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Abstract. In this paper, fixed point theorems for Ćirić-Matkowski-type
contractions in ν-generalized metric spaces are presented. Then, by re-
placing the distance function d(x, y) with function of the form m(x, y) =
d(x, y) + γ

�
d(x, Tx) + d(y, Ty)

�
, where γ > 0, results analogue to those

due to P. D. Proinov [Fixed point theorems in metric spaces, Nonlin-
ear Anal. 64 (2006) 546–557] are obtained. An example is provided to
demonstrate a possible usage of these results.
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1. Introduction and Preliminaries

Fixed point theory in metric spaces have many applications. It is natural that
there have been several attempts to extend it to a more general setting. One of
these generalizations was introduced by Branciari in 2000, where the triangle
inequality was replaced by a so-called polygonal inequality. He introduced the
concept of ν-generalized metric spaces as follows (see also [2, 5, 8, 9, 15, 16]).

Definiton 1.1 (Branciari [3]). Let X be a nonvoid set and d : X×X → [0,∞)
be a mapping. Let ν ∈ N. Then (X, d ) is called a ν-generalized metric space
if the following hold:

1. d(x, y) = 0 if and only if x = y, for every x, y ∈ X;
2. d(x, y) = d(y, x), for every x, y ∈ X;
3. d(x, y) ≤ d(x, u1)+d(u1, u2)+· · ·+d(uν , y), for every set {x, u1, . . . , uν , y}

of ν + 2 elements of X that are all different.

Obviously, (X, d ) is a metric space if and only if it is a 1-generalized
metric space. In [15], it was shown that not every generalized metric space
has a compatible topology.
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Definiton 1.2 ([2]). Let (X, d ) be a ν-generalized metric space. Let k ∈ N. A
sequence {xn} in X is said to be k-Cauchy if

lim
n→∞

sup{d(xn, xn+1+mk) : m ∈ Z+} = 0. (1.1)

The sequence {xn} is said to be Cauchy if it is 1-Cauchy.

The concept of Cauchy sequences in ν-generalized metric spaces was
studied in [2, 16]; see also [3].

Proposition 1.3 ([2, 16]). Let (X, d ) be a ν-generalized metric space and let
{xn} be a sequence in X such that xn (n ∈ N) are all different. Suppose that
{xn} is ν-Cauchy. If ν is odd, or if ν is even and d(xn, xn+2) → 0 as n →∞,
then {xn} is Cauchy.

According to [3], a sequence {xn} in a ν-generalized metric space (X, d )
is said to converge to x if d(x, xn) → 0 as n → ∞. It was shown in [13] and
[14] (see, e.g., [14, Example 1.1]) that, among other things, a sequence in a
2-generalized metric space may converge to more than one point and that a
convergent sequence may not be a Cauchy sequence.

According to [2, 16], a sequence {xn} is said to converge to x in the
strong sense if {xn} is Cauchy and {xn} converges to x. The mentioned [14,
Example 1.1] shows that there exist convergent sequences in 2-generalized
metric spaces that do not converge in the strong sense.

The space X is said to be complete if every Cauchy sequence in X
converges. In [2], the completeness of ν-generalized metric spaces is discussed.

Proposition 1.4 ([16]). Let {xn} and {yn} be sequences in a ν-generalized
metric space (X, d) that converge to x and y in the strong sense, respectively.
Then

d(x, y) = lim
n→∞

d(xn, yn).

Branciari, in [3], proved a generalization of the Banach contraction prin-
ciple. His proof was not fully correct because a ν-generalized metric space
does not necessarily have the compatible topology, see [6, 13, 14, 15, 17]. A
proof of the Banach contraction principle, as well as proofs of Kannan’s [7]
and Ćirić’s [4] fixed point theorems, in ν-generalized metric spaces, can be
found in [16].

