A
2P

Fig. 2.3

C” I A

20
A i
P
Fig. 2.4

Q

[

Fig. 2.5 Deformation of axially-
loaded member of variable cross-
sectional area.
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Stress and Strain—Axial Loading

Iy,

Rupture

1
1
|
i i
| |
| |
—~ 40 I |
Z oy L
5 R
20 | I
! !
: Strain-hardening %\Ieckingl
! I
b 0.02 0.2 025

(a) Low-carbon steel
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(b) Aluminum alloy

Fig. 2.6 Stress-strain diagrams of two typical ductile materials.

a

Rupture

Fig. 2.7 Stress-strain diagram for a
typical brittle material.

a

Ty

E
:

Photo 2.4 Tested specimen of a
ductile material.

(a)

Rupture

_,_‘ ‘-— 0.2% offset

Fig. 2.8 Determination of yield

strength by offset method.
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Stress and Strain—Axial Loading

OU, tension | — — — — —

Rupture, tension

Linear el

astic range
O

Rupture, compression

___________ O'L 7,

Fig. 2.9 Stress-strain diagram for concrete.

compression

T ghs D abvwid v
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Stress and Strain—Axial Loading

e, = SAe = S(AL/L)

20




Stress and Strain—Axial Loading

Quenched, tempered
alloy steel (A709)

High-strength, low-alloy
steel (A992)

Carbon steel (A36)

Pure iron

Fig. 2.11 Stress-strain diagrams for
iron and different grades of steel.

o = Ee
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Stress and Strain—Axial Loading

C Rupture

A D

Fig. 2.14 Stress-strain characteristics
of ductile material reloaded after prior
yielding.
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Stress and Strain—Axial Loading

50 [~
40 —
— Steel (1020HR)
2 30 -
:
& 20
Aluminum (2024)
10
| | | | | |

10° 10 10° 10° 107 10° 107
Number of completely reversed cycles

Fig. 2.16 Typical o-n curves.
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Stress and Strain—Axial Loading

Consider a homogeneous rod BC of length L and uniform cross sec-
tion of area A subjected to a centric axial load P (Fig. 2.17). If the
resulting axial stress & = P/A does not exceed the proportional limit
of the material, we may apply Hooke’s law and write

o = Ee (2.4)
from which it follows that

o P @.5)
€E = — = —— .
E AE

Recalling that the strain € was defined in Sec. 2.2 as € = 8/L, we
have

& = €L (2.6)
and, substituting for € from (2.5) into (2.6):

_ L

S =
AK

PiLi
-3

i AiEi

B

00!

P

Fig. 2.17 Deformation
of axially loaded rod.
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Stress and Strain—Axial Loading

P dx
AE

dé = e dx =

QO

.

<X+

Fig. 2.18 Deformation of axially
loaded member of variable cross-
sectional area.

| 5

LP dx
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F'ip= G0N

A
A = 500 mm?
05 m E=T0GPa
B
F 5 = 60 kN
Fop=90kN
(i

0.4 m

A = 600 mm?
E = 200 GPa

Fop =90 kN

g = 0.514 mm

B’ &y = 0.300 mm

H D E

B|

=

D’

=
™

(200 mm —x)

Y

.

-

ol
|-—>4— 400 mm ——I

200 mm

SAMPLE PROBLEM 2.1

The rigid bar BDE is supported by two links AB and CD. Link AB is made
of aluminum (E = 70 GPa) and has a cross-sectional area of 500 mm?; link
CD is made of steel (E = 200 GPa) and has a cross-sectional area of
600 mm®. For the 30-kN force shown, determine the deflection (a) of B,
(b) of D, (¢) of E.

SOLUTION
Free Body: Bar BDE

FISMp = 0. —(30kN)(0.6 m) + Fep(0.2m) = 0
Fep = +90 kN Fep = 90 kN tension
+NEMp = O: —(30 kN)(0.4 m) — F43(0.2m) = 0

Fap = —60kN Fap = 60kN  compression

a. Deflection of B. Since the internal force in link AB is compressive,
we have P = —60 kN
PL (=60 % 10° N)(0.3 m)

= = - = —514 X 10°°
BT AE (500 X 10 m?)(70 % 10° Pa) .

