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Abstract. Let A be a commutative unital Banach algebra and X be a com-
pact space. We study the class of A-valued function algebras on X as sub-
algebras of C(X,A) with certain properties. We introduce the notion of A-
characters of an A-valued function algebra A as homomorphisms from A
into A that basically have the same properties as evaluation homomorphisms
Ex : f 7→ f(x), with x ∈ X. We show that, under certain conditions, there
is a one-to-one correspondence between the set of A-characters of A and the
set of characters of the function algebra A = A ∩ C(X) of all scalar-valued
functions in A . For the so-called natural A-valued function algebras, such as
C(X,A) and Lip(X,A), we show that Ex (x ∈ X) are the only A-characters.
Vector-valued characters are utilized to identify vector-valued spectra.

1. Introduction and Preliminaries

In this paper, we consider only commutative unital Banach algebras over the
complex field C [3, 4, 11, 18].

Let A be a commutative Banach algebra. The set of all characters of A is de-
noted by M(A). It is well-known that M(A), equipped with the Gelfand topology,
is a compact Hausdorff space called the character space of A. For every a ∈ A,
let â : M(A) → C, φ 7→ φ(a), be the Gelfand transform of a. The algebra A
then can be seen, through its Gelfand representation A → C(M(A)), a 7→ â, as
a subalgebra of C(M(A)).

1.1. Complex function algebras. Let X be a compact Hausdorff space. The
algebra C(X) of all continuous complex-valued functions on X equipped with the
uniform norm ‖ · ‖X is a commutative unital Banach algebra. A function algebra
on X is a subalgebra A of C(X) that separates the points of X and contains the
constant functions. A function algebra A equipped with some complete algebra
norm ‖ · ‖ is a Banach function algebra. If the norm of a Banach function algebra
A is equivalent to the uniform norm ‖ · ‖X , then A is a uniform algebra.

Let A be a Banach function algebra on X. For every x ∈ X, the mapping
εx : A → C, f 7→ f(x), is a character of A, and the mapping J : X → M(A),
x 7→ εx, imbeds X homeomorphically as a compact subset of M(A). When J is
surjective, one calls A natural [4, Chapter 4]. For example, C(X) is a natural
uniform algebra, while, for the unit circle T, the algebra P (T) of all functions
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f ∈ C(T) that can be approximated uniformly on T by polynomials is not natural
Note, however, that every semisimple commutative unital Banach algebra A can
be seen (through its Gelfand representation) as a natural Banach function algebra
on M(A). For more on function algebras see, for example, [6, 12].

1.2. Vector-valued function algebras. Let (A, ‖ · ‖) be a commutative unital
Banach algebra. The set of all A-valued continuous functions on X is denoted by
C(X,A). Algebraic operations on C(X,A) are defined pointwise. The uniform
norm ‖f‖X of each function f ∈ C(X,A) is defined in the obvious way. In this
setting,

(
C(X,A), ‖ · ‖X

)
is a commutative unital Banach algebra.

Starting by Yood [17] in 1950, the character space of C(X,A) has been studied
by many authors. In 1957, Hausner [7] proved that τ is a character of C(X,A)
if, and only if, there exist a point x ∈ X and a character φ ∈ M(A) such that
τ(f) = φ(f(x)), for all f ∈ C(X,A), whence M(C(X,A)) is homeomorphic to
X×M(A). Recently, in [1], other characterizations of maximal ideals of C(X,A)
have been presented.

1.3. Vector-valued characters. Analogous with Banach function algebras, Ba-
nach A-valued function algebras are defined as subalgebras of C(X,A) with cer-
tain properties (Definition 2.1). For a Banach A-valued function algebra A on
X, consider the evaluation homomorphisms Ex : A → A, x 7→ f(x), with x ∈ X.
These A-valued homomorphisms are included in a certain class of homomorphisms
that will be introduced and studied in Section 3 under the name of vector-valued
characters. The set of all A-characters of A will be denoted by MA(A ). Note
that when A = C, we have C(X,A) = C(X). In this case, A-valued function
algebras reduce to function algebras, and A-characters reduce to characters.

An application of vector-valued characters is presented in the forthcoming pa-
per [2] to identify the vector-valued spectrum of functions f ∈ A . It is known
that the spectrum of an element a ∈ A is equal to sp(a) = {φ(a) : φ ∈ M(A)}.
In [2] the A-valued spectrum ~spA(f) of functions f ∈ A are studied and it is
proved that, under certain conditions,

~spA(f) = {Ψ(f) : Ψ ∈MA(A )}.