Theorem 1.5 ([16]). Let (X, d ) be a complete ν-generalized metric space, and
let T be a self-map of X. For every x, y ∈ X, let

m(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}. (1.2)

Assume there exists r ∈ [0, 1) such that d(Tx, Ty) ≤ rm(x, y), for all x, y ∈
X. Then T has a unique fixed point z and, moreover, for any x ∈ X, the
Picard iterates Tnx (n ∈ N) converge to z in the strong sense.

The present paper is organized as follows. In Section 2, we study Cauchy
sequences in ν-generalized metric spaces. We present a necessary and suffi-
cient condition for a sequence to be Cauchy. Next, in Section 3, we give new
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fixed point theorems in ν-generalized metric spaces. These results are exten-
sions to ν-generalized metric spaces of the theorems by Meir and Keeler [11],
Ćirić [4], Matkowski [10, Theorem 1.5.1], and Proinov [12]. It is shown by an
example that these results are more powerful than some of the results from
the paper [16].

Throughout the paper, the set of integers is denoted by Z, the set of
nonnegative integers is denoted by Z+, and the set of positive integers is
denoted by N.

2. Results on Cauchy Sequences

The following is the main result of the section.

Lemma 2.1. Let {xn} be a sequence in a ν-generalized metric space (X, d )
such that xn (n ∈ N) are all different. Suppose that, for every ε > 0 and for
any two subsequences {xpi

} and {xqi
}, if lim supi→∞ d(xpi

, xqi
) ≤ ε, then,

for some N ,
d(xpi+1, xqi+1) ≤ ε (i ≥ N).

If, moreover, d(xn, xn+1) → 0 as n → ∞, then the sequence {xn} is ν-
Cauchy.

Proof. Suppose {xn} is not ν-Cauchy. Then (1.1) fails to hold for k = ν.
Hence, there is ε > 0 such that

∀k ∈ N, ∃n ≥ k, sup{d(xn, xn+1+mν) : m ∈ Z+} > ε. (2.1)

Since d(xn, xn+1) → 0, there exist positive integers k1 < k2 < · · · such that

d(xn, xn+1) < ε/i (n ≥ ki).

For each ki, by (2.1), there exist ni ≥ ki + 1 and mi ∈ Z+ such that

d(xni , xni+1+miν) > ε.

Since d(xni , xni+1) < ε, we have mi ≥ 1. We let mi be the smallest number
with this property so that d(xni , xni+1+miν−ν) ≤ ε. Now, let pi = ni− 1 and
qi = ni + miν. Then qi > pi ≥ ki, and

d(xpi+1, xqi+1) > ε, d(xpi+1, xqi+1−ν) ≤ ε.

Using property (3) in Definition 1.1, since all xn (n ∈ N) are different, for
every i ∈ N, we have

d(xpi , xqi) ≤ d(xpi , xpi+1) + d(xpi+1, xqi+1−ν)

+ d(xqi+1−ν , xqi+2−ν) + · · ·+ d(xqi−1, xqi).

Therefore, d(xpi , xqi) ≤ νε/i+ ε, and thus lim supi→∞ d(xpi , xqi) ≤ ε. This is
a contradiction, since d(xpi+1, xqi+1) > ε, for all i. ¤

Theorem 2.2. Suppose that {xn} satisfies all the conditions in Lemma 2.1,
and, moreover, d(xn, xn+2) → 0 as n →∞. Then {xn} is a Cauchy sequence.
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Proof. By Lemma 2.1, the sequence {xn} is ν-Cauchy. Since d(xn, xn+2) → 0,
by Proposition 1.3, the sequence {xn} is Cauchy. ¤

Theorem 2.3. Let {xn} be a sequence in a ν-generalized metric space (X, d )
such that xn (n ∈ N) are all different and d(xn, xn+1) + d(xn, xn+2) → 0 as
n →∞. Assume that m(x, y) is a nonnegative function on X ×X such that,
for any two subsequences {xpi} and {xqi},

lim sup
i→∞

m(xpi
, xqi

) ≤ lim sup
i→∞

d(xpi
, xqi

). (2.2)