The negative sign indicates a contraction of member AB, and, thus, an
upward deflection of end B:

6y = 0.514 mm 7

b. Deflection of D. Since in rod CD, P = 90 kN, we write

Gl (90 X 10° N)(0.4 m)
PTAE (600 % 107°m?)(200 X 10° Pa)
=300 X 10 °m 85 = 0.300 mm |

c. Deflection of E. We denote by B and D’ the displaced positions
of points B and D. Since the bar BDE is rigid, points B', D', and E’" lie in
a straight line and we write

BB’ BH 0514 mm (200 mm) — x o
= = x = 73.7T mm

DD’ HD 0300 mm X
EE' HE 85 (400 mm) + (73.7 mm)
DD’ HD 0300 mm 73.7 mm

8p = 1.928 mm |

T ghs D abvwid v
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Stress and Strain—Axial Loading ‘
L
A B
(a)
0
L | . - L
A B
(D)
Fig. 2.30 Elongation of rod due to A B
temperature increase. (a)
P’ P
m—- <
8T — CE(AT)L
A B
(D)
€p = aAT Fig. 2.31 Rod with ends restrained

against thermal expansion.
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Stress and Strain—Axial Loading

- I, >
A B
(a) 5,
A B
(b) 8p =
A B
PR
P
< L

(c)

Fig. 2.32 Superposition method
applied to rod restrained against
thermal expansion.

= a(AT)L

PL
51) - —
AE

PL

P = —AEa(AT)

o =— = —Ea(AT)

I

=0
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045 m O:3m SAMPLE PROBLEM 2.4
c 1.
e .

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
T D diameter brass cylinder BD. A 22-mm-diameter steel rod AC passes through

a hole in the bar and is secured by a nut which is snugly fitted when the
temperature of the entire assembly is 20°C. The temperature of the brass
eylinder is then raised to 50°C while the steel rod remains at 20°C. Assum-
ing that no stresses were present before the temperature change, determine
the stress in the cylinder.

)
")

Rod AC:  Steel Cylinder BD:  Brass
1A E =200 GPa E=105CPa
a =117 X 107%°C a = 209 X 107%°C

SOLUTION

Statics.  Considering the free body of the entire assembly, we write
+5EMg=0:  Ry0.75m) — Rg(0.3m) =0 R, =04Ry (1)

Deformations. We use the method of superposition, considering Ry, as
redundant. With the support at B removed, the temperature rise of the cylinder
causes point B to move down through &;. The reaction Ry must cause a deflec-
tion 8, equal to 8; so that the final deflection of B will be zero (Fig, 3).

Deflection 6;. Because of a temperature rise of 50° — 20° = 30°C,
the length of the brass cylinder increases by 8;.

8= L(AT)e = (0.3 m)(30°C)(20.9 x 10 %°C) = 188.1 X 10 °m |

Deflection 8. We note that 8, = 0.48¢ and 8, = &p + 8.
Rl Ry(0.9 m)

=11.84 X 107°R, 1

C

AE  17(0.022 m)*(200 GPa)
8p = 0.408: = 0.4(11.84 X 10 °R,) = 4.74 X 107°R, }
RyL Rp(0.3 m) _
%0 =g = Lr(0.03 m)¥(105 GPa) 404> 107y 1
We recall from (1) that R, = 0.4Ry and write
8 = 8p + yp = [4.74(0.4Rp) + 4.04R5]107" = 5.94 X 107°Ry 1
But 8, = §;: 188.1 X 10™%m = 5.94 X 107" Ry Rp = 31.TkN

. : R 3L.7kN
Stress in Cylinder: o, = —2 = % oy = 44.8 MPa
A w(0.03 m)”

T ghs D abvwid v
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Stress and Strain—Axial Loading

/ U-\:-E
\

o.=0
(b)

Fig. 2.35 Stresses in an axially-
loaded bar.