1.4. Notations and conventions. Since in this paper we are dealing with dif-
ferent types of functions and algebras, ambiguity may arise. Hence, a clear dec-
laration of notations and conventions is given here.

(1) Throughout the paper, X is a compact Hausdorff space, and A is a commu-
tative semisimple unital Banach algebra. The unit element of A is denoted
by 1, and the set of invertible elements of A is denoted by Inv(A).

(2) If f ∈ C(X) and a ∈ A, we write fa to denote the A-valued function X → A,
x 7→ f(x)a. If A is a function algebra on X, we let AA be the linear span
of {fa : f ∈ A, a ∈ A}. Hence, any element f ∈ AA is of the form f =
f1a1 + · · ·+ fnan with fj ∈ A and aj ∈ A.

(3) Given an element a ∈ A, we use the same notation a for the constant function
X → A given by a(x) = a, for all x ∈ X, and considerA as a closed subalgebra
of C(X,A). Since A is assumed to have a unit element 1, we identify C with
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the closed subalgebra C1 of A, and thus every function f : X → C can be
seen as the A-valued function X → A, x 7→ f(x)1; we use the same notation
f for this A-valued function. In this regard, we admit the identification
C(X) = C(X)1 and consider C(X) as a closed subalgebra of C(X,A).

(4) To every continuous function f : X → A, we correspond the function

f̃ : M(A)→ C(X), f̃(φ) = φ ◦ f.
If I is a family of continuous A-valued functions on X, we define

φ[I] = {φ ◦ f : f ∈ I} = {f̃(φ) : f ∈ I}.

2. Vector-valued Function Algebras

In this section, we introduce and study the notion of vector-valued function
algebras.

Definition 2.1 (See [13]). Let X be a compact Hausdorff space, and (A, ‖ · ‖)
be a commutative unital Banach algebra. An A-valued function algebra on X is
a subalgebra A of C(X,A) such that (1) A contains all the constant functions
X → A, x 7→ a, with a ∈ A, and (2) A separates the points of X in the sense
that, for every pair x, y of distinct points in X, there exists f ∈ A such that
f(x) 6= f(y). A normed A-valued function algebra on X is an A-valued function
algebra A on X endowed with some algebra norm ||| · ||| such that the restriction
of ||| · ||| to A is equivalent to the original norm ‖ · ‖ of A, and ‖f‖X ≤ |||f |||, for
every f ∈ A . A complete normed A-valued function algebra is called a Banach
A-valued function algebra. A Banach A-valued function algebra A is called an
A-valued uniform algebra if the given norm of A is equivalent to the uniform
norm ‖ · ‖X .

If there is no risk of confusion, instead of ||| · |||, we use the same notation ‖ · ‖
for the norm of A .

Let A be an A-valued function algebra on X. For every x ∈ X, define Ex :
A → A by Ex(f) = f(x). We call Ex the evaluation homomorphism at x. Our
definition of Banach A-valued function algebras implies that every evaluation
homomorphism Ex is continuous. As it is mentioned in [13], if the condition
‖f‖X ≤ |||f |||, for all f ∈ A , is replaced by the requirement that every evaluation
homomorphism Ex is continuous, then one can find some constant M such that

‖f‖X ≤M |||f ||| (f ∈ A ).

2.1. Admissible function algebras. Given a complex-valued function algebra
A and an A-valued function algebra A on X, according to [13, Definition 2.1],
the quadruple (X,A,A,A ) is admissible if A is natural, AA ⊂ A , and

{φ ◦ f : φ ∈M(A), f ∈ A } ⊂ A.

Taking this into account, we make the following definition.

Definition 2.2. An A-valued function algebra A is said to be admissible if

{(φ ◦ f)1 : φ ∈M(A), f ∈ A } ⊂ A . (2.1)
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When A is admissible, we set A = A ∩ C(X) (more precisely, A ∩ C(X)1).
Then A is the subalgebra of A consisting of all scalar-valued functions in A and
forms a function algebra by itself. Note that A = φ[A ], for all φ ∈ M(A). Of
course, if (X,A,A,A ) is an admissible quadruple, in the sense of [13], then A
satisfies (2.1) and A = A ∩ C(X) is natural. In general, however, we do not
assume A to be natural, hence an admissible A-valued function algebra A may
not form an admissible quadruple.