The following condition then implies that the sequence {xn} is Cauchy: for
every ε > 0 and for any two subsequences {xpi} and {xqi}, if
lim supi→∞m(xpi , xqi) ≤ ε, then, for some N ,

d(xpi+1, xqi+1) ≤ ε (i ≥ N). (2.3)

Proof. Let ε > 0 and let {xpi
} and {xqi

} be two subsequences with
lim supi→∞ d(xpi , xqi) ≤ ε. By (2.2), we get lim supi→∞m(xpi , xqi) ≤ ε.
Therefore, (2.3) holds. All conditions in Lemma 2.1 are fulfilled and so the
sequence is ν-Cauchy. Since d(xn, xn+1) + d(xn, xn+2) → 0, by Proposition
1.3, we see that {xn} is a Cauchy sequence. ¤

3. Fixed Point Theorems of Ćirić-Matkowski Type

Let (X, d ) be a ν-generalized metric space. A mapping T : X → X is said to
be a Ćirić-Matkowski contraction if d(Tx, Ty) < d(x, y), for every x, y ∈ X
with x 6= y, and, for any ε > 0, there exists δ > 0 such that, for all x, y ∈ X,

d(x, y) < δ + ε =⇒ d(Tx, Ty) ≤ ε. (3.1)

The following lemma was proved in the context of metric spaces as [1,
Lemma 3.1]. Its proof does not use the triangular inequality, so it holds true
also in ν-generalized metric spaces.

Lemma 3.1. Let (X, d ) be a ν-generalized metric space. For a sequence {xn}
in X and a nonnegative function m(x, y) on X ×X, the following are equiv-
alent:

1. for every ε > 0, there exist δ > 0 and N ∈ Z+ such that, for all p, q ≥ N ,

m(xp, xq) < ε + δ =⇒ d(xp+1, xq+1) ≤ ε. (3.2)

2. for every ε > 0 and for any two subsequences {xpi} and {xqi}, if
lim supi→∞m(xpi , xqi) ≤ ε then, for some N , d(xpi+1, xqi+1) ≤ ε
(i ≥ N).

We will need the following lemma in the sequel.

Lemma 3.2. Let (X, d ) be a ν-generalized metric space and let T : X → X be
a mapping. Suppose d(Tnx, Tn+1x) → 0, as n →∞, for some x ∈ X. Then,
for some k ∈ N, either the Picard iterates Tnx (n ≥ k) are all different or
they are all the same.
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Proof. Suppose T k+mx = T kx, for some k,m ∈ N, and let m be the smallest
positive integer with this property. If m = 1, that is T k+1x = T kx, then
Tnx = T kx, for n ≥ k, and there is nothing to prove. If m ≥ 2, then every
two elements in the set {T kx, T k+1x, . . . , T k+m−1x} are different. Now, for
n > k, write n− k = mj + i with j ≥ 0 and 0 ≤ i ≤ m− 1. Then

d(Tnx, Tn+1x) = d(T k+mj+ix, T k+mj+i+1x) = d(T k+ix, T k+i+1x).

The above inequality contradicts the fact that d(Tnx, Tn+1x) → 0. ¤

Now, suppose that T is a Ćirić-Matkowski contraction on X, take a
point x ∈ X, and set xn = Tnx (n ∈ N). Then, for every ε > 0, there exist
δ > 0 such that d(xp, xq) < ε + δ implies d(xp+1, xq+1) ≤ ε.

Theorem 3.3. Let (X, d ) be a ν-generalized metric space, let T be a self-map
of X and let m(x, y) be a nonnegative function on X ×X. Suppose that, for
some point x ∈ X, the following conditions hold:

1. for any ε > 0, there exist δ > 0 and N ∈ Z+ such that, for all p, q ≥ N ,

m(T px, T qx) < δ + ε =⇒ d(T p+1x, T q+1x) ≤ ε, (3.3)

2. condition (2.2) holds for any two subsequences {T pix} and {T qix} of
{Tnx},

3. d(Tnx, Tn+1x) + d(Tnx, Tn+2x) → 0 as n →∞.