Fig. 2.36 Transverse contraction
of bar under axial tensile force.

lateral strain

y = —
axial strain
Ey €.
= = — = — —
E\ Ei\f
Vo,




Stress and Strain—Axial Loading

Yy

A

/\

x

Yy

i
1l
1
TT{/ /l + €,

</

(b)

Fig. 2.39 Deformation of cube under
multiaxial loading.

i ﬂ B vao,y VO
E E E
vo, Oy VO,
E E E

_vo,  voy N o-
E E E

lllllll
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Stress and Strain—Axial Loading

*2.13 DILATATION; BULK MODULUS

In this section you will examine the effect of the normal stresses o,
a,, and o on the volume of an element of isotropic material. Con-
sider the element shown in Fig. 2.39. In its unstressed state, it is in
the shape of a cube of unit volume; and under the stresses o,, o,
o, it deforms into a rectangular parallelepiped of volume

o = L el + gglll 4 e

Since the strains €,, €,, €. are much smaller than unity, their products
will be even smaller and may be omitted in the expansion of the
product. We have, therefore,

v=1+e¢€+¢€ + ¢
Denoting by e the change in volume of our element, we write
e=g—1=1+ &+ g+ & —1

or

g =g h'e e (2.30)

T ghs D abvwid v
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Stress and Strain—Axial Loading

Since the element had originally a unit volume, the quantity e repre-
sents the change in volume per unit volume:; it is referred to as the dila-
tation of the material. Substituting for €,, €,, and €. from Eqs. (2.25)
into (2.30), we write

o, v o, F o, et o, )

e = —
E E

1 — 2y
E

é= (@ +7,+06,) (2.31)¢

A case of special interest is that of a body subjected to a uni-
form hydrostatic pressure p. Each of the stress components is then
equal to —p and Eq. (2.31) yields

31— 2w)

e = T}) (2.32)

Introducing the constant

E

K= S0 (2.33)

we write Eq. (2.32) in the form

(2.34)




Stress and Strain—Axial Loading

Fig. 2.41 General state of stress.

Fig. 2.44

X

Fig. 2.42 Cubic element subjected to
shearing siresses.

Fig. 2.45

Fig. 2.43 Deformation of cubic
element due to shearing stresses.

Ty = GV

Ty: = GYyz

T = GV

T ghs D abvwid v
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Stress and Strain—Axial Loading

il
1]9(E ¥
—_k;;;q1>;ex)

\1+ €;
(a)

P’ ’ P
g+7' N/ g_,y'/‘
(b)

Fig. 2.49 Representations of strain in an
axially-loaded bar.

P!

P’ 45° P
S
m Q:A Tm
a.!
|
o' = P
2A

Fig. 1.38

(b)
(repeated)
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Stress and Strain—Axial Loading

_ T e
B 4 2

I—ve,

1+ e
(a) (b)
Fig. 2.50

Applying the formula for the tangent of the difference of two angles,
we obtain

w y?n’l ’}lﬂl
tan — — tan— 1 — tan —
an 1 an 5 an 5
tan B = =
(n 1 1
1 + tan — tan 72,,, 1 + tan b
or, since y,,/2 is a very small angle,
1 — h
2
tan B = (2.39)

A

2




Stress and Strain—Axial Loading

But, from Fig. 2.50¢, we observe that

1 — ve,
1+ €,

tan B = (2.40)

Equating the right-hand members of (2.39) and (2.40), and solving
for vy,,, we write

(1 + v)e,

FY??I- =
1+

Since €, << 1, the denominator in the expression obtained can be
assumed equal to one; we have, therefore,

Yo = (1 + v)e, (2.41)

Tisaghus

AL

Oy
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Stress and Strain—Axial Loading

Tm O-T
c - vy
E '
E = (1 + V)a
L _ 1y
e g

o, = P/A and 7,, = P/2A

I
Oy

]



SAMPLE PROBLEM 2.5

A circle of dmmeter d =9 in. is scribed on an unstressed aluminum plate
of thickness ¢ = { in. Forces acting in the plane of the plate | ther cause nor-
mal stresses o, = 12 ksi and o. = 20 ksi. For E = 10 X 10° psi and v = 1
determine the change in (a) the length of diameter AB, (b) the length of
diameter CD, (c¢) the thickness of the plate, (d) the volume of the plate.