Example 2.3. Let A be a complex-valued function algebra on X. Then AA is
an admissible A-valued function algebra on X. Hence, the uniform closure of AA
in C(X,A) is an admissible A-valued uniform algebra (Proposition 2.5 below).

Other examples of admissible function algebras are presented in Section 4.
Here, we present an example to show that not all vector-valued function algebras
are admissible.

Example 2.4. Let K be a compact subset of C which is not polynomially convex
so that P (K) 6= R(K). For example, let K = T be the unit circle. Set

A = {(fp, fr) : fp ∈ P (K), fr ∈ R(K)}.

Then A is a uniformly closed subalgebra of C(K,C2), it contains all the con-
stant functions (α, β) ∈ C2 and separates the points of K. Hence A is a C2-valued
uniform algebra on K. Let 1 = (1, 1) be the unit element of C2, and let π1 and
π2 be the coordinate projections of C2. Then M(C2) = {π1, π2}, and

π1[A ]1 = {f1 : f ∈ P (K)} = {(f, f) : f ∈ P (K)},
π2[A ]1 = {f1 : f ∈ R(K)} = {(f, f) : f ∈ R(K)}.

We see that π1[A ]1 ⊂ A while π2[A ]1 6⊂ A . Hence A is not admissible.

Proposition 2.5. Let A be an admissible A-valued function algebra on X, with
A = A ∩C(X). Then the uniform closure Ā is an admissible A-valued uniform
algebra on X with Ā = C(X) ∩ Ā .

Proof. The fact that Ā is an A-valued uniform algebra is clear. The inclusion
Ā ⊂ C(X) ∩ Ā is also obvious. Take f ∈ C(X) ∩ Ā . Then, there exists a
sequence {fn} of A-valued functions in A such that fn → f uniformly on X. For
some φ ∈M(A), take gn = φ ◦ fn. Then gn ∈ A and, since f = (φ ◦ f)1, we have

‖gn − f‖X = ‖φ ◦ fn − φ ◦ f‖X ≤ ‖fn − f‖X → 0.

Therefore, gn → f uniformly on X and thus f ∈ Ā. �

2.2. Certain vector-valued uniform algebras. Let A0 be a complex function
algebra on X, and let A and A be the uniform closures of A0 and A0A, in C(X)
and C(X,A), respectively. Then A is an admissible A-valued uniform algebra
on X with A = C(X) ∩ A . The algebra A is isometrically isomorphic to the
injective tensor product A ⊗̂ε A (cf. [11, Proposition 1.5.6]). To see this, let
T : A⊗ A→ A be the unique linear mapping, given by [3, Theorem 42.6], such
that T (f ⊗ a)(x) = f(x)a, for all x ∈ X. Let A∗1 and A∗1 denote the closed unit
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ball of A∗ and A∗, respectively, and let ‖ · ‖ε denote the injective tensor norm.
Then∥∥∥T( n∑

i=1

fi ⊗ ai
)∥∥∥

X
= sup

x∈X

∥∥∥ n∑
i=1

fi(x)ai

∥∥∥ = sup
x∈X

sup
ν∈A∗

1

∣∣∣ n∑
i=1

fi(x)ν(ai)
∣∣∣

= sup
ν∈A∗

1

∥∥∥ n∑
i=1

fi(·)ν(ai)
∥∥∥
X

= sup
ν∈A∗

1

sup
µ∈A∗

1

∣∣∣µ( n∑
i=1

fi(·)ν(ai)
)∣∣∣

= sup
µ∈A∗

1

sup
ν∈A∗

1

∣∣∣ n∑
i=1

µ(fi)ν(ai)
∣∣∣ =

∥∥∥ n∑
i=1

fi ⊗ ai
∥∥∥
ε
.

Hence T extends to an isometry T from A ⊗̂ε A into A . Since the range of
T contains A0A, which is dense in A , the range of T is the whole of A . We
remark that, by a theorem of Tomiyama [16], the character space M(A ) of A is
homeomorphic to M(A)×M(A).