Then {Tnx} is a Cauchy sequence.

Proof. Using Lemma 3.1, condition (3.3) implies that, for every ε > 0 and
for any two subsequences {T pix} and {T qix} of {Tnx}, if
lim supi→∞m(T pix, T qix) ≤ ε then, for some N , d(T pi+1x, T qi+1x) ≤ ε (i ≥
N). By Lemma 3.2, the Picard iterates Tnx are eventually all the same, in
which case {Tnx} is obviously a Cauchy sequence, or they are all different. In
the latter case, Theorem 2.3 shows that the sequence {Tnx} is Cauchy. ¤

Now we give a new proof of the result that appeared as [15, Theorem
13].

Theorem 3.4. Let (X, d ) be a complete ν-generalized metric space and let T

be a Ćirić-Matkowski contraction on X. Then T has a unique fixed point z,
and, moreover, for any x ∈ X, the sequence {Tnx} converges to z in the
strong sense.

Proof. First, we show that T has at most one fixed point. Suppose Tz = z
and y 6= z. Then d(Ty, Tz) = d(Ty, z) < d(y, z). Hence Ty 6= y.

Given x ∈ X, we consider the following two cases.

1. There exist k,m ∈ N such that T k+mx = T kx.
2. Tnx (n ∈ N) are all different.

In the case (a), where T k+mx = T kx, for some k,m ∈ N, we let m be the
smallest positive integer with this property. If m = 1, that is T k+1x = T kx,
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then Tnx = T kx, for n ≥ k, and there is nothing to prove. If m ≥ 2, then
every two successive elements in the following sequence are different:

T kx, T k+1x, . . . , T k+m−1x, T k+mx, T k+m+1x, . . .

Recall that x 6= y implies d(Tx, Ty) < d(x, y). Hence

d(T kx, T k+1x) = d(T k+mx, T k+m+1x) < d(T k+m−1x, T k+mx)

< · · · < d(T k+1x, T k+2x) < d(T kx, T k+1x).

This is absurd.
In the case (b), we let xn = Tnx, and show that d(xn, xn+i) → 0, as n →

∞, for i = 1, 2. Since xn (n ∈ N) are all different, we have d(xn+1, xn+i+1) <
d(xn, xn+i), for every n, that is, the sequence εn = d(xn, xn+i) is decreasing
and thus εn ↓ ε for some ε ≥ 0. If ε > 0, there is δ > 0 such that εn =
d(Tnx, Tn+1x) ≤ ε + δ implies that εn+1 = d(Tn+1x, Tn+2x) ≤ ε. This is
a contradiction since we have ε < εn, for all n. Hence, d(xn, xn+i) → 0, as
n → ∞ (i = 1, 2). Now, by Theorem 3.3, the sequence {Tnx} is Cauchy.
Since X is complete, {Tnx} converges to some z ∈ X. By Proposition 1.4,
we have

d(z, Tz) = lim
n→∞

d(Tnx, Tz) ≤ lim
n→∞

d(Tn−1x, z) = 0.

Hence Tz = z, i.e., z is a fixed point of T . ¤

Similarly as in metric spaces, we will use the following terminology.

Definiton 3.5. A self-mapping T of a ν-generalized metric space (X, d ) is
said to be sequentially continuous if {Txn} converges to Tx whenever {xn}
converges to x. The mapping T is called asymptotically regular if

d(Tnx, Tn+1x) + d(Tnx, Tn+2x) → 0, as n →∞ (x ∈ X).

We are now in a position to state and prove a version of Proinov’s
theorem, [12, Theorem 4.2], for ν-generalized metric spaces.