SOLUTION

Hooke’s Law. We note that g, = 0. Using Egs. (2.28) we find the
strain in each of the coordinate (hrectlons

E_\.=+—'————:

E B E
L .(121\ -0 - S0k ')} +0.533 X 10~% in /i
= —— (12 ksi) — 0 — —(20 ksi in./in.
10 X 10° psil 3
_ e o _vo
“""E "E E
1 [ 1 - e
S (12 ks1) 0= —(7() ksi) | = —1.067 X 10~ in./in.
10 X 10" psil 3
Vo, voy g
€. = ——— — + —
e E E E
1 [ 1
= ——————| ——(12 ksi) — 0 + (20 ksi)] = +1.600 X 10”% in/in.
10 X 10°psil 3

a. Diameter AB. The change in length is 85/, = €,d.
Spa = €d = (+0.533 X 10~ in/in.)(9 in.)
Spa = +48 X 1072 in
b. Diameter CD.
S = €d = (+1.600 X 10~ in./in.)(9 in.)
Sc/p = +14.4 X 107% in

c. Thickness. Recalling that ¢ = in., we have
5, = €t = (—1.067 X 107 *in/in.)(} in.)
8, = —0.800 X 10~* in
d. Volume of the Plate. Using Eq. (2.30), we write

e=¢ +e€ +e = (+0.533 — 1067 + 1.600)10~° = +1.067 X 107>
AV = eV = +1.067 X 10°[(15 in.)(15 in.)in.)]JAV = +0.187 X in®

T ghs D abvwid v




Stress and Strain—Axial Loading

STRESS CONCENTRATIONS

L0 | —
QU

P’ r P

O | —
QU

P’
h
+ U max

ave

Fig. 2.58 Stress distribution near circular
hole in flat bar under axial loading.

Pf

K / T max

e <— Tave

Fig. 2.59 Stress distribution near fillets
in flat bar under axial loading.

O-max

o ave
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Torsion




Torsion
\B ( Generator
T 5\
7o
(a)
Tl
Lo
B
Y v
A C{
(b)

Fig. 3.1 Shaft subject to torsion.

Fig. 3.2 Transmission shaft.
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Torsion

Fig. 3.4

dF

Axis of shaft T~

Fig. 3.5 Element in shaft.
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Fig. 3.8 Comparison of deformations
in circular and square shafts.

(D) b
Fig. 3.7 Shaft with fixed support.
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Fig. 3.13 Shearing strain.
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We observe from Fig. 3.13¢ that, for small values of y, we can
express the arc length AA" as AA" = Ly. But, on the other hand, we
have AA" = p¢. It follows that Ly = pdo, or

_re
y =5 (3.2)

It follows from Eq. (3.2) that the shearing strain is maximum
on the surface of the shaft, where p = ¢. We have

¢
== 3.3
Ymax L ( )

Eliminating ¢ from Eqs. (3.2) and (3.3), we can express the shearing
strain y at a distance p from the axis of the shaft as

P
P 3.4
Y = 2 Yo (3.4)

a1
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Recalling Hooke’s law for shearing stress and strain from Sec.
2.14, we write

T =Gy (3.5)

where G is the modulus of rigidity or shear modulus of the material.
Multiplying both members of Eq. (3.4) by G, we write

p
Gy - ; Gylllilx

or, making use of Eq. (3.5),

T = 7 Thax (36)

shaft of inner radius ¢, and outer radius co. From Eq. (3.6), we find
that, in the latter case,

C1

2

Tmin —

(3.7)

Tl]]iL‘(

We now recall from Sec. 3.2 that the sum of the moments of
the elementary forces exerted on any cross section of the shaft must
be equal to the magnitude T of the torque exerted on the shaft:

Jp(rdA) =T (3.1)

48
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Substituting for 7 from (3.6) into (3.1), we write

T,

T = fprdA =—"=[p"dA

c
But the integral in the last member represents the polar moment of
inertia | of the cross section with respect to its center O. We have
therefore

T max
T= / (3.8)
C

or, solving for 7,

Te
= — (3.9)
J

T]TI&IX

Substituting for 7,,,, from (3.9) into (3.6), we express the shearing
stress at any distance p from the axis of the shaft as

= (3.10)

Equations (3.9) and (3.10) are known as the elastic torsion formulas.
We recall from statics that the polar moment of inertia of a circle of
radius ¢ is | = 3me’. In the case of a hollow circular shaft of inner
radius ¢; and outer radius ¢,, the polar moment of inertia is

3 —smei = 3m(c3 — ¢l (3.11)