Let K be a compact subset of C. Associated with K there are three vector-
valued uniform algebras in which we are interested. Let P0(K,A) be the algebra
of the restriction to K of A-valued polynomials p(z) = anz

n + · · ·+ a1z+ a0 with
coefficients in A. Let R0(K,A) be the algebra of the restriction to K of rational
functions of the form p(z)/q(z), where p(z) and q(z) are A-valued polynomials,
and q(λ) ∈ Inv(A) for λ ∈ K. And let H0(K,A) be the algebra of A-valued
functions on K having a holomorphic extension to a neighbourhood of K.

When A = C, we drop A and write P0(K), R0(K) and H0(K). Their uniform
closures in C(K), denoted by P (K), R(K) and H(K), are complex uniform
algebras (for more on complex uniform algebras, see [6] or [12]).

The algebras P0(K,A), R0(K,A) and H0(K,A) are admissible A-valued func-
tion algebras on K, and their uniform closures in C(K,A), denoted by P (K,A),
R(K,A) and H(K,A), are admissible A-valued uniform algebras. It obvious that

P (K,A) ⊂ R(K,A) ⊂ H(K,A).

Every polynomial p(z) = a0 + a1z + · · · + anz
n in P0(K,A) is, clearly, of the

form p(z) = p0(z)a0 + p1(z)a1 + · · · + pn(z)an, where p0, p1, . . . , pn are polyno-
mials in P0(K). Thus P0(K,A) = P0(K)A. The above discussion shows that
P (K,A) is isometrically isomorphic to P (K) ⊗̂εA. The character space of P (K)

is homeomorphic to K̂, the polynomially convex hull of K ([12, Section 5.2]).

The character space of P (K,A) is, therefore, homeomorphic to K̂ ×M(A).
Runge’s classical approximation theorem states that if Λ is a subset of C such

that Λ has nonempty intersection with each bounded component of C \K, then
every function f ∈ H0(K) can be approximated uniformly on K by rational
functions with poles only among the points of Λ and at infinity ([3, Theorem 7.7]).
In particular, R(K) = H(K). The following is a version of Runge’s theorem for
vector-valued functions.

Theorem 2.6 (Runge). Let K be a compact subset of C, and let Λ be a subset of
C\K having nonempty intersection with each bounded component of C\K. Then
every function f ∈ H0(K,A) can be approximated uniformly on K by A-valued



6 M. ABTAHI

rational functions of the form

r(z) = r1(z)a1 + r2(z)a2 + · · ·+ rn(z)an, (2.2)

where ri(z), for 1 ≤ i ≤ n, are rational functions in R0(K) with poles only among
the points of Λ and at infinity, and a1, a2, . . . , an ∈ A.

Proof. Take f ∈ H0(K,A). Then, there exists an open set D such that K ⊂ D
and f : D → A is holomorphic. We use the same notation as in [3]. We let
E be a punched disc envelope for (K,D); see [3, Definition 6.2]. The Cauchy
theorem and the Cauchy integral formula are also valid for Banach space valued
holomorphic functions (see the remark after Corollary 6.6 in [3] and [14, Theorem
3.31]). Therefore,

f(z) =
1

2πi

∫
∂E

f(s)

s− z
ds (z ∈ K).

Then, by [3, Proposition 6.5], one can write

f(z) =
∞∑
n=0

αn(z − z0)n +
m∑
j=1

∞∑
n=1

βjn
(z − zj)n

(z ∈ K), (2.3)

where z0 ∈ C, z1, z2, . . . , zm ∈ C \ K, and the coefficients αn, βjn belong to A.
Note that the series in (2.3) converges uniformly on K.

So far, we have seen that f can be approximated uniformly on K by A-valued
rational functions of the form (2.2), where ri(z), for 1 ≤ i ≤ n, are rational
functions in R0(K) with poles just outside K. Using Runge’s classical theorem,
each ri(z) can be approximated uniformly on K by rational functions with poles
only among the points of Λ and at infinity. Hence, we conclude that f can
be approximated uniformly on K by rational functions of the form (2.2) with
preassigned poles. �

As a consequence of the above theorem, we see that the uniform closures of
R0(K)A, H0(K)A, R0(K,A) and H0(K,A) are all the same. In particular,

R(K,A) = H(K,A).

Corollary 2.7. The algebra R(K,A) is isometrically isomorphic to R(K) ⊗̂ε A
and, therefore, M(R(K,A)) is homeomorphic to K ×M(A).

