Maryam Karimzadeh, Elahesadat Eslampanah-Seyyedi, Hossein Behniafar
Mater Manuf Processes, 33, 10, 1093-1099 (2018)
Publication year: 2018
Telechelic poly(teramethylene oxide) with two isocyanate end groups (OCN-PTMO-NCO) was synthesized by the reaction of polytetrahydrofuran (Avg. Mn 1000 g mol-1) and hexamethylene diisocyanate in 1:2 molar ratio. The resulting macrochains were then covalently grafted to the surface of silica nanoparticles (SNPs). Thus, the inorganic nanoparticles could be thoroughly coated by a thick and soft organic shell. Thermogravimetric measurements showed that up to 85 wt.% of the organically modified SNPs (OSNPs) could be formed from the organic part. Different weight ratios of OSNPs were subsequently added to a solution of 4,4′-oxydiphenylamine/pyromellitic dianhydride poly(amic acid) (PAA) in dimethylformamide. Chemical cyclodehydration of the PAA in the presence of homogeneously dispersed OSNPs resulted in poly(4,4′-oxydiphenylene-pyromellitimide) (POPI) nanocomposites, labeled by POPI/OSNP 5, POPI/OSNP 7.5, and POPI/OSNP 10. The nanocomposites obtained were fully characterized by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. According to the diffuse reflectance UV spectroscopy, in comparison with neat POPI, the POPI/OSNP series showed an appreciable redshift in the λmax values up to 15–20 nm. Moreover, POPI/OSNP series showed significant stability toward heat at temperatures above 540°C. The endothermic phase transitions occurred by the first thermodegradation of the resulting nanocomposites could be obviously seen in the differential thermal analysis.

Leave a Reply

Your email address will not be published. Required fields are marked *