Theorem 3.6. Let (X, d ) be a complete ν-generalized metric space, and T be a
sequentially continuous and asymptotically regular self-map of X. For γ > 0,
define m on X ×X by m(x, y) = d(x, y) + γ

(
d(x, Tx) + d(y, Ty)

)
. Suppose

that
d(Tx, Ty) < m(x, y), for every x, y ∈ X, with x 6= y, (3.4)

and that, for any ε > 0, there exist δ > 0 and N ∈ N0 such that, for all
x, y ∈ X,

m(TNx, TNy) < δ + ε =⇒ d(TN+1x, TN+1y) ≤ ε. (3.5)

Then T has a unique fixed point z, and, for any x ∈ X, the Picard iterates
Tnx (n ∈ N) converge to z in the strong sense.

Proof. First, let us prove that T has at most one fixed point. If Ty = y and
Tz = z, then m(y, z) = d(y, z) = d(Ty, Tz). Hence y = z (otherwise, we
should have d(Ty, Tz) < d(y, z) which is not the case).
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Now, choose x ∈ X and set xn = Tnx (n ∈ N). Since T is assumed
to be asymptotically regular, we have d(xn, xn+1) → 0 and d(xn, xn+2) → 0
as n → ∞. Hence, (2.2) holds for any two subsequences {xpi} and {xqi}.
By Theorem 2.3, the sequence {Tnx} is Cauchy and, since X is complete, it
converges to some point z ∈ X. Since T is sequentially continuous, we have
Txn → Tz. Since both {xn} and {Txn} converge in the strong sense, by
Proposition 1.4, we get

d(z, Tz) = lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, xn+1) = 0.

Therefore, Tz = z and z is the unique fixed point of T . ¤

Example 3.7. Let X = {a, b, c, δ, e} and d : X ×X → [0, +∞) be defined by:

d(x, x) = 0 for x ∈ X;

d(x, y) = d(y, x) for x, y ∈ X;

d(a, b) = 3,

d(a, c) = d(b, c) = 1,

d(a, δ) = d(b, δ) = d(c, δ) = 2,

d(a, e) = d(c, e) = 1, d(b, e) = d(δ, e) = 2.

Then it is easy to check that (X, d ) is a 2-generalized metric space which is
not a metric space since

d(a, b) = 3 > 2 = d(a, c) + d(c, b).

Consider T : X → X given by

T =
(

a b c δ e
c c c a b

)
.

Then the mapping T is obviously sequentially continuous. Since, for each
x ∈ X, Tnx = c for n sufficiently large, it is clear that T is asymptotically
regular and that condition (3.5) is fulfilled. Take γ = 1. In order to check the
condition (3.4), it is nontrivial just to consider the following cases:

1. x ∈ {a, b, c}, y ∈ {δ, e}. Then

d(Tx, Ty) = 1 < 3 ≤ m(x, y).

2. {x, y} = {δ, e}, x 6= y. Then

d(Tx, Ty) = 3 < 6 = m(x, y).

Hence, all the conditions of Theorem 3.6 are fulfilled and T has a unique
fixed point (which is z = c).

Note that for x = δ, y = e it is

d(Tx, Ty) = 3 > 2 = m(x, y).

Hence, the conditions of Theorem 1.5 do not hold and the conclusion cannot
be reached using this result.



8 M. Abtahi, Z. Kadelburg and S. Radenović

4. Conclusion

ν-generalized metric spaces were introduced by Branciari in [3] and some fixed
point results were obtained. After that, several researchers proved various
fixed point results in these spaces (in particular, improving some deductions
from [3]), but mostly for the case ν = 2. Some results for arbitrary ν were
obtained in the papers [2, 15, 16]. We have extended some of these results
in the present paper, in particular proving an analog of Proinov’s fixed point
result from [12] in the framework of ν-generalized metric spaces. It has been
shown by an example that this result is more powerful than some of the
results from the paper [16].
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