We remark that the equality M(R(K,A)) = K ×M(A) is proved in [13]. The
authors, however, did not notice the equality R(K,A) = R(K) ⊗̂ε A.

3. Vector-valued Characters

Let A be a Banach A-valued function algebra on X, and consider the point
evaluation homomorphisms Ex : A → A. These kind of homomorphisms enjoy
the following properties:

• Ex(a) = a, for all a ∈ A,
• Ex(φ ◦ f) = φ(Exf), for all f ∈ A and φ ∈M(A),
• If A is admissible (with A = C(X) ∩ A ) then Ex|A is a character of A,

namely, the evaluation character εx.
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We now introduce the class of all homomorphisms from A into A having the
same properties as the point evaluation homomorphisms Ex (x ∈ X).

Definition 3.1. Let A be an admissible A-valued function algebra on X. A
homomorphism Ψ : A → A is called an A-character if Ψ(1) = 1 and φ(Ψf) =
Ψ(φ ◦ f), for all f ∈ A and φ ∈ M(A). The set of all A-characters of A is
denoted by MA(A ).

That every A-character Ψ : A → A satisfies Ψ(a) = a, for all a ∈ A, is easy
to see. In fact, since φ(Ψ(a)) = Ψ(φ(a)) = φ(a), for all φ ∈ M(A), and A is
semisimple, we get Ψ(a) = a.

Proposition 3.2. Let Ψ : A → A be a linear operator such that Ψ(1) = 1
and φ(Ψf) = Ψ(φ ◦ f), for all f ∈ A and φ ∈ M(A). Then, the following are
equivalent:

(i) Ψ is an A-character,
(ii) Ψ(f) 6= 0, for every f ∈ Inv(A ),

(iii) Ψ(f) 6= 0, for every f ∈ Inv(A),
(iv) if ψ = Ψ|A, then ψ ∈M(A).

Proof. (i) ⇒ (ii) ⇒ (iii) is clear. The implication (iii) ⇒ (iv) follows from [14,
Theorem 10.9]. To prove (iv) ⇒ (i), take f, g ∈ A . For every φ ∈ M(A), we
have

φ(Ψ(fg)) = Ψ(φ ◦ fg) = ψ((φ ◦ f)(φ ◦ g)) = ψ(φ ◦ f)ψ(φ ◦ g) = φ(Ψ(f)Ψ(g)).

Since A is semisimple, we get Ψ(fg) = Ψ(f)Ψ(g). �

Every A-character is automatically continuous by Johnson’s theorem [10]. If
A is a uniform algebra and A is an A-valued uniform algebra, we even have
‖Ψ‖ = 1, for any A-character Ψ.

Proposition 3.3. Let Ψ1 and Ψ2 be A-characters on A , and set ψ1 = Ψ1|A and
ψ2 = Ψ2|A. The following are equivalent:

(i) Ψ1 = Ψ2, (ii) ker Ψ1 = ker Ψ2, (iii) kerψ1 = kerψ2, (iv) ψ1 = ψ2.

Proof. The implication (i)⇒ (ii) is obvious. The implication (ii)⇒ (iii), follows
from the fact that kerψi = ker Ψi ∩ A, for i = 1, 2. The implication (iii) ⇒ (iv)
follows form [14, Theorem 11.5]. Finally, if we have (iv), then, for every f ∈ A ,

φ(Ψ1(f)) = ψ1(φ(f)) = ψ2(φ(f)) = φ(Ψ2(f)) (φ ∈M(A)).

Since A is semisimple, we get Ψ1(f) = Ψ2(f), for all f ∈ A . �

Definition 3.4. Let A be an admissible A-valued function algebra on X. Given
a character ψ ∈M(A), if there exists an A-character Ψ on A such that Ψ|A = ψ,
then we say that ψ lifts to the A-character Ψ.

Proposition 3.3 shows that, if ψ ∈M(A) lifts to Ψ1 and Ψ2, then Ψ1 = Ψ2. For
every x ∈ X, the unique A-character to which the evaluation character εx lifts
is the evaluation homomorphism Ex. In the following, we investigate conditions
under which every character ψ ∈M(A) lifts to some A-character Ψ. To proceed,
we need some definitions, notations and auxiliary results.
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Let A be an admissible Banach A-valued function algebra on X and A =
A ∩ C(X)1. Then A is a Banach function algebra. For every f ∈ A , consider

the function f̃ : M(A) → A, φ 7→ φ ◦ f . Set X = M(A) and Ã = {f̃ : f ∈ A }.
Suppose every f̃ is continuous, with respect to the Gelfand topology of M(A)
and the norm topology of A (this is the case for uniform algebras; see Corollary

3.6). Then Ã is an A-valued function algebra on X . In Theorem 3.8, we will

discuss conditions under which Ã is admissible; we will see that Ã is admissible
if and only if every character ψ ∈M(A) lifts to some A-character Ψ ∈MA(A ).

In the following, we extend f̃ to a mapping from A∗ to C(X), and we still

denote this extension is by f̃ . Note that φ ◦ f ∈ C(X), for all φ ∈ A∗, and
‖φ ◦ f‖X ≤ ‖φ‖‖f‖X .

Proposition 3.5. With respect to the w*-topology of A∗ and the uniform topology
of C(X), every mapping f̃ : A∗ → C(X) is continuous on bounded subsets of A∗.

Proof. Let {φα} be a net in A∗ that converges, in the w*-topology, to some
φ0 ∈ A∗ and suppose ‖φα‖ ≤M , for all α. Take ε > 0 and set, for every x ∈ X,

Vx = {s ∈ X : ‖f(s)− f(x)‖ < ε}.
Then {Vx : x ∈ X} is an open covering of the compact space X. Hence, there

exist finitely many points x1, . . . , xn in X such that X ⊂ Vx1 ∪ · · · ∪ Vxn . Set

U0 =
{
φ ∈ A∗ :

∣∣φ(f(xi)
)
− φ0

(
f(xi)

)∣∣ < ε, 1 ≤ i ≤ n
}
.

The set U0 is an open neighbourhood of φ0 in the w*-topology. Since φα → φ0,
there exists α0 such that φα ∈ U0 for α ≥ α0. If x ∈ X, then ‖f(x)− f(xi)‖ < ε,
for some i ∈ {1, . . . , n}, and thus, for α ≥ α0,

|φα ◦ f(x)− φ0 ◦ f(x)| ≤ |φα(f(x))− φα(f(xi))|+ |φα(f(xi))− φ0(f(xi))|
+ |φ0(f(xi))− φ0(f(x))|

< Mε+ ε+ ‖φ0‖ε.
Since x ∈ X is arbitrary, we get ‖φα ◦ f − φ0 ◦ f‖X ≤ ε(M + ‖φ0‖+ 1). �

Since M(A) is a bounded subset of A∗, we get the following result for uniform
algebras.

Corollary 3.6. Let A be an admissible A-valued uniform algebra on A. Then
f̃ ∈ C(M(A),A), for every f ∈ A , and Ã = {f̃ : f ∈ A } is an A-valued
uniform algebra on M(A).

To prove our main result, we also need the following lemma.

Lemma 3.7. For every f ∈ A , if f̃ : M(A) → A is scalar-valued, then f is a

constant function and, therefore, f̃ = â, for some a ∈ A.

Proof. Fix a point x0 ∈ A and let a = f(x0). The function f̃ being scalar-
valued means that, for every φ ∈M(A), there is a complex number λ such that

f̃(φ) = φ ◦ f = λ. This means that φ ◦ f is a constant function on X so that

φ(f(x)) = φ(f(x0)) = φ(a) (x ∈ X). (3.1)
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Since A is semisimple and (3.1) holds for every φ ∈M(A), we must have f(x) = a,

for all x ∈ X. Thus, f̃ = â. �

We are now ready to state and prove the main result of the section.

Theorem 3.8. Let A be an admissible Banach A-valued function algebra on
X, and let E be the linear span of M(A) in A∗. The following statements are
equivalent.

(i) for every ψ ∈ M(A) and f ∈ A , the mapping g : E → C, defined by
g(φ) = ψ(φ ◦ f), is continuous with respect to the w*-topology of E;

(ii) every ψ ∈M(A) lifts to an A-character Ψ : A → A;
(iii) every f ∈ A has a unique extension F : M(A)→ A such that

φ(F (ψ)) = ψ(φ ◦ f) (ψ ∈M(A), φ ∈M(A));

Moreover, if the functions f̃ : M(A) → A, where f ∈ A , are all continuous so

that Ã = {f̃ : f ∈ A } is an A-valued function algebra on M(A), then the above
statements are equivalent to

(iv) Ã is admissible.

Proof. (i) ⇒ (ii): Fix ψ ∈ M(A) and f ∈ A . Since φ ◦ f ∈ A, for every
φ ∈ E, we see that g is a well-defined linear functional on E. Endowed with
the w*-topology, A∗ is a locally convex space with A as its dual. Since g is w*-
continuous, by the Hahn-Banach extension theorem [14, Theorem 3.6], there is a
w*-continuous linear functional G on A∗ that extends g. Hence G = â, for some
a ∈ A, and since A is semisimple, a is unique. Now, define Ψ(f) = a. Then

φ(Ψ(f)) = â(φ) = g(φ) = ψ(φ ◦ f) (φ ∈M(A)).

It is easily seen that Ψ : A → A is an A-character and Ψ|A = ψ.
(ii) ⇒ (iii): Fix f ∈ A and define F : M(A) → A by F (ψ) = Ψ(f), where Ψ

is the unique A-character of A to which ψ lifts. Considering the identification
x 7→ εx and the fact that each εx lifts to Ex : f 7→ f(x), we get

F (x) = F (εx) = Ex(f) = f(x) (x ∈ X).

So, F |X = f . Also, φ(F (ψ)) = φ(Ψ(f)) = ψ(φ ◦ f).
(iii) ⇒ (i): Fix ψ ∈ M(A) and f ∈ A , and put a = F (ψ), where F is the

unique extension of f to M(A) given by (iii). Then g(φ) = â(φ), for every φ ∈ E,
which is, obviously, a continuous function with respect to the w*-topology of E.

Finally, suppose Ã = {f̃ : f ∈ A } is an A-valued function algebra on M(A).
We prove (ii)⇒ (iv)⇒ (i). If A satisfies (ii), then

ψ ◦ f̃ = Ψ̂(f) ∈ Â ⊂ Ã , (f ∈ A , ψ ∈M(A)).

This means that {ψ ◦ f̃ : ψ ∈ M(A), f ∈ A } ⊂ Ã and thus Ã is admissible.

Conversely, suppose Ã is admissible. Then, for every ψ ∈M(A) and f ∈ A , the

function ψ ◦ f̃ is a complex-valued function in Ã . By Lemma 3.7, ψ ◦ f̃ belongs
to Â so that ψ ◦ f̃ = â, for some a ∈ A. Hence, g(φ) = â(φ), for every φ ∈ E,
and g is w*-continuous. �
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The following shows that for a wide class of admissible A-valued function alge-
bras, including admissible A-valued uniform algebras, the mapping g in the above
theorem is continuous and thus every ψ ∈M(A) lifts to some Ψ ∈MA(A ).

Theorem 3.9. Let A be an admissible Banach A-valued function algebra on X
with A = C(X) ∩ A . If ‖f̂‖ = ‖f‖X , for all f ∈ A, then the mapping g in
Theorem 3.8 is continuous and thus every character ψ ∈ M(A) lifts to some A-
character Ψ ∈MA(A ). In particular, if A is a uniform algebra, then A satisfies
all conditions in Theorem 3.8.

Proof. Take ψ ∈ M(A) and let g be as in Theorem 3.8. Since ‖f̂‖ = ‖f‖X , for
every f ∈ A, ψ is a continuous functional on (A, ‖ · ‖X); see [8]. By the Hahn-
Banach theorem, ψ extends to a continuous linear functional ψ̄ on C(X). This,
in turn, implies that g extends to a linear functional ḡ : A∗ → C defined by
ḡ(φ) = ψ̄(φ ◦ f). By Proposition 3.5, the extended mapping f̃ : A∗ → C(X)
is w*-continuous on bounded subsets of A∗. Hence, the linear functional ḡ is
w*-continuous on bounded subsets of A∗. Since A is a Banach space, Corollary
3.11.4 in [9] shows that ḡ is w*-continuous on A∗. �

Corollary 3.10. If A is an admissible A-valued uniform algebra on X, then Ã
is an admissible A-valued uniform algebra on M(A).

When A is an admissible A-valued uniform algebra, every f ∈ A extends to
a function F : M(A)→ A. If, in addition, A is a uniform algebra, one can prove
that this extension F is continuous and the following maximum principle holds;

‖F‖M(A) = ‖F‖X = ‖f‖X .