T ghs D abvwid v

/ Tmax

Tinin

YYYYY

"max

]

49




Torsion

F = 2(TyaAo)cos 45° = 7. A0 V2 (3.13)

The corresponding stress is obtained by dividing the force F by the
area A of face DC. Observing that A = AgV2, we write

I TmﬂAg\/:

g =—"=——————=7

AT Tagvz e
A similar analysis of the element of Fig. 3.18b shows that the stress
on the face BE is o = — Toa WVWE conclude that the stresses exerted
on the faces of an element ¢ at 45° to the axis of the shaft (Fig. 3.19)
are normal stresses equal to =7 ... Thus, while the element @ in
Fig. 3.19 is in pure shear, the element ¢ in the same figure is sub-
jected to a tensile stress on two of its faces, and to a compressive
stress on the other two. We also note that all the stresses involved
have the same magnitude, Tc/J.1

(3.14)

(a) Ductile failure (b) Brittle failure

Photo 3.2 Shear failure of shaft subject to torque.

(e
T

Fig. 3.17 Circular shaft with
elements at different orientations.

IIIl\ M /\ llll\

B“—CB“—C

Tinax? U Trnax? (l

(a) (D)

Fig. 3.18 Forces on faces at 45° to
shaft axis.

A= %

dLe |t

Tc
Tinax = —

J

Fig. 3.19 Shaft with elements with
only shear stresses or normal stresses.

Oy5°= +

—
L-_.|ﬂ_.
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Te=26kN-m

Tp=6KkN.m

T,=6kN.m

¢; =45 mm

¢ = 60 mm

6kN - m

SAMPLE PROBLEM 3.1

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are solid and of diameter d. For the loading
shown, determine (a) the maximum and minimum shearing stress in shaft
BC, (b) the required diameter d of shafts AB and CD if the allowable shear-
ing stress in these shafts is 65 MPa.

SOLUTION

Equations of Statics. Denoting by T, the torque in shaft AB, we
pass a section through shaft AB and, for the free body shown, we write
M, = 0: (6N -m) — Ty =0 Tyg =6kN - m

We now pass a section through shaft BC and, for the free body shown, we
have

ZM,=0: (6kN-m)+ (14kN-m) — Tpe =0 Tpe =20kN - m

a. Shaft BC. For this hollow shaft we have

= %(cé — ¢f) = Z(0.060)" — (0.045)"] = 13.92 X 10™° m*

Maximum Shearing Stress. On the outer surface, we have
_ Tgees  (20kN - m)(0.060 m)

Ty = T2 ] = 1392 X 10 m® Tnae = 96.2 MPa <

Minimum Shearing Stress. We write that the stresses are propor-
tional to the distance from the axis of the shaft.

Tmin - C_l Tmin = 45 mm

= Tmin = 64.7 MPa
Tmix: C2 86.2 MPa 60 mm

b. Shafts AB and CD. We note that in both of these shafts the mag-
nitude of the torque is T = 6 kN - m and 7, = 65 MPa. Denoting by ¢
the radius of the shafts, we write

=i 65 Mpg = GIN - mke
If 104
2
3 _ 3 -6 3 _ =3
¢” =588 X 10" m c=2389X10"m
d = 2c = 2(38.9 mm) d=T7.8mm <

@l
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3.5 ANGLE OF TWIST IN THE ELASTIC RANGE

In this section, a relation will be derived between the angle of twist ¢
of a circular shaft and the torque T exerted on the shaft. The entire shaft
will be assumed to remain elastic. Considering first the case of a shaft
of length L and of uniform cross section of radius ¢ subjected to a torque
T at its free end (Fig. 3.20), we recall from Sec. 3.3 that the angle of
twist ¢ and the maximum shearing strain vy, are related as follows:

ch
X
But, in the elastic range, the yield stress is not exceeded anywhere

in the shaft, Hooke’s law applies, and we have vy« = 7,./G or,
recalling Eq. (3.9),

Ymax = (3 3)

Tmax E

G JG
Equating the right-hand members of Egs. (3.3) and (3.15), and solv-
ing for ¢, we write

Ymax = (315)

e

¢ = G (3.16)

3.5 Angle of Twist in the Elastic Range

Fig. 3.20 Angle of twist ¢.
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Fig. 3.21 Multiple sections and multiple

forques. Fig. 3.22 Shaft with variable cross
section.
L
b= b = J e
i ] i Gz 0 ] G
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SAMPLE PROBLEM 3.3

The horizontal shaft AD is attached to a fixed base at D and is subjected to

the torques shown. A 44-mm-diameter hole has been drilled into portion

S CD of the shaft. Knowing that the entire shaft is made of steel for which
> 2000N-m G = 77 GPa, determine the angle of twist at end A.