Remark. When A is uniformly closed in C(X), every linear functional ψ ∈ A∗ lifts
to some bounded linear operator Ψ : A → A with the property that φ(Ψf) =
ψ(φ ◦ f), for all φ ∈ A∗. In fact, by the Hahn-Banach theorem, ψ extends to
a linear functional ψ̄ ∈ C(X)∗. By the Riesz representation theorem, there is a
complex Radon measure µ on X such that ψ(f) =

∫
X
fdµ, for all f ∈ A. Using

[14, Theorem 3.7], one can define Ψ(f) =
∫
X
fdµ, for every f ∈ A , such that

φ(Ψ(f)) =

∫
X

(φ ◦ f)dµ = ψ(φ ◦ f) (f ∈ A , φ ∈ A∗).

4. Examples

We conclude the paper by giving some examples of identifying the A-characters
of certain admissible Banach A-valued function algebras.

Example 4.1. Let A = C(X,A). Then A = C(X) is natural, that is, its
only characters are the point evaluation characters εx (x ∈ X). Hence the only
A-characters of C(X,A) are the point evaluation homomorphisms Ex (x ∈ X).

Another example is A = R(K,A), where K ⊂ C is compact. In this case
A = R(K) is also natural. Hence the only A-characters of R(K,A) are the point
evaluation homomorphisms Eλ (λ ∈ K).
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Example 4.2. Let K be a compact subset of C and let A = P (K,A). Then

M(P (K)) = K̂, the polynomially convex hull of K. Since A is an A-valued
uniform algebra, by Theorem 3.9, every f ∈ P (K,A) extends to a function F :

K̂ → A, and every λ ∈ K̂ induces an A-character Eλ : P (K,A) → A given
by Eλ(f) = F (λ). Thus the set of A-characters of P (K,A) is in one-to-one

correspondence with K̂.

Example 4.3 (Vector-valued Lipschitz Algebras). Let (X, ρ) be a compact metric
space. An A-valued Lipschitz function is a function f : X → A such that

L(f) = sup
{‖f(x)− f(y)‖

ρ(x, y)
: x, y ∈ X, x 6= y

}
<∞. (4.1)

Denoted by Lip(X,A), the space of A-valued Lipschitz functions on X is an
A-valued function algebra on X. For f ∈ Lip(X,A), the Lipschitz norm of f is
defined by ‖f‖L = ‖f‖X +L(f). It is easily verified that (Lip(X,A), ‖ · ‖L) is an
admissible Banach A-valued function algebra with Lip(X) = Lip(X,A) ∩ C(X),
where Lip(X) = Lip(X,C) is the classical complex-valued Lipschitz algebra. Re-

cently, in [5], the character space and Śilov boundary of Lip(X,A) has been stud-
ied. Since A = Lip(X) is natural ([5] or [15]), the only A-characters of Lip(X,A)
are the point evaluation homomorphisms Ex (x ∈ X).

Next, let T be the unit circle in C, and let LipP (T, A) be the closure of P0(T, A)
in Lip(T, A). Then A = LipP (T), the closure of P0(T) in Lip(T), with M(A) = ∆,

the closed unit disc. It is easily verified that ‖f̂‖ = ‖f‖T, for every f ∈ Lip(T).
Hence, by Theorem 3.9, every f ∈ LipP (T, A) extends to a function F : ∆ →
A, and every λ ∈ ∆ induces an A-character Eλ : LipP (T, A) → A given by
Eλ(f) = F (λ). The set of A-characters of LipP (T, A) is therefore in one-to-one
correspondence with ∆.

Acknowledgement. The author expresses his sincere gratitude to the anony-
mous referee for their careful reading and suggestions that improved the presen-
tation of this paper.

References

1. M. Abel, M. Abtahi, Description of Closed Maximal Ideals in Topological Algebras of Con-
tinuous Vector-valued Functions, Mediterr. J. Math. 11 (2014), 1185–1193.

2. M. Abtahi and S. Farhangi, Vector-valued spectra of Banach algebra valued continuous
functions, arXiv:1510.06641

3. F.F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin, Heidelberg,
New York, (1973).

4. H.G. Dales, Banach Algebras and Automatic Continuity. London Mathematical Society
Monographs, New Series 24, Oxford Science Publications, Clarendon Press, Oxford Uni-
versity Press, New York, (2000).

5. K. Esmaeili and H. Mahyar, The character spaces and Śilov boundaries of vector-valued
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