SOLUTION

Since the shaft consists of three portions AB, BC, and CD, each of uniform cross
section and each with a constant internal torque, Eq. (3.17) may be used.

Statics.  Passing a section through the shaft between A and B and
using the free body shown, we find

M, = 0: (850N -m) — Typ =0 Tip=250N -
2000 N - m Passing now a section between B and C, we have
SM,=0:(250N - m) + (2000N - m) — Tge =0 Tpe = 2250N - m
Since no torque is applied at C,
Tep = Tge = 2250N - m
Polar Moments of Inertia

Tli(‘

250 N «1m

X

- Jas = =c* = Z(0.015 m)* = 0.0795 X 10" m*
30 mm 2 2
o g Joc= =t = %(0.030 m)* = 1.272 X 107 m*

- (c8—ch) = %[(0.030 m)* = (0.022 m)*] = 0.904 X 10 °m*
AB BC CcD

22 mm
Angle of Twist. Using Eq. (3.17) and recalling that G = 77 GPa for
the entire shaft, we have

b= 5 oL _ 1 (TABLAB 4 Toclae T(.'DLCD)
T JIG G\ [ Jsc Jen
1 [(20N-m)04m)  (2250)02)  (2250)(0.6)
A = TGPl 00795 X 10 °m® | 1272 X 10° | 0.904 X 10‘“}
= 0.01634 + 0.00459 + 0.01939 = 0.0403 rad
b = (0.0403 rad) 2316?: 5 b, = 2.31° <

Tisaghuss D alivsdry
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__.

Fig. 3.28 Shaft with change in diameter.

be reduced through the use of a fillet, and the maximum value of
the shearing stress at the fillet can be expressed as

T
Tmax — K _C (325)

I

where the stress Tc/] is the stress computed for the smaller-diameter
shaft, and where K is a stress-concentration factor. Since the factor
K depends only upon the ratio of the two diameters and the ratio of
the radius of the fillet to the diameter of the smaller shaft, it may
be computed once and for all and recorded in the form of a table
or a graph, as shown in Fig. 3.29. We should note, however, that this
procedure for determining localized shearing stresses is valid only as
long as the value of 7, given by Eq. (3.25) does not exceed the
proportional limit of the material, since the values of K plotted in
Fig. 3.29 were obtained under the assumption of a linear relation
between shearing stress and shearing strain. If plastic deformations
occur, they will result in values of the maximum stress lower than

those indicated by Eq. (3.25).

1.8

1.6

1.5

K 14

1.3

1.2

1.1

1.0

a
\)(—(’—;4!.111 m
\\'/f—,’= 135 =
NS

\\\,\/7 =2

D._
o Tl

0 005 0.10 0.15 020 0.25 0.30

r/d

Fig. 3.29 Stress-concentration factors
for fillets in circular shafts.t
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TABLE 3.1. Coefficients for
Rectangular Bars in Torsion

a/b C C
T 1.0 0.208 0.1406
1.2 0.219 0.1661
1.5 0.231 0.1958

2.0 0.246 0.229

2.5 0.258 0.249

3.0 0.267 0.263

. ) 4.0 0.282 0.281
SF;gr.ic)::745 Shaft with rectangular cross o 0291 0.201
10.0 0.312 0.312

%0 0.333 0.333

(Fig. 3.45), we find that the maximum sheafing stress occurs along
the center line of the wider face of the bar and is equal to

L (3.43)
Tn]'dX = ¢ .
cab®
The angle of twist, on the other hand, may be expressed as
TL
b = (3.44)

coab’G
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Fig. 3.47 Various thin-walled members.
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Fig. 3.54 Area for shear flow.

Fig. 3.50 Small element

from segment